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Earthquake Rupture Complexity

Overview

* A quick look "back into the past”

* Rupture-Complexity Ingredients
> Spatial variations of on-fault displacement (aka “slip heterogeneity”)
> Variability of rupture velocity
> The local slip-rate function: shape & duration

®* Constraints from simulations and observations

* Open questions
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Earthquake Rupture Complexity
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Early developments

Earthquake source complexity recognized in the 1960ties and 1970ties
°* Omega-square (w2) or w3 model to explain far-field observations (e.g. Aki, 1967)
* Theoretical source models developed for point-source like ruptures (e.g. Brune, 1970)
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Earthquake Rupture Complexity

Early developments

° Extended-fault slip characterization (e.g. Andrews, 1980, 1981)
> Two-dimensional slip function D(x,z) with specific properties (in space & FFT domain)
> Spectral behavior D(k) constrained to D(k) ~ k? by far-field w2-decay

(]

(k) = K(k) D(K) —

|D(Kk)| o< k™" D(k) ~ 1/k*
‘T(k), o k= “k-square”
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k= (ki + k)2
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Fig. 4. A realization of stochastic static stress change for uDy/a = 1,a = 1, and » = 1.
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Earthquake Rupture Complexity

Early developments

G

* Apply and extend ideas of Andrews (1980, 1981) to earthquake rupture modeling
* Linking spectral decay of far-field displacement to fractal dimension & b-values

combining many elementary sources (subevents) (Frankel, 1991)

Level 1 part of Level 2

Fig. 1. (a) A simplified example of a rupture model with a
continuous, self-similar distribution of subevent rupture areas.
Rupture zones of subevents are shown by different sizes of circles.
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y=3+4+1n-D/2. (18)

Equation (18) indicates that a subevent distribution with
D = 2 and constant stress drop scaling (n = 0) will produce
a main shock with a falloff of @2 (y = 2) if the subevents fill
the main shock rupture area. This is the high-frequency
spectral falloff that is typically observed.

The outermost circle represents the rupture area of the main shock. H=m=0
The rupture zones shown in Figure la are the level 1 subevents. (b) EEEEEEEEEE NN
A blow-up of one of the subevents in Figure la, showing that it
contains its own self-similar distribution of subevents (level 2).
§ -D /\
1012 _-\\ @2 sub-events dN Rsub §
W = p E— .g
8 f()nan 2N L . d(ln Rs“b) Rl‘llaill H = n= 05
2 \
- Ll ety
E 0 distance 20
= -
i Fig. 6. Two examples of self-similar, random functions repre-
b senting stress sampled along a line in a fault plane. The top trace has
5 H = 5 =0, a power spectrum proportional to 1/k (D = 2), and a
§ stress drop independent of scale length. The bottom trace has H =
% 7 = 0.5, a power spectrum proportional to k™%, and a stress drop
a that decreases with smaller length scales. Distance is given in
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Earthquake Rupture Complexity

Early developments

* Apply and extend ideas of Andrews (1980, 1981) to earthquake rupture modeling
* Linking spectral decay of far-field displacement to fractal dimension & b-values
combining many elementary sources (subevents) (Frankel, 1991)
> Composite source model (Zeng et al, 1994, Anderson, 2015)
> k-square rupture model (Herrero and Bernard, 1994)

N

the fault for one simulation. 0

Fault Length 60| R
Figure 1. Spatial distribution of 10% of the sube 7 l:
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Earthquake Rupture Complexity

Using finite-fault earthquake source inversion models

* Increasing number of source inversion studies provide “rupture models”

* Somerville et al (1999) characterize earthquake slip for 15 such rupture models
> Processing of 2D slip maps; count asperities (large slip regions); statistical analysis
> Compare with k-square model
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Earthquake Rupture Complexity I

Quantify Slip Heterogeneity

* Compilations of rupture models: fault slip spatially variable

* Slip heterogeneity as spatial random field (Mai and Beroza, 2002;
Lavallee et al, 2006)

* Use auto-correlation function C(r) in space, or its power-
spectral density P(k) in the Fourier domain

C(r) P(k)

, Gy (r)=rK (r)
GS e e ¥ :

2
EX e asa: r=.\lata
(1+k2);
G,
VK e k= JEE T QR
1 1

P(k)“ks+1°‘(k3+kg)4-v D=E+1-H

Power Spectral Decay

> ay, d,: correlation lengths 10§ von Karman
> H:Hurst number (H = [0; 1]) ol v

> K,: modified Bessel function 2"? kind, order H %wz ,

>k, k,: wavenumber in horizontal and vertical direction ‘g

>  fractal: “straight-line” in power-spectral decay, =

> fractal dimension D (E: Euclidian norm) o’

Wavenumber (1/km)
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Earthquake Rupture Complexity e°

Quantifying Slip Heterogeneity e Avrsgd Spec Dy

° Patterns emerging from an analysis of many slip models
> van Karman ACF best replicates the P(k) of slip distributions

> Correlation lengths depend on magnitude

> Hurst exponent H ~ 0.7

= c.a.PSD
o GS(a=6.0km)
m— EX (a=6.2 km)

4tH  aa T KSR
- ' H+l - - :
K() (O) (1 + k2 ) ° C.A.V\;:venumber [1/k1rgl

Mai and Beroza, 2002
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Earthquake Rupture Complexity 2"
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Simulating slip heterogeneity

* For kinematic rupture modeling, tsunami simulations, initial stress for rupture dynamics
> Assume fault-plane dimensions or calculate from source-scaling relations
> Simulate “random” but realistic heterogeneous slip distribution
> Karhunen-Loéeve expansion (LeVeque et al, 2016) for curved faults
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Earthquake Rupture Complexity
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Simulating slip heterogeneity & rupture evolution

* Something is missing !
> Where does the rupture start? - Constrain hypocenter

24
> How (fast) does it propagate? -2 Constrain rupture speed MPa
> Local slip function on the fault? = Shape, duration, Ve, 15
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Earthquake Rupture Complexity

Simulating slip heterogeneity & rupture evolution

* Hypocenter location — not random, but related to slip (stress) on the fault
* from hypocenter locations in finite-source rupture models

> ruptures starts on, or close to, a large-slip region (“asperity”) L
> consistent with energy-budget consideration of rupture dynamics

> ruptures may nucleate at any level of slip
asperity definition

e

(b) Shortest distance to DMAX

0 0.2 0.4 0.6 0.8 1

(c) Shortest distance to LARGE-SLIP asperity

Down Dip Distance [km]

0 0.2 0.4 0.6 0.8 1

(d) Shortest distance to VERY-LARGE-SLIP asperity

.
0 0.2 0.4 0.6 0.8 1
Normalized Distance

Hypocenter distance w.r.t. zone of
large (very-large) slip D Z g Dmaaj L]

Mai et al, 2005 12
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Earthquake Rupture Complexity 2°

Simulating slip heterogeneity & rupture evolution

° Rupture velocity can be highly variable over fault plane

> from finite-fault inversions & dynamic rupture simulations

> rupture accelerates or slows down locally

> clearly seen in dynamic rupture simulatio
> conditions for supershear V,?

Wil cadrd”
I

final slip [m]

z [km]

/ . =

—

peak slip-rate [m/s]

45

y lkm]

z [km]

Fault roughness [m]

o 1 2 3 4 5 -600 -300 o 300 600

Mai et al, 2018 13
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Earthquake Rupture Complexity

Simulating slip heterogeneity & rupture evolution

* Local slip-rate function (shape, duration, V,.,) controls radiation

> several parameterizations proposed

> shape, duration (rise time) spatially variable

> (reg.) Yoffe-type dynamically consistent (Tinti et al, 2005)

Rise time

T R N NS N
e W N N Y N

5 km

>

P . Guatteri et al, 2003
distance along strike

Slip velocity (mis)  Slip vel

0 5 10 0 5 10
® Tme  Tme (s)
Mai et al, 2017
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Earthquake Rupture Complexity

Current state of the art in kinematic rupture modeling

* Several (similar) methods in use, with the following work-flow

>

>

>

>

assume/compute source dimension, fault geometry known; define hypocenter

generate heterogeneous slip on the fault (perhaps rake-angle variations)

constrain rupture propagation V,: scaling between slip and V, (e.g.Guatteri et al, 2003; Schmedes et al, 2010)
constrain rise time 7, : position on fault and average scaling (e.g. Guatteri et al, 2003; Somerville et al. 1999)
small-scale random variation from fault roughness (Graves and pitarka, 2016; Savane and Olsen, 2020)

GP2010 GP14.3 GP15.4
0 Sllp (cm) 0/58/224 Slip(cm) 0/588/224 Slip (cm) 0/568/7224
230
- 184
£ 138
ES
g2
46
! Q
G Rise Time (s) 00/08/1.7 Rise Time (s) . FlmTlmo(s) 00/07116
e LA - 3
» > 3 ’ : ’
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KAUST King Abdullah University of Science and Technology Graves & Pitarka (2006, 2010, 2016)
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Earthquake Rupture Complexity

Open Questions

* Probability distribution of earthquake slip?

> Non-Gaussian Levy law (e.g. Lavallee et al, 2006); modified log-normal (Gusev, 2011)
> Statistical properties of slip govern ground motions (e.g., Song and Dalguer, 2013)
> Testing probability distributions using SRCMOD database (Thingbaijam and Mai, 2016)

Evidence for truncated exponential distribution

x 100
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10/ 1
6
Earthquake Source Model Database ‘ ‘ 40 200 . l % 4
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>
n the fau Ild ind download links. 250’ 0 9
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KAUST King Abdullah University of Science and Technology Thingbaijam and Mai, 2016
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Earthquake Rupture Complexity

Open Questions

Colormap
clipped,
(max up

° Intricate rupture dynamics e H

> Dynamic triggering, multiple rupture fronts
> Supershear rupture propagation: episodic and sustained
> Source-parameter scaling & correlations from dedicated dynamic rupture simulations

25
psolute slp rate (ms)

g ; Rupture front

Ulrich et al, 2019 Weng and Ampuero, 2020

Correlation: 0.50 . Correlation: 0.02

Kinematic slip/avg sip
S -

w

Rise time (s)

N

Rupture velocity (km/s)

2 6
Peak slip velocity (m/s)

Schmedes et al, 2010

Thingbaijam and Mai, 2016 v/e
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Earthquake Rupture Complexity

Open Questions

* Compounded multi-segment ruptures

> Several segments activated in a single (large) event

> Complex-geometry events require intricate rupture dynamics

> How to parameterize in a kinematic (pseudo-dynamic) way?

Darfield, NZL (2010)
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Earthquake Rupture Complexity
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Concluding Remarks

°* We have begun to get a handle on imaging & modeling (small-scale) rupture complexity

* Combination of deterministic and stochastic approaches needed to generate the
expected high-frequency seismic radiation

° Intricate rupture dynamics only partially accounted for — much more research needed

JVF N

HVF KF

zoom in on first branch

y2

slip rate (m/s)

zoom in on second branch

rupture time: 0.00 s Wollherr et al, 2018
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Earthquake Source Dynamics

Thank You

martin.mai@kaust.edu.sa
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