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Outline

• Preliminary results are presented.

• Ongoing study on effects of surface topography, and soil stratigraphy and nonlinearity on
site (and civil infrastructure) responses for a region of Istanbul.

• Extremely large-scale linear and nonlinear physics-based 3D earthquake ground motion
simulations using real site topography and soil stratigraphy data, and realistic fault
rupture sources models are performed.

• A computational workflow for hi-res rupture-to-rafters simulation is developed.
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Rupture-to-Rafters
ingredients
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Source Modeling (Crempien)

Fault Rupture Simulations
• Sudden slip on faults produce seismic 

waves

• With known crustal properties Green´s 
functions can be devised and convolved 
with the source, to produce input ground 
motions

• The figure shows different earthquake 
source parameters on each point on the 
fault, such as seismic moment, slip duration 
and rupture speed.

Representation Theorem

Crempien and Archuleta (2017)
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Verification

Synthetic ground velocity and 
acceleration at different 
virtual stations.

The red line shows the median 
response spectrum of 
synthetic simulations and the 
blue lines depicts the average 
NGA-W2 ground motion 
prediction equations.

Crempien and Archuleta (2017)
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Marmara region, Turkey (Crempien)

The figure shows the amount of slip imposed on 
each sub-fault. The Kinematic rupture 
parameters are then convolved with Green’s 
functions to generate strong ground motion.

Turkey
The black lines correspond to mapped fault 
traces by Pondard et al. (2007)

The red segmented line depicts the fault trace of 
a Mw6.5 strike-slip earthquake scenario.
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Main Components
Regional-scale domain (Crempien)

Physics-based ground motion simulation (Hercules)

Fault

Infrastructure inventories (UCLA 
& Tsinghua codes, ongoing)

Local analyses of critical infrastructure (ABAQUS, OpenSees)

Zhang et al. (2021)
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Domain Reduction Method (DRM)
The Domain Reduction Method is a two-step technique proposed by Bielak et al. (2003), with a goal of
reducing the computational cost by bringing the effects of seismic source closer to the domain of interest

where the subscripts i, b and e refer to the nodes within
the domain of interest, along the inside and outside
boundary of the one layer of elements, respectively.

Free-field response:
• Analytical solutions 

(homogeneous for 
time domain)

• 1D site response 
analysis
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Perfectly-Matched-Layer (PML) absorbing boundary condition 

The key idea of the PML is to attach a high-
attenuation zone to the truncation surface of the
regular domain, as shown below, within which
outgoing waves are forced to decay.

The PML has been implemented in ABAQUS by writing 
a user-defined element subroutine (a.k.a., UEL) for both 
2D and 3D versions.

• It can be used for arbitrarily heterogeneous soil domain.
• It results in no reflections at the truncated near-field 

boundary (i.e., “perfect matches” it) for all non-zero-
frequency impinging waves, irrespective of their angles 
of incidence. 

• It attenuates the wave energy within itself. 

The complex stretching function 

The idea is to “stretch” the originally physical coordinates to 
the virtually infinite coordinates 
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A vertical point load applied on three-layered half-space in 3D



UCLA
11

Borja-Amies multi-axial nonlinear soil model

Model Category Scope Viscous 
effects Number of parameters

Borja-Amies nonlinear soil model 
(Borja and Amies, 1994)

Elastic-plastic model with 
vanished elastic region 3D Yes 4 (frictional only)

6 ( frictional and viscous)
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Centrifuge experiments @ UC Davis (Seylabi et al., 2015)

Box
Width (m) Height (m) Thickness (m)

2.667 4.267 0.2

Pipe
Inside diameter (m) Thickness (m)

2.6 0.034
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Horizontal accelerations (soil)

Motion #09 (left array) Motion #03 (middle array)
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Bending strain (rectangular structure motion #09)
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Preliminary Results from
Istanbul
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Physics-based large-scale ground motion simulation
Istanbul model: 50 km by 50 km by 25 km (depth)

Simulations were performed using Hercules on 
Frontera / Stampede (TACC)

50 km

50
 k

m 30 km

12
.5

 k
m

Model parameter Linear Linear + 
topography Nonlinear Nonlinear + 

topography

!"#$ (Hz) 16.4 16.4 8.2 8.2

%&'() (m/s) 250

Points per wavelength 10

Min element size (m) ~1.5 ~1.5 ~3 ~3

Number of elements 
(billions)

8.4 11.1 5.4 7.2

Number of nodes 
(billions)

8.48 11.60 5.48 7.48

Time-step ∆+ (s) 0.0004 0.0004 0.0004 0.0004

Simulated duration (s) 30

Number of cores 8400 8400 22400 28000

Core usage time (hours) 11.1 16.6 33.5 47.5
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Elevation data

High-resolution 
topography is taken 
into account in 
large-scale 
earthquake ground 
motion simulations

Elevation model (m)
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Shear wave velocity (Vs) profiles

Detailed 3D velocity and density
models are constructed given a
total of 2912 boreholes
distributed in 250 m × 250 m
cells from prior large-scale
micro-zonation studies

Velocity model (m/s)
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Density profiles

Detailed 3D velocity and density
models are constructed given a
total of 2912 boreholes
distributed in 250 m × 250 m
cells from prior large-scale
micro-zonation studies

Density model (kg/m3)
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Physics-based large-scale ground motion simulation

A scenario 
earthquake with 
a magnitude of 
6.5 is simulated
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Physics-based large-scale ground motion simulation

A scenario 
earthquake with 
a magnitude of 
6.5 is simulated
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Effects of simulation resolution (velocity)

t = 7 S

t = 9 S

t = 11 S

t = 14 S

2 Hz 4 Hz 8 Hz
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Effects of simulation resolution (PGA)
PGAh (8Hz) / PGAh (2Hz)
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Effects of surface topography (velocity)

t = 7 S

t = 9 S

t = 11 S

t = 14 S

Flat Topographic
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Effects of surface topography (PGA)

Horizontal Vertical
PGAh (topography) / PGAh (flat)
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Effects of soil nonlinearity (velocity)

t = 7 S

t = 9 S

t = 11 S

t = 14 S

Linear Nonlinear
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Effects of soil nonlinearity (PGA)
Horizontal Vertical
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Advanced SSI analyses using DRM-PML system

Detailed SSI analysis using DRM-PML system (80 m by 80 m by 30m)
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Collaborative Payload 
Studies
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Collaborative Payload Studies
Tsinghua University (Xinzheng Lu’s Group)

• Use simulated GMs to examine/improve methods for estimating acceleration

time-histories and GM intensity measures at non-instrumented locations

• Quantify seismic instrumentation requirements (spatial density, sensor quality)

for rapid post-event assessment of civil infrastructure

McGill University (Yazhou Xie’s Group)

• Damage to Istanbul’s Bridges along the Trans-European Motorway

Gebze Technical University (Yasin Fahjan’s Group)

• Damage to historically significant structures (Hagia Sofia, etc.)
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thank you!
Scientific and Technological Research Council of Turkey

Istanbul Metropolitan Municipality
State Department of Transportation, Turkey

NHERI DesignSafe (Rathje et al.)
Texas Advanced Computing Center (Cockerill et al.)

Southern California Earthquake Center (Taborda et al.)
Pacific Earthquake Engineering Research Center


