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EGM prediction: Physics-based approach

● Direct Numerical Simulation of 
the physical processes causing 
EGM : source, propagation, site 
effects

● Complementary to empirical 
data-driven approaches

● Naturally limited in frequency 
(computational resources, lack 
of information/uncertainty)
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Pushing physics-based predictions to higher frequencies

➔ More GGG data to build our models … 
but

● Description of medium and source 
cannot be fully deterministic.

● Stochastic part has to be controlled 
and verified

➔ More computational resources 
(higher Hz and ensemble average)

➔ More observations with higher spatial 
resolution for validation (unaliased 
wavefields). 
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Pushing physics-based predictions to higher frequencies: 
example of the Grenoble Valley

Two-scales model (Cornou et al., prev pres)
Deterministic, macrozones (clays, gravels)
Stochastic fluctuations

Focus on the A zone (left) 3 km x 1 km 
Insitut Laue Langevin (ILL, neutron reactor)
French ANR-EXAMIN project

3D simulations of EGM with SEM 
Fmax = 5 Hz
Point source and extended faults (not today)

Questions:
Effects of macrozones (amplification, duration)? 
Effects of fluctuations?

3 
km

1 km
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Epistemic errors in EGM simulation : the role of (unresolved) 
small scales

E2VP projet, Mygdonian basin in Greece

Maufroy et al. BSSA, 2015

Comparison between different 3D numerical 
predictions of EGM up to 4 Hz in sedimentary 
basins show:

● Good agreement for first, body-wave, arrivals
● Increasing level of error for late, diffracted 

surface-wave arrivals

● Those errors depend on the smoothness of the 
propagation medium (the smoother the better)
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Epistemic errors in EGM simulation : the role of small scales

Chaljub et al. GJI, 2015

➔ SEM has the ability to account for physical 
discontinuities:  the mesh has to follow the 
interfaces.

➔ If not possible (e.g. basin edges) the interface 
can not be represented on the local 
polynomial basis.

➔ The loss of accuracy can be spectacular 
when errors accumulate (e.g. surface waves 
along poorly represented horizontal 
interfaces)

➔ This is true for any grid-based method 

(FDM, FEM, DGM, SEM…) and any kind of 
sub-scale heterogeneity. 

SEM synthetics in a three-layers basin structure
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Solution: low-pass filter small scales by defining effective, 
homogenized media

Isotropic effective media (Moczo et al. BSSA, 2002) Orthorhombic effective media (Kristek et al. GJI, 2017)

● Seismic waves make an average of the small-scales
● The effective (aka homogenized/up-scaled) medium is smooth and fully anisotropic (e.g. Capdeville et al. 2020)
● Some simplified effective media have been proposed in the last decades

● Effective media can be computed in a pre-processing phase
● Smooth effective media are easy to mesh (no need to follow the interfaces)  

(2 elastic parameters) (9 parameters)

(21 parameters)
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ILL zone

450 m
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Chartreuse

Belledonne

2 965 154 hexahedral elements
Accuracy up to 5 Hz @ 250 m/s

Grenoble Valley SEM mesh

● Cubit/Trelis tripling refinement scheme
● No need to follow valley edges (1D isotropic effective media)

Efispec3D code (F. DeMartin, BRGM)
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Grenoble Valley SEM mesh + macrozones
● 1D linear velocity model in the basin 
● 50 m thick shallowmost part is changed to 

account for macrozones
● VS = 250 m/s for clays
● VS = 375 m/s for gravels
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Grenoble Valley: effects of macrozones
● Response to a local M3.5 event
● Point-source, strike-slip
● Flat far-field displacement spectrum 

2D analysis

10



Grenoble Valley: effects of macrozones
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● Focusing/defocusing due to bedrock geometry
● Back-scattering of local surface waves off the gravel zone
● Amplification and lengthening of duration in the clay zone? 11



Grenoble Valley: amplitude effects of macrozones

Amplification wrt 1D model

● SSR taking 1D model as reference
● Higher level of amplification for clays
● No 1D resonance effect 

f0=1.25Hz (clay)
● Possible shielding effect for gravels

CLAY GRAVEL
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Grenoble Valley: duration effects of macrozones

● Amplitude : Arias Intensity (~ 3 – 5 Hz)
● Duration : Arias Duration (5 – 95 %)

● Amplitude & Duration are anti-correlated

● Effect of macrozones
● Significant increase of amplitude (clays)
● Slight increase of duration
● Clustering effect in the AD-AI space
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Stochastic fluctuations: implementation and verification

COV ~ 40 % +/- 4 %
Correlation lengths 

~ 20 m +/- 5% horizontally
   1:10 V/H ratio 

● Which parametrization/representation?
Not addressed yet

● Which implementation?
Spectral Vs spatial approaches

● How to check accuracy?
2D verification example

A few open questions

Target values for Vs fluctuations
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Implementation of random media: spectral approach

Fluctuations in velocity (or density)

Generated in Fourier domain from the PSD (FT of ACF)
and back to space with FFT-1

Zero-mean, stationary random process, with ACF

: Fourier amplitude : random phase

m  : angular spatial frequency (wavenumber)

Satoh et al. 2012

3D Von Karman PSD

Classical approach for crustal studies Amplitude (COV)

Correlation length a
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Implementation of random media: spectral approach

● Synthetize PSD up to max normalized 
wavenumber ma_max

● Low-pass filter below  ma_c < ma_max
● Compute fluctuations with FFT-1

● Interpolate on computational grid

● Total standard deviation (COV) of fluctuations is 
always reduced wrt target values (~ 70–80 % of 
target)

● COV cannot be too high (< 20 %) because of the 
parametrization used (negative values!)

Recipe

Some drawbacks
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Implementation of random media: spatial, Karhunen-Loève approach

Fluctuations are generated from a basis of eigenfunctions built upon the 
covariance function C 

: number of modes

: zero mean
Gaussian variables

Fredholm Integral eigenproblem

The eigenvalues of C are the values of the PSD Function: 

Huang et al., IJNME, 2001

Connexion to the spectral approach
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Implementation of random media: spatial KL approach

1D example: Exponential ACF with correlation length a
Increasing number of eigenmodes M, up to am = 2  (m wavenumber)

Space

Fourier

M

● Direct generation of fluctuations 
at any point (no interpolation)

/// 
● PSD is reached only in average
● Total variance is never reached
● # of modes to compute is large

3D example 8 km3  Lc=50m 

Number of modes
104
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Some Pros /// Cons
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Verification in 2D random media

● 2D SH medium, homogeneous background
● Vertically incident plane wave
● Correlated density and velocity fluctuations 

● Spectral approach
● Von Karman ACF, H=0.25, a=500 m
● COV = 5 – 10%
● Horizontal spatial average computed on-the-fly
● Ensemble averages (up to 60 realization)

=> Measure of amplitude decay of the coherent wave

yields Scattering Quality factor

Specfem2D (geodynamics.org)
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Stochastic fluctuations in 3D Grenoble Valley model

● Spatial K-L approach
● Only VS fluctuations 
● COV limited to 5%
● Isotropic correlation length : 50, 100, 200 m
● Exponential ACF
● 10 realizations per random medium

Macrozones only Macrozones + fluctuations

No visible effects on PGA maps
What about other GM parameters?
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Stochastic fluctuations in Grenoble Valley model

● Slight variations of AI (15%) and AD 
(7%), mainly on clay zone, 
independent of Lc values

● Anti-correlation of AI & AD remains
● Small loss of coherency (not shown)

Background Random

Lc = 200 m
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Concluding remarks

● Too small COV values

● No density perturbations

● Small lapse times, even for surface 
waves 

● High-frequency, forward scattering 
regime (2π a >λ)  

Why such mild effect of random fluctuations
 on ground motion parameters?

● Change parametrization of fluctuations 
(log space)

● Extend random areas to whole valley
● Include anisotropic correlation lengths
● Increase frequency range & explore 

different scattering regimes
● … a lot of work ahead

Perspectives
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