

Development of the PEER - LBNL Simulated Earthquake Ground Motion Database for the San Francisco Bay Area

2023 PEER Annual Meeting August 24 - 25, 2023

David McCallen PI University of Nevada, Reno & Lawrence Berkeley National Laboratory

> Parmida Rahmani PhD student University of Nevada, Reno

Florina Petrone Co-Pl University of Nevada, Reno & Lawrence Berkeley National Laboratory

> Majid Nia Postdoctoral scholar University of Nevada, Reno

None of this would be possible without leveraging six years of DOE capability building

Seismology / Geophysics

Rie

Nakata

Arben Pitarka

Arthur Rodgers

Kenawy

Wu

Panilla Ramos

Graduate students

Huang

Rahmani

Arval

2

Computer Science

Ramesh Pankajakshan

Applied Math Numerical Methods

Anders Petersson

Bjorn

Challenges associated with sparse data for empirical ground motion models persist

Observational ground motion data is very limited

For many regions of interest, data for large historical events does not exist

Interest (and research efforts) continue to grow in physics-based regional-scale EQ simulations

The PEER 2021 Pacific Rim Forum helped frame a roadmap for utilization of simulated motions

PEER Pacific Rim Forum June 2021

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

The PEER International Pacific Rim Forum 2021: Regional-Scale Simulations of Earthquake Ground Motions and Infrastructure Response for Performance-Based Earthquake Engineering

> David McCallen Floriana Petrone Elnaz Esmaeilzadeh Seylabi Arben Pitarka Norman Abrahamson Sherif Elfass

> > PEER Report No. 2022/04

Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley July 2022

261 International Participants 41 International Speakers

Attendees voted on priorities #1 Availability of a database of synthetic motions with openaccess

#2

Engineering design code guidance for synthetic motion utilization

#3 V Development of rigorous acceptance criteria for synthetic motions

Two complementary projects on regional-scale simulations are contributing to this roadmap

LBNL / LLNL EQSIM - Advanced workflow and GPU-based platforms for regional-scale simulations of ground motions and infrastructure response

PEER / LBNL SGDB - A framework for efficient data storage and fetching for Performance Based Earthquake Engineering (PBEE) applications

Old - Spatially sparse measured motions

	Номе	DOCUMENTATION	HELP	SUBSCRIBE	PEER
		DMCCALLEN@UNR.EDU		SIGN_OUT	
angried in succe	asculty.				
arget Spec	trum				
ider ober	i uni				

New - Spatially dense simulated motions

The DOE Exascale Computing Project is driving next generation GPU-accelerated computers

Perlmutter, GPU-accelerated 71 Pflop/s Top500 #8 Lawrence Berkeley National Lab

Summit, GPU-accelerated 148 Pflop/s Top500 #5 Oak Ridge National Lab

Frontier, 2022, GPU-accelerated 1,102 Pflop/s Top500 #1 Oak Ridge National Lab

The DOE's EarthQuake SIMulation (EQSIM) application is purpose-built for exaflop systems

What's the distribution of ground motions?

What's the distribution of demand?

Many advancements have been completed for the SW4 geophysics wave propagation code

Improved physics, computational efficiency at 300 billion grid points

EQSIM has implemented two options for coupling geophysics and engineering models

DRM allows representation of SSI, inclined waves and nonlinear soft near-surface soils

Six years of effort has gone into developing efficient fault-to-structure workflow

EQSIM has substantially pushed the envelope for regional simulation resolution and speed

Creating the database

20 realizations of a M7 Hayward fault event have been generated (Inter-event variability example)

12 story RC frame OpenSees fiber model

There is *LOTs* to explore - intra-event variability example showing site-specific building response

We are working on the acceptance of simulated motions for the 20 Hayward fault realizations

1) Stress testing the EQSIM model – 7 small Hayward fault event simulations

Simulation / data comparison based on the seven small Hayward fault events (0-5Hz)

We are striving to make the simulated ground motion database "familiar" to PEER users

<form>

Existing - Spatially sparse measured motions

Sparse ground motions from everywhere

New - Spatially dense simulated motions for the San Francisco Bay Area

High-fidelity, spatially dense regional ground motions

Key decisions - bifurcated (PEER / LBNL) storage and fetching of large data is essential

The design of the PEER - LBNL database can ultimately support many use cases

The database design schema must be scalable to allow many realizations and larger M events

M7 Hayward realizations

M7.5 San Andreas realizations

Looking ahead

- DOE supported PEER / LBNL simulated ground motion workshop to discuss use cases, data structure and data access (January 2024)
- Completion of the assessment of the full suite of simulated SFBA motions (initially 20 events Fmax 5Hz, Vsmin 250m/s)
- Build-out the data server at PEER (DOE funding support for hardware and IT staff has just arrived)
- Selected set of early users to test system software