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ABSTRACT

This report addresses the broad role of aftershocks in the Performance-based Earthquake

Engineering (PBEE) process. This is an area which has, to date, not received careful

scrutiny nor explicit quantitative analysis.

We begin by introducing Aftershock Probabilistic Seismic Hazard Analysis (APSHA).

APSHA, similar to conventional mainshock PSHA, is a procedure to characterize the time-

varying aftershock ground motion hazard at a site. We next show a methodology to quan-

tify, in probabilistic terms, the multi-damage-state capacity of buildings in different post-

mainshock damage states. A time-dependent building “tagging” policy (permitting or re-

stricting occupancy) is then developed based on the quantification of life-safety threat in

the aftershock environment using the probability of collapse as a proxy for fatality risk.

We also develop formal stochastic financial life-cycle cost models in both the post-

and pre-mainshock environment. We include both transition and disruption costs in our

model. Transition costs can be attributed to one-time financial losses due to structural

and nonstructural damage to the building, and can also include the costs of evacuation

of the occupants of a building. Disruption costs can be attributed to the downtime and

limited functionality of the damaged building. We begin with the traditional Poisson model

for temporally homogeneous mainshocks and extend it to nonhomogeneous aftershocks.

Further, the model is generalized to include renewal processes for modeling mainshock

occurrences and Markov-chain descriptions of the damage states of a building. The analysis

procedures are nonhomogeneous Markov and semi-Markov decision analysis and stochastic

dynamic programming (Howard (1971)).

Finally, we introduce a decision analytic framework under improving states of informa-

tion for both the post- and pre-mainshock environment. We emphasize the role of infor-

mation in potentially improving our decision-making capability. Decision bases include the

expected life-cycle cost and rate of collapse in the aftershock environment. We also intro-

duce the concept of the value of information to determine if obtaining more information is

financially desirable, which can potentially improve the quality of the decision.
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1 INTRODUCTION

Earthquakes are rare natural catastrophes which have severe societal consequences in terms

of fatalities and casualties, financial losses and business interruption when they occur. There

are professionals from diverse disciplines such as seismology, structural engineering and so-

cial science who are committed to rational seismic risk management. Modern methods

including Probabilistic Seismic Hazard Analysis (PSHA), damage and collapse analysis of

buildings, fatality/casualty and financial loss estimation etc., all in formal, explicit proba-

bilistic terms, attempt to identify and analyze all details and dimensions of the problem. A

current title for this process is Performance-based Earthquake Engineering (PBEE), in its

broad sense.

This report will address an entire facet of that large problem which has, to date, not

received careful scrutiny nor explicit quantitative analysis: namely, the role of aftershocks

in the broad PBEE process. After an earthquake of large magnitude (referred to as the

mainshock), many induced events or aftershocks will occur. The mean rate of aftershocks,

which is mainshock-magnitude, mm, dependent, decreases with increasing elapsed time t

from the occurrence of the mainshock. Thus, we will expect the interarrival times between

aftershocks to be much shorter just after the main event. The aftershock magnitudes follow

the same general relative frequency law as other earthquakes (i.e., the Gutenberg-Richter

law). Aftershocks also typically occur close to the original rupture zone. Hence if the

mainshock was near the structure of interest, so will be at least some of this family of

aftershocks. The ground motions from aftershocks show the typically high event-to-event

variability, implying the potential for larger motions from small magnitudes. The number,

size, proximity and variability of aftershocks may represent a significant ground motion

hazard. Aftershock ground motions may cause weakening and/or collapse of structures

perhaps already damaged (but not yet repaired) by the mainshock. A schematic of the

aftershock environment is shown in Figure 1.1.
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Post-Earthquake Aftershock Scenario

Increasing damage sustained by building due to subsequent aftershocks
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Figure 1.1: A schematic plot of the aftershock environment.

Aftershocks (implicitly or explicitly) also affect decisions to evacuate (possibly damaged)

buildings because of the inferred life safety threat. For example, a magnitude 6.7 earthquake

occurred in Algeria on 21st May 2003 which killed over 1000 people and injured 7000 people.

Many thousands more people were evacuated after the mainshock for fear of collapse of the

damaged buildings in an aftershock. This situation is illustrated in Figure 1.2.

Also, Gallagher et al. (1999) provided guidelines on the safety evaluation of earthquake-

damaged buildings as well as conditions for permitting entry into such buildings that may

be structurally unsound based on the aftershock earthquake occurrence rates obtained for

California in Reasenberg and Jones (1989) and Reasenberg and Jones (1994). Such building

evacuations affect (a) public safety in post-quake recovery (e.g., closed hospitals and power

distribution facilities) and (b) business and housing disruptions (“downtime losses”), which

are among, if not the, major contributor to earthquake financial losses. See, for example,

Comerio (2000).

Therefore, aftershock ground motion hazard, structural behavior of damaged buildings,

evacuation (building “tagging”) decisions, financial loss estimation, etc., all deserve special

attention to identify and improve our understanding and processing of the role of aftershocks

in earthquake engineering and earthquake risk management. This study of aftershocks will
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Figure 1.2: Evacuated occupants in Algeria earthquake.

in many ways parallel that of the more familiar study of modern PBEE which has to date

been restricted to mainshocks. The broad global study of PBEE is illustrated by the Pacific

Earthquake Engineering Research (PEER) Center and its developments.

1.1 PBEE/PEER

Performance-based earthquake engineering (PBEE) has been an area of active research in

the United States. PEER is currently spearheading an effort to develop a quantitative

PBEE methodology which will allow stakeholders to make better informed decisions by

providing them with probabilistic descriptions of system-level performance metrics. In or-

der to achieve this ambitious objective, the performance assessment and design process has

been divided into simpler elements in terms of the description, definition and quantification

of earthquake intensity measures (IMs), engineering demand parameters (EDP s), damage

measures (DMs) and decision variables (DV s). Commonly used examples of the above pa-

rameters are peak ground acceleration and first-mode spectral acceleration (IMs), interstory

drift ratios, inelastic component deformations and floor acceleration spectra (EDP s), dam-

age states of structural and nonstructural elements (DMs) and fatalities, financial losses and

downtimes (DV s). A consistent probabilistic framework is used to explicitly and rigorously

quantify the inherent uncertainties and randomness in all the above-mentioned variables.
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See Moehle and Deierlein (2004) and Porter (2003) for details on PEER’s methodology.

The PEER PBEE methodology developed for mainshocks can be expressed in the form

of a triple integral based on the total probability theorem as shown in Equation 1.1.

υ(DV ) =
∫∫∫

G(DV |DM)dG(DM |EDP )dG(EDP |IM)|dλ(IM)| (1.1)

This equation is commonly referred to as the “PEER Equation”. Here, λ(IM) is the mean

annual rate of exceeding a given IM level and is obtained from a conventional Probabilistic

Seismic Hazard Analysis (PSHA). G(EDP |IM) is the shorthand notation for the com-

plementary cumulative probability distribution function of EDP conditioned on a given

level of IM , i.e., G(EDP |IM) = P [EDP ≥ y|IM = x] while in the continuous case,

|dG(EDP |IM)| = fEDP |IM (y|x)dy is the conditional probability density function times

dy. G(DM |EDP ) and G(DV |DM) are defined in a similar manner. Each of the four com-

ponents in Equation 1.1 is designed to require inputs from a specific discipline, for example,

λ(IM) from seismologists and geotechnical engineers, G(EDP |IM) from structural engi-

neers and G(DV |DM) from cost estimators. The output of Equation 1.1 is υDV (DV ≥ x)

(or simply υ(DV )), the mean annual rate of exceeding a given level of DV = x. Proba-

bilistic information of DV can be used by building owners and stakeholders to make better

seismic-risk related decisions. Note that IM,EDP,DM and DV can potentially also be

vectors.

The PEER Equation involves pair-wise sequences of four random variables. It assumes

one-step, or Markov, memory in the individual components such that we do not need to

condition on all previous components but only on the last one. For example, it assumes

that G[DM > x|EDP = y and IM = z] is equal to G[DM > x|EDP = y], i.e., a function

of only y. This presumes that EDP is “sufficient” with respect to DM and thus IM does

not need to be included in the equation. See Cornell (2004).

The PEER Equation has been developed for mainshocks which are commonly modeled as

homogeneous Poisson processes with time-independent mean rate of occurrences or intensity

functions. Also, since PSHA is usually performed using the mean annual rates of mainshock

occurrences, the resulting probabilistic description of DV is usually also defined on an

annual basis. This mean annual basis is also consistent with current safety criteria which

are commonly expressed in terms of mean annual fatality frequencies, e.g., following Okrent

(1987). Consequently, because of the duration of one year which is implicit in the PEER

Equation and because of the rarity of mainshocks, the likelihood of multiple mainshock
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events is small. If the duration of interest is chosen to be other than one year (say T ), then

the mean number of events exceeding DV = x in T becomes υ(DV )T. If T is significantly

longer than one year (for example, the life-span of the building), then multiple mainshocks

are more likely. In this case, after one mainshock that has damaged the building, the

PEER Equation implicitly assumes that the damaged building is repaired to its original

pre-mainshock state (usually considered to be intact) before the occurrence of the next

mainshock. Such a formulation permits the direct computation of expected life-cycle cost

which is also commonly used as a building design criterion. However, if the DV is financial

losses, the PEER Equation contains no explicit consideration of the time-value of money,

since future financial losses are not discounted back to the present-day value.

The PEER Equation can be extended to take into account multiple mainshocks within

the life-span of a structure with financial losses discounted at an appropriate discount rate.

For example, if we wish to compute the expected total financial loss TL over the life-span

of the building tmax with α as the annual constant deterministic discount rate and L as the

financial losses given a mainshock, we can use Equation 1.2.

E(TL; tmax)

=

tmax∫

0

∫

DM

∫

EDP

∫

IM

E(Le−αt|DM)dG(DM |EDP )dG(EDP |IM)|dλ(IM)|dt

=
1− e−αtmax

α

∫

DM

∫

EDP

∫

IM

E(L|DM)dG(DM |EDP )dG(EDP |IM)|dλ(IM)| (1.2)

This is similar to the formulation of expected life-cycle cost in Rosenblueth (1976) except

that he assumed tmax = ∞ such that the leading multiplier to the triple integral simplifies

to 1/α. This formulation relaxes some limitations of the PEER Equation.

Wen and Kang (2001) also developed a formulation similar to Equation 1.2 as an input

to rational (pre-mainshock) design criteria. Such a formulation provides us with a quan-

titative decision-making procedure where we select optimal building designs based on the

minimization of expected life-cycle cost which includes the initial cost of design and con-

struction and the cost of potential damage and failure during the building’s life-span. The

level of damage sustained by the building determines the functionality, and consequently,

the downtime, of the structure. Business disruption financial losses from non-operable build-

ings should be included in the cost of damage as well. Wen and Kang (2001) incorporates
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life-safety considerations in their methodology by including financial losses due to injuries

and fatalities based on the economic value of human life. We shall revisit these models in

Chapter 5.

1.2 Significance of Aftershocks in PBEE

In Section 1.1, we discussed financial losses, life-safety and downtimes in the context of

mainshocks. However, these factors may also be very dependent on the real or threatened

post-earthquake performance of (possibly mainshock-damaged) buildings in the aftershock

environment where there is a significantly increased rate of earthquake occurrence. To the

author’s knowledge, before the studies here, these elements had not been addressed by PEER

or other investigators. They do deserve closer scrutiny as aftershocks could potentially pose

excessive life-safety threat to building occupants and contribute significantly to financial

losses and downtime.

For example, after a mainshock, the life-safety threat that an occupant is exposed to

could be considerably higher than before the occurrence of the mainshock, either because

of the number, proximity, etc. of subsequent aftershocks or because of building damage, or

both. Similarly, financial losses are also highly dependent on the downtime of the building

which is in turn dependent on the “tag” given the building after the mainshock. After an

earthquake, buildings might suffer significant damage without collapse. Hence, there is a

need to inspect such buildings to decide if it is necessary to evacuate their occupants based

on the damage sustained by the buildings. The decision is denoted by a tag, green, yellow or

red, on the door to the building. A building that has suffered significant structural damage

in the mainshock could be yellow or red-tagged, necessitating the evacuation of all building

occupants. This building-tagging issue has been addressed in Bazzurro et al. (2004a) and

Luco et al. (2004). Also, buildings that have not been structurally damaged might require

a period of time of closure for clean-up of damaged nonstructural building components to

restore building functionality. Furthermore, buildings that have been structurally dam-

aged and are yellow or red-tagged will require more detailed inspection and/or engineering

analysis to perhaps confirm that the building is still in fact structurally sound, or repair

might be required to restore the structural integrity before re-occupancy of the building

can be permitted. Thus, the downtime due to the nonfunctionality of the building may

significantly increase the financial losses due to loss of revenue. In some cases, unless the
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continued functionality of the building is essential to the building owner, it might take two

years or more before re-opening of the mainshock-damaged building. Comartin (2004) and

Comerio (2000) have documented examples of such cases of significant business disruption

in mainshock-damaged buildings.

Also, the emergency situation in the post-mainshock environment brings with it a series

of decisions that need to be addressed in a short period of time. These include the building-

tagging and evacuation decisions which we have discussed earlier as well as inspection,

analysis and repair decisions and re-occupancy decisions. Such decisions are fundamentally

dependent on the life-safety threat due to occupancy of the possibly mainshock-damaged

building. The predominant ground motion hazard may very well be that due to after-

shocks, at least initially. The decisions made in the post-mainshock environment can have

a significant impact on both life-safety and financial losses. For example, the evacuation

of building-occupants would reduce the life-safety threat posed by that building but in-

crease the financial losses due to delay of resumption of normal operations. On the other

hand, the decision to evacuate a facility critical to post-quake recovery (such as a hospital

or electrical substation) may reduce the safety of those dependent on its operation during

the recovery period. Also prolonged evacuation of building occupants in residences may

increase exposure to public health problems. Such trade-offs should in principle be consid-

ered in the policy and process of decision making. Moreover, these decisions can be made

or re-considered at any time after the mainshock. For example, allowing re-occupancy of a

damaged building is a decision which can be influenced by the gradually decaying aftershock

ground motion threat. Thus, it is desirable to develop a methodology that will allow us to

determine the optimal action and when it should be taken after the mainshock.

Such decisions might be information-sensitive as well. For example, early rapid inspec-

tions might provide only limited information about the damage state of the building such

that different probabilities should be given to different damage states, representing the then-

current epistemic uncertainty. Detailed inspections thereafter might allow one to quantify

the damage state with more confidence, i.e., the probabilities assigned to different states

might be revised substantially, narrowing the range of possible states. Such information

may allow better decisions to be made about the tag of the building which is in turn depen-

dent on the damage sustained by the structure due to the mainshock. Thus, it is desirable

when dealing with aftershocks to develop a methodology which addresses the impact and

value of additional information on post-quake decision making as well.
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Because the performance of mainshock-damaged buildings in the aftershock environ-

ment may have such a significant impact on the post-quake functionality and economic

consequences of an earthquake, aftershock considerations should perhaps also have sub-

stantial influence on pre-mainshock design criteria and pre-mainshock decision making. An

example of pre-mainshock decision would be whether or not to retrofit prior to the occur-

rence of a mainshock or whether to expend additional funds to provide a structure with

enhanced aftershock performance (e.g., to introduce self-centering connections that reduce

the residual displacements that are known to increase building capacity to withstand af-

tershocks. See Kwan and Billington (2003a), Kwan and Billington (2003b) and Luco et al.

(2004).). A methodology for pre-mainshock decision making incorporating such post-quake

functionality issues is also a desirable objective.

Based on the discussion above, it is clear that the proposed formulation for the aftershock

risk assessment problem should be developed in terms of both life-safety and financial losses

and that it should address the critical decisions that need to be made at various times after

a mainshock. It should also address the pre-mainshock decisions that are dependent on

post-quake functionality of structurally damaged buildings. The development of such a

methodology will be the focus of this report.

1.3 Challenges of Aftershock Risk Analysis

The aftershock environment poses several conceptual challenges that are different from those

in the mainshock environment. Aftershock ground motion hazard and the induced unde-

sirable building behavior hazard are nonhomogeneous in time: they are at their maximum

immediately after the mainshock and decrease after that. The magnitude distribution of

aftershocks is independent of the elapsed time after the mainshock, so aftershocks of large

magnitudes are still possible a long time after the mainshock. The mean rate and the

magnitude distribution of aftershocks are dependent on the mainshock magnitude and the

probability distribution of aftershock locations are dependent on the mainshock rupture

zone geometry. Because of the increased mean rate of aftershocks, the variability in ground

motions and the damage sustained by the structure, aftershocks of smaller magnitudes can

potentially produce larger site ground motion intensity measure (IM) values and larger

engineering demand parameter (EDP ) values than the mainshock.

For example, the 1983 California Coalinga earthquake had an aftershock of moment
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magnitude 5.9 resulting in a PGA of 0.43g at the Pleasant Valley pump plant. This ob-

served PGA exceeded the PGA of 0.31g at the same site due to the mainshock of moment

magnitude 6.5 about two months earlier (USGS (1986)). The Coalinga example is a case

of a site with typical, limited degree of instrumentation. An example with dense instru-

mentation is that of the 2004 Japan Niigata earthquake where an aftershock of moment

magnitude 6.3 resulted in a PGA of 0.15g, whereas the mainshock of moment magnitude

6.6 resulted in a PGA of 0.1g half an hour earlier (PGA values obtained from the COSMOS

Virtual Data Center). This is simply a single example. There may well be other sites with

similar differences during the sequence of aftershocks.

Because of this potential for larger ground motions due to aftershocks, even buildings

that have not been damaged by the mainshock have some likelihood of being damaged due

to the occurrence of an aftershock. Mainshock-damaged buildings are even more susceptible

to incremental damage due to aftershocks because their reduced structural capacity reduces

the threshold of the ground motion intensity needed to cause further damage.

Even though systematic data collection of building damage progression in mainshocks

and subsequent aftershocks has apparently been non-existent, there are several examples

of aftershocks resulting in further damage or even collapse reported in literature. For

example, the 1999 Turkey Kocaeli earthquake with a mainshock of moment magnitude 7.4

had a documented example of an aftershock of moment magnitude 5.9 almost one month

later which killed seven people, injured at least 239 people and caused dozens of buildings

to collapse in three cities near the epicenter of the aftershock (USGS (2000)). Figure 1.3

excerpted from USGS (2000) shows an example of a building in Gölcük which was somewhat

damaged by the mainshock, and which subsequently collapsed due to the aftershock of

moment magnitude 5.9 almost one month later.

Another documented example is the moment magnitude 5.7 Italy Molise earthquake on

October 31 2002 which had an aftershock the next day with a similar moment magnitude

of 5.7. Figure 1.4 shows an example of a column (highlighted in the left-hand picture) in

a four-story building which was not damaged significantly by the mainshock, but which

suffered severe joint damage shown in the right-hand picture during the aftershock.

Further, Lew et al. (2000) reported the collapse of a mainshock-damaged gasoline

service station in an aftershock in the 1999 Taiwan Chi-Chi earthquake. Lastly, a nine-

story reinforced concrete building which had already been severely damaged in the 1995

Japan Kobe earthquake, is also reported in Whittaker et al. (1997) to have overturned due
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(a) After mainshock of magnitude 7.4 on August 17,
1999

(b) After aftershock of magnitude 5.9 on September
13, 1999

Figure 1.3: Pictures of a building which suffered slight damage due to the 1999 Turkey
Kocaeli mainshock that fully collapsed due to a smaller magnitude aftershock almost one
month later. Photographs excerpted from USGS (2000).

to the occurrence of an aftershock.

Two cases in which an aftershock following the mainshock was responsible for the pre-

dominant damage in an entire community are Bakersfield, California in the 1952 Kern

County event sequence (Dreger and Savage (1998)) and Big Bear, California in the 1992

Landers event sequence1 (Hauksson et al. (1993)). In both cases the aftershock was of

significantly smaller magnitude than the mainshock but it was located much closer to the

built-up community.

Thus, before the completion of repair, a mainshock-damaged building could be pro-

gressively further damaged due to the aftershock ground motions experienced at the site,

thus incurring more financial losses, becoming more susceptible to life-threatening collapse,

causing evacuation or delaying re-occupancy. All these characteristics need to be addressed

when developing the probabilistic assessment of the decision variables, DV s, in the after-

shock environment.

Based simply on the preceding observations, we can now propose an aftershock PBEE

framing equation, Equation 1.3, analogous to the PEER Equation in Equation 1.1 discussed
1The distance (50 km) of the Big Bear event from the fault trace of the Landers event has led to

controversy as to whether this should be considered an aftershock at all. It was, however, only 3 hours after
the Landers event and it occurred within 2 fault dimensions of Landers, which together are sufficient to
make it fit certain formal definitions of an aftershock (Hauksson et al. (1993)).
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(a) After mainshock of magnitude 5.7 on October 31, 2002

(b) After aftershock of magnitude
5.7 on November 1, 2002

Figure 1.4: Pictures of a column which was only slightly damaged due to the 2002 Italy
Molise mainshock but that suffered severe spalling, bar buckling and a residual vertical de-
formation at the top of the column due to an aftershock one day later. Photographs courtesy
of Mucciarelli and Gallipoli, University of Basilicata, Italy and Dr. Paolo Bazzurro.

above.

υtmax
a (DV |MI, SI) =

∫

DM

∫

EDP

∫

IM

∫

i

Ga(DV |DM, i)dGa(DM |EDP, i)

· dGa(EDP |IM, i)dλtmax
a (IM, i|MI)dGa(i|MI, SI)

(1.3)

It takes into consideration many of the above characteristics. Its purpose is to capture and

display, more precisely but still only symbolically, the structure of dependency of various

elements of the problem upon one another. The subscript a refers specifically to the after-

shock environment. As discussed earlier, decision making in the post-event environment is

information sensitive and we incorporate our state of information in Equation 1.3 using the

notations MI and SI. The notation MI represents the current state of information about

the mainshock and possibly subsequent event-specific aftershock sequence information and

parameter values (this will be discussed in Chapter 2). This information might include the

mainshock magnitude, location and rupture zone geometry which will allow us to better

define the aftershock environment. MI could also include information on the mainshock
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site intensity measure, IM , which will provide us with better information about the state of

the building, both in terms of the severity of damage and the initial capacity of the building

(since it was perhaps capable of withstanding IM = x in the mainshock). The notation

SI represents the information about the damage state, i, of the building. This information

could be obtained from various levels of inspection and engineering analysis, ranging from

simpler less-detailed inspections and static pushover analysis to detailed floor-to-floor in-

spections and nonlinear dynamic time history analysis. SI could potentially be improved

by information obtained from structural health monitoring devices which provide data on

peak and residual deformations of the building. Such information will allow us to better

understand the condition of the damaged building thus potentially improving our dynamic

modeling capability.

λtmax
a (IM, i|MI) in Equation 1.3 is the mean number of aftershocks exceeding a given

IM in post-mainshock time interval [0, tmax] for a building in damage state i, given our

current state of information about MI. As discussed, this number depends on mainshock

magnitude. We include the dependence on i in this step of the formulation for structural-

period dependent IM (such as first-mode period spectral acceleration) because the period of

a mainshock-damaged building might be lengthened. |dGa(i|MI, SI)| is the probability that

the building is in damage state i after the mainshock given the current state of information

about MI and SI. The inclusion of |dGa(i|MI, SI)| means that we have an additional

integral over all possible post-mainshock damage states i. Similar formulations hold for the

remaining terms analogous to those in the PEER Equation, except that we need to explicitly

consider the damage state i in the computation. For example, the likelihood of exceeding a

particular value of maximum interstory drift (assuming it is taken to be the EDP ) depends

on the state of the structure if it is damaged; here, dGa(EDP |IM, i) replaces the simpler

dG(EDP |IM) in Equation 1.1 where it is implicitly assumed that the structure is intact.

Equation 1.3 provides us with a description of the interaction among components of the

probability distribution of DV in the aftershock environment. Each component in Equation

1.3 will be discussed in the chapters of the report to follow. Like the PEER Equation, this

equation is largely only symbolic. It helps one to identify some of the differences between the

mainshock and the aftershock problems. For example, unlike Equation 1.1, time explicitly

appears in Equation 1.3 via tmax. The increased mean rate of aftershocks after a mainshock

of large magnitude suggests that multiple aftershocks are more likely as tmax increases,

which increases the chance of incremental damage to the structure as we are more likely to
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encounter aftershock ground motions of large intensity. For demonstration, we assume here

that the capacity of a structure in damage state i is deterministic and can be expressed in

terms of the intensity measure of interest. We denote this capacity as IM i
cap. We assume also

that we can compute the probability of the site intensity measure, IM, exceeding a specified

value y given the occurrence of an aftershock, denoted as P (IM > y|aftershock). The

method to evaluate this probability will be discussed in Chapter 2 where we consider random

aftershock ground motions from aftershocks of random magnitudes at random locations

(conditioned on MI). Denoting the collapse damage state as n, the probability of collapse

of the building given an aftershock, P ′
in|aftershock, is thus P (IM > IM i

cap|aftershock).

The probability of no collapse given an aftershock, denoted as P
′
in|aftershock, is simply

1− P ′
in|aftershock.

We are interested in the computation of the probability P (C) of the no collapse event

C in the aftershock environment in the time interval [0, tmax]. The expected number of

aftershocks is denoted by νtmax
a . P (C) can be calculated using Equation 1.4.

P (C)

=

[
P (no event)+ P (1 event)P (C|1 event)+P (2 events)P (C|2 events)

+...+P (m events)P (C|m events)+...

]

=




e−νtmax
a + νtmax

a e−νtmax
a

(
P
′
in

)
+ (νtmax

a )2

2! e−νtmax
a

(
P
′
in

)2

+... + (νtmax
a )m

m! e−νtmax
a

(
P
′
in

)m
+ ...




= e−νtmax
a


1 + νtmax

a

(
P
′
in

)
+

[
νtmax

a

(
P
′
in

)]2

2!
+ ... +

[
νtmax

a

(
P
′
in

)]m

m!
+ ...




= e−νtmax
a

[
exp

(
νtmax

a P
′
in

)]

= e−νtmax
a P ′in (1.4)

Here, we have suppressed the condition given the occurrence of an aftershock. Notice that

for no collapse of the building, if there are m aftershock events, the ground motion intensity

measure must be less than IM i
cap all m times, an event with probability

(
P
′
in

)m
, which

decays geometrically with m. Equation 1.4 shows the effect that the multiple aftershocks –

each with its own random magnitude, location and ground motion – can have on decreasing

the probability of no collapse, P (C) (and consequently, increasing the probability of collapse
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in our example).2

Thus, the effects of multiple aftershocks can be captured by the term tmax in the for-

mulation. It should be pointed, too, that Equation 1.3 is not as complete as one might like.

One might prefer the time of the decision to also enter the Equation 1.3 formulation, e.g.,

when making a re-occupancy decision seven days after the mainshock. Further, Equation

1.3 implicitly assumes that should the building be further damaged in an aftershock, it will

be “repaired” back to state i before the occurrence of any subsequent aftershocks. This may

be adequate in some cases especially if the only DV of interest is collapse related (e.g., life

safety). It is a less realistic assumption, however, in the immediate post-mainshock environ-

ment where aftershocks are more frequent. At the high risk of becoming too complicated to

be of even symbolic value, the above representation could be further extended to the more

general case using an embedded Markov chain formulation (see Chapters 5 and 6) where we

allow for the possibility of transitions from one damage state to another due to aftershock

occurrences. While the framework equation will remain as it is, this study as a whole will

not be limited to the conditions implied by Equation 1.3.

The ability to formulate and analyze the aftershock problem allows earthquake engineer-

ing policy-making decisions to be made based on probabilistic descriptions of DV . As shown

in Equation 1.3, DV is dependent on the damage state i of the building after a mainshock

because the probabilities dGa(EDP |IM, i) etc. will change if the state i changes. Hence,

the quantification of DV (and subsequent decision making) may be improved with the abil-

ity to obtain more information about the damage state i of the building after the mainshock.

Decision analytic tools (described in details in Chapter 6) exist to allow us to quantify how

new information can potentially change (update) the probabilities of damage states i and

hence the probabilistic descriptions of DV , thus possibly influencing the decision-making

process thereafter. More detailed information is always of value but it comes at a price.

For example, detailed inspections which provide us with more information about i also cost

more than simpler inspections. Tools will be described in Chapter 6 which will allow us to

quantify the value of possible new information to help decide if it is financially desirable to

invest in obtaining more information.

We can also insert the aftershock scenario into more familiar pre-mainshock DV assess-

ment. Following the lead of past engineering studies such as Rosenblueth (1976), Ang and
2The effect of random capacity can be included by multiplying the results in Equation 1.4 by the proba-

bility density function of the capacity, fIMi
cap

(s), and integrating over all possible values of s.
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Leon (1996) and Wen and Kang (2001), we could base pre-mainshock decision analyses on

a minimization of expected financial losses. As discussed above, the incorporation of after-

shocks allows us to explicitly consider the downtime losses due to limited post-mainshock

functionality associated with damage from the mainshock and due to potential incremental

damage from aftershocks. But decisions should be made based on individual life-safety con-

siderations as well (e.g., following Paté-Cornell (1984)). Instead of simply using an implicit

economic value of human life in cost-minimization analysis, we use in addition a constraint

on the mean rate of individual life loss. The results in this work allow for a procedure based

on minimization of expected financial losses subject to a constraint on minimal level of indi-

vidual life-safety. The focus of the report will be on buildings such as offices, residences and

industrial facilities including electrical power distribution facilities essential for post-quake

recovery. Analogous ideas also apply to other structures as well, such as bridges which are

currently being studied by Mackie and Stojadinovic (2004).

1.4 Report Organization

The remaining chapters will discuss in depth the analysis of the various elements that have

been brought up in this chapter. Chapter 2 introduces Aftershock Probabilistic Seismic

Hazard Analysis (APSHA), a procedure by which aftershock ground motion hazard can

be evaluated. Several methodologies to quantify the performance of (possibly) mainshock-

damaged buildings in the aftershock environment will be discussed in Chapter 3. Chapter

4 describes a risk management tagging policy based on the quantification of life-safety

threat in the aftershock environment using the probability of collapse as a proxy for fatality

risk. A formulation of financial losses in the aftershock and pre-mainshock scenarios will

be presented in Chapter 5. Finally a decision analytic framework under improving states

of information will be introduced in Chapter 6. Each chapter will be illustrated by a

continuing example of a specific multistory building. Chapter 7 will summarize conclusions

and limitations and suggest further work.
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2 AFTERSHOCK PSHA

This chapter presents a method of Aftershock Probabilistic Seismic Hazard Analysis (AP-

SHA) similar to conventional “mainshock” PSHA in that it estimates the likelihoods of

ground motion intensity (in terms of PGA, spectral accelerations or other ground mo-

tion intensity measures) due to future earthquakes. This proposed methodology differs

from conventional mainshock PSHA in that mainshock occurrence rates remain constant

for a conventional (homogeneous Poisson) earthquake occurrence model while aftershock

occurrence rates decrease with increased elapsed time from the initial occurrence of the

mainshock. In addition, the aftershock ground motion hazard at a site depends on the

magnitude and location of the causative mainshock, and the location of aftershocks is lim-

ited to an aftershock zone which is also dependent on the location and magnitude of the

initial mainshock. APSHA is useful for post-earthquake safety evaluation where there is a

need to quantify the rates of occurrences of ground motions caused by aftershocks following

the initial rupture. This knowledge will permit, for example, more informed decisions to

be made for building tagging, including entry of damaged buildings for rescue, repair or

normal occupancy. Building tagging will be the subject of discussion in Chapter 4.

2.1 Introduction

In conventional PSHA, the annual probability of exceedance of a given ground motion

intensity measure (typically PGA or the first-mode spectral acceleration) is evaluated for

a given structural period and damping ratio. The mainshock occurrence rates are assumed

to be time-invariant constant values, and a homogeneous Poisson earthquake occurrence

model is generally used. Conventional mainshock PSHA, typically based on a truncated

exponential magnitude model or a characteristic magnitude model or both, is an established

process that is well documented in literature. See, for example, Kramer (1995). Mainshock
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PSHA is performed by first considering the geometry of the neighboring faults with respect

to the site of concern as well as the annual rates of earthquakes on these faults. The

basic formulation of PSHA requires the development of an earthquake model to address

the randomness of the times of occurrences as well as the randomness of the earthquake

magnitudes. The randomness of the distance from the site to the possible rupture planes and

the distribution of possible ground motions given an earthquake of a particular magnitude

and distance are also addressed in standard mainshock PSHA procedures.

In the post-mainshock situation, however, aftershock occurrence rates are no longer time-

invariant. Aftershock rates are at their maximum immediately following the occurrence of

the mainshock, and they decrease with increasing elapsed time from the mainshock. After-

shock rates are dependent on the magnitude of the causative mainshock. The subsequent

aftershock ground motion hazard at a site is also dependent on the location and magnitude

of the initial mainshock, which defines the aftershock zone in which aftershocks are expected

to occur. In this chapter, we propose a method of calculating the post-mainshock ground

motion hazard at a site which we refer to as Aftershock Probabilistic Seismic Hazard Anal-

ysis, or APSHA for short, where we take the above factors into consideration. This method

enables us to estimate the likelihood of severe ground motions at a site due to aftershocks.

There are several recent examples of studies where the results of APSHA would have

proved useful.

Gallagher et al. (1999) presented an ATC technical brief titled “Earthquake Aftershocks-

Entering Damaged Buildings” which provided guidelines on the safety evaluation of earth-

quake damaged buildings as well as conditions for permitting entry into such buildings

that may be structurally unsound. These guidelines are based purely on the aftershock

earthquake occurrence rates obtained for California in Reasenberg and Jones (1989) and

Reasenberg and Jones (1994) as a function of magnitude and time. However, the hazard at

the site of concern cannot be adequately described without the explicit consideration of the

location of the aftershock hazard zone relative to the site and the possible ground motion

intensities at the site. Both these factors are considered in the proposed method.

FEMA, in conjunction with the SAC steel project, has published a report titled “Recom-

mended Post-Earthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame

Buildings”. FEMA (2000) provides guidelines on post-earthquake occupancy criteria for

damaged structures based on their ability to resist collapse after the mainshock. In the

report, a “presumed postearthquake hazard curve” for a mainshock-damaged building is
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presented based on the annual probability of exceedance of the first-mode spectral accel-

eration in an aftershock, assuming simply that the probable maximum intensity value for

aftershock-induced ground shaking at the building site is the same as that experienced in

the original damaging mainshock and that the variability in this intensity is normally dis-

tributed with a coefficient of variation of 50%. A more precise methodology to quantify the

aftershock ground motion hazard is required.

The proposed method of APSHA is similar to conventional mainshock PSHA in terms

of the treatment of uncertainty in magnitude, source-to-site distance and ground motion

intensity. The detailed description of conventional PSHA will not be discussed in this

chapter. The reader is presumed to be familiar with conventional PSHA as described, for

example, in Kramer (1995). We will explicitly incorporate the unique characteristics of

aftershock ground motion hazard mentioned earlier in the formulation of APSHA.

2.2 Methodology

It has been generally observed that several earthquakes occur as a cluster within a limited

period of time and confined to a limited interval in space. For the purpose of this study,

we assume that we can classify all earthquakes as foreshocks, mainshocks and aftershocks.

The mainshock is generally defined to be the earthquake in a sequence which has the

largest magnitude. The foreshocks are usually very limited in number. Our focus is on the

aftershock sequence. For the purpose of this study, we are interested in the aftershocks in

the days and perhaps months following the occurrence of a mainshock, and the resulting

increased ground motion hazard at the site.

Immediately following the occurrence of a mainshock, the rate of occurrences of af-

tershocks is at its maximum, and then decreases with increasing elapsed time from the

occurrence of the mainshock. This decay is of a power-law form which is generally referred

to as the modified Omori law in which the instantaneous aftershock rate per day is ex-

pressed as a function of (t + c)p, where t is the number of elapsed days from the occurrence

of the mainshock and c and p are constant values for a particular aftershock sequence. See

Omori (1894) and Utsu (1995). Because of the time-varying rate of aftershocks immedi-

ately following a mainshock, a nonhomogeneous Poisson process is used to model aftershock

occurrences.

The modified Omori law has been used by a number of researchers to model aftershock
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rates immediately after the occurrence of a mainshock. For example, Merz (1973) used the

modified Omori law to model aftershock rates in evaluating the contribution of aftershocks

to the total engineering seismic hazard (in terms of ground motion exceedance probabilities)

at a site.

More recently, Reasenberg and Jones (1989) and Reasenberg and Jones (1994) fitted

62 California aftershock sequences with mainshock magnitudes mm greater than 5.0 to the

modified Omori law using the method of maximum likelihood. The mean aftershock rates

are described by the modified Omori law (elapsed-time dependence) and by the Gutenberg-

Richter relationship (aftershock magnitude probability distribution). They used all after-

shocks with moment magnitude m ≥ mm− 3 to estimate a and p, and m ≥ 2 to estimate b.

They refer to this model as the “generic California” aftershock model. Here, γ(t,m; mm),

the mean instantaneous daily rate of aftershocks with moment magnitude m or larger at

time t following a mainshock of moment magnitude mm, can be calculated using Equation

2.1.

γ(t,m; mm) =
10a+b(mm−m)

(t + c)p
(2.1)

The generic California aftershock sequence has parameters a = −1.67, b = 0.91, p = 1.08

and c = 0.05.

The b-value describes the relative likelihood of large and small mainshocks or aftershocks.

For example, USGS (1999) obtained a b-value of 0.91 for mainshocks in the San Francisco

Bay Region. The generic aftershock sequence for California studied by Reasenberg and

Jones also has a b-value of 0.91. Thus, because b-values are usually quite similar in value,

the relative likelihood of large and small aftershocks is approximately the same as the

relative likelihood of large and small mainshocks.

If we define a0 = a + bmm, α = a0 ln 10 and β = b ln 10, Equation 2.1 simplifies to

Equation 2.2.

γ(t,m; mm) =
eα−βm

(t + c)p
(2.2)

|γm(t,m; mm)| is the absolute value of the partial derivative of γ(t,m;mm) in Equation 2.2

with respect to m, and it is the instantaneous daily rate density of aftershocks of magnitude

m at time t following a mainshock of magnitude mm. |γm(t,m; mm)| is defined in Equation

2.3.
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|γm(t,m; mm)| =
∣∣∣∣
∂γ(t,m; mm)

∂m

∣∣∣∣ =
eα

(t + c)p
βe−βm (2.3)

In this representation of the generic California model, eα

(t+c)p is the mean instantaneous

daily rate of aftershocks at time t following the mainshock of magnitude mm, and βe−βm is

the exponential probability density function of aftershock magnitudes. Here, m ≥ 2 because

Reasenberg and Jones used aftershocks with moment magnitude of 2.0 or more to estimate

the value of β in the modified Omori law of the generic California model.

A more useful representation of |γm(t,m; mm)| will require us to introduce lower and

upper bound aftershock magnitudes of ml and mu to the exponential probability density

function in Equation 2.3. ml represents the minimum aftershock magnitude of engineering

interest, typically taken to be 5.0. mu represents the upper bound magnitude of the fault in

consideration. For the case of aftershocks, mu is typically considered to be the mainshock

magnitude, mm. See Reasenberg and Jones (1989). Truncating the exponential probability

density function at ml and mu, and taking mu = mm, we get Equation 2.4.

|γm(t,m; mm)| = 10a+b(mm−ml) − 10a

(t + c)p

βe−β(m−ml)

1− e−β(mm−ml)
, ml ≤ m ≤ mm (2.4)

We can also represent |γm(t,m;mm)| using Equation 2.5 where µ(t; mm) is the instan-

taneous daily rate density of aftershocks with magnitudes between ml and mm at time t

following a mainshock of magnitude mm, and is equal to 10a+b(mm−ml)−10a

(t+c)p .

|γm(t,m; mm)| = µ(t; mm)fM (m; mm), ml ≤ m ≤ mm (2.5)

The function, fM (m; mm) = βe−β(m−ml)

1−e−β(mm−ml)
, is the truncated exponential probability density

function of aftershock magnitudes, with truncations at ml and mm. The mean number of

aftershocks with magnitudes between ml and mm in the time interval [t, t + T ] following a

mainshock of magnitude mm (denoted as µ∗(t, T ; mm)) can be found using Equation 2.6.

µ∗(t, T ;mm) =

t+T∫

t

µ(τ ; mm)dτ =
10a+b(mm−ml) − 10a

p− 1
[
(t + c)1−p − (t + T + c)1−p

]
(2.6)

For seismic hazard analysis, we first define the site ground motion intensity measure as

Y . In conventional mainshock PSHA, the rate of mainshocks is a constant value in time.
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If we denote the mean annual rate of mainshocks with magnitudes between ml and mu

by υ, we can compute the mean number of mainshocks exceeding site ground motion y in

duration T, denoted as υ̃(y, T ), using Equation 2.7. T is usually one year in mainshock

PSHA such that in Equation 2.7, the term T does not appear. Details of PSHA can be

found in Kramer (1995).

υ̃(y, T ) = υT

∫

R

mu∫

ml

P (Y > y|m, r)fR|M (r|m)fM (m)drdm (2.7)

In Equation 2.7, we have assumed that only one source contributes to the mainshock

hazard at the site. It is straightforward to extend the formulation to include the contribu-

tions from multiple sources by summing the contributions to the total hazard from all such

sources. We also need to assume a spatial distribution of earthquakes of random magni-

tudes up to mu, coupled with a suitable attenuation law for the ground motion intensity

measure of interest. In Equation 2.7, fM (m) is the probability density function of main-

shock magnitudes (with upper and lower magnitude bounds at ml and mu). fR|M (r|m) is

the conditional probability density function of the closest distance between the site and the

plane of rupture given an event of a particular magnitude. Lastly, P (Y > y|m, r) is the

conditional probability of exceeding a particular ground motion intensity measure given an

event of a particular magnitude at a particular distance from the site. This conditional

probability is usually evaluated assuming that the distribution of the ground motion inten-

sity measure given M and R is lognormal, where E(ln y) and σln(Y ) are obtained from a

suitable attenuation law.

Analogously, in APSHA, we want to calculate the mean number of aftershocks in [t, t+T ]

exceeding site ground motion y, where there is explicit dependence on both t and T . We

represent this mean number as µ̃(y, t, T ;mm) which can be calculated using Equation 2.8.

µ̃(y, t, T ; mm) = µ∗(t, T ; mm)
∫

R

mm∫

ml

P (Y > y|m, r)fR|M (r|m)fM (m; mm)drdm (2.8)

Note that the formulation for APSHA is almost identical to that of conventional PSHA,

except that υ̃(y, T ) is replaced by µ̃(y, t, T ; mm), which is a function of t, T and mm.

Provided Equation 2.5 holds, Equation 2.8 is quite general. In practice, the aftershock

zone is defined in a complex manner. It has also been observed that aftershocks tend to
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occur more frequently at the ends of the rupture zones of the initial mainshock. See Hough

and Dreger (1995) for details. Such complexity in the definition of the aftershock zone can

be considered in APSHA.

From Equations 2.7 and 2.8, it is clear that we can explicitly compute the site hazard

(mainshock or aftershock) by uncoupling the expected number of events in the duration of

interest and the probability of exceeding a specified ground motion given an event. Hence,

to perform APSHA in existing mainshock hazard analysis computer programs, one simply

needs to replace the expected number of mainshocks (which is elapsed-time invariant) by

the expected number of aftershocks (which is time varying) in the duration of interest. The

maximum magnitude of the aftershock magnitude probability distribution and the after-

shock zone also needs to be revised accordingly. Finally, the aftershock spatial distribution

needs to be defined, using perhaps multiple homogeneous sub-sources. After the aftershock

magnitudes, locations and rates have been defined, probabilistic ground motion analysis

otherwise identical to conventional mainshock PSHA procedures needs to be carried out.

In particular, one can estimate the probability of exceeding a given site ground motion

intensity measure from an aftershock of random magnitude at a random location by setting

µ∗(t, T ; mm) = 1 in Equation 2.8.

The time-varying nature of aftershock ground motion hazard has also been studied

recently in Weimer (2000) and Gerstenberger et al. (2002). His focus has been on generating

real-time aftershock PGA maps, in which the parameters of the modified Omori law are

updated periodically via Bayesian analyses to reflect the on-going aftershock sequence as the

parameters a, b, c and p and the aftershock zone may be sequence dependent. Availability

of such a real-time system would facilitate the use of aftershock ground motion hazard

in making engineering decisions. It is under development in the U.S. Geological Survey

(USGS).

Thus, APSHA provides us with the aftershock hazard curve that can be compared

to the mainshock hazard curve obtained from conventional mainshock PSHA. In order to

gain insight and familiarity with the nature and level of aftershock ground motion hazard,

in the example to follow, we shall study the effects of elapsed time, duration, mainshock

magnitude and site locations on aftershock ground motion hazard. We shall also study the

sensitivity of aftershock hazard to changes in the period of the structure by comparing it to

the base case for PGA. The effects of correlation between mainshock and aftershock ground

motion epsilons, εMS and εAS , (details and concepts to be elucidated in a later section) on
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aftershock hazard will also be studied.

2.3 Example

The example in this section serves to demonstrate the proposed APSHA procedures and to

gain understanding as to the nature of this threat, in particular relative to the mainshock

hazard. The site used for this example is part of Stanford University, which is in close prox-

imity to the San Andreas Fault and in the vicinity of the Hayward and other faults. The

site is located at R = 10 km off the San Andreas Fault. We assume that a characteristic

mainshock of magnitude mm = 7.0 has ruptured the Mid-Peninsula Segment of the San

Andreas Fault in the computation of aftershock ground motion hazard. We assume that

the aftershock magnitude distribution follows a truncated exponential model and that the

maximum aftershock magnitude is equal to the mainshock magnitude. Aftershock occur-

rences are restricted to the fault plane itself with a specified line at constant depth as the

aftershock zone. Here, the aftershock zone is defined to be the extent of the rupture of

the initial mainshock. In other cases, if the rupture zone of the mainshock is not yet well

defined, the rupture length can be estimated using the relationship between the magnitude

of the mainshock and its corresponding rupture length in Wells and Coppersmith (1994).

Two cases of APSHA will be considered. In both, we use the generic California model

developed by Reasenberg and Jones. The first case assumes aftershocks are equally likely

to occur at any location on the linear aftershock zone. The second case assumes aftershocks

are twice as likely to occur at the ends of the rupture zone as compared to its interior,

where the “end” of the rupture zone is taken to be equal to one-fourth of the entire length.

The attenuation relationship developed in Abrahamson and Silva (1997) for rock sites is

used for APSHA. One objective is to develop insight into the aftershock hazard problem

by showing a series of alternate ways of plotting APSHA results, especially given the fact

that there are two competing time parameters (t and T ) due to the nonhomogeneity of the

aftershock rate in time. Our base case example assumes t = 7 days, T = 365 days and

mm = 7.0; these parameters will be used unless mentioned otherwise.

Figure 2.1 is a schematic layout of the site adjacent to the midpoint of the 85 km long

segment of the fault that has been ruptured by the initial mainshock. The linear aftershock

zone is assumed to be on the ruptured segment at a perpendicular distance R of 10 km.

For comparison, we consider the mainshock hazard analysis that has been performed for
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Figure 2.1: Schematic of site layout and linear aftershock zone.

the Stanford site mentioned above by Woodward-Clyde Consultants by considering the San

Andreas, Hayward, Rodgers Creek, Calaveras and San Gregorio Faults in Woodward-Clyde

(1991). A minimum earthquake magnitude of 5.0 was used to define the limits of engineering

interest. A characteristic earthquake model was employed. The resulting mainshock hazard

curve is shown in Figure 2.2.

It is worthwhile noting that other options can also be used for the modeling of future

mainshock earthquake occurrences where the annual rates are elapsed-time-dependent and

where some degree of memory can be associated with earthquake occurrences. For example,

memory of the “quasi-cyclic” type (where the inter-arrival time coefficient of variation

<1) can be used to model mainshock occurrences where, with the rupture, there will be

a subsequent hazard reduction along the segment, followed by a gradual increase. This

reduction, to some extent, offsets the aftershock hazard which will be at its maximum

immediately after the occurrence of the initial rupture. Such a time-dependent model has

been used in, for example, USGS (2003), and will not be considered in this chapter.

2.3.1 Comparison of Mainshock Hazard to Aftershock Hazard

We demonstrate the significant difference that may exist between mainshock hazard and

aftershock hazard by performing APSHA for the scenario described above. The aftershock

hazard curves are obtained for the base case example with t = 7 days and T = 365 days

using Equation 2.8. Note that the aftershock hazard computed here does not include the

mainshock hazard that is still present from other sources (the Hayward Fault, for example)

nor does it include the residual mainshock hazard from the San Andreas Fault itself. The
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two cases for APHSA together with the mainshock hazard curve are shown in Figure 2.2.

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

0 0.2 0.4 0.6 0.8 1
PGA/g

A
nn

ua
l R

at
es

 o
f e

xc
ee

di
ng

 s
ite

 P
G

A

Aftershock Analysis: Events equally likely
Aftershock Analysis: Events concentrated at ends

Mainshock Analysis

0.37g 0.57g0.24g

0.3/yr

0.12/yr

0.03/yr

Figure 2.2: Comparison of mainshock and aftershock site hazard curves (as functions of
PGA), where aftershock hazard is evaluated at t = 7 days with T = 365 days for aftershocks
equally likely to occur at any location on the linear aftershock zone and for aftershocks con-
centrated at the ends of the linear aftershock zone. The mainshock magnitude is assumed to
be 7.0.

From Figure 2.2, it can be seen that in the year starting one week after the initial

mainshock, aftershock ground motion hazard on the linear aftershock zone (i.e., the Mid-

Peninsula segment) is considerably higher, about ten times, than the total pre-mainshock

hazard at the site. If we further compute the total post-mainshock hazard by including

the mainshock hazard from other sources and the residual mainshock hazard from the San

Andreas Fault, the resulting difference would even be more significant.

It can also be seen that the two cases of aftershock hazard computation described earlier

result in similar values. The case with equally likely aftershock locations results in higher

aftershock hazard as compared to the case where aftershock locations are concentrated at

the ends of the linear aftershock zone. This can be attributed to the location of the site

which is located midway along the linear aftershock zone. More aftershocks are predicted

closer to the site by the equally-likely model. In subsequent examples, we shall use only the

equally-likely case.

One can also estimate the rate of exceeding the mainshock site PGA in the aftershock

environment from Figure 2.2. For example, the predicted median mainshock site PGA using
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Figure 2.3: Mean number of aftershocks (as a function of elapsed time, t) with site PGA >
0.5g in specified durations T .

the attenuation law is 0.37g and the predicted median PGA ± one standard deviation is

[0.24g, 0.57g]. These points are shown in Figure 2.2. One can then estimate the rate of

exceeding the predicted median PGA and predicted median PGA ± one standard deviation

to be about 0.12/year, 0.03/year and 0.3/year, respectively, for our base case aftershock

example. These numbers can be compared to the assumption made in FEMA (2000) dis-

cussed above, where the first number is 0.5, not 0.12. This base case example does not

include the entire post-mainshock time frame (1 to ∞ days), however.

2.3.2 Effects of Duration (T ) on Aftershock Hazard

To study the effects of different durations T on the aftershock hazard at the site, the

same linear aftershock zone is considered with T equal to one day, one week, one month,

six months and one year. The resulting total aftershock ground motion hazard is shown

in Figure 2.3 and is presented as a function of elapsed time from the initial rupture, t.

An exceedance of 0.5g PGA is considered. Here, we calculate the total aftershock ground

motion hazard in terms of the mean number of aftershocks in the duration (T ) with site PGA

greater than 0.5g, instead of annual rates of exceeding site PGA used previously (where,

specifically, T = 365 days). Based on the earlier observation that the aftershock ground

motion hazard can be calculated by uncoupling the expected number of aftershocks in the
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duration of interest and the probability of exceeding a specified PGA given an aftershock

(based on Equation 2.8), the results in Figure 2.3 for an exceedance PGA of 0.5g is in fact

proportional to any other PGA ground motion levels for fixed values of t, T and mm.

As can be seen from Figure 2.3, the aftershock hazard at the site is higher when the

duration considered is longer, and the difference becomes more pronounced with increasing

elapsed number of days from the initial rupture of the fault segment. This can be attributed

to the fact that aftershocks tend to occur much more frequently a short time period after the

initial rupture. Hence, the aftershock hazard does not differ significantly a short time period

after the initial rupture when different durations are considered because the aftershocks are

concentrated in the first few days after the initial mainshock. As the elapsed number of

days from the initial rupture increases, aftershocks occur less frequently and the durations

considered become more significant in determining the difference in aftershock hazard. Also,

the aftershock hazard is relatively insensitive to the duration of interest provided it is about

six months or longer.

In order to facilitate the comparison of the aftershock hazard in various durations, we

next normalize the aftershock hazard in one week, one month, six months and one year

with respect to the aftershock hazard in one day. The results are shown in Figure 2.4. In

the first 10 days after the mainshock, the resulting ratios are fairly close to one another,

indicating, again, that aftershocks are concentrated in the first few days after the occurrence

of the mainshock. After the first 10 days, the resulting ratios with respect to the aftershock

hazard in one day become much larger in values as compared to the first 10 days after the

mainshock. The ratios approach a constant value (7 for the duration of one week, 30 for the

duration of one month, 180 for the duration of six months and 365 for the duration of one

year) after more than 1,000 elapsed days from the mainshock. These steady-state ratios are

simply the length of the respective durations (in days), and this can be attributed to the

fact that the instantaneous aftershock daily rates approaches almost a constant value after

more than 1,000 days after the mainshock. Of course, the mean instantaneous aftershock

rates are effectively negligible by that time.

In Figure 2.5, we have maintained the end time constant at one year, and evaluated the

aftershock hazard of exceeding a site PGA of 0.5g as a function of elapsed time. This means

that we consider the mean number of aftershocks from days 1 to 366, days 2 to 366, days 3

to 366 and so on in evaluating the aftershock hazard at the site. For comparison to Figure

2.3, we have included the aftershock hazard of exceeding a site PGA of 0.5g from t through
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t + 1 year, i.e., from days 1 to 366, days 2 to 367, days 3 to 368 and so on. From Figure

2.5, we can see that the two methods of evaluating aftershock hazard demonstrate similar

results for less than 100 elapsed days after the mainshock, from which point, the aftershock

hazard curves for the two cases deviate significantly. Again, this can be attributed to the

fact that the aftershock rate is much higher in the short time period after the mainshock.

2.3.3 Effects of Elapsed Time from Initial Rupture (t) on Aftershock

Hazard

As mentioned earlier, aftershock hazard is at its maximum immediately after the occurrence

of the mainshock and this hazard decreases with increasing elapsed time from the initial

rupture of the fault segment. We now study the effects of elapsed time from the mainshock,

t, on aftershock hazard. Aftershock hazard is also dependent on the duration, T . We keep

T constant at 365 days while considering PGA exceedance values of 0.3g, 0.5g and 0.7g,

roughly bracketing the number likely to have been experienced in the mainshock. The

results are shown in Figure 2.6.
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Figure 2.6: Aftershock hazard as a function of t for site PGA= 0.3g, 0.5g and 0.7g, and
T = 365 days. The aftershock hazard is compared to the pre-mainshock hazard of exceeding
the respective PGA values.

It can be seen that one-year aftershock hazard decreases relatively slowly in the first 100

days from the initial occurrence of the mainshock, and that it decreases more rapidly after

that. It can also be seen that it takes more than one year for aftershock hazard to decrease to
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the original level of total pre-mainshock hazard before the occurrence of the initial rupture.

For example, for the case of exceeding a site PGA value of 0.3g, it takes about 1000 days

for the aftershock hazard to decrease to the level of pre-mainshock hazard before the initial

mainshock rupture. It takes more than 30 years for the aftershock hazard to become a

negligible (< 10%) contribution to the total (mainshock and aftershock) hazard.

We next study the aftershock hazard (as a function of PGA) one day, one week and one

month after the mainshock, where T is equal to one year. We present the results in Figure

2.7. Because of the separability of the functions of time and ground motion amplitude in
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Figure 2.7: Aftershock hazard as a function of site PGA for t = 1 day, 1 week and 1 month
after the mainshock. T = 365 days.

Equation 2.8, the hazard for these curves are scalar multiples of one other. Therefore, we

can normalize the results with respect to the base case, i.e., t = 7 days or one week after

the mainshock. We find that the annual aftershock hazard one day after the mainshock is

1.6 times that of the annual aftershock hazard one week after the mainshock, and that the

annual aftershock hazard one month after the mainshock is 0.6 times that of the annual

aftershock hazard one week after the mainshock.
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2.3.4 Similarity of APSHA to Mainshock PSHA

From Figure 2.2, we see that the base case aftershock ground motion hazard is almost

a scalar multiple of the mainshock hazard for all PGA levels. In our example, the Mid-

Peninsula segment is the dominant source of a damaging mainshock ground motion at the

site. This means that the mainshock hazard at the site obtained using Equation 2.7 con-

sidering all seismic sources can be estimated quickly by considering only the Mid-Peninsula

segment. Since the aftershock zone is also defined to be on the same Mid-Peninsula segment

(i.e., the same source-to-site geometry for both cases), the double integrals in Equations 2.7

and 2.8 are almost equal, if not for the difference in upper bound earthquake magnitudes

used in both equations. The difference between the double integrals is likely to be small

due to the decreasing contribution from earthquakes of increasing magnitudes. Also, as

discussed earlier, the aftershock ground motion hazard can be calculated by uncoupling the

expected number of aftershocks in the duration of interest and the probability of exceeding

a specified PGA given an aftershock. Thus, the ratio of the base case aftershock hazard

to the mainshock hazard for all PGA levels is almost constant, in this case, approximately

equal to the ratio of µ∗(t, T ;mm) in Equation 2.8 to υT in Equation 2.7. Thus, if the

mainshock hazard at the site is dominated by one single fault segment, and if this segment

were to rupture, the resulting aftershock ground motion hazard at the site can be rapidly

approximated by multiplying µ∗(t,T ;mm)
υT to the existing mainshock hazard at the site for

all PGA levels, using the values of t and T of interest. A better methodology to facili-

tate rapid estimation of aftershock hazard at a site after a major earthquake is to perform

mainshock PSHA, before the mainshock has occurred, for all likely rupture scenarios using

υT = 1 and the maximum magnitude on the fault segment. Then, after the occurrence of

the mainshock, one simply needs to multiply µ∗(t, T ; mm) to the set of mainshock hazard

results obtained earlier corresponding to the actual mainshock rupture scenario, to obtain

an estimate of the resulting aftershock hazard for all PGA levels.

To facilitate the direct comparison of APSHA to mainshock PSHA over the same fault

segment (so that the double integrals in Equations 2.7 and 2.8 are almost identical with the

same source-to-site geometry, except for the change in upper-bound earthquake magnitude),

we consider three different formulations for mainshock PSHA in which we obtain an approx-

imately equivalent characterization of the site mainshock hazard from all possible sources

from the Woodward-Clyde studies by restricting mainshocks to the Mid-Peninsular segment

and matching the 2% in 50 years site PGA value (0.82g) obtained from the Woodward-Clyde
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studies. The three formulations differ only in the mainshock magnitude distribution and

are:

1. Mainshock PSHA case 1: Mainshock magnitudes are assumed to have a truncated

exponential distribution between 5.0 and 6.75 and a deterministic characteristic mag-

nitude of 7.0. The rate of characteristic events is equal to 0.0067/year, taken from

USGS (1990). The annual rate of mainshocks with magnitudes between 5.0 and 6.75

is evaluated (by trial and error) to be 0.144/year to match the Woodward-Clyde 2%

in 50 years site PGA value of 0.82g.

2. Mainshock PSHA case 2: Mainshock magnitudes are assumed to have a truncated

exponential magnitude distribution between 5.0 and 7.0. The rate of earthquakes

between 5.0 and 7.0 is evaluated (again by trial and error) to be 0.256/year to match

the Woodward-Clyde 2% in 50 years site PGA value of 0.82g. In this case, the

mainshock hazard results are a direct multiple of the corresponding aftershock hazard

results (for mm = 7.0) as the double integrals in Equations 2.7 and 2.8 are exactly

the same, since the upper-bound earthquake magnitude are both equal to 7.0 with

the same site-to-source geometry as well.

3. Mainshock PSHA case 3: Mainshock magnitudes are assumed to have a truncated

exponential distribution between 5.0 and 6.75, with no consideration of potential

characteristic events. We take the annual rate of mainshocks with magnitudes between

5.0 and 6.75 to be 0.144/year, obtained from mainshock PSHA case 1 previously. In

this case, we are assuming that future characteristic mainshocks on the Mid-Peninsular

segment are precluded. This assumption is approximately consistent with quasi-cyclic

models that have been discussed earlier. Previous results in this example do not make

this assumption.

The three approximate mainshock PSHA cases are shown in Figure 2.8, together with

the mainshock hazard curve obtained from the Woodward-Clyde studies. By design, the

three curves from mainshock PSHA case 1, case 2 and the Woodward-Clyde studies intersect

at 0.82g. Note that the approximate hazard curves from mainshock PSHA cases 1 and 2

are in general agreement with the hazard curve obtained from the Woodward-Clyde studies

which considered all possible seismic sources. The approximate methods work well if the

hazard at the site is dominated by a single nearby fault, as is the case for our site in
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Figure 2.8: Approximate mainshock hazard curves by restricting mainshocks to the Mid-
Peninsular segment.

consideration. Note also that the preclusion of future characteristic events (mainshock

PSHA case 3) makes little difference when compared to the mainshock hazard results in the

other cases, and consequently, the ratio of the aftershock hazard to pre-mainshock hazard

is not significantly increased as well.

2.3.5 Effects of Mainshock Magnitude (mm) and Site Location on After-

shock Hazard

The magnitude of the initial rupture is studied next to display its effects on aftershock

hazard. We consider mainshock magnitudes mm of 6.0, 7.0, 7.5 and 8.0. The base-case

aftershock hazard curves are shown in Figure 2.9. It is clear that aftershock hazard is

highly dependent on mm. With increasing mm values, the increase in aftershock hazard

can be attributed mainly to an increase in the mean rate of aftershocks (dependent only on

mm) and, to a significantly less extent, a factor due to the implied increase in the upper

bound aftershock magnitude (where the factor is dependent on both mm and PGA level).

This explains why the aftershock hazard curves are almost parallel. We shall now study
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Figure 2.9: Effects of mainshock magnitudes mm on aftershock hazard as a function of site
PGA with base case values of t = 7 days and T = 365 days.

these effects in detail1.

Next, we normalize the aftershock hazard in Figure 2.9 by the mainshock hazard for three

different sites at R equal to 10 km, 30 km and 50 km using mainshock PSHA case 2. The

results are shown in Figure 2.10. Importantly, the ratio of aftershock hazard to mainshock

hazard becomes insensitive to location and is almost constant for all levels of PGA, for

larger mainshock magnitudes especially. This insensitivity occurs because both aftershock

and mainshock hazard are considered over the same fault segment where the integration over

M and R for both cases in the process of PSHA (using Equation 2.7 for mainshock hazard

analysis and Equation 2.8 for APSHA) are almost identical except for the changes in the

upper bound aftershock magnitude. Indeed, the primary reason for introducing the Case 2

approximation above was so that mainshock and aftershock hazard could be compared in
1An increase in mm might potentially increase the mainshock rupture length and, consequently, the

length of the aftershock zone. An increase in the length of the aftershock zone will result in a reduction
of the aftershock hazard at the site. This effect has not been considered here. The increase in aftershock
hazard due to an increase in the mean rate of aftershocks (with increasing values of mm) is independent
of this effect. The increase in aftershock hazard due to the implied increase in the upper bound aftershock
magnitude would be reduced if this effect had been taken into account. Thus, the factor due to the implied
increase in the upper bound aftershock magnitude studied in this section (without consideration of this
effect) serves as a conservative estimate of the resulting increase in aftershock hazard with increasing values
of mm.
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Figure 2.10: Ratio of PGA aftershock hazard to mainshock hazard for different site locations.
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this explicit way. Thus, the increase in aftershock hazard can be attributed mainly to the

increase in the mean aftershock rate with increasing values of mm which does not depend

on the ground motion level. The increase in the mean aftershock rate with an increase in

mm can be easily computed using Equation 2.6 for t, T constant. The (generally) secondary

effect caused by the increase in the upper bound of the aftershock magnitude distribution

is shown in Figure 2.11. As an example, for the case where mm = 8.0, the total increase in

the aftershock hazard from the base case at a PGA of 0.8g is about 10 times from Figure

2.10. This total factor is approximately equal to the product of 1.2 obtained from Figure

2.11 and the ratio of Equation 2.6 for mm = 8.0 to mm = 7.0 (t, T constant), which is

approximately 8.25. The latter is clearly the primary contributor to the net increase. At

lower levels of PGA, the increased mean aftershock rate contributes proportionately even

more significantly to the increase in the aftershock hazard.

2.3.6 Effects of Structural Periods (T0) on Aftershock Hazard

Up to now, we have studied aftershock hazard with respect only to site PGA, i.e., at a

structural period T0 of 0s. We next study the aftershock hazard as a function of spectral

accelerations (Sa) with respect to structural periods of 0.5s, 0.75s, 1.0s and 1.5s. The
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Figure 2.11: Change in aftershock hazard due to changes in the upper bound aftershock
magnitude for mm = 6.0, 7.5 and 8.0. Results are normalized to base case of mm = 7.0.

aftershock hazard for the base case at different values of T0 is shown in Figure 2.12. We

can see that the aftershock hazard at a period of 0.5s is higher than that of the base case of

0s, i.e., the case with respect to site PGA. At periods between 0.75s and 1s, the aftershock

hazard is reasonably similar to the base case of PGA for all Sa levels. At periods greater

than or equal to 1.5s, the aftershock hazard is considerably lower as compared to the PGA

base case.

We next study spectral shape ratios, as defined by the ratio of Sa(T0) to PGA. The

results are shown in Figure 2.13 for the 2% in 50 years level. The first three cases are

obtained from the attenuation law in Abrahamson and Silva (1997) by considering a fixed R

of 30 km, and by varying the earthquake magnitudes from 5.0 to 6.0 and 7.0. The uniform

hazard APSHA spectral shape ratio is obtained from the base case example previously

discussed. Uniform hazard spectral ratios based on mainshock PSHA cases 1 and 3 are also

shown. The PSHA cases (both mainshock and aftershock) can be considered a weighted

average of the rates obtained from different events of different magnitudes. Bearing this in

mind, it can be seen that the APSHA case is dominated by the higher magnitude events

as the spectral shape ratios are closest to the spectral shape ratios obtained from the

deterministic case where the event magnitude is assumed to be 7.0. Mainshock PSHA
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Figure 2.12: Base case aftershock hazard as a function of Sa for various structural periods,
T0.

case 1 demonstrates the fact that the mainshock hazard is dominated by higher-magnitude

characteristic events when compared to mainshock PSHA case 3 which assumes there are

no characteristic events. Note also that the APSHA spectral ratios are very close to the

mainshock PSHA ratios. This suggests that the ratio of aftershock hazard to mainshock

hazard should also be very similar not only for PGA, as studied in detail above, but also

for all values of T0.

We carry out the process of normalizing the aftershock hazard with respect to the

mainshock hazard in a manner similar to Figure 2.10 for PGA, but for T0 = 0.75s to verify

the above claim. The results are shown in Figure 2.14. Note that the ratio of aftershock

hazard to mainshock hazard also becomes relatively insensitive to location and is almost

equal to the value obtained from the PGA case for all Sa levels. The contribution to

the increase in aftershock hazard due to an increase in the upper bound of the aftershock

magnitude distribution (similar to Figure 2.11) for Sa at T0 = 0.75s is shown in Figure 2.15

together with the results obtained from Figure 2.11 for PGA.
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2.3.7 Summary and Approximate APSHA

Based on the above example, for those cases where a single nearby fault (segment) is the

dominant source of a damaging mainshock ground motion, the normalized aftershock hazard

is relatively insensitive to a number of factors. This insensitivity permits one to conclude

that the aftershock hazard is approximately a fixed multiple of the mainshock hazard for

all ground motion levels, all values of T0 and all site locations. For example, our base case

APSHA example (with t = 7 days, T = 365 days and mm=7.0) is approximately 20 times

that of the pre-mainshock hazard (from Figures 2.10 and 2.14) for both PGA and T0 = 0.75s

at all levels of PGA and Sa, and for R = 10, 30 and 50 km. If we are interested in assessing

the ratio of aftershock hazard to mainshock hazard one day after the mainshock and the

duration of interest is in the order of one year (i.e., t = 1 and T = 365 days), we need

to further multiply the mainshock hazard by a factor of 1.6 which can be either obtained

from Figure 2.7 or Figure 2.4. Similarly, one can adjust for other values of t and T using

Figure 2.4. To adjust for other mainshock magnitudes, one can use Figure 2.10 or 2.14. The

ability to estimate aftershock hazard from the available mainshock hazard (due to a single

dominant fault segment) in this approximate but rapid way has practical implications, for
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example, for post-earthquake building tagging, a subject of discussion in Chapter 4. We

believe it also fosters an appreciation for the nature of aftershock ground motion hazard

and its relationship to the more familiar mainshock hazard.

2.4 Effects of Correlation between Mainshock Epsilon (εm)

and Aftershock Epsilon (εa) on Aftershock Hazard

The expected intensity of the ground shaking at a site of known site conditions is generally

estimated from an attenuation relationship. For example, in the APSHA examples that we

have considered above, we have utilized the attenuation relationship developed in Abraham-

son and Silva (1997) for rock sites. Such attenuation relationships are generally developed

by using nonlinear regressions of empirical recordings from events of different magnitudes

(M), source-to-site distances (R) and other variables (θ) such as local soil conditions, fault

types etc. Such empirical recordings demonstrate a significant amount of scatter for the

same M and R values. This variability is modeled by assuming the form (for the linear

spectral acceleration at a site Sa, which is oscillator frequency and damping dependent) in

Equation 2.9.

ln Sa = g(M, R, θ) + εσattenuation
ln Sa (2.9)

The random variable epsilon (ε) is defined as the number of (logarithmic) standard

deviations (σattenuation
ln Sa ) by which the (logarithmic) ground motion deviates from g(M, R, θ),

the median value predicted by the attenuation relationship given M , R and θ. ε is generally

modeled as a standard Gaussian variable.

Given the above formulation for the attenuation relationship, Equation 2.7 for mainshock

PSHA (assuming one seismic source) could be more formally written as Equation 2.10.

υ̃(y, T ) = υT

+∞∫

−∞

∫

R

mu∫

ml

I(Sa > y|m, r, ε)fM,R,ε(m, r, ε)dεdrdm (2.10)

In Equation 2.10, I(Sa > y|m, r, ε) is an indicator function which is equal to one if Sa > y

for a given m, r and ε, and zero otherwise. Upon observing that ε is independent of M

and R such that fM,R,ε(m, r, ε) = fM,R(m, r)fε(ε) and integrating over all values of ε, it is

straightforward to show that Equation 2.10 reduces to Equation 2.7.

The above formulation serves to illustrate the role that ε plays in the evaluation of the
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seismic hazard at the site in the mainshock situation. In the aftershock scenario, based

on our previous formulation, we have implicitly assumed that εaftershock is also modeled

as a standard Gaussian variable which is independent of εmainshock. In reality, if we as-

sume complete knowledge of the Sa at the site after the mainshock (for example, with the

presence of a instrument at the site), we would be able to compute εmainshock based on

Equation 2.9, i.e., εmainshock = ln Sa−g(M,R,θ)

σattenuation
ln Sa

. Knowledge of εmainshock at a site might in

principle provide us with further information of εaftershock at the same site in the event of

the occurrence of an aftershock. These two ε′s might be correlated due, for example, to

certain commonalities in source, path, or site factors. Thus, we would want to be able to

model the conditional probability distribution of εaftershock given knowledge of εmainshock

at the site in consideration.

Both εmainshock and εaftershock have been modeled as standard Gaussian variables. We

chose to model their joint probability distribution as a standard bivariate Gaussian distri-

bution with probability density function given by Equation 2.11.

fεm,εa(εm, εa) =
1

2π
√

1− ρ2
exp

[
− 1

2(1− ρ2)
(ε2

m − 2ρεmεa + ε2
a)

]
(2.11)

Here, for notational brevity, we denote εmainshock as εm and εaftershock as εa. ρ is the

correlation coefficient (with values from -1 to 1) between εm and εa such that if ρ is equal

to 1, εm = εa and if ρ is equal to 0, εa is independent of εm. Thus, if ρ is equal to 0, we

obtain the original formulation for APSHA as discussed in the previous sections. Equation

2.11 can be written as Equations 2.12 or 2.13.

fεm,εa(εm, εa) = fεm(εm)fεa|εm
(εa|εm) (2.12)

fεm,εa(εm, εa) =
1√
2π

exp(−1
2
ε2
m)

1√
2π(1− ρ2)

exp


−1

2

(
εa − ρεm√

1− ρ2

)2

 (2.13)

By comparing Equations 2.13 and 2.12, since εm is a standard Gaussian variable, one

can see that Equations 2.14 and 2.15 hold.

fεm(εm) =
1√
2π

exp(−1
2
ε2
m) (2.14)
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fεa|εm
(εa|εm) =

1√
2π(1− ρ2)

exp


−1

2

(
εa − ρεm√

1− ρ2

)2

 (2.15)

Hence, fεa|εm
(εa|εm) is also a normal distribution with the parameters given in Equations

2.16 and 2.17.

E(εa|εm) = ρεm (2.16)

σεa|εm
(εa|εm) =

√
1− ρ2 (2.17)

Thus, if we have knowledge of the mainshock Sa and hence εm, in APSHA, we could model

the distribution of εa given εm based on Equations 2.15, 2.16 and 2.17.

For APSHA, we integrate over all possible values of εa using the conditional probability

distribution function of εa given εm as derived in Equation 2.15. In this case, the condi-

tional probability distribution given M and R is still lognormal but with the parameters in

Equations 2.18 and 2.19.

E (lnSaaftershock|Samainshock) = g(M, R, θ) + ρεmσattenuation
ln Saaftershock

(2.18)

σln Saaftershock|Samainshock
= σattenuation

ln Saaftershock

√
1− ρ2 (2.19)

Hence, based on the above formulation, one can revise the ground motion analysis portion

of the APSHA procedure to take into consideration the conditional probability distribution

of εa given knowledge of Samainshock and hence εm.

We use the same site described earlier to demonstrate the difference in the aftershock

seismic hazard curves that are obtained if we have knowledge of εm under different corre-

lation level assumptions between εm and εa. We use the base case APSHA example for

T0=0.75s and we assume first that εm is equal to 0.5. The results are shown in Figure 2.16

where we obtain the annual rates of exceeding a site Sa due to an aftershock.

We can see from Figure 2.16 that with ρ equal to zero, the aftershock seismic hazard

curve is the same as the curve in Figure 2.12. At the other extreme, with ρ equal to one,

εm = εa such that there is zero residual uncertainty in εa (i.e., σln Saaftershock|Samainshock
= 0),

and there is an upper bound to the first mode Saaftershock that is realizable at the site in

the aftershock scenario. That bound is associated with the closest distance R and the

largest aftershock magnitude, here assumed to be equal to mm. Intermediate values of ρ

(for example, ρ equal to 0.5 and 0.7) result in seismic hazard curves that lie between the
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Figure 2.16: Base case aftershock seismic hazard curves for T0 =0.75s. εm is taken to be
equal to 0.5 and ρ = 0, 0.5, 0.7 and 1.0.

two curves previously described. The most reasonable values for the correlation coefficient

between εm and εa probably lie between 0 and 0.7, for which the hazard in Figure 2.12

is quite insensitive, at least up to about 1g. Thus, these results suggest that despite the

correlation that might exist between εm and εa, for reasonable levels of correlations as

described by low to intermediate values of ρ (around 0.5), the resulting effects on aftershock

hazard can be considered to be negligible, at least for all but very rare Saaftershock levels,

in which this assumption is conservative.

We next perform parametric studies on the base case site aftershock hazard with ρ = 0.5,

0.7 and 1.0 and εm = −0.5, 0, 0.5 and 1.0. We compare the results by normalizing it to the

case with ρ = 0. The results are shown in Figure 2.17. We can see that for reasonable values

of ρ (say ρ = 0 to 0.7) and εm = −0.5, 0, 0.5, the results are less than an order of magnitude

away from the base case with ρ = 0. This conclusion is true except for rare Saaftershock

levels. Hence, the effects of correlation between εm and εa might not be significant for

practical purposes, except for negative values of εm, high ρ values and rare ground motion

levels where we might overestimate the aftershock hazard if we use ρ = 0 (which serves as

a conservative estimate), and for εm ≥ 1.0 where we might underestimate the aftershock

hazard by a factor of two or more.
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Figure 2.17: Ratios of base case aftershock hazard with ρ = 0.5 (solid line), 0.7 (dashed
line) and 1.0 (dotted line) and εm = −0.5, 0, 0.5 and 1.0 to aftershock hazard with ρ = 0.

2.5 Conclusion

APSHA is a useful tool for post-earthquake ground motion hazard analysis. Knowing the

expected number of aftershocks for exceeding any ground motion intensity measure allows

us to quantify the time-varying aftershock hazard explicitly in a manner that will be useful

to engineers and decision makers. We see that aftershock hazard can for some time after

the mainshock be significantly higher than pre-mainshock hazard and that it depends on

elapsed time t, duration T and mainshock magnitude mm. Aftershock hazard decreases

relatively slowly for low values of t and rapidly after t = 100 days. It is also not sensitive

to T if T is 6 months or more. Aftershock hazard also increases with mm; the increase

is due primarily to the increase in mean aftershock rate, and secondarily to the presumed

increase in the upper bound aftershock magnitude. Assuming one fault (or fault segment)
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that dominates the pre-mainshock hazard at the site, aftershock hazard becomes relatively

insensitive to site location and almost a constant value when we normalize by the mainshock

hazard. This insensitivity is true for all levels of ground motion and for all values of T0,

implying that uniform hazard spectral shapes for aftershocks and mainshocks are about

the same. These observations allow one to estimate the aftershock hazard at a site rapidly

using the base case example presented here plus curves to correct for t, T and mm. We find

that the effects of potential correlation between εm and εa might not be significant for most

practical purposes. We shall make use of APSHA in later chapters for building-tagging and

post-earthquake decision making.
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3 PERFORMANCE OF

MAINSHOCK-DAMAGED BUILDINGS

In Chapter 2, we proposed a methodology to characterize the aftershock ground motion

hazard at a site in terms of a suitable site ground motion intensity measure. In order

to make informed building-tagging decisions based on quantifying the life-safety threat

faced by a building occupant, we also need a methodology to quantify the performance of

(potentially) mainshock-damaged buildings under different levels of ground shaking due to

potential aftershocks. The permitted occupancy status of the building should be determined

based on the building’s residual dynamic capacity to resist aftershocks and the likelihood

of an aftershock ground motion exceeding that capacity. The convolution of the aftershock

site ground motion hazard from APSHA with the residual capacity of mainshock-damaged

buildings in probabilistic terms allows us to quantify the rate of collapse due to aftershocks

which can be objectively used as a decision basis for making building-tagging decisions.

Building-tagging will be the main topic of discussion in Chapter 4.

In this chapter, we provide a summary of the procedure proposed by Luco et al. (2004)

to quantify the probabilistic capacity of mainshock-damaged buildings to withstand future

aftershock ground shaking by considering several levels of mainshock-sustained damage. A

methodology to calculate the probability of a building in a given damage state progressing

to a worse damage state due to the occurrence of an earthquake (either mainshock or

aftershock) will be developed in this chapter as well. We shall illustrate the methodology

with a case-study building which will be used throughout this report. Interested readers are

referred to Luco et al. (2004), Bazzurro et al. (2004a) and Bazzurro et al. (2004b) for more

details on the approach as well as a more complete description of the case-study building.
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3.1 Methodology

3.1.1 Quantification of Aftershock Capacity of Mainshock-Damaged Build-

ings

To date, much of structural engineering research has been focussed on the mainshock en-

vironment and the quantification of the structural capacity of an intact structure in prob-

abilistic terms. For example, the PEER Equation described in Chapter 1 assumes that a

mainshock-damaged building is repaired to its original pre-mainshock state (usually con-

sidered to be intact) before the occurrence of the next mainshock. This instant “re-built”

assumption is reasonable considering the long interarrival times between mainshocks. This

is one reason why structural engineers have traditionally focussed on developing models to

quantify the structural capacity of intact buildings only.

In the aftershock environment, the likelihood of aftershocks capable of incremental dam-

age to an already mainshock-damaged building is greatly increased, and there might be

insufficient time for the mainshock-damaged building to be repaired back to the original

intact state due to likely insufficient manpower resources in the post-mainshock emergency

situation. Also, as discussed in Chapter 1, aftershocks (implicitly or explicitly) affect evacu-

ation decisions of (possibly) mainshock-damaged buildings because of the inferred life safety

threat due to occupancy of a damaged building which might have less resistance to poten-

tial aftershock ground shaking. Hence, it is important to be able to assess the capacity

of mainshock-damaged buildings, in probabilistic terms, to quantify the probability that a

mainshock-damaged building will be incrementally damaged due to the occurrence of an

aftershock. The aftershock environment thus poses a new challenge to current structural

engineering analysis capabilities.

We first define several levels of damage sustained by the structure by associating in-

creasing levels of damage with increasing values of peak roof drift ratios. We first denote

the (random) peak roof drift ratio after an earthquake as θ. We also assume that we can

classify several levels of damage sustained by the structure into discrete damage states DSj,

where the peak roof drift ratio associated with DSj is θj . We chose to define the damage

states based on the peak roof drift ratios in this report. Note that we can also choose to

define damage states based on other engineering demand parameters (EDP s) such as the

residual drift ratios, and even vectors of EDP s. The discrete damage states based on peak

roof drift ratios for a building described in an example to follow correspond to physically
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identifiable damage that can be observed in practice.

Now, we propose a methodology to quantify the aftershock capacities of mainshock-

damaged buildings based on the discrete damage states described earlier. Luco et al. (2004)

and Bazzurro et al. (2004b) define the (random) residual capacity of a building in post-

mainshock damage state DSi as the minimum first-mode aftershock ground motion spectral

acceleration that would induce collapse, denoted as DSn. (In the particular building model

used in the example to follow, no global dynamic collapse ever preceded local collapse).

This definition of (dynamic) residual capacity can be extended to the definition of the

capacity of a building in DSi going to damage state DSj or worse due to the occurrence

of an aftershock. We denote this capacity as SaDSi,DSj
cap and it is the minimum first-mode

aftershock ground motion spectral acceleration that would induce the peak roof drift ratio

θj associated with DSj for a building originally in post-mainshock damage state DSi. Such

(random) capacities can be estimated using the following steps.

1. Select a suite of earthquake ground motion records which can be used to represent

both mainshocks and aftershocks.

2. Perform nonlinear dynamic time-history analysis using the selected set of ground

motions, with suitable levels of scaling in amplitude, on either a full intact multiple-

degree-of-freedom (MDOF) model, or an equivalent intact single-degree-of-freedom

(SDOF) model, to obtain multiple realizations of each post-mainshock damage state

as defined by appropriate peak roof drift ratios. This step is iterative. Each record

is scaled until the spectral acceleration is found that causes precisely (with some

tolerance) the peak roof drift ratio θi associated with each damage state, DSi. If a

SDOF model is used, the force-deformation backbone curve should be about the same

as that obtained from SPO analysis, with appropriately chosen hysteretic behavior.

The resulting output of this step is the curve for the incremental dynamic analysis

(IDA) of the intact structure – see, for example, Figure 3.3 to follow. The intersections

of the IDA curves with a vertical line associated with damage state DSi, yield the

observed values of the capacities SaIntact,DSi
cap of the intact building going to DSi

or worse in spectral acceleration terms, thus allowing statistics of SaIntact,DSi
cap to be

obtained. This step produces a probability distribution of the mainshock ground

motion amplitude that results in the intact building going into damage state DSi or

worse for each i. It also provides for each damage state and each record, a model of
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the damaged building. These models will be used as the starting point for the next

step.

3. Perform nonlinear dynamic time-history analysis using the same set1 of ground mo-

tions, again with suitable levels of scaling, on the multiple realizations of the damaged

building models from step 2. For each post-mainshock damage state DSi in step 2,

scale iteratively to induce the peak roof drift ratio θj to the level associated with

each worse damage state DSj, j > i. Again, the intersections of the IDA curve for

the building in DSi with a vertical line associated with damage state DSj yield the

observed values of the capacities SaDSi,DSj
cap . This step produces a probability dis-

tribution of the aftershock ground motion amplitude that results in the building in

post-mainshock damage state DSi going to DSj or worse due to an aftershock.

4. Compute the median capacity of the building going from DSi to DSj or worse,

denoted as Ŝa
DSi,DSj

cap , by considering all the possible pairs of mainshock-damaged

building realizations leading to DSi and of aftershock ground motions resulting in

further deterioration of the building from DSi to DSj or worse. The dispersion,

denoted as βDSi,DSj
R , is the standard deviation of the logarithm of SaDSi,DSj

cap and can

also be obtained as well.

3.1.2 Determination of Transition Probabilities

We shall now use the statistical information of SaDSi,DSj
cap obtained from steps 1-4 in Section

3.1.1 to compute the probability of a building in DSi going to DSj or worse, j > i, given an

earthquake (mainshock or aftershock) resulting in a random first-mode spectral acceleration,

Sa. To facilitate the computation of the above probability, we condition on Sa = x to first

compute the probability of a building in DSi going to DSj or worse, given an earthquake

resulting in a first-mode spectral acceleration, Sa = x, i.e., Pi(θ > θj |Sa = x). If we further

assume that the IDA curves are monotonically increasing (see, for example, Figure 3.3 to

follow), then we have:

Pi(θ > θj |Sa = x) = P (SaDSi,DSj
cap < x)

1In principle, a different set of records might be used to represent the aftershocks.
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It is clear that we need to have the probability distribution of SaDSi,DSj
cap to compute the

above probability (the computation of Ŝa
DSi,DSj

cap and βDSi,DSj
R discussed earlier will allow

us to fit a lognormal probability distribution to SaDSi,DSj
cap , which is the assumption that

we will adopt later). Since Sa is itself a random variable, we need to consider all possible

values of x such that the probability of a building in DSi going to DSj or worse, given an

earthquake resulting in a random Sa with probability density function fSa(x) is:

∞∫

0

P (SaDSi,DSj
cap < x)fSa(x)dx (3.1)

Alternatively, we can first condition on SaDSi,DSj
cap = y. Assuming that the probability

density function of SaDSi,DSj
cap is f

SaDSi,DSj
cap

(y), the probability of a building in DSi going to

DSj or worse, given an earthquake resulting in a random Sa can also be calculated to be:

∞∫

0

P (Sa > y)f
SaDSi,DSj

cap
(y)dy (3.2)

P (Sa > y) can be obtained from mainshock PSHA or APSHA. Note that Equations 3.1

and 3.2 are equivalent. We shall adopt Equation 3.2 for the remaining study.

Again, in order to use Equation 3.2 to compute the probability of a building in DSi

going to DSj or worse, j > i, given an earthquake (mainshock or aftershock), we need

to have the probability distribution of SaDSi,DSj
cap . Step 4 of Section 3.1.1 provides us with

the values of the median capacities Ŝa
DSi,DSj

cap and the standard deviation of the logarithm

of SaDSi,DSj
cap , βDSi,DSj

R . However, βDSi,DSj
R described in Section 3.1.1 only represents the

aleatory uncertainty in terms of variability of building response due to different ground

motion records. This uncertainty is intrinsic in nature and thus cannot be reduced. We also

need to include epistemic uncertainty which represents limited accuracy of the structural

analysis procedure and imperfect knowledge of the parameters of the mathematical model

of the structure. Such epistemic uncertainty can potentially be reduced with more detailed

investigations into the building properties and the model development of the structure etc.

We use the term βDSi,DSj
U to represent such epistemic uncertainty which reflects professional

confidence on the selected mathematical model of the structure and the structural analysis
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results. We can compute the net “uncertainty” or dispersion, βDSi,DSj
cap , using Equation 3.3.

βDSi,DSj
cap =

√(
βDSi,DSj

R

)2
+

(
βDSi,DSj

U

)2
(3.3)

Now that we have obtained values of Ŝa
DSi,DSj

cap and βDSi,DSj
cap , we make the assumption

that SaDSi,DSj
cap is a lognormal random variable with parameters Ŝa

DSi,DSj

cap and βDSi,DSj
cap ,

following Bazzurro et al. (2004b). The fragility curve of a building in DSi, defined as the

conditional probability of a building in DSi exceeding a given damage state DSj for a given

level of ground motion intensity (Sa in this case), can then be developed. The fragility curve

also represents the cumulative distribution function of the random variable SaDSi,DSj
cap with

corresponding probability density function f
SaDSi,DSj

cap
(y).

The development of fragility curves, which are functions of Sa, allows one to compute

the probability of a building originally in DSi going to DSj or worse given a mainshock

of magnitude mm at a closest distance R from the ruptured source. This requires the

incorporation of the probability distribution of Sa for a given mm and R. From a standard

attenuation law (e.g., Abrahamson and Silva (1997)), one can obtain E(lnSamainshock)

and σln(Samainshock) where Samainshock is the mainshock first-mode site spectral acceleration

which is generally assumed to be lognormally distributed.

To calculate the probability of a building in DSi going to DSj or worse due to a

mainshock with magnitude mm at a closest distance R from the site with random ca-

pacity SaDSi,DSj
cap , i.e., P

(
SaDSi,DSj

cap < Samainshock

)
, we can use Equation 3.2. However,

because SaDSi,DSj
cap and Samainshock are both lognormal random variables, the computation

of P
(
SaDSi,DSj

cap < Samainshock

)
is much simpler because:

P
(
SaDSi,DSj

cap < Samainshock|mainshock
)

= P

(
SaDSi,DSj

cap

Samainshock
< 1

)

= P

[
ln

(
SaDSi,DSj

cap

Samainshock

)
< 0

]
= P

[
ln

(
SaDSi,DSj

cap

)− ln(Samainshock) < 0
]

= P (W < 0) = Φ




E(lnSamainshock)− ln
(
Ŝa

DSi,DSj

cap

)
√(

βDSi,DSj
cap

)2
+

(
σln(Samainshock)

)2


 (3.4)

In Equation 3.4, W is defined to be the random variable ln
(
SaDSi,DSj

cap

)
− ln(Samainshock),

52



and W is lognormal with median equal to E(lnSamainshock)− ln
(
Ŝa

DSi,DSj

cap

)
and standard

deviation of ln W equal to
√(

βDSi,DSj
cap

)2
+

(
σln(Samainshock)

)2. Here, Φ(x) is the widely

available Gaussian cumulative distribution function. Then, the probability of transiting

from DSi to DSj, denoted as P ′
ij |mainshock, is simply the difference between the prob-

ability of a building in DSi going to DSj or worse and the probability of a building

in DSi going to DS(j + 1) or worse given the occurrence of the above mainshock, i.e.,

P
(
SaDSi,DSj

cap < Samainshock|mainshock
)
− P

(
Sa

DSi,DS(j+1)
cap < Samainshock|mainshock

)
.

We can also compute the probability of a building in DSi after the mainshock going

into DSj or worse after an aftershock of random magnitude at a random location on the

aftershock zone after a mainshock of known magnitude and location. We denote Saaftershock

as the potential aftershock site spectral acceleration (at the first mode period)2. In Chapter

2, we have described how to obtain P (Saaftershock > y|aftershock). The probability of a

building in post-mainshock damage state DSi going into DSj or worse due to an aftershock

of random magnitude at a random location can be calculated using Equation 3.5, similar

to Equation 3.2.

P
(
SaDSi,DSj

cap < Saaftershock|aftershock
)

=
∫

y

P (Saaftershock > y|aftershock)f
SaDSi,DSj

cap
(y)dy

(3.5)

Then, the transition probability of a building in DSi going to DSj due to an aftershock

of random magnitude at a random location, denoted as P ′
ij |aftershock, is the difference of

P
(
SaDSi,DSj

cap < Saaftershock|aftershock
)

and P
(
Sa

DSi,DS(j+1)
cap < Saaftershock|aftershock

)
.

Since a building in damage state DSi has to be in another damage state (possibly the

same damage state, DSi, or a different damage state, DSj, j > i) after the mainshock

or earthquake,
∑

j

P ′
ij |mainshock = 1 and

∑

j

P ′
ij |aftershock = 1. Also, since we are

assuming that the building can only be progressively damaged due to the occurrences of

either mainshocks or aftershocks, P ′
ij |mainshock = 0 and P ′

ij |aftershock = 0 for i > j if

we further assume no repair operations.
2Here, we assume that the building in all possible post-mainshock damage states has the same structural

period as that of the intact building. The damaged building can potentially have a longer structural period
as compared to that of the intact building. See, for example, Bazzurro et al. (2004a)
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3.2 Example

We shall now provide an example to illustrate the above proposed methodology. The case-

study building used in this study has also been used in Phase I of a project for the Pacific

Earthquake Engineering Research Lifelines (PEER-LL) Program and its co-sponsor Pacific

Gas & Electric (PG&E). It is a three-story steel-moment-resisting-frame (SMRF) building

constructed in San Francisco in 1989. The first mode period, T0, is equal to 0.73s. Because

of its date of construction, brittle beam-column connections are assumed. Fractures occur

at a plastic hinge rotation of 0.01 radians at which point the moment strength drops to 30%

of the plastic value. A static pushover (SPO) of the building, excerpted from Bazzurro et al.

(2004b), is shown in Figure 3.1. The first shear-tab failure is assumed to occur at a plastic

hinge rotation of 0.07 radians, at which point local collapse is assumed to have occurred,

the SPO analysis is halted and zero base shear is assumed from this point on. Four post-

mainshock damage states with associated peak mainshock roof drift ratios for the building

are considered and are indicated on the SPO curve. Damage state 1 (DS1) at a peak roof

drift ratio of θ1 = 0.009 corresponds to onset of nonlinear behavior in the building. Damage

state 2 (DS2) at a peak roof drift ratio of θ2 = 0.016 corresponds to fracture of exterior

beam-column connections of the first floor in the building. Damage state 3 (DS3) at a peak

roof drift ratio of θ3 = 0.024 corresponds to fracture of interior connections of the frame

(in addition to exterior connections). Damage state 4 (DS4) at a peak roof drift ratio of

θ4 = 0.048 corresponds to local failure of a shear-tab, and it represents local collapse.

Luco et al. (2004) performed the procedures described in Section 3.1.1 using an equiva-

lent SDOF system having the same quadrilinear approximation of the SPO curve as shown

in Figure 3.1. He used three different types of hysteretic behavior: bilinear, peak-oriented

(“Clough”) and pinching. The set of ground motions used in the study by Luco et al.

(2004) is the set of 30 earthquake recordings used in Vamvatsikos and Cornell (2004). The

force-deformation curves of each hysteretic behavior is shown in Figure 3.2.

Not only does performing step 2 in Section 3.1.1 provides us with multiple realizations

of post-mainshock damage states, it also provides us with the incremental dynamic analysis

(IDA) curve. The results obtained using a pinching building model is shown in Figure 3.3.

The associated peak roof drift ratios for each damage state are also shown in Figure 3.3. The

median intact capacities, denoted as Ŝa
intact,i

cap , and the standard deviation of the logarithm

of Saintact,i
cap , denoted as βintact,i

R , can be quantified by drawing a vertical line associated with
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Figure 3.1: Nonlinear SPO curve for the intact, undamaged case-study building. The
quadrilinear approximation is the SPO curve for the SDOF idealization of this first-mode
dominated building. The four potential post-mainshock damage states and the associated
peak roof drift ratios are also indicated on the figure. The SPO curves for the building in
DS2 and DS3 are also shown. The SPO curve for the building in DS1 is assumed to be the
same as that of the intact building. This figure was excerpted from Bazzurro et al. (2004b).

Figure 3.2: Hysteretic behavior of the bilinear, peak-oriented, and pinching SDOF building
models. This figure was excerpted from Luco et al. (2004).
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each θi. The medians are shown in Figure 3.3. The final state of the structure after this

mainshock analysis will be the initial starting state for the subsequent aftershock analysis.

Figure 3.3: IDA curve obtained while obtaining multiple realizations of each post-mainshock
damage state. This figure was excerpted from Luco et al. (2004).

Next, step 3 in Section 3.1.1 is carried out on the multiple realizations of post-mainshock

damage states with aftershock earthquake ground motions, where the peak roof drift ratio

associated with a worse damage state is induced by scaling each aftershock record by an

appropriate factor. As discussed earlier, this procedure is iterative in general. The results

are somewhat polarity sensitive. Because the scaling of aftershocks by positive and negative

factors typically results in different Sa values, the smaller value is selected as per the

definition of capacity described earlier as the smallest Sa that results in the transition to

another damage state or worse. An example using the pinching model of the building going

from DS3 to DS4, with both the mainshock and aftershock ground motion records scaled

to appropriate levels, is shown in Figure 3.4.

Step 3 can be carried out for all post-mainshock damage states going to all post-

aftershock damage states or worse such that we obtain all values of Ŝa
DSi,DSj

cap and βDSi,DSj
R .

In fact, performing both steps 2 and 3 is equivalent to performing sequential IDAs for the

structure with all intermediate damage states taken into consideration. Values of Ŝa
DSi,DSj

cap

and βDSi,DSj
R provided by Dr. Luco for a bilinear SDOF building model are shown in Figure

3.5. Here, with a bilinear SDOF model, there is some decrease in the dynamic capacity of

the building in terms of Ŝa
DSi,DSj

cap as the level of post-mainshock damage is increased. For
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Figure 3.4: Roof drift time histories from back-to-back mainshock-aftershock dynamic anal-
yses for building going from DS3 (peak roof drift ratio of 0.024) after the mainshock to DS4
(peak roof drift ratio of 0.048) after the aftershock. This figure was excerpted from Luco et al.
(2004).

To
From

-- 0.69 1.37 1.80 2.78
-- -- 1.37 1.80 2.78
-- -- -- 1.61 2.63
-- -- -- -- 2.07
-- -- -- -- --

To
From

-- 0.00 0.27 0.33 0.39
-- -- 0.27 0.33 0.39
-- -- -- 0.30 0.36
-- -- -- -- 0.34
-- -- -- -- --

Median Spectral Acceleration (g)

DS2 DS3 DS4

DS4

Intact DS1

Intact
DS1
DS2
DS3

βR

Intact DS1 DS2 DS3 DS4

DS4

Intact
DS1
DS2
DS3

Figure 3.5: Values of Ŝa
DSi,DSj

cap and βDSi,DSj
R . These results are provided by Dr. Luco.

example, Ŝa
Intact,DS4

cap = 2.78g and Ŝa
DS3,DS4

cap = 2.07g, and the loss in dynamic capacity

of the building in DS3 is approximately 25% as compared to that of the intact building.

From Figure 3.3, the corresponding loss in maximum base shear from the SPO curves of
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the intact building and the building in DS3 is about 33%, a percentage comparable to that

of the loss in dynamic capacity. Bear in mind, however, that the results presented here use

the smallest Sa that results in the transition to another damage state or worse to address

the polarity issue of the scaling of the aftershock ground motions – the loss in dynamic

capacity will be less otherwise. Also, as observed by Luco et al. (2004) as well as Amadio

et al. (2003) and Lee and Foutch (2004) who have done similar (but less thorough) back-to-

back dynamic analyses, the reduction in dynamic capacity has been generally observed to

be relatively small, especially if other hysteretic behavior (other than bilinear) is assumed

for the SDOF model. The performance of damaged buildings due to an aftershock is an

important area of research that deserves more attention from structural engineers. Similar

procedures described here should be carried out with MDOF models for different building

types to study the resulting loss in dynamic capacity starting from different initial damage

states. For the purpose of this report, we shall use the results in Figure 3.5 for the rest of

the study. We also used the baseline βIntact,DSj
U values proposed in Bazzurro et al. (2004b)

where βIntact,DS1
U = 0.3, βIntact,DS2

U = 0.6, βIntact,DS3
U = 0.6 and βIntact,DS4

U = 0.5. We

assume that βDSi,DSj
U = βIntact,DSj

U .

For this example, for the purpose of illustration, we also consider a second building

which is considerably weaker than the first building described earlier. This second building

is assumed to have Ŝa
DSi,DSj

cap values which are 50% of the corresponding values of the first

building (shown in Figure 3.5), with the same βDSi,DSj
cap (also shown in Figure 3.5). We shall

refer to the first building as the original building, and this second building as the weaker

building.

For numerical purposes, to illustrate the methodology to obtain the transition proba-

bilities due to the occurrence of a mainshock for all initial states, we assume mm = 7.0

and R = 10 km, following our base-case aftershock example described in Chapter 2. The

fragility curves for each post-mainshock damage state DSi going into damage state DSj or

worse in an aftershock can then be obtained and are shown in Figure 3.6 for both buildings.

Using Equation 3.4, we can also calculate the probability of transiting to each post-

mainshock damage state after the above mainshock scenario for all possible initial states

of both buildings. The values of these probabilities are provided in Figure 3.7. The first

column indicates the initial state of the building before the mainshock. Generally, we

assume that the building is intact before the occurrence of the mainshock such that only

the first row of the matrix is used. If i = 0 refers to the intact state, the probability of
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Figure 3.6: Fragility curves for each post-mainshock damage state.

the intact building transiting to DS1, DS2, DS3 or DS4 (i.e., the probability of the intact

building being damaged in the mainshock) is equal to
∑

j

P ′
0j |mainshock for j = 1, 2, 3, 4,

or 1 − P ′
00|mainshock. The probability of the first intact building being damaged after a

mainshock with mm = 7.0 and R = 10 km is equal to 0.164 and the probability of collapse

is 0.0075. For the second, weaker building in the intact state, the probability of it being

damaged after the same mainshock is equal to 0.554 and the probability of collapse is 0.0559.

With a reduction of the values of Ŝa
DSi,DSj

cap by 50%, the probability of damage of the intact

building increases by more than three times, and the probability of collapse increases by

more than seven times. Thus the probabilities of damage and collapse of the weakened
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Intact DS1 DS2 DS3 DS4
Intact 8.36E-01 1.33E-01 1.41E-02 8.50E-03 7.50E-03
DS1 0 9.70E-01 1.41E-02 8.50E-03 7.50E-03
DS2 0 0 9.79E-01 1.32E-02 8.08E-03
DS3 0 0 0 9.81E-01 1.90E-02
DS4 0 0 0 0 1

Probability of being in each post-mainshock damage state given initial 
state of building (Original Building)

Probability of being in each post-mainshock damage state given initial 
state of building (Weaker Building)

Intact DS1 DS2 DS3 DS4
Intact 4.46E-01 3.63E-01 7.55E-02 6.00E-02 5.59E-02
DS1 0 8.13E-01 7.68E-02 6.80E-02 4.25E-02
DS2 0 0 8.66E-01 9.17E-02 4.27E-02
DS3 0 0 0 8.63E-01 1.37E-01
DS4 0 0 0 0 1

Figure 3.7: Probability of transiting to each post-mainshock damage state after a mainshock
with mm = 7.0 and R = 10 km for all possible initial states of both buildings.

building increase by a significant extent, much more than the 50% decrease in the values

of Ŝa
DSi,DSj

cap might imply. In this example, the mainshock rupture is extremely close to

the site (R = 10 km) which has potentially contributed to the significant increases in the

probabilities of damage and collapse.

Also, given the base-case aftershock example in Chapter 2 and using Equation 3.5, we

can compute the transition probabilities of buildings for all post-mainshock damage states

given the occurrence of an aftershock of random magnitude at a random location. In

fact, the mainshock example described earlier can be viewed as a worst-case repeat of the

mainshock in the aftershock environment, i.e., an aftershock occurred at the closest distance

to the site with the mainshock magnitude. These transition probabilities for both buildings

for all post-mainshock damage states are given in Figure 3.8. In this aftershock example,

we assume first that both buildings remain intact after the mainshock. A reduction of the

values of Ŝa
DSi,DSj

cap by 50% results in the probability of damage increasing by about 60% and

the probability of collapse increasing by about 70% given the occurrence of an aftershock

of random magnitude at a random location. The probability of damage and collapse of

the weaker building increases by a factor that is much closer to the 50% reduction in the

values of Ŝa
DSi,DSj

cap . This observation can partly be attributed to the fact that we have

considered aftershocks at random locations which can potentially be located far enough

from the site such that the 50% reduction of the values of Ŝa
DSi,DSj

cap does not significantly
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Transition probability for each post-mainshock damage state going to a 
worse damage state given an aftershock (Original Building)

Transition probability for each post-mainshock damage state going to a 
worse damage state given an aftershock (Weaker Building)

Intact DS1 DS2 DS3 DS4
Intact 9.95E-01 3.95E-03 3.43E-04 1.94E-04 1.83E-04
DS1 0 9.99E-01 3.43E-04 1.94E-04 1.83E-04
DS2 0 0 9.99E-01 3.13E-04 1.96E-04
DS3 0 0 0 1.00E+00 4.24E-04
DS4 0 0 0 0 1

Intact DS1 DS2 DS3 DS4
Intact 9.92E-01 5.80E-03 9.77E-04 7.04E-04 3.17E-04
DS1 0 9.99E-01 9.77E-04 7.04E-04 3.17E-04
DS2 0 0 9.99E-01 8.24E-04 3.99E-04
DS3 0 0 0 9.99E-01 1.44E-03
DS4 0 0 0 0 1

Figure 3.8: Transition probabilities for all initial post-mainshock damage states for both
buildings given the occurrence of an aftershock of random magnitude at a random location.

increase the probability of damage and collapse. Note also that as we progress from an

intact post-mainshock state to a DS3 post-mainshock state, the probability of collapse due

to the occurrence of an aftershock of random magnitude at a random location increases by

almost two times for the original building and by almost five times for the weaker building,

indicating the increasing likelihood of collapse in an aftershock of a building in DS3 as

compared to an intact building. The results in Figures 3.7 and 3.8 will be used in later

chapters.

3.3 Conclusion

This chapter provides a summary of the methodology proposed by Luco et al. (2004) to

quantify the performance of damaged buildings due to potential aftershock ground motions.

The methodology involves, in principle, “back-to-back” nonlinear dynamic time-history

analysis of samples of records representing mainshocks and aftershocks in both cases. It-

erative and/or incremental dynamic analysis are necessary to find the probability that a

building goes (in the mainshock) from the intact to a pre-specified damage state, and then

(in the aftershock) from that state to another. The collapse damage state is of particular

interest. While in principle these nonlinear dynamic time-history analysis should be done
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on MDOF models (and research is underway in this mode), in practice, less computation-

intensive SDOF dynamic models and/or nonlinear-static procedures proposed in Bazzurro

et al. (2004a) and Bazzurro et al. (2004b) may prove more advantageous. For example, the

SPO2IDA tool developed by Vamvatsikos and Cornell (2004) which produces the median

IDA curve as well as the record-to-record dispersion (if the quadrilinear backbone is avail-

able as an input) can be used by practising structural engineers who may need to obtain

the approximate IDA results without resorting to time-consuming nonlinear dynamic time

history analysis. This method has been used, for example, in Maffei et al. (2002).

The above procedure allows one to develop fragility curves for all post-mainshock build-

ing damage states, and it allows one to quantify the likelihood of each post-mainshock

damage state after a mainshock of known magnitude and location. It also allows one to

compute the transition probability of a building in a given post-mainshock damage state

transiting to a worse damage state given the occurrence of an aftershock of random magni-

tude at a random location with a specified aftershock zone. Together with the results from

APSHA, one can then obtain the rate of collapse due to aftershocks which can be used as

a decision basis for building-tagging, the subject of discussion in the next chapter.
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4 LIFE-SAFETY BASED BUILDING

TAGGING CRITERIA

In this chapter, we propose a decision making/policy methodology for building evacuation

and re-occupancy (i.e., building “tagging”) to insure adequate life safety during a period

of enhanced seismic activity. The proposed methodology for the life-safety evaluation of

an earthquake-damaged building is based on the explicit quantification of the time-varying

aftershock ground motion hazard at the site after a major earthquake using APSHA, the

subject of discussion in Chapter 2. We also take into consideration the level of damage

sustained by the building due to the mainshock and its residual capacity against collapse

due to possible future aftershocks by using the methodology discussed in Chapter 3.

The proposed scheme enables us to classify buildings after an earthquake into three

groups based on the frequencies of building collapse due to an aftershock. The fatality risk

to an arbitrary occupant is presumed to be proportional to this number. The classification

criteria are based on the value of this collapse frequency or rate relative to the tolerable

value implied by current new building design. The first group of buildings is classified or

“tagged” red implying that immediate entry and re-occupancy are not permitted for any

personnel. The second group of buildings is tagged yellow; entry by volunteer emergency

personnel for repair or retrofit purposes or for continued operation of critical facilities is

allowed as long as such personnel are informed of the increased risk they face and are

appropriately compensated for it. The third group of buildings is tagged green, permitting

entry and re-occupancy for all personnel. The proposed methodology also provides for the

change of tag color as a function of elapsed time from the mainshock due to the decreasing

aftershock hazard at the site.

We also propose a methodology to allow earlier entry into a red-tagged building by
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introducing the concept of a controlled work force where we limit the cumulative frequency

of collapse faced by a selected informed and compensated volunteer worker. This can be

achieved by limiting the duration these workers may spend in damaged buildings, followed

by a required, subsequent rotation to a safer working environment.

4.1 Introduction

After an earthquake buildings might suffer significant damage without collapse. There is a

need to “tag” such buildings to decide if it is necessary to evacuate their occupants based

on the degree of damage sustained by the buildings. If the occupants of a damaged building

are evacuated, it is also necessary to decide if and when emergency workers can enter

the building for search-and-rescue or temporary shoring missions. Further, there are some

critical facilities where it is essential to community recovery to ensure the continuation of

their operations after the earthquake. Such facilities include water and power distribution

networks etc. For such facilities, it might be extremely important to the safety of the public

as a whole to allow a minimum number of workers to enter the damaged building after the

earthquake to perform critical functions. This case requires special consideration.

Such tagging decisions are dependent on the damage state of the building immediately

after the mainshock. The decision should be based on life-safety considerations in terms

of the damaged building’s ability to resist aftershocks and the likelihood of an aftershock

capable of collapsing it. Unfortunately, such decisions are complicated by the significantly

increased frequency of aftershocks in the post-mainshock environment. We shall use APSHA

to quantify the aftershock ground motion hazard at the site in the post-mainshock scenario.

We shall also consider the damage states of the building after the mainshock based on the

residual capacity of the damaged building to resist aftershock ground motions. As proposed

in Chapter 3, we shall use Sacap, measured in terms of spectral acceleration of the first-mode

period of the building, as the measure of capacity of damaged buildings.

In this chapter, we must first introduce a proposed methodology to quantify the life-

safety threats in a time-varying environment by representing them as Equivalent Constant

Rates, or ECRs. We use the frequency of collapse as a proxy for the life-safety risk faced by

an arbitrary building occupant. With the ability to quantify time-varying life-safety risk,

we shall propose a methodology for building tagging.
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4.2 Quantification of Time-Varying Rates as Equivalent Con-

stant Rates (ECRs)

As discussed in Chapter 2, aftershock hazard is time-varying in nature, and it depends on

the number of elapsed days t after the occurrence of the mainshock. Aftershock hazard is

also dependent on the length of the duration T taken into consideration. Such dependence

on time is inconsistent with conventional design criteria for buildings. For example, in the

United States, design ground motion levels for new buildings are currently set at a frequency

of exceedance of 0.0004/year (or 2% in 50 years). This frequency is implicitly assumed to

be constant and indefinite in time. Individual life-safety criteria are also normally stated in

terms of annual frequency of fatality. For example, NPD (1981) sets the maximum annual

individual fatality risk per worker to 10−4 on new platforms for the offshore oil and gas

industry. Again, such criteria implicitly assume time-independent fatality risks that are

constant and extend indefinitely into the future. In order to compare or calibrate safety

criteria in a time-varying environment (such as aftershocks) to the standard time-invariant

situation, some means must be identified to transform the former into the latter.

Here, we shall develop such a methodology where time-varying rates or frequencies are

changed to “equivalent” constant rates with the desired characteristics by considering an

implied discounted investment in life-safety technologies for both the constant or homoge-

neous mainshock case and the time-varying, nonhomogeneous aftershock case on the basis

of social equity. See Paté-Cornell (1984) for a discussion of the notions of social equity

and investment in life-safety technologies in the context of structural safety in the typical

constant rate case. Such constant rates which represent the time-varying aftershock rates

are referred to as Equivalent Constant Rates, or ECRs.

Following the notation in Chapter 2, after a mainshock of magnitude mm, µ(t; mm) is

the instantaneous daily rate of aftershocks with magnitudes between ml and mm at time

t. Aftershocks are modeled as nonhomogeneous Poisson processes. As mentioned earlier,

we propose to use the frequency of collapse as a proxy for the life-safety risk faced by an

arbitrary building occupant. From Chapter 3, a building in damage state i will collapse in

an aftershock with probability P ′
in where n is defined as the collapse state. A building in

damage state i is assumed to have a capacity of Sai,n
cap to resist collapse. The median Sai,n

cap

value is Ŝa
i,n

cap and the dispersion (i.e., standard deviation of the logarithm of Sai,n
cap) is βi,n

cap.

From Chapter 3, P ′
in is defined in Equation 4.1 under certain simplifying assumptions (see
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Cornell et al. (2002)).

P ′
in = P (Sasite > Ŝa

i,n

cap|aftershock) exp(
1
2
k2

a

[
βi,n

cap

]2) (4.1)

P (Sasite > Ŝa
i,n

cap|aftershock) is the probability of exceeding Ŝa
i,n

cap given an aftershock of

random magnitude at a random location and it can be obtained from APSHA by inte-

grating over the aftershock-magnitude distribution and the source-to-site distance distribu-

tion. Following the notation in Chapter 2, this is numerically equivalent to assuming that

µ∗(t, T ;mm) = 1. The term exp(1
2k2

a

[
βi,n

cap

]2) is a factor to account for the dispersion of the

Sai,n
cap value, where ka is the slope of the linearly-approximated log-log aftershock hazard

curve. See Cornell et al. (2002) for details on the description of k in the mainshock case.

We define an aftershock which results in the collapse of a building in damage state i as

a fatality event. The fatality events can be modeled as a nonhomogeneous Poisson process

with intensity function $i(t;mm) in Equation 4.2.

$i(t;mm) = µ(t; mm)P ′
in, t ∈ [0,∞) (4.2)

We now wish to assess the threat due to fatality events for an arbitrary occupant of

a building in damage state i in the time interval [τ , τ + dτ ], where τ ∈ [0,∞) and dτ

is an infinitesimal increment from τ . The probability of a fatality event in [τ , τ + dτ ] is

approximately equal to $i(τ ; mm)dτ. We further define C as the amount of investment

into “life-safety” technology at time τ in the future in order to save this occupant from

building collapse due to a fatality event at the same time, analogous to Paté (1985). We

assume that an investment of C at time τ instantaneously allows the building occupant to

be saved. Denoting α as the inflation-adjusted discount rate appropriate for discounting

societal investments in life-safety technologies in the future (see Paté-Cornell (1984) for

details), we would need to invest a sum of money equal to Ce−ατ today to save an occupant

from a fatality event at time τ . An example of such a “life-safety technology” could be

temporary bracing of the building. Thus, the amount of investment society should be

prepared to make today to save this arbitrary occupant from a potential fatality event in

[τ , τ + dτ ] is approximately equal to Ce−ατ$i(τ ; mm)dτ1. We shall henceforth refer to

C as the cost per life saved. If we are interested in the time interval [td,∞), we define
1In some circumstances, C might be considered a random variable, in which case, C could be replaced

here by its expectation, E(C).
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$̃i(t, td; mm) using Equation 4.3.

$̃i(t, td; mm) =
{

$i(t;mm), t ∈ [td,∞)
0, t /∈ [td,∞)

}
(4.3)

We define µ̃(t, td; mm) in a similar manner using Equation 4.4.

µ̃(t, td; mm) =
{

µ(t; mm), t ∈ [td,∞)
0, t /∈ [td,∞)

}
(4.4)

Thus, the investment society should make today to save this occupant due to a potential

fatality event in [td,∞) is equal to

∞∫

0

Ce−ατ $̃i(τ , td;mm)dτ .

td (measured from the mainshock) refers to the date at which a tagging decision is being

made about the building. Therefore, td is the date forward from which we wish to assess

the remaining life-safety threat that an occupant is exposed to. td includes day one after

the mainshock but it may also refer to a later date when there might be better information

about the damage state of the building (for example, based on better inspection and/or more

sophisticated engineering analysis) to facilitate better-informed building-tagging decisions

(or revisions of previous building-tagging decisions). These decisions will be based on the

assessment of the remaining threat to an occupant in the building. This issue will be

discussed in more details in later sections.

For a building in damage state i, we want to obtain ECRi
col(td;mm), a constant, time-

independent collapse rate from time zero to infinity which is “equivalent” to the time-

dependent rate of fatality events $̃i(t, td; mm). We first define “equivalence” to mean that

the expected investment into life-safety technologies for saving an arbitrary building occu-

pant in the future is the same for both cases. This definition of equivalence is based on

the consideration of social equity where a building occupant in both scenarios is entitled

to the same amount of investment into such technologies. Similar to the previous time-

dependent case, the probability of an “equivalent” fatality event in [τ , τ + dτ ], τ ∈ [0,∞),

is approximately equal to ECRi
col(td; mm)dτ. Thus, the expected amount of investment so-

ciety should make today to save this occupant due to potential equivalent fatality events in

[0,∞) is equal to

∞∫

0

Ce−ατECRi
col(td; mm)dτ or

[C][ECRi
col(td;mm)]
α .

Thus, equating the expected investment into life-safety technologies for both cases, we
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obtain Equation 4.5.

[C]
[
ECRi

col(td;mm)
]

α
=

∞∫

0

Ce−ατ $̃i(τ , td; mm)dτ (4.5)

Notice that C cancels out from both sides of the equation such that we obtain the definition

of ECRi
col(td; mm) in Equation 4.6 as being independent of the value of C which has simply

played a passing role in defining equivalence.

ECRi
col(td; mm) = α

∞∫

0

e−ατ $̃i(τ , td; mm)dτ (4.6)

The social discount rate, α, remains however. It plays a crucial role as its value implies

that the annual equivalent constant collapse rate, ECRi
col(td; mm), is only a few percent

of the expected total number of collapse in a given time interval of interest. Equation 4.6

can be approximated as Equation 4.7 because for typical parameter values, it is found that

$̃i(τ , td;mm) decreases to zero rapidly relative to e−ατ for increasing values of τ .

ECRi
col(td; mm) ≈ α

∞∫

0

$̃i(τ , td;mm)dτ (4.7)

Thus, ECRi
col(td; mm) can be easily estimated by computing the integral in Equation

4.7. This integral is simply the expected number of fatality events in the time interval

[td,∞) which can be computed by evaluating the area under the mean instantaneous fa-

tality event rate curve from td to ∞ multiplied by the inflation-adjusted discount rate α.

Note that $̃i(τ , td; mm) can potentially be defined to include mainshock hazard from other

existing faults and the residual mainshock hazard from the same fault that has ruptured,

but for simplicity, only the aftershock hazard (which is significantly higher as compared to

mainshock hazard) is considered in this Chapter.

Alternatively, substituting Equations 4.1 and 4.4 into Equation 4.7, we obtain Equation

4.8.

ECRi
col(td; mm) ≈ α

∞∫

0

µ̃(τ , td;mm)P (Sasite > Ŝa
i,n

cap|aftershock) exp(
1
2
k2

a

[
βi,n

cap

]2)dτ

(4.8)
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We define Htd
a (y;mm) using Equation 4.9 which represents the “equivalent constant” after-

shock rate of exceeding a Sasite value of y in [td,∞).

Htd
a (y;mm) , α

∞∫

0

µ̃(τ , td; mm)P (Sasite > y|aftershock)dτ (4.9)

Thus, Equation 4.7 can also be written as Equation 4.10.

ECRi
col(td;mm) ≈ Htd

a (Ŝa
i,n

cap;mm) exp(
1
2
k2

a

[
βi,n

cap

]2) (4.10)

Thus, as described above, we have transformed the time-varying rate into an equivalent

constant collapse rate, ECRi
col(td; mm). Note that ECRi

col(td; mm) is dependent on td,

which has been previously defined to be the time at which the tagging decision (or revision

of a previous tagging decision) is made. Note also that the lower limit of integration of

Htd
a (Ŝa

i,n

cap; mm) is zero and corresponds to a high instantaneous daily aftershock rate which

can potentially be an artifact of the fit of the functional form described in Chapter 2 to

existing aftershock data; in subsequent sections, we will use a lower limit of integration

of one day instead. While this ECR concept has been introduced here to address the

aftershock problem, it is believed that it represents a potential solution to a wider class of

safety problems where decisions involving time-varying life threats are involved.

4.3 Proposed Building Tagging Methodology

For a building in damage state DS, the equivalent constant collapse rate ECRDS
col (td;mm)

developed in the previous section is assumed to be proportional to the fatality risk to an

arbitrary occupant in the damaged building, permitting life-safety decisions to be made

based on comparative collapse rates even though the value of the proportionality constant

is not known with precision2. On the basis of life-safety, given mm and for a building in

damage state DS, we will next compare the aftershock ECRDS
col (td; mm) to existing tolerable

mainshock collapse rates to determine if the safety criteria have been satisfied. This will

form the basis of our proposed building tagging methodology.
2A value of about 10% has been used in earthquake loss assessments such as the HAZUS program (see

FEMA (1999)) .

69



Given the mainshock magnitude, mm, the location of the building, the mainshock rup-

ture zone and the degree of damage of the building in terms of Ŝa
i,n

cap and βi,n
cap, we have

above quantified the ECRDS
col (td; mm) of the damaged building as a function of td. An oc-

cupant in a damaged building will be exposed to a time-varying collapse rate, and thus,

a time-varying fatality risk. On the implicit basis of comparable life-safety, we propose to

compare the equivalent constant aftershock collapse rate, ECRDS
col (td;mm), to a specified

tolerable collapse rate to determine the appropriate tag for the damaged building. Depend-

ing on when the tagging decision is to be made, the appropriate tag for the building may

improve with an increase in the elapsed time from the mainshock because ECRDS
col (td; mm)

will decay as td increases. The possibility of considering changes of building tags arises

because of this reduction of the aftershock hazard with increasing elapsed time from the

mainshock.

As discussed earlier, the degree of damage of the building may be evaluated to different

degrees of “accuracy” at different times. For example, shortly after the mainshock, quick

visual inspection provides us with information about the damage state with high degrees

of uncertainty as indicated by large βi,n
cap values. Better inspection (for example, inspection

of the connections in a SMRF building; see Chapter 6) and better engineering analysis (for

example, nonlinear time history analysis) can provide us with more information about the

damage state of the building with different Ŝa
i,n

cap and potentially smaller βi,n
cap values. This

new information would provide one with an opportunity to re-assess the remaining threat

to an occupant in the damaged building and to re-make the building tagging decision based

on more accurate information about the damage sustained by the building and its ability

to withstand future aftershocks.

We propose three possible tags for buildings after the earthquake, similar to Gallagher

et al. (1999). When a building is green-tagged, all occupants may enter the building. When

a building is yellow-tagged, only emergency workers may enter the building for search-and-

rescue missions, or to restore operations in critical facilities such as power production and

distribution facilities. Such emergency workers need to be informed of the increased risk

that they face when they volunteer to perform their tasks in damaged buildings, and they

also need to be appropriately compensated for the increased risk that they face. When

a building is red-tagged, neither normal occupants nor emergency workers may be in the

damaged building for extended periods of time. These tagging designations are analogous

but not equivalent to FEMA (2000).
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4.4 Tolerable Collapse Rate for Each Building Tag

We need to establish the range of tolerable collapse rates for each of the three building tags.

The tolerable collapse rate for new, intact buildings designed for mainshocks (P0) can be

calculated using Equation 4.11.

P0 = Hm(Ŝa
1,n

cap) exp(
1
2
k2

m

[
β1,n

cap

]2) (4.11)

The superscripts 1 and n represent the intact and collapse state, respectively. Hm(Ŝa
1,n

cap) is

the mainshock hazard curve evaluated at the building median capacity, Ŝa
1,n

cap. βi,n
cap is the

standard deviation of the logarithm of Sai,n
cap. km is the slope of the linearly-approximated

log-log mainshock hazard curve. We propose to specify the tolerable collapse rates for the

various tagging states in terms of P0. This number is explicit in some structural guidelines

and only implicit in others. Given the discussion in Leyendecker et al. (2000), for new

buildings designed to the 2000 International Building Code (IBC), the design ground motion

level is typically 2% per 50 years (or 0.0004 per annum), i.e., one can use Hm(Ŝa
1,n

cap) =

0.0004/yr to calculate P0.

It is proposed that the tolerable collapse rate for existing buildings in the post-mainshock

situation may be set higher than P0 for new buildings designed for mainshocks. The pro-

posed criteria take the following form. α1P0 represents the tolerable (equivalent) collapse

rate, or ECRDS
col (td; mm), for existing buildings in the post-earthquake environment. For

collapse rates greater than α1P0, entry by normal occupants is not allowed. The level α1

should be set according to the function of the building. For example, for critical commu-

nity recovery facilities like water and power distribution facilities, etc., it is important for

operations to continue uninterrupted. We propose a comparatively high level of α1 for such

facilities. For non-safety-critical commercial and office buildings, the level of α1 is set to be

lower than that of critical facilities. For residential buildings which are needed for shelter,

the level of α1 is set to be between that of critical facilities and commercial buildings.

We also need to set a maximum tolerable collapse rate of α2P0 beyond which entry by

all personnel (including normal occupants and emergency workers) is not allowed on the

basis of life-safety. For collapse rates between α1P0 and α2P0, the building will be yellow-

tagged. Entry is permitted for informed, compensated and voluntary emergency workers for

ECRDS
col (td; mm) values in this range. Again, the relative level of α2 should be set according

to the function of the building. The building tags and their corresponding ranges of collapse
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rates are shown in Figure 4.1.

Green: Entry for all 
purposes acceptable.

Yellow: Entry acceptable for 
volunteer workers who are 
informed of increased risk and 
who are appropriately 
compensated.

Red: Entry unacceptable

P0
Design Level of New 

Buildings

DS
col d mECR (t ;m )

2 0Pα1 0Pα

Figure 4.1: Buildings tags and their corresponding allowable collapse rates.

Representative values of α1 and α2 might be 5 and 10 for critical community recovery

facilities, 3 and 6 for commercial and office buildings and 4 and 8 for residential buildings.

The lowest α1 value, 3, is based on the current practice of permitting existing buildings to

have P0 values of at least twice that of new buildings (e.g., DOE (2002)), plus the unusual,

potentially widespread post-event circumstances.

4.5 Primary Building Tagging Basis

We now propose a tagging methodology based on quantifying the ECRDS
col (td; mm) of the

damaged building, first ignoring possible repair or upgrade to the building. We will consider

a revised tagging methodology for buildings that might have been repaired or upgraded after

the mainshock in a later section.

In order to tag the building, we first evaluate the ECRDS
col (td; mm) of the building as

a function of td. Specifically, we represent ECRDS
col (1;mm) (one day after the mainshock)

as γP0. We compare the value of γ to the values of α1 and α2 for the building. If γ is

less than α1, then the building is green-tagged one day after the mainshock and occupancy

of the building does not need to be restricted. If γ is less than α2 but more than α1,

then the building is yellow-tagged and only entry by informed, compensated and voluntary

emergency workers is allowed. If γ is greater than α2, then the building will be red-tagged

after the mainshock and complete evacuation of the building is necessary on the basis of

life-safety.

If γ is greater than α2 such that the building is red-tagged after the mainshock (see

Figure 4.2), the tag will remain red until the ECRDS
col (td; mm) decreases to a level equal
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Informed and compensated workers 
only

td

1 k k’

Ordinary workers and occupants

per annumDS
col d mECR (t ;m )

2 0Pα

1 0Pα

0Pγ

Figure 4.2: ECRDS
col (td; mm) of a damaged building. The building should be tagged red

from day 1 to day k, yellow between days k and k′ and green from day k′ on.

to α2P0 on the kth day. This is when the building tag changes to yellow corresponding

to an ECRDS
col (td; mm) which will be less than α2P0 from that day on. Similarly, when

the ECRDS
col (td;mm) decreases to a level equal to α1P0 on the k′th day, the building tag

changes to green. The decreasing nature of ECRDS
col (td; mm) ensures that the building tag

will change from red to yellow to green with increasing elapsed days from the mainshock.

4.6 Special Tagging Cases: Emergency Workers

There might also be special situations where it is necessary to allow emergency workers to

enter a damaged building to perform critical tasks even when the building is red-tagged.

For example, it is important to ensure continued operations at power distribution networks

in the post-earthquake environment, and hence it might be necessary to allow emergency

workers to enter such facilities to perform short-term critical repairs or periodic monitoring

or switching. In some other facilities, it might also be necessary to allow emergency workers

to enter red-tagged buildings for search-and-rescue missions or collapse-prevention shoring

activities.

We propose a revised tagging methodology to allow entry into buildings that have been

red-tagged by providing a controlled working environment for emergency workers based on
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col d mECR (t ;m )

Figure 4.3: Time-varying ECRDS
col (td; mm) of a damaged building. Emergency workers can

enter the damaged building on day j for a total duration of d′ days if their working environment
is properly controlled.

the total life-safety threat that they face by entering such damaged buildings with a high

ECRDS
col (td;mm). Again, this methodology ignores for now possible repair or upgrade to

the building after the mainshock.

Consider the ECRDS
col (td; mm) for a critical facility in damage state DS as shown in

Figure 4.3. The building has been red-tagged immediately after the mainshock because γ

is greater than α2. It is necessary to allow the entry of emergency workers shortly after

the mainshock to perform some critical repairs which cannot wait till the kth day when

the building tag will change to yellow. To allow such operations, it is proposed here that

these emergency workers can enter the building earlier at time j if their work schedule

and exposure are properly controlled. This control requires both limiting their duration,

d′, in the damaged building and their subsequent rotation after departure to a “safer”

environment (SE). The duration d′ can be determined for an arbitrary start time j by

ensuring Equation 4.12.

ECRDS
col (j;mm)− ECRDS

col (j + d′;mm) + ECRSE
col (j

′; mm) ≤ α2P0 (4.12)
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The first two terms reflect the risk accumulated with the interval in the red-tagged

building and the third term reflects the time in the safer environment. The “safer” en-

vironment can be achieved by housing and/or employing the workers in a building with

demonstrated higher capacity or by moving the workers to a location which is further away

from the aftershock zone where the aftershock hazard is lower, or a combination of both.

The ECRSE
col (td; mm) of the “safer” environment needs to be evaluated based on the median

assessed Sacap of the new building that they are relocated to, and/or on a APSHA which

takes into consideration the location of the second building with respect to the mainshock

rupture zone. If further occupancy is needed in the mainshock-damaged building, a new

group of controlled workers can be engaged to begin on day j′. This new group of workers

should have been controlled – in a “safer” environment – since day j.

This tagging proposal is, in effect, a limited cumulative risk concept where the employer

must evaluate and control the cumulative threat to a worker due to occupancy in a damaged

building and in a “safer” environment. See Cornell and Bandyopadhyay (1996) for an

analogous proposal in the field of nuclear power plant safety. This scheme has been proposed

to the U.S. Nuclear Regulatory Committee by the nuclear industry to rationalize the seismic

assessment of temporary shoring during maintenance operations. See Amin et al. (1999)

and EPRI (1998).

4.7 Tagging Basis with Repair

We next propose a building tagging criterion where we allow for possible upgrade or repair

to the building after the mainshock. We show in Figure 4.4 the ECRcol(td;mm) curves

for the damaged building (damage state DS) and the repaired building (repaired state is

denoted as R). Note that the ECRR
col(td; mm) curve for the repaired building could be either

above or below that of the corresponding curve for the new intact building. Again, based

on the concept of the controlled working environment, emergency repair workers can enter

the building from time j for d′ days when the building is red-tagged, where the duration

d′ can be determined based on Equation 4.12. If repair is completed on day k (after which

one should consider the ECRR
col(td;mm) curve for the repaired building), normal occupants

can enter the building only if Equation 4.13 is true. This case is shown in Figure 4.4.

ECRR
col(k; mm) ≤ α1P0 (4.13)
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Figure 4.4: Tagging of a damaged building with possible repair or upgrade to the building.

If not, normal occupants can enter the repaired building only after the ECRR
col(td;mm) for

the repaired building has decreased to α1P0.

Here, we have considered a case where emergency workers are controlled and where we

have further considered the possibility of repair. The proposed methodology allows us to

take advantage of our knowledge of the time-varying aftershock hazard at the site and the

damage state of the building to provide an appropriate tag for the mainshock-damaged

building based on life-safety considerations.

4.8 Simplified Building Tagging Basis

So far, we have developed a methodology for tagging mainshock-damaged buildings based

on APSHA and by comparing ECRDS
col (td; mm) to P0. If we assume that ka ≈ km and

β1,n
cap ≈ βi,n

cap, then the exponential terms in Equations 4.10 and 4.11 cancel out such that

we can simplify the building tagging methodology by computing the ratio of the equivalent

constant aftershock ground motion hazard at Ŝa
DS,n

cap , H1
a(Ŝa

DS,n

cap ;mm), to the mainshock

hazard at Ŝa
1,n

cap, Hm(Ŝa
1,n

cap), to determine the value of γ one day after the mainshock. Then,

the building tagging procedures based on comparing γ to α1 and α2 follows. Alternatively,

we can also compare Htd
a (Ŝa

DS,n

cap ; mm) to α1Hm(Ŝa
1,n

cap) and α2Hm(Ŝa
1,n

cap) to determine the
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appropriate tag of the damaged building. This forms the basis of our simplified building

tagging procedure.

Also, we have shown in Chapter 2 that for cases where a single nearby fault (segment)

is the dominant source of a damaging mainshock ground motion (such as the San Francisco

Bay area), the aftershock hazard is approximately a fixed multiple of the mainshock hazard

for all ground motion levels, all values of T0 and all site locations. We could thus make use of

the aftershock base case results in Chapter 2 to obtain a rapid but approximate estimate of

the ratio of Htd
a (Ŝa

DS,n

cap ; mm) to Hm(Ŝa
1,n

cap) for other values of mm, t and T to tag buildings

at nearby site locations under different mainshock scenarios. In order to do this, we first

need to convert the ratio of aftershock hazard to mainshock hazard in Chapter 2 to a ratio

of an “equivalent constant” aftershock hazard to mainshock hazard by multiplying by α.

We can adjust for other values of mm, t and T using the procedures described in Chapter

2. The proposed building tagging procedure then follows based on the damage state DS

and the value of Ŝa
DS,n

cap of the building.

4.9 Example

To illustrate our proposed methodology, we consider the three-story SMRF building located

at the Stanford, California site as in Chapters 2 and 3. Following the example in Chapter

2, we assume that a mainshock of magnitude 7.0 has occurred on the San Andreas Fault

which has ruptured the neighboring Mid-Peninsula Segment. We assume that aftershocks

can occur anywhere on the mainshock rupture zone with equal likelihood. We use α = 5%

in this example.

The instantaneous daily aftershock rates are shown in Figure 4.5 as a function of elapsed

time from the mainshock. Here, we consider aftershocks with magnitudes between 5.0 and

7.0, the mainshock magnitude. Note that, for example, the expected total number of

aftershocks starting 10 days after the mainshock over a time interval of infinite length is

equal to seven, i.e., the shaded area shown below in Figure 4.5.

We then perform an APSHA for Sa with T0 = 0.75s, close to the structural period of

our three-story SMRF building of 0.73s. We obtain the probability of exceeding Sa at the

Stanford site 10 km from the ruptured segment given an aftershock of random magnitude

at a random location in the aftershock zone. The results are shown in Figure 4.6. Note

that this function times the aftershock rate in Figure 4.5 gives the APSHA ground motion
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Figure 4.5: Numerical example: Instantaneous time-varying daily aftershock rate as a func-
tion of elapsed time from the mainshock of magnitude 7.0.
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Figure 4.6: Numerical example: Probability of exceeding Sa (with T0 = 0.75s) at the
Stanford site given an aftershock of random magnitude at a random location relative to the
site.

hazard results.

Here, we shall apply the building tagging methodology to the damaged building. Using

Equation 4.10, we evaluate the ECRi
col(td; mm) of the building given different initial post-

mainshock damage states as a function of td. We consider the same three damage states for

the building as in Chapter 3. The median assessed Sacap to bring a building in DS1, DS2
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and DS3 to collapse in an aftershock is 1.4g, 1.2g and 1.1g, respectively, based on a separate

study carried out in Maffei et al. (2002). We use the values of Ŝa
1,n

cap and β1,n
cap obtained in

Maffei et al. (2002). The resulting annual ECRDS
col (td; mm) for the three damage states

are shown in Figure 4.7. One can see that in the first 10 days after the mainshock, the

0

0.0005

0.001
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0.0025

1 10 100 1000 10000

td

Intact/DS1

DS2

DS3

ECRcol
DStd; mm

Figure 4.7: Numerical example: ECRDS
col (td; mm) for three-story SMRF progressing to col-

lapse given different post-mainshock damage states.

ECRDS
col (td; mm) values decrease by about 30%. The ECRDS

col (td; mm) values demonstrate a

much slower rate of decay as compared to the instantaneous daily aftershock rates in Figure

4.5 which decrease by about 90% in the same duration.

We assume that the three-story SMRF building is a residential building with α1 = 3

and α2 = 5. Consider the case when the building is in DS3 after the mainshock. We use

P0 = 0.0004/year (corresponding to 2% in 50 years) and assuming no repair or upgrade to

the building, we can compute γ one day after the mainshock (ECRDS3
col (1;mm) normalized

by P0) to be equal to 5.56. This is greater than the α2 value of 5. Thus, the building is

red-tagged immediately after the mainshock. We need to wait for three days before the

value of ECRDS3
col (td;mm) reduces to α2P0 and the building becomes yellow-tagged. The

building only becomes green-tagged 40 days after the mainshock. See Figure 4.8.

We next consider a case where we provide a controlled working environment for volunteer

emergency workers so that they can enter the damaged building when it is red-tagged. We

assume that the emergency workers will be relocated to a new intact building at the same

site with ECRIntact
col (td; mm) as shown in Figure 4.7 after completion of repair. We also
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Figure 4.8: Numerical example: Tagging of damaged building in DS3 assuming no repair
or upgrade.

assume for illustration that the building repair (e.g., temporary shoring) will be completed

in two days. In this case, analogous to Equation 4.12, we compute ECRDS3
col (1;mm) −

ECRDS3
col (3;mm) and ECRIntact

col (3;mm). The sum of the two values above is equal to

0.0009/year, less than α2P0 which has a value equal to 0.002/year. Hence, the emergency

workers can enter the damaged building on day one when the building is red-tagged to

complete the repair.

The longest allowable duration d∗ for repair can be evaluated by trial and error by

ensuring that ECRDS3
col (1;mm) − ECRDS3

col (1 + d∗;mm) + ECRIntact
col (1 + d∗; mm) is less

than α2P0. Also, the value of ECRIntact
col (3; mm) is less than α1P0. This means that the

building will be green-tagged three days after the mainshock if the emergency workers are

(hypothetically) able to restore the building to its intact capacity (as represented by the

ECRIntact
col (td; mm) plot in Figure 4.7) in two days. This is shown in Figure 4.9.

In addition to the Stanford site, for other buildings at nearby site locations, one can

estimate the aftershock ground motion hazard to be approximately 20 times that of the

pre-mainshock hazard for td = 7 days after the mainshock and for a duration of interest,

T, equal to 365 days. This conclusion is drawn based on our observation in Chapter 2

and in Section 4.8 of this chapter where we observed that the ratio of aftershock hazard to

mainshock hazard at a site where the mainshock hazard is dominated by a single fault or
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Figure 4.9: Numerical example: Tagging of damaged building in DS3 with 3-day repair to
intact state capacity.

fault segment is constant for all T0 and ground motion levels, as well as being insensitive to

site locations. To assess γ one day after the mainshock, we need to multiply the factor 20 by

α based on Equation 4.9 (to convert to a ratio of “equivalent constant” aftershock hazard

to mainshock hazard) and a factor to adjust the base case results from td = 7 and T = 365

to the limits of integration td = 1 and T = ∞ (which is about a factor of 2.3 obtained from

Chapter 2). We can also use the method proposed in Chapter 2 to adjust for other values

of td. Also, if the mainshock magnitude is increased from mm = 7.0 to mm = 8.0, we also

need to include a factor of 8.25 obtained from Chapter 2 as well. This proposed simplified

methodology is an approximate alternative for rapid building-tagging immediately after the

mainshock.

4.10 Conclusion

We propose a tagging methodology for damaged buildings after the mainshock based on

individual life-safety considerations. We consider the aftershock hazard at the site in terms

of possible future aftershock ground motions. The damage state of the building after the

mainshock is also taken into account. The proposed methodology allows for entry into a

red-tagged building after the mainshock by introducing the concept of a controlled working
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environment for informed/compensated emergency workers. Possible repair or upgrade to

the damaged building can also be introduced in the proposed methodology. We also propose

a simplified approximate building tagging procedure for buildings in locations where the

mainshock hazard is dominated by a single fault or segment. It is our hope that such

a methodology will allow better tagging decisions to be made after the mainshock. The

procedure proposed here for a given mainshock magnitude and damage state of the building

is also used in Bazzurro et al. (2004a) and Bazzurro et al. (2004b) to assess pre-mainshock

likelihoods of each of the potential future tagging states of the building.
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5 FORMULATION OF FUTURE

LIFE-CYCLE FINANCIAL LOSSES DUE TO

MAINSHOCKS AND AFTERSHOCKS

In Chapter 4, we proposed a building tagging decision methodology based on quantification

of the life-safety threat that an arbitrary occupant is exposed to due to occupancy of a

damaged building in the nonhomogeneous aftershock environment. As part of our effort

to incorporate the performance of (possibly mainshock-damaged) buildings into post- and

pre-mainshock design criteria, besides life-safety considerations, we also need to take into

account economic efficiency in terms of minimizing life-cycle financial losses due to earth-

quakes, including both mainshocks and aftershocks. The objective of this chapter is to

develop formal stochastic financial loss estimation models over the lifetime of the building.

The initial model is the traditional simplified homogeneous Poisson mainshock process and

nonhomogeneous Poisson aftershock process with “immediate” repair of the building to

the initial building state, following the discussion in Chapter 1. We then turn to a more

general Markov and semi-Markov framework where we consider both Poisson and renewal

processes for modeling mainshock occurrences with consideration of various building repair

and/or damage progression scenarios. As in the previous chapters, aftershocks will be mod-

eled as a nonhomogeneous Poisson process with random magnitudes which has parameters

(mainshock magnitude, mm, and location) that are conditional on the random mainshock.

The model formulation for the post-earthquake environment begins by focussing on pre-

dicting losses given (i.e., conditional upon) the occurrence of a mainshock with its ground

motion and resulting building damage state. The financial losses include one-time transition

costs, or costs from further structural and nonstructural damage to the building due to the
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occurrence of an earthquake, and they may also include the costs of evacuation of the oc-

cupants of a building. Since a building could be severely damaged after a mainshock to the

extent that it is red-tagged or yellow-tagged and closed to further occupancy, the financial

losses also include disruption or downtime costs which are financial losses incurred by the

owner of the building due to its non-operability or limited functionality. Such downtime and

post-mainshock functionality depends on the life safety threat that the damaged building

poses subsequent to the mainshock. As mentioned earlier, a building-tagging methodol-

ogy based on nonstationary aftershock hazard, damaged-building capacity and life-safety

decisions has been proposed in Chapter 4.

We will derive the expected (mean) financial losses and the corresponding moment gener-

ating functions for both the homogeneous mainshock process as well as the nonhomogeneous

aftershock process in the simplified Poisson process model. We will also relax the restrictions

of the simpler Poisson model by formulating a method of obtaining the expected financial

losses for both the homogeneous mainshock process as well as for the nonhomogeneous af-

tershock processes embedded in the more general Markov process framework to describe the

transitions from one building damage state to another. We also consider a (non-Poissonian)

renewal mainshock process in the formulation of expected financial losses where we use

an arbitrary inter-arrival time distribution for mainshock occurrences. Lastly, we will also

incorporate the random aftershock losses into pre-mainshock financial loss estimation to be

used as an input to pre-mainshock design analyses.

We consider a building in damage state i which could go to one of n damage states

given the occurrence of an earthquake (either mainshock or aftershock). The intact state is

typically denoted as damage state 1 and the collapse state is typically denoted as damage

state n. A building in damage state i can go to damage state j with probability P ′
ij given

the occurrence of an earthquake (again, either mainshock or aftershock). The method to

obtain the values of P ′
ij given a mainshock or aftershock has been discussed in Chapter

3. Recall P ′
ij = 0 for i > j if we assume no repair operations, and

∑

j

P ′
ij = 1. The full

transition matrix, P′, is shown in Equation 5.1.

P′ =




P ′
11 P ′

12 · · · P ′
1n

... P ′
22

. . .
...

...
. . . . . . P ′

(n−1)n

0 · · · · · · 1




(5.1)
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If an earthquake occurs and the building suffers additional damage and enters damage

state j, where j > i, we assume that there is incurred a (random) transition cost of Lij

which is dependent on states i and j. This transition cost can be attributed to financial

losses due to further structural and nonstructural damage to the building and perhaps the

costs of evacuation of the occupants of a building. While the building remains in damage

state i, we assume that it incurs a constant (but random) disruption cost of Ri per unit

time due to the downtime and limited functionality of the damaged structure. We further

assume E (Lij) = lij and E (Ri) = ri.

5.1 Poisson Loss Model

We first propose a simplified method to quantify the financial losses by using a Poisson

model for earthquakes where the intensity function µ(t) can either be homogeneous (i.e.,

µ(t) = µ, a constant value independent of time for mainshocks) or nonhomogeneous (i.e.,

µ(t;mm) is time-dependent and mainshock-magnitude dependent for aftershocks). For the

formulation to follow, we suppress in the notation the dependence of the aftershock intensity

function on mm. Following the notation in Chapter 2, µ(t) for aftershocks represents the

instantaneous daily rate of aftershocks with magnitudes between ml and mm at time t

following a mainshock of magnitude mm.

For a building in damage state i, an earthquake which results in the building suffering

further damage and going to damage state j, where j > i, is considered as a loss event.

Thus, if the intensity function of earthquakes (either mainshock or aftershock) is denoted

by µ(t), then the loss events for a building in state i can be modeled as a Poisson process

with intensity function λi(t), where:

λi(t) = µ(t)
∑

j>i

P ′
ij = µ(t)(1− P ′

ii) (5.2)

In order to quantify the financial losses due to the occurrence of a loss event, the total

transition and disruption losses due to downtime of the building need to be taken into con-

sideration and appropriately discounted back to the present value. The disruption loss is

highly dependent on the inter-arrival times between events (i.e., either mainshocks or after-

shocks) where the inter-arrival time distribution is nonstationary in nature if we consider

a nonhomogeneous Poisson process with intensity function µ(t). For this initial simplified
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procedure, we assume that lij includes an expected disruption loss due to transition to

damage state j.

Also, as mentioned in Chapter 1, the simplified Poisson model assumes that the building

is immediately “re-built” back to its original damage state after the loss event. This, again,

might not be realistic in the aftershock environment where there might be incremental

damage to the building due to the occurrences of aftershocks and where there might not be

sufficient time for repair back to its original state. Such assumptions will be relaxed in the

Markov process framework to follow.

Based on the damage states of the building, given a loss event, we can form a transition

matrix P as defined in Equations 5.3, 5.4 and 5.5.

P =




0 P12 · · · P1n

... 0
. . .

...
...

. . . 0 P(n−1)n

0 · · · · · · 0




(5.3)

Pij = 0, i ≥ j (5.4)

Pij =
µ(t)P ′

ij

λi(t)
=

P ′
ij

1− P ′
ii

, i < j (5.5)

P is a stationary transition matrix, i.e., it does not change with time. The values of the

lower triangular portion and the diagonals of the matrix P are all equal to zero because we

are only considering loss events, i.e., earthquakes that result in transitions to more severe

damage states, with no repair operations.

We denote L(i) as the random variable of the financial losses given the occurrence of

a loss event for a building in damage state i. We obtain the first two moments of L(i) in

Equations 5.6 and 5.7.

E [L(i)] =
∑

j>i

Pijlij (5.6)

E
[
L2(i)

]
=

∑

j>i

Pijl
2
ij (5.7)

Higher moments can be obtained in a similar manner such that we can characterize

the full probability distribution of L(i) by moment-matching to a specified probability

distribution (an example of which could be the lognormal distribution).
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In the formulation to follow, we consider the Poisson process of loss events with intensity

function λi(t) given in Equation 5.2 for a building in damage state i. We suppress the

dependence on the original damage state of the building (i) for L(i) such that we represent

L(i) as L. We use the notations in Table 5.1 for a building originally in damage state i.

We consider financial losses for both mainshocks (i.e., homogeneous Poisson process) and

aftershocks (i.e., nonhomogeneous Poisson process). A formulation for expected total losses

assuming a renewal process for mainshocks will be discussed in a later section.

Table 5.1: Notations for Poisson model for a building in initial state i; Capital letters denote
random variables

t = Time
tmax = Total time interval of interest, possibly life span of building
TLi(tmax) = Total loss in time interval [0, tmax]
Ni(tmax) = Number of loss events in [0, tmax] with Poisson intensity function λi(t)
L = Financial losses given occurrence of loss event
Tk = Arrival time of the kth loss event
α = Discount rate per unit time

5.1.1 Discounted Losses due to Homogeneous Poisson Mainshock Process

Expected Total Losses

First, for a building in damage state i, we start by deriving the expected total discounted

financial losses for a homogeneous Poisson mainshock process TLi(tmax) in [0, tmax]. The loss

events are Poisson with mean rate equal to λi which is independent of time. The expected

financial losses are important for the decision-making procedures to be discussed in Chapter

6. Here, we consider a general model where the building is in damage state i before the

mainshock, where i is typically taken to be the intact state. Such a formulation will be

useful in the post-mainshock scenario where the building can be in an arbitrary damage

state i after the mainshock. Again, this model assumes that the building is immediately

“re-built” back to damage state i after the loss event.

TLi(tmax) can be expressed by Equation 5.8, where Lk is the financial losses due to the

kth loss event occurring at Tk and appropriately discounted back to the present value by

e−αTk . Ni(tmax) is the random number of loss events in [0, tmax] for a building in damage
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state i.

TLi(tmax) =
Ni(tmax)∑

k=1

Lke
−αTk (5.8)

Here, Ni(tmax) is a homogeneous Poisson process with E [Ni(tmax)] = λitmax. Given

Ni(tmax) = n, the Tk have uniform distributions in [0, tmax] and are independent and iden-

tically distributed (henceforth abbreviated as i.i.d.) such that all Tk have the same distri-

bution as a common random variable T , denoted as Tk
D= T . See Ross (2000) for further

details. Assuming Lk and Tk are independent and Lk
D= L, we have:

E [TLi(tmax)|Ni(tmax) = n] = E

[
n∑

k=1

Lke
−αTk

]
=

n∑

k=1

E
[
Lke

−αTk
]

=
n∑

k=1

E [Lk]E
[
e−αTk

]
= E [L]

n∑

k=1

tmax∫

0

1
tmax

e−αtdt

= E [L]
n

tmax

tmax∫

0

e−αtdt =
nE [L]
αtmax

[
1− e−αtmax

]
(5.9)

The interchange of expectation and summation is allowed since Ni(tmax) < ∞. Since

E [Ni(tmax)] = λitmax, we have:

E [TLi(tmax)] =
E [Ni(tmax)]E [L]

αtmax

[
1− e−αtmax

]
=

λiE [L]
α

[
1− e−αtmax

]
(5.10)

For small values of αtmax, Equation 5.10 can be approximated as λiE[L]
α [1− (1− αtmax)] ≈

λitmaxE [L] . Thus, E [TLi(tmax)] is directly proportional to tmax for small values of αtmax.

As tmax →∞, we have:

E [TLi(tmax)] =
λiE [L]

α
(5.11)

As discussed in Chapter 1, Equations 5.10 and 5.11 have been previously derived by

Wen and Kang (2001) and Rosenblueth (1976), respectively.

Moment Generating Function of Total Losses

Using the same approach, we can also obtain the moment generating function of TLi(tmax).

The moment-generating function uniquely determines the probability distribution of the
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random variable. See Ross (2000) for details.

MTLi(tmax) (ζ) = E
[
eςTLi(tmax)

]

= ENi(tmax)


ELk,Tk,16k6Ni(tmax)=n


exp


ς

Ni(tmax)=n∑

k=1

Lke
−αTk |Ni(tmax) = n










= ENi(tmax)

(
ELk,Tk,16k6n

[
exp

(
ς

n∑

k=1

Lke
−αTk

)])

= ENi(tmax)

([
EL,T

[
exp

(
ςLe−αT

)]]n
)

=

∞∫

0

e−λitmax
(λitmax)

n

n!


EL

tmax∫

0

1
tmax

exp
(
ςLe−αt

)
dt




n

dn

= e−λitmax

∞∫

0

1
n!


λitmaxEL

tmax∫

0

1
tmax

exp
(
ςLe−αt

)
dt




n

dn

= e−λitmax exp


λiEL

tmax∫

0

exp
(
ςLe−αt

)
dt




= exp


−λitmax + λi

tmax∫

0

EL

[
exp

(
ςLe−αt

)
dt

]

 (5.12)

The moment generating function of TLi(tmax) has also been derived in Delbaen and

Haezendonck (1987). From the moment generating function MTLi(tmax) (ζ), we have:

E [TLi(tmax)] =
dMTLi(tmax) (ζ)

dζ

∣∣∣∣
ζ=0

=
λiE [L]

α

[
1− e−αtmax

]
(5.13)

E
(
[TLi(tmax)]

2
)

=
d2MTLi(tmax) (ζ)

dζ2

∣∣∣∣∣
ζ=0

=
λiE

[
L2

]

2α

[
1− e−2αtmax

]
+

λ2
i E [L]2

α2

[
1− e−αtmax

]2 (5.14)

V ar [TLi(tmax)] =
λiE

[
L2

]

2α

[
1− e−2αtmax

]
(5.15)
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Higher moments can be similarly obtained by successive differentiation of the moment-

generating function.

5.1.2 Discounted Losses due to Nonhomogeneous Poisson Aftershock Pro-

cess

Expected Total Losses

Again, for a building in damage state i, TLi(tmax) =
Ni(tmax)∑

k=1

Lke
−αTk in [0, tmax], but

here, Ni(tmax) is a nonhomogeneous Poisson process with E [Ni(tmax)] =
tmax∫
0

λi(t)dt. This

model for discounted losses due to the nonhomogeneous Poisson process also assumes that

the building is immediately “re-built” back to damage state i after the occurrence of an

aftershock loss event.

Here, we construct a new time scale such that the nonhomogeneous Poisson process

becomes a homogeneous one so that we can adopt the same method of evaluating the

expectations as described in Section 5.1.1. Consider a small infinitesimal time interval dt in

real time t with intensity function λi(t). Consider a corresponding small infinitesimal time

interval dτ(t) in a transformed time scale τ(t) such that in this transformed time scale, the

nonhomogeneous λi(t) becomes a constant value identically equal to one. This means that

we have λi(t)dt = [1] [dτ(t)] or dτ(t)
dt = λi(t). Thus:

τ(t) =

t∫

0

λi(y)dy (5.16)

This method of “homogenizing” the nonhomogeneous Poisson process is described in Parzen

(1962).

For a given mainshock magnitude, λi(t) is the intensity function of loss events which

can be calculated using Equation 5.2. We wish to evaluate the threat due to aftershocks

after the mainshock. We can approximate the intensity function of loss events as λ∗i
t where

λ∗i is the mean rate of all loss events one day after the mainshock. The exact form of the

intensity function has been discussed in Chapter 2.
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Then, a suitable time scale τ(t) for “homogenizing” λi(t) would be:

τ(t) =

t∫

1

λ∗i
y

dy = λ∗i ln(t) (5.17)

t = exp(
τ

λ∗i
) (5.18)

Thus, we have:

E [TLi(tmax)|Ni(tmax) = n] = E [TLi(τ (tmax))|Ni(τ (tmax)) = n]

= E

[
n∑

k=1

Lk exp
(
−αe

τk
λ∗

i

)]
, where τk = τ(tk) (5.19)

Given Ni(τ [tmax]) = n, τk has a uniform distribution in [0, τmax] and are i.i.d. such

that τk
D= τ . Assuming Lk and τk are independent and Lk

D= L, we have:

E [TLi(tmax)|Ni(tmax) = n] = E

[
n∑

k=1

Lk exp
(
−αe

τk
λ∗

i

)]

=
n∑

k=1

E [Lk] E
[
exp

(
−αe

τk
λ∗

i

)]
= E [L]

n∑

k=1

τmax∫

0

1
τmax

exp
(
−αe

τ
λ∗

i

)
dτ

=
nE [L]
τmax

τmax∫

0

exp
(
−αe

τ
λ∗

i

)
dτ (5.20)

Recall that, by construction, the homogeneous rate of loss events is unity in the trans-

formed time space. Therefore, E [Ni(tmax)] = E [Ni(τ (tmax))] = 1.τmax = λ∗i ln(tmax).

Hence, we have:

E [TLi(tmax)] = E [L]

λ∗i ln(tmax)∫

0

exp
(
−αe

τ
λ∗

i

)
dτ (5.21)

Moment Generating Function of Total Losses

We can also obtain the moment generating function of TLi(tmax) in the aftershock environ-

ment.

MTLi(tmax) (ζ) = E
[
eςTLi(tmax)

]
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= ENi(tmax)


ELk,Tk,16k6Ni(tmax)=n


exp


ς

Ni(tmax)=n∑

k=1

Lke
−αTk |Ni(tmax) = n










= ENi(τmax)


ELk,τk,16k6Ni(τmax)=n


exp


ς

Ni(τmax)=n∑

k=1

Lke
−αe

τk
λ∗

i |Ni(τmax) = n










= ENi(tmax)

(
ELk,τk,16k6n

[
exp

(
ς

n∑

k=1

Lk exp
(
−αe

τk
λ∗

i

))])

= ENi(tmax)

([
EL,τ

[
exp

(
ςLe−αe

τ
λ∗

i

)]]n
)

=

∞∫

0

e−τmax
(τmax)

n

n!


EL

τmax∫

0

1
τmax

eςLe−αe

τ
λ∗

i

dτ




n

dn

= e−τmax

∞∫

0

1
n!


τmaxEL

τmax∫

0

1
τmax

eςLe−αe

τ
λ∗

i

dτ




n

dn

= e−τmax exp


EL

τmax∫

0

eςLe−αe

τ
λ∗

i

dτ




= e−λ∗i ln(tmax) exp


EL

λ∗i ln(tmax)∫

0

eςLe−αe

τ
λ∗

i

dτ




=
1

(tmax)
λ∗i

exp




λ∗i ln(tmax)∫

0

EL

[
eςLe−αe

τ
λ∗

i

]
dτ


 (5.22)

From the moment generating function MTLi(tmax) (ζ), we can obtain the moments of

TLi(tmax) in the aftershock environment. For example,

E [TLi(tmax)] =
dMTLi(tmax) (ζ)

dζ

∣∣∣∣
ζ=0

= E [L]

λ∗i ln(tmax)∫

0

exp
(
−αe

τ
λ∗

i

)
dτ (5.23)

E
(
[TLi(tmax)]

2
)

=
d2MTLi(tmax) (ζ)

dζ2

∣∣∣∣∣
ζ=0
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= E [L]2




λ∗i ln(tmax)∫

0

exp
(
−αe

τ
λ∗

i

)
dτ




2

+ E
[
L2

]



λ∗i ln(tmax)∫

0

exp
(
−2αe

τ
λ∗

i

)
dτ


 (5.24)

V ar [TLi(tmax)] = E
[
L2

]



λ∗i ln(tmax)∫

0

exp
(
−2αe

τ
λ∗

i

)
dτ


 (5.25)

Higher moments can be obtained by successive differentiation.

5.2 Markov Loss Models

We have pointed out that a shortcoming of the simplified Poisson model is that it assumes

instant “re-build” of the building back to its original damage state before the occurrence

of the next loss event. This is generally not realistic in the aftershock environment where

buildings could suffer incremental damage due to aftershocks and where there is limited

time available for repair. Also, the simplified Poisson model does not explicitly take into

consideration the disruption cost based on the actual (random) downtime of the building,

but instead considers it implicitly by simply including an expected disruption loss in lij .

Vanmarcke and Diaz-Padilla (1971) previously proposed a method based on Markov

chains and Markov decision theory to describe the effects and evaluate the performance of

structural systems subjected to mainshocks based on a homogeneous Poisson assumption.

Here, we propose a more general stochastic formulation which includes both homogeneous

and nonhomogeneous Markov “reward” models for mainshocks and aftershocks and semi-

Markov reward models for mainshocks based on Markov descriptions of the damage states

of the building. Reward models allow the characterization of the total rewards or losses

where there is a reward or cost at the (random) time of transition to a different state (in

our aftershock example, perhaps due to content damage in the building) as well as a reward

or cost per unit time due to the duration spent in each state (in our example, perhaps due

to business downtime losses). See Howard (1971) for details on such processes.

In this formulation, we allow for transitions from one damage state to another. The

disruption cost is explicitly dependent on the length of time that the building remains in

each damage state. We assume that the future financial losses incurred by the damaged

building are dependent only on the current damage state of the building and not upon

the path by which it got there, i.e., the future financial losses are Markovian in nature.
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Here, we are interested in developing a methodology to quantify the total financial losses

due to both the mainshock and aftershock processes over a time interval of specified length

to serve as an input to the decision-making procedures to be developed in Chapter 6.

We consider both Poisson and renewal processes for mainshock occurrences. A renewal

process model for mainshocks assumes an arbitrary inter-arrival time distribution between

mainshocks whereas the Poisson process assumes (specifically) an exponential inter-arrival

time distribution. More details will be discussed in a later section to follow. We shall

restrict our attention to analysis of the expected losses. Because the moment-generating

functions are difficult to evaluate in this case, if estimates of higher moments or probability

distributions are required, one can use Monte Carlo simulation to simulate the Markov

reward process.

5.2.1 Expected Total Discounted Losses due to Markov Mainshock Pro-

cess

Here, we compute the expected total discounted losses where potential loss events from

mainshocks result in progression of the building to more severe damage states. To begin,

we define U as the time of first transition out of damage state i. Again, we denote λi as the

intensity function of loss events due to mainshocks for a building originally in damage state

i. Also, we assume that a building in damage state i incurs an expected transition cost of

lij and an expected constant disruption cost of ri per unit time.

We denote θi(x) as the expected total losses in [0, x] given that the building is initially

in damage state i. Note that θi(x) is a simplified notation for E [TLi(x)] used in the

previous section. Loss events are described by a homogeneous Poisson process with intensity

function λi where the inter-arrival times between loss events are exponentially distributed.

The probability of transition from state i to j given the occurrence of a loss event from

mainshocks is given by Pij from the stationary transition matrix P defined in Equations

5.3, 5.4 and 5.5.

Here, we use the method of formulation commonly referred to as first transition analysis

to obtain Equation 5.26.

θi(tmax) =




∞∫

tmax

λie
−λiudu







tmax∫

0

rie
−αtdt


 +




tmax∫

0

λie
−λiu




u∫

0

rie
−αtdt


 du



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+
n∑

j>i

Pij




tmax∫

0

λie
−λiu

(
lije

−αu
)
du


 +

n∑

j>i

Pij




tmax∫

0

λie
−λiu

[
e−αuθj(tmax − u)

]
du




(5.26)

See Parzen (1962) for further details. The first term in Equation 5.26 is based on condi-

tioning on U > tmax where the probability that U > tmax is equal to
∞∫

tmax

λie
−λiudu and

the expected disruption losses given U > tmax is
tmax∫
0

rie
−αtdt, a term dependent only on

the initial building state i. The second term in Equation 5.26 conditions on U = u where

the expected disruption losses is equal to
u∫
0

rie
−αtdt. The expected disruption losses is then

multiplied by the probability density function of U (where fU (u) = λie
−λiu) and integrated

over possible values of u in the interval [0, tmax]. Similarly, the third term in Equation 5.26

conditions on U = u where the expected transition losses for a building going into damage

state j discounted back to time zero is equal to lije
−αu. Again, the expected transition

losses is multiplied by the probability density function of U and integrated over possible

values of u in [0, tmax]. Since the future damage state j is random, we need to compute the

expected transition losses by multiplying by Pij and summing over all possible j > i. The

last term in Equation 5.26 accounts for losses due to future transitions. We condition on the

building going to damage state j at time u. The future losses is dependent only on state j

(albeit in a shortened time interval of [u, tmax]) because of the presumed Markovian nature

of the damage states of the buildings. This is equivalent to considering the expected losses

(starting in state j) in a shortened time interval of [0, tmax − u], i.e., θj(tmax − u), to which

we apply a suitable discount factor of e−αu. Then, following similar procedures described

above, we multiply by the probability density function of U , integrate over all values of u in

[0, tmax], multiply by Pij and sum up over all possible random future building states j > i.

Equation 5.26 for θi(tmax) has an unknown function θj(x) on the right-hand side of the

equation. To solve the set of equations for all the unknown functions θi(x), i = 1, ..., n, we

adopt the following solution strategy analogous to Howard (1971). We denote θe
i (s) as the

Laplace transform of θi(tmax). The Laplace transformation (or exponential transformation)

of a function f(t) is defined in Equation 5.27. See Howard (1971) for details.

fe(s) =

∞∫

0

f(t)e−stdt (5.27)
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A special multiplicative property of the Laplace transform of convolution integral is:

t∫

0

f1(y)f2(t− y)dy = fe
1 (s)fe

2 (s) (5.28)

Using this property for the last term in Equation 5.26, we have:

θe
i (s) =







∞∫

tmax

λie
−λiudu







tmax∫

0

rie
−αtdt







e

+




tmax∫

0

λie
−λiu




u∫

0

rie
−αtdt


 du




e

+
n∑

j>i

Pij




tmax∫

0

λie
−λiu

(
lije

−αu
)
du




e

+
n∑

j>i

Pij

{
λie

−λiue−αu
}e

θe
j(s) (5.29)

We further denote:

κe
i (s) =







∞∫

tmax

λie
−λiudu







tmax∫

0

rie
−αtdt







e

+




tmax∫

0

λie
−λiu




u∫

0

rie
−αtdt


 du




e

+
n∑

j>i

Pij




tmax∫

0

λie
−λiu

(
lije

−αu
)
du




e

, i = 1, ..., n (5.30)

ηe
ij(s) = Pij

[
λie

−λiue−αu
]e

, i = 1, ..., n, j = 1, ..., n (5.31)

In vector form, we have:

κe(s) =




κe
1
...
...

κe
n




, ηe(s) =




ηe
11 · · · · · · ηe

1n
...

. . . . . .
...

...
. . . . . .

...

ηe
n1 · · · · · · ηe

nn




, θe(s) =




θe
1
...
...

θe
n




(5.32)

Therefore, based on Equation 5.30, we have the set of equations in Equation 5.33 with

solution in Equation 5.34.

θe(s) = κe(s) + ηe(s)θe(s) (5.33)
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θe(s) = [I− ηe(s)]−1 κe(s) (5.34)

θi(tmax) can be obtained from the appropriate row of the inverse Laplace transform of

θe(s). This formulation allows us to obtain the expected total losses due to a homogeneous

Poisson mainshock process in [0, tmax] for all damage states of the building. Vanmarcke

and Diaz-Padilla (1971) considered homogeneous mainshocks in their study, but provided

solutions only for tmax →∞ for which asymptotic results exist.

It is worth noting that if we have a transition matrix P, where P is given in Equation

5.35, our general Markov reward model simplifies to that of the mainshock homogeneous

Poisson model described in Section 5.1.1.

P =

(
0 1

1 0

)
(5.35)

Hence, this is indeed a more general model which allows for a much greater degree of

modeling flexibility. For example, repair back to the intact state can be introduced in the

above framework if we consider exponential repair times for the different building damage

states. Such generalizations will be discussed in the chapter to follow, together with a more

general framework for both the mainshock and aftershock environment where we consider

non-exponential repair times which can start at different (deterministic) time periods after

the mainshock for different building damage states. Numerical results demonstrating the

above methodology will be presented in a later section.

5.2.2 Expected Total Discounted Losses due to Markov Mainshock Pro-

cess Considering No More than 1 Event in [0, tmax]

As a simple approximation to the more general formulation described in Section 5.2.1, we

can approximate θi(tmax) by computing the expected total discounted losses considering no

more than 1 event in [0, tmax] using Equation 5.36.

θi(tmax) ≈



∞∫

tmax

λie
−λiudu







tmax∫

0

rie
−αtdt


 +




tmax∫

0

λie
−λiu




u∫

0

rie
−αtdt


 du



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+
n∑

j>i

Pij




tmax∫

0

λie
−λiu




tmax∫

u

rje
−αtdt


 e−αudu


 +

n∑

j>i

Pij




tmax∫

0

λie
−λiu

(
lije

−αu
)
du




(5.36)

This simplification is justified because of the significant length of the inter-arrival times

between mainshocks, which are typically on the order of hundreds to thousands of years such

that the contribution to expected total discounted losses from the second and subsequent

events will be significantly less due to the strong effect that discounting has over such an

extended period of time.

Note that we have a much simpler formulation in this case as we do not have to consider

the contribution to the expected total discounted losses from the second and subsequent

events. Solving this equation is also much simpler as we do not have to solve simultaneous

equations for the θi(x), i.e., to perform Laplace and inverse Laplace transformations in order

to obtain the solution to the expected total losses.

5.2.3 Expected Total Discounted Losses due to Markov Mainshock Pro-

cess with Repair

In Sections 5.2.1 and 5.2.2, we proposed formulations to compute the expected total dis-

counted losses due to a Markov mainshock process. We can further include in the previous

formulations the possibility of repair back to the intact state if we assume that the repair

duration to the intact state is exponentially distributed. Even though this assumption might

not be extremely realistic, we shall further develop the formulation to include repair with

exponentially distributed repair durations, with a more realistic, non-exponential model to

follow in Chapter 6.

For a building in damage state i, if the mean of the exponentially distributed repair

duration is mi, then the mean repair rate back to the intact state is equal to ϕi1 = 1
mi

.

Further, li1 is taken to be the repair cost for a building in damage state i. The intensity

function of mainshocks is taken to be equal to µ, following Section 5.2.1. The intensity

function of events resulting in transitions out of damage state i should include the possibility

of the completion of repair, and it can be calculated using Equation 5.37, analogous to

Equation 5.2 without repair. Again, a building in damage state i can go to damage state

j with probability P ′
ij given the occurrence of a mainshock, where values of P ′

ij have been

calculated in Chapter 3.
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λi = µ
∑

j>i

P ′
ij + ϕi1 = µ(1− P ′

ii) + ϕi1 (5.37)

The transition matrix P also needs to be modified. In this case, the matrix P will have

positive values in the first column as shown in Equation 5.38, as opposed to the column

of zeros in the first column of P in Equation 5.3 where repair has not been taken into

consideration. Equation 5.38 can be calculated using Equations 5.39, 5.40 and 5.41.

P =




0 P12 · · · P1n

P21 0
. . .

...
...

. . . 0 P(n−1)n

Pn1 · · · · · · 0




(5.38)

Pij = 0, i ≥ j, j 6= 1 (5.39)

Pij =
µP ′

ij

λi
, i < j, j 6= 1 (5.40)

Pi1 =
ϕi1

λi
(5.41)

Having defined λi and P, we can now solve for the expected total discounted losses due

to a Markov mainshock process with repair using the procedure described in Sections 5.2.1

and 5.2.2, but using λi from Equation 5.37 and P from Equation 5.38 instead.

5.2.4 Expected Total Discounted Losses due to Semi-Markov Mainshock

Process

We now consider a more realistic formulation for the expected total discounted losses in the

mainshock environment in [0, tmax] by considering an arbitrary inter-arrival time distribu-

tion as opposed to the exponential inter-arrival time distribution implied by the previous

Markov formulation. We denote W as the inter-arrival time between loss events due to

mainshocks, and f(w) and F (w) represent the probability density function and the cu-

mulative distribution function, respectively, of W . A non-exponential inter-arrival time
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distribution means that we have a non-constant hazard rate function, which is defined as:

r(w) =
f(w)

1− F (w)
(5.42)

The hazard rate function thus tells us the probability that we will have a mainshock in

the next dw given that there were no mainshocks in the last w years. See Ross (2000) for

details. For the exponential inter-arrival time distribution, r(w) is equal to the intensity

function, λi, of the corresponding Poisson loss event process as a result of the memoryless

property of the exponential distribution. In this case, the process in essence restarts itself

probabilistically at every instant in time and hence knowledge about the elapsed time since

the last mainshock provides us with no further information on when the next mainshock

is going to occur. The memoryless nature of the Poisson process contradicts the elastic

rebound theory which suggests that it becomes more likely for a mainshock to occur when

the elapsed time since the last mainshock increases due to the accumulation of stress in

the faults. The elastic rebound theory suggests that a monotonically increasing hazard

rate function might be appropriate for modeling the inter-arrival time distribution of main-

shocks, and thus a renewal process can be used to model mainshock occurrences. Typical

inter-arrival time distributions for mainshocks that have been used in literature include

the lognormal, gamma, Weibull and BPT (Brownian Passage Time) models. See USGS

(1990), USGS (2003), Cornell and Winterstein (1988), Kiremidjian and Anagnos (1984)

and Takahashi et al. (2004) for details. The gamma and Weibull models have monoton-

ically increasing hazard rate functions which are in accordance with the elastic rebound

theory, while the lognormal and BPT models do not have strictly monotonically increasing

hazard rate functions. As opposed to the Poisson process, the renewal process restarts itself

probabilistically only at the times of transitions (known as regeneration points), at which

points (only) it has no memory.

We now propose a alternative formulation for θi(x) using a renewal process to model the

occurrences of loss events due to mainshocks. We shall use fi(w) and Fi(w) to represent the

probability density function and cumulative distribution function of the inter-arrival time

W for loss events given a building in damage state i. We also denote s as the elapsed time

since the last occurrence of a loss event, which is denoted as the 0th event. Note that when

a loss event occurs, the building will transit to a different damage state according to the

same Markov transition matrix P defined in Equations 5.3 , 5.4 and 5.5. We define Tk as
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the time of arrival of the kth event. The Tk, k = 1, 2, ..., are non-negative random variables.

We also define Wk as the inter-arrival time between the (k − 1)th and kth loss event, i.e.,

Wk = Tk − Tk−1. By default, T0 = −s.

Following the same approach as used in Equation 5.26, first, we condition on T1 = t1,

t1 ≥ 0 to obtain Equation 5.43.

θi(t̃max) =




∞∫

etmax

fi(w2)dw2






etmax∫

0

rie
−αtdt


 +



etmax∫

0

fi(w2)




w2∫

0

rie
−αtdt


 dw2




+
n∑

j>i

Pij



etmax∫

0

fi(w2)
(
lije

−αw2
)
dw2


 +

n∑

j>i

Pij



etmax∫

0

fi(w2)e−αw2θj(t̃max − w2)dw2




(5.43)

Here, again, tmax represents the length of the time interval of economic interest. The

formulation here takes advantage of the memoryless properties at the regeneration points,

Tk, of the renewal process. In this case, however, we have to consider the first event

separately from the remaining events because its arrival time distribution is dependent on

the elapsed time since the last mainshock, s. This is commonly referred to as a delayed

renewal process. At T1 = t1, however, s = 0, and the renewal process restarts itself

probabilistically. Denoting t̃max = tmax − t1, we can then evaluate θi(t̃max) using a similar

procedure as that described in Section 5.2.1 where we condition on W2 = w2, but we replace

the exponential inter-arrival time distribution with fi(w2) instead. θi(t̃max) represents the

expected financial losses in the shortened time interval [t1, tmax]. Equation 5.43 can be solved

for all states i by using the previously proposed method involving Laplace transformations

and its inverse for T1 = t1.

Solving Equation 5.43 enables us to compute the expected financial losses in [t1, tmax].

We now need to compute the expected financial losses in [0, tmax], i.e., θi(tmax), by uncon-

ditioning on T1. We first need to compute the conditional probability density function of

T1 given W1 > s, fT1|W1>s (t1|W1 > s) , which is given in Equation 5.44.

fT1|W1>s (t1|W1 > s) = f (W1 = s + t1|W1 > s)

=
f(s + t1)
1− F (s)

, t1 ≥ 0

= 0, otherwise (5.44)
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Similar to the approach used in Equation 5.26 in Section 5.2.1. we obtain Equation 5.45.

θi(tmax) =




∞∫

tmax

f(s + t1)
1− F (s)

dt1







tmax∫

0

rie
−αtdt


 +




tmax∫

0

f(s + t1)
1− F (s)




t1∫

0

rie
−αtdt


 dt1




+
∑

j>i

Pij




tmax∫

0

f(s + t1)
1− F (s)

(
lije

−αt1
)
dt1


 +

∑

j>i

Pij




tmax∫

0

f(s + t1)
1− F (s)

(
e−αt1θj(t̃max)

)
dt1




(5.45)

Instead of the exponential probability density function λie
−λiu in Equation 5.26, here, we

use the conditional probability density function in Equation 5.44. Also, here, we use θj(t̃max)

obtained from Equation 5.43. The solution of Equation 5.45 differs from that of Equation

5.26 because we have to solve θi(t̃max) first for all damage states i (which entails the process

of Laplace and inverse Laplace transformations described earlier) before we can solve for

θi(tmax). A two-step process is required to solve Equation 5.45 due to the dependence of the

conditional probability density function of T1 on s, whereas a one-step process is required

to solve Equation 5.26 due to lack of such dependence on the elapsed time since the last

loss event. Numerical integration can be used to solve Equation 5.45.

The introduction of renewal arrivals of loss events with an embedded Markov transition

structure results in a more general semi-Markov mainshock model for estimating the ex-

pected total discounted losses in any time interval of interest. Note that if, as in Section

5.2.2, Equation 5.36 for Poisson mainshocks, we wish to consider only one transition as a

simplifying approximation, we simply need to eliminate the last term in Equation 5.45.

We may also consider a special case similar to the Poisson models described in Section

5.1.1 where we have a binary state model, i.e., either a loss event occurs or not, but where

loss events due to mainshocks occur according to a renewal process. This is equivalent to

using Equation 5.35 as the transition probability matrix. As discussed earlier, the implicit

assumption is that the building is restored back to its original (usually intact) state before

the occurrence of the second loss event. Here, we assume that there is a one-time financial

loss L, with E(L) = l, at the times of transitions. This is equivalent to eliminating the
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terms with ri in Equation 5.43 such that we obtain Equation 5.46.

θ1(t̃max) =



etmax∫

0

f1(w2)le−αw2dw2


 +



etmax∫

0

f1(w2)e−αw2θ2(t̃max − w2)dw2


 (5.46)

Here, i = 1 corresponds to the original building state, and i = 2 corresponds to the building

damage state after a loss event. Because of the symmetry of the transition probability

matrix in Equation 5.35, we can replace θ2(t̃max −w2) in the second term of Equation 5.46

by θ1(t̃max − w2) such that we obtain Equation 5.47.

θ1(t̃max) =



etmax∫

0

f1(w2)le−αw2dw2


 +



etmax∫

0

f1(w2)e−αw2θ1(t̃max − w2)dw2


 (5.47)

Equation 5.47 can be solved by first taking the Laplace transform of both sides of the

equation and rearranging the terms to obtain the Laplace transform of θ1(t̃max) in Equation

5.48.

θe
1(t̃max) =

[etmax∫
0

f1(w2)le−αw2dw2

]e

[1− f1(w2)e−αw2 ]e
(5.48)

θ1(t̃max) can then be obtained by taking the inverse Laplace transform of Equation 5.48.

θ1(tmax) can then be obtained easily by eliminating the terms with ri in Equation 5.45 such

that we obtain Equation 5.49.

θ1(tmax) =

tmax∫

0

f(s + t1)
1− F (s)

[
l + θ1(t̃max)

]
e−αt1dt1 (5.49)

These results will be used in a later section.

Unlike Section 5.2.3 where we were able to include the possibility of repair to the intact

state in the formulation to compute the expected total discounted losses due to a Markov

mainshock process, it is not as straightforward to adopt the same procedure for the formu-

lation proposed in this section with a semi-Markov mainshock process. A renewal process to

model mainshock occurrences typically results in a non-constant hazard rate function. If we

assume a constant mean repair rate to the intact state for a building in damage state i, the
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intensity function of events resulting in transitions out of damage state i will be the sum of

the intensity function of mainshocks resulting in incremental damage and the constant mean

repair rate. This will result in a non-stationary transition matrix P where the proposed

procedure in Section 5.2.3 will fail. A more general procedure to include non-exponential

repair durations together with a renewal process model of mainshock occurrences will be

introduced in Chapter 6.

5.2.5 Expected Total Undiscounted Losses due to Nonhomogeneous Markov

Aftershock Process

We now begin to explore the formulation for expected total losses in the nonhomogeneous

aftershock environment. We first consider a case for undiscounted losses because damaging

aftershocks are unlikely to happen more than 5 years after the mainshock and the effects

of discounting will therefore not be significant. Also, we anticipate that the building owner

would have either repaired the damaged building to the intact state or relocated to a new

building to continue operations within a period of 5 years after the mainshock such that the

building owner does not incur any aftershock induced financial losses after that. The effects

of discounting will also not be significant in this case. An undiscounted model provides for

a degree of analytical simplicity and tractability that is lacking in the discounted model to

be discussed in the next section.1

Here, as in Section 5.1.2, a time transformation is again necessary to “homogenize” the

nonhomogeneous aftershock process. We define τ as the transformed time, υ as the time

of first transition out of initial state i in transformed time and τmax as the total length of

time interval of interest in transformed time.

Again, we denote θi(x) as the expected total losses in [0, x] given that the building is

initially in damage state i after the mainshock. In the aftershock environment, loss events

are described by a nonhomogeneous Poisson process with intensity function λi(t) defined in

Equation 5.2. The probability of transition from state i to j given the occurrence of a loss

event is given by Pij from the stationary transition matrix P defined in Equations 5.3, 5.4

1The proposed methodologies in the nonhomogeneous Markov aftershock environment (both discounted
and undiscounted) should be used for tmax less than or equal to 5 years. This is because aftershocks die
off quickly as a function of time and because the probability of transiting to the collapse state is small
relative to the probability of transitions to other intermediate damage states, the building could remain in
an intermediate damage state which incurs a constant disruption cost per day for an indefinite length of
time. This is not realistic for the reasons discussed above. Models which include repair operations explicitly
in the formulation of financial losses will be discussed in Chapter 6.
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and 5.5.

Here we define the transformed time τ(t) based on µ(t), the intensity function of after-

shocks. In the transformed time τ(t), all aftershocks follow a homogeneous Poisson process

with mean rate equal to one per unit time period. Thus we have τ(t) =
t∫
0

µ(y)dy. We can

approximate the intensity function of aftershocks as µ∗
t where µ∗ is the mean rate of all

aftershocks one day after the mainshock. Hence, we have τ(t) = µ∗ ln(t) and t = exp( τ
µ∗ ).

2

In the actual time space t, the expected disruption costs in state i, ri, is a constant

per unit time. In the transformed time space τ(t), the expected disruption costs in state i,

ri(τ), is dependent on τ such that:

ridt = ri(τ)dτ (5.50)

Thus:

ri(τ) = ri
dt

dτ
=

ri

µ∗
exp(

τ

µ∗
) (5.51)

We now want to define λi(t), the mean rate of loss events, in the transformed time

space. In the transformed time τ(t), for a building in damage state i, we assume first that

the loss events follow a homogeneous Poisson process with mean rate equal to λ∗i which can

be calculated using Equation 5.53.

λ∗i dτ = λi(t)dt (5.52)

Thus:

λ∗i = λi(t)
dt

dτ
= µ(t)(1− P

′
ii)

1
µ(t)

= (1− P
′
ii) (5.53)

We have θi(tmax) = θi(τmax). We denote θi(tmax) = θd
i (tmax) + θt

i(tmax) and θi(τmax) =

θd
i (τmax) + θt

i(τmax), where θd
i (tmax) is the expected disruption losses in [0, tmax] given that

the building is initially in damage state i, and θt
i(tmax) is the expected transition losses in

[0, tmax] given that the building is initially in damage state i. We consider the expected

disruption losses and expected transition losses separately because the disruption losses do

not “restart” itself after the occurrence of a loss event due to its nonstationary nature in
2Note that in the development of nonhomogeneous Poisson loss models in Section 5.1.2, we defined

multiple transformed time scale in terms of λ∗i for i = 1, 2, ..., n. It was feasible because we could consider
each state i independently. Here, because we permit transitions from state to state, we used a common time
scale for all states based on the mean rate of all aftershocks 1 day after the mainshock, µ∗.
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the transformed time space. This will be discussed below.

Again, we condition on the time, υ, of the first transition out of state in the transformed

time space. Using a similar approach as the previous homogeneous case, we have for the

expected disruption losses:

θd
i (τmax) =




∞∫

τmax

λ∗i e
−λ∗i υdυ







τmax∫

0

ri

µ∗
exp(

τ

µ∗
)dτ




+




τmax∫

0

λ∗i e
−λ∗i υ




υ∫

0

ri

µ∗
exp(

τ

µ∗
)dτ


 dυ




+
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υe

υ
µ∗ θd

j (τmax − υ)dυ


 (5.54)

Here, we have an additional factor of e
υ

µ∗ in the last term as the disruption losses is a function

of absolute transformed time τ such that after υ, the disruption losses do not “restart”

itself as if we are back at transformed time zero again. This is a unique characteristic of

the nonhomogeneous Poisson process. Because of the specific form of 1
t assumed for the

intensity process of aftershocks, we can obtain an exact formulation of the disruption losses

incurred after υ, ri(τ), τ > υ, by multiplying e
υ

µ∗ , a factor dependent only on υ, to the

disruption losses starting from transformed time zero, ri(τ), τ > 0.3 This is exact in the

undiscounted case, but an approximation in the discounted case which we shall discuss in

the next section.

Again, taking the Laplace transformation, we have:

[
θd

i

]e
(s) =







∞∫

τmax

λ∗i e
−λ∗i υdυ







τmax∫

0

ri

µ∗
exp(

τ

µ∗
)dτ







e

+




τmax∫

0

λ∗i e
−λ∗i υ




υ∫

0

ri

µ∗
exp(

τ

µ∗
)dτ


 dυ




e

+
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υe

υ
µ∗




e [
θd

j

]e
(s) (5.55)

3In general, the formulation will require us to multiply a factor dependent on both υ and τ to obtain
ri(τ), τ > υ.
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We further denote:

[
κd

i

]e
(s) =







∞∫

τmax

λ∗i e
−λ∗i υdυ







τmax∫

0

ri

µ∗
exp(

τ

µ∗
)dτ







e

+




τmax∫

0

λ∗i e
−λ∗i υ




υ∫

0

ri

µ∗
exp(

τ

µ∗
)dτ


 dυ




e

, i = 1, ..., n, (5.56)

[
ηd

ij

]e
(s) = Pij

[
λ∗i e

−λ∗i υe
υ

µ∗
]e

, i = 1, ..., n, j = 1, ..., n (5.57)

In vector form, we have:

[
κd

]e
(s) =




[
κd

1

]e

...

...[
κd

n

]e




,
[
ηd

]e
(s) =




[
ηd

11

]e · · · · · · [
ηd

1n

]e

...
. . . . . .

...
...

. . . . . .
...[

ηd
n1

]e · · · · · · [
ηd

nn

]e




,
[
θd

]e
(s) =




[
θd
1

]e

...

...[
θd

n

]e




(5.58)

Therefore, we have:

[
θd

]e
(s) =

[
I−

[
ηd

]e
(s)

]−1 [
κd

]e
(s) (5.59)

Similarly, for the transition losses:

θt
i(τmax) =

n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υlijdυ


 +

n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υθt

j(τmax − υ)dυ


 (5.60)

[
θt

i

]e (s) =
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υlijdυ




e

+
n∑

j>i

Pij

[
λ∗i e

−λ∗i υ
]e [

θt
j

]e (s) (5.61)

We further denote:

[
κt

i

]e (s) =
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υlijdυ




e

, i = 1, ..., n (5.62)

[
ηd

ij

]e
(s) = Pij

[
λ∗i e

−λ∗i υ
]e

, i = 1, ..., n, j = 1, ..., n (5.63)
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In vector form, we have:

[
κt

]e (s) =




[
κt

1

]e

...

...[
κt

n

]e




,
[
ηt

]e (s) =




[
ηt

11

]e · · · · · · [
ηt

1n

]e

...
. . . . . .

...
...

. . . . . .
...[

ηt
n1

]e · · · · · · [
ηt

nn

]e




,
[
θt

]e (s) =




[
θt
1

]e

...

...[
θt

n

]e




(5.64)

Therefore, we have:

[
θt

]e (s) =
[
I− [

ηt
]e (s)

]−1 [
κt

]e (s) (5.65)

By linearity of the Laplace transformation, we have θe(s) =
[
θd

]e
(s) +

[
θt

]e (s).

θi(tmax) can be obtained from the appropriate row of the inverse Laplace transform of

θe(s). This formulation allows us to obtain the expected total undiscounted losses due to

a nonhomogeneous aftershock process in [0, tmax] for all damage states of the building. We

then need simply to convert the result back to the original time scale by using t = exp( τ
µ∗ ).

Numerical results demonstrating the above methodology will be presented in a later section.

5.2.6 Expected Total Discounted Losses due to Nonhomogeneous Markov

Aftershock Process

The formulation for the discounted case is similar to that for the undiscounted case except

that we need to include the appropriate discount factor defined based on the actual time

scale.

For θd
i (τmax), we have:

θd
i (τmax) ≈




∞∫

τmax

λ∗i e
−λ∗i υdυ







τmax∫

0

ri

µ∗
exp(

τ

µ∗
)e−α exp( τ

µ∗ )
dτ




+




τmax∫

0

λ∗i e
−λ∗i υ




υ∫

0

ri

µ∗
exp(

τ

µ∗
)e−α exp( τ

µ∗ )
dτ


 dυ




+
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υe

−2α exp( υ
µ∗ )

e
υ

µ∗ θd
j (τmax − υ)dυ


 (5.66)

An additional factor of e
−2α exp( υ

µ∗ )
e

υ
µ∗ exists in the last term of the above equation
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to approximately account for the transformed-time-dependent discounted ri(τ) which is a

function of the absolute transformed time and does not “restart” itself as if the process

is at transformed time zero when there is a transition to another damage state. It is an

approximation because ri(τ) after the arrival time of the first event in transformed time υ

is discounted at a constant discount factor of e
−α exp( υ

µ∗ ) so that we can take advantage of

the unique “repetitive” structure of first transition in Markov processes. To be exact, this

discount factor after υ would need to be dependent on absolute transformed time τ which

cannot be properly accounted for in the first transition analysis of Markov process. This is

a conservative estimate which is fairly accurate for small values of λ∗i and τmax such that υ

is reasonably close to the value of τmax so that the effects of discounting are not significant.

Also, we note that
τmax∫
0

exp( τ
µ∗ )e

−α exp( τ
µ∗ )

dτ = µ∗
α

(
e−α − e

−α exp( τmax
µ∗ )

)
.Thus:

θd
i (τmax) ≈ ri

α
e−λ∗i τmax

(
e−α − e

−α exp( τmax
µ∗ )

)

+




τmax∫

0

λ∗i
ri

α
e−λ∗i υ

(
e−α − e

−α exp( υ
µ∗ )

)
dυ




+
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υe

−2α exp( υ
µ∗ )

e
υ

µ∗ θd
j (τmax − υ)dυ


 (5.67)

Again, we need to perform Laplace transforms in order to obtain the solution as per

the homogeneous Markov case. Here, because of algebraic complexity, we fitted Legen-

dre polynomials to e−λ∗i υ
(
e−α − e

−α exp( υ
µ∗ )

)
and λ∗i e−λ∗i υe

−2α exp( υ
µ∗ )

e
υ

µ∗ to allow Laplace

transform to be obtained.

For θt
i(τmax), we have:

θt
i(τmax) =

n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υ

(
lije

−α exp( υ
µ∗ )

)
dυ




+
n∑

j>i

Pij




τmax∫

0

λ∗i e
−λ∗i υe

−α exp( υ
µ∗ )

θt
j(τmax − υ)dυ


 (5.68)

This is exact because the transition cost remains as a constant value independent of τ

in transformed time space. We performed Legendre polynomial fit to λ∗i e−λ∗i υe
−α exp( υ

µ∗ ) in

order for Laplace transformations to be performed.
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Similar computations involving the Laplace transformations and formulation in vector

format follow as per Section 5.2.5 to obtain the desired solution, followed by a transformation

to the original time scale.

To introduce repair to the formulations in Sections 5.2.5 and 5.2.6, one would have

to assume exponential repair durations in the transformed time space. This assumption

would imply that the mean repair duration would change as time after the mainshock

progressed. An exponential repair duration in the transformed time space is not realistic; a

more general methodology with an arbitrary probability distribution for the repair duration

will be introduced in Chapter 6. Nonetheless, the formulations in Sections 5.2.5 and 5.2.6

are still valid up to the time of commencement of repair, which can be as long as two years

after the mainshock (see Comerio (2000)).

5.3 Incorporation of Losses due to Aftershocks into Pre-

Mainshock Loss Estimation

We would now like to incorporate the financial losses from nonhomogeneous Poisson af-

tershock processes due to future potential mainshocks from different faults into a global

pre-mainshock loss estimation formulation. This will be used as an input for establishing

an optimal pre-mainshock design criterion to be discussed in Chapter 6.

We first assume that there are h seismic sources that contribute to the pre-mainshock

hazard at a site. Takahashi et al. (2004) used a renewal process to model the occurrences of

characteristic mainshocks which they have shown to be the main contributors to expected

total discounted losses. Thus, here, we also assume that the significant financial losses

from aftershocks are mainly due to characteristic ruptures of each of the h sources, where

the characteristic magnitude of source q is deterministic with magnitude mq. We also

assume that the rate of loss events for source q is λi(q) for a building originally in damage

state i assuming we use the homogeneous Poisson process to model mainshock occurrences.

Alternatively, we can also assume that the inter-arrival time probability density function

and cumulative distribution function of loss events from seismic source q are f q
i (w) and

F q
i (w), respectively, for a building originally in damage state i if we use a renewal process

to model mainshock occurrences. W is the inter-arrival time between loss events and sq is

the elapsed time since the last loss event from seismic source q. We also assume that the

(closest) source-to-site distance Rq for each of the h seismic sources is known.

110



Based on the above assumption, for source q, θi(q, tmax) from the previous section is

equal to the expected financial losses in [0, tmax] from aftershocks for a building in damage

state i due to a characteristic rupture of source q from a mainshock of deterministic main-

shock magnitude mq. In Chapter 3, we have shown how to compute the probability of a

building originally in damage state i going into damage state j due to a mainshock of known

magnitude and source-to-site distance, P ′
ij |mainshock, as well as an aftershock of random

magnitude at a random location, P ′
ij |aftershock. In this case, for source q, we can compute

the probability of a building in damage state i going to damage state j due to a character-

istic mainshock rupture of source q, P ′
ij(q)|mainshock, from which Equations 5.4 and 5.5

can be used to obtain the transition probability matrix Pm(q). Thus, for seismic source q

and a building originally in damage state i, we can compute γi(q, tmax) which we define as

the expected financial losses from both mainshocks and aftershocks given the characteristic

rupture of source q. We let lmij be the expected cost due to a transition from damage state

i to damage state j. The superscript m in Pm(q) and lmij specifically denotes that we are

considering the appropriate quantities from the characteristic mainshock rupture of source

q.

γi(q, tmax) =
∑

j>i

Pm
ij (q)

[
θj(q, tmax) + lmij

]
(5.69)

We assume that there is no seismic interaction between the h seismic sources, i.e., the

rupture of one source is independent of the rupture of another source. We also assume that

the inter-arrival time between mainshocks from source q is sufficiently long such that by

the time of the next mainshock, there are no more aftershocks resulting from the previous

mainshock and that the building would have been restored to its original state i before the

occurrence of a subsequent mainshock.

Thus, for a building in damage state i and considering seismic source q, we represent the

expected total discounted financial losses from both mainshocks and aftershocks in [0, tmax]

as δi(q, tmax) in Equation 5.70, where Ni(q,, tmax) is the (random) number of loss events

from source q in the time interval [0, tmax] for a building originally in damage state i. Tk is

the arrival time of the kth loss event from a mainshock.

δi(q, tmax) = E

Ni(q,,tmax)∑

k=1

γi(q, tmax − Tk)e−αTk (5.70)

111



5.3.1 Formulation using Homogeneous Poisson Process for Mainshock

Occurrences

First, we consider using a homogeneous Poisson process to model mainshock occurrences.

Under this assumption, given Ni(q,, tmax) = n, Tk has a uniform distribution in [0, tmax]

and are i.i.d. such that Tk
D= T . Thus, we have:

E
n∑

k=1

γi(q, tmax − Tk)e−αTk

= E
[
γi(q, tmax − T1)e−αT1 + γi(q, tmax − T2)e−αT2 + ... + γn(q, tmax − Tn)e−αTn

]

= n

tmax∫

0

1
tmax

γi(q, tmax − t)e−αtdt =
n

tmax

tmax∫

0

γi(q, tmax − t)e−αtdt (5.71)

Hence:

δi(q, tmax) = λi(q)

tmax∫

0

γi(q, tmax − t)e−αtdt (5.72)

δ∗i (tmax) represents the expected total financial losses from both mainshocks and after-

shocks in [0, tmax] from all h sources and is equal to:

δ∗i (tmax) =
h∑

q=1

δi(q, tmax) (5.73)

Here,
tmax∫
0

γi(q, tmax − t)e−αtdt can be easily obtained by numerical integration. Again,

based on the discussion in Section 5.2.5, we recommend that for tmax−t greater than 5 years,

we use γi(q, 5 years) in the numerical integration instead. As a conservative approximation,

we can also replace γi(q, tmax − Tk) for all values of Tk by γi(q, 5 years) for relatively long

inter-arrival times between mainshocks from source q because there is significant discounting

effects over such an extended period of time. Based on this assumption, δ∗i (tmax) is given

by:

δ∗i (tmax) =
h∑

q=1

λi(q)γi(q, 5 years)
α

[
1− e−αtmax

]
(5.74)
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5.3.2 Formulation Using Renewal Process for Mainshock Occurrences

In this case, we use Equations 5.46 to 5.48 derived previously in Section 5.2.4 with slight

modification to obtain δ∗i (tmax). Assuming long inter-arrival times between mainshocks such

that the building is restored to state i between occurrences, we obtain Equation 5.75.

δi(q, t̃max) =



etmax∫

0

f q
i (w2)γi(q, t̃max − w2)e−αw2dw2


+



etmax∫

0

f q
i (w2)

[
e−αw2δi(q, t̃max − w2)

]
dw2




(5.75)

δe
i (q, t̃max) =

[etmax∫
0

f q
i (w2)γi(q, t̃max − w2)e−αw2dw2

]e

[1− f q
i (w2)e−αw2 ]e

(5.76)

We can then obtain δi(q, tmax) as shown in Equation 5.77.

δi(q, tmax) =

tmax∫

0

f q
i (sq + t1)

1− F q
i (sq)

[
γi(q, t̃max) + δi(q, t̃max)

]
e−αt1dt1 (5.77)

Again, for t̃max−w2 greater than 5 years, we recommend using γi(q, 5 years) in the numerical

integration instead.

One has to solve δi(q, t̃max) for different discretized values of T1 = t1 before solving

Equation 5.77 by numerical integration. This will require the computations of aftershock-

induced financial losses for as many iterations as we have discretized value of T1 = t1.

Thus, to simplify the computation and as a conservative estimate, we can again replace

γi(q, t̃max − w2) by γi(q, 5 years) to reduce the number of computations of aftershock-

induced financial losses that are required. If we further assume that there is only one

characteristic mainshock rupture in [0, tmax] (which is reasonable given the assumption of a

renewal process model for mainshocks), then Equation 5.77 simplifies to Equation 5.78.

δi(q, tmax) =

tmax∫

0

f q
i (sq + t1)

1− F q
i (sq)

[
γi(q, t̃max)

]
e−αt1dt1 (5.78)

δ∗i (tmax) can then be computed easily. Numerical results will be shown in the next section.
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5.4 Example

A simple numerical example is presented here to illustrate the above formulations. Unless

otherwise specified, we will consider the original, stronger building described in Chapter

3. The transition probabilities for the original, stronger SMRF building located at the site

described in Chapter 2 given a characteristic mainshock on the Mid-Peninsula Segment are

shown in Figure 3.7. The transition probabilities for the original, stronger SMRF building

in Figure 3.8 given an aftershock of random magnitude at a random location are obtained

for the mainshock rupture and site location in Chapter 2. We assume that the characteristic

rupture described in Chapter 2 is the main contributor to the mainshock hazard at the site.

The value of the building structure is taken to be $160M and the value of the contents of the

building is taken to be $50M, making the total value of the building equal to $210M. The

expected financial losses are shown in Table 5.2. We denote i = 1 as the intact building state.

Expected transition losses, lij , i 6= 1, are found by taking the difference between l1j−l1i. For

example, if the building transits from DS1 to DS2, then the resulting expected transition

losses is l1DS2 − l1DS1 = 0.5 x 210− 0.25 x 210 = $52.5M, and the expected disruption

losses in DS2 is $0.075M/day. The annual discount rate is taken to 3.5%.

Table 5.2: Potential financial losses for each building damage state

i Expected Disruption Losses($M/day), ri
Expected Transition Losses, l1i

Total V alue of Building

DS1 0.05 0.25
DS2 0.075 0.5
DS3 0.1 0.75

Using the procedure described in Sections 5.2.1 and 5.2.2 assuming µ = 0.0067/year, we

compute the expected total discounted losses for the intact building due to a homogeneous

mainshock Poisson process with Markov damage states using the transition matrix in Figure

3.7. We first compute the expected present values of the losses for different values of tmax

assuming an unlimited random number of transitions in [0, tmax]. The results for tmax ≤ 10

years and tmax ≤ 100 years are shown in Figure 5.1. It can be seen that both the expected

transition losses and disruption losses increase with tmax and they approach a constant

due to the significant effects of discounting for large values of tmax. For tmax ≤ 10 years

where discounting is not significant and where we expected no more than one transition,

the expected transition losses are almost linear, agreeing with our conclusion in Section
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(a) tmax ≤ 10 years
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(b) tmax ≤ 100 years

Figure 5.1: Expected total mainshock losses ($M) for the intact building assuming an
unlimited random number of transitions for different values of tmax in the pre-mainshock
environment. Both transition and disruption losses are shown as well.

5.1.1. Note also that for tmax ≤ 8 years, the expected transition losses are slightly higher

than the expected disruption losses, but for tmax ≥ 8 years, the reverse is true instead.

This observation can be attributed to the fact that if the intact building transits to DS1

or worse, it starts to incur a daily disruption cost which increases in value for the duration

that the building remains in that damage state. Note that if the building remains in the

intact state, there are no disruption losses. Such accumulation of disruption losses for

damaged buildings are more significant than one-time transition losses, which explains why

the expected disruption losses are larger than the expected transition losses for tmax ≥ 8

years as the probability of a transition to a worse damage state is increased for increasing

values of tmax. Note that we have not considered any repair operations here.

The low rate of mainshocks implies that more than two mainshocks in 100 years is

unlikely such that the formulation assuming no more than one transition gives only slightly

lower results than the formulation assuming an unlimited random number of transitions,

especially for low values of tmax. The results are shown in Figure 5.2.

We next consider a mainshock example with exponentially distributed repair durations

back to the intact state. We consider mean repair durations of 18 days, 60 days and 270

days for DS1, DS2 and DS3, respectively, and we use the formulation in Section 5.2.3,

with both transition and disruption losses taken into account. The expected total losses
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Figure 5.2: Expected total mainshock losses for the intact building assuming no more than
one transition and assuming an unlimited random number of transitions for different values
of tmax in the pre-mainshock environment.

(including both transition and disruption losses) with no repair and with repair are shown

in Figure 5.3. It is clear that the expected total losses are much lower in value if we consider
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Figure 5.3: Expected total mainshock losses for the intact building assuming no repair and
repair (with exponentially distributed repair durations) for different values of tmax in the
pre-mainshock environment.

the possibility of repair back to the intact state for damaged buildings.
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We also consider a case with instant repair. Note that the instant repair formulation

in Section 5.1.1 only includes one-time transition losses. Hence, to be consistent with

the formulation in Section 5.1.1, we consider only transition losses (and not disruption

losses) in the formulation with no repair and the formulation with repair (with exponentially

distributed repair durations) as well. The resulting expected total transition losses are

shown in Figure 5.4. It is worthwhile noting that the expected total transition losses are
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Figure 5.4: Expected total mainshock transition losses for the intact building assuming no
repair, instant repair and random repair with exponentially distributed repair durations for
different values of tmax in the pre-mainshock environment.

very similar for all three formulations. The cases with instant repair and random repair are

almost indistinguishable in Figure 5.4 because the mean repair rates for damaged buildings

are considerably higher than the mean transition rates to a worse damage state due to

mainshock occurrences for a damaged building, or in other words, the mean time to repair

is small relative to the mean time between events. Hence the likelihood of repair back to the

intact state is considerably higher than the likelihood of progressive damage. Note, also, in

this case, the counter-intuitive results where the expected transition losses with repair are

slightly higher than the expected transition losses without repair. This conclusion can be

attributed to the fact that the intact building is five times more likely to be progressively

damaged as compared to other damage states (see the transition matrix in Figure 3.7) and

the expected transition losses are assumed to be the same when we progress from state i to

state i+1, ..., n, for all values of i. Thus, the formulation with repair increases the likelihood
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of transiting to the intact state which actually increases the expected total transition losses.

Note that we are not considering disruption losses here – the inclusion of disruption losses

will significantly reduce the expected total losses with repair, since the intact state does not

incur any disruption cost. The example with both disruption losses and transition losses

has been shown previously in Figure 5.3.

Next we use a Brownian Passage Time (BPT) renewal process to model mainshock oc-

currences, following USGS (2003). The inter-arrival time distribution is shown in Equation

5.79.

fBPT (t) =
√

κ
2πα2t3

e−
(t−κ)2

2κtα2 (5.79)

κ is the mean inter-arrival time defined as 1
µ and α is the aperiodicity or coefficient of

variation defined as the ratio of the standard deviation to the mean. Consistent with

µ = 0.0067/year, we use κ = 150 years. Further, we assume α = 0.5. We also use a

exponential inter-arrival time distribution with the same value of κ (corresponding to a

Poisson mainshock process) as well as a gamma distribution with the same value of κ and

α to approximate the BPT model, following Takahashi et al. (2004). The probability density

functions are shown in Figure 5.5 and the hazard rate functions are shown in Figure 5.6.
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Figure 5.5: Probability density functions for interrarrival times of BPT model, Poisson
model and gamma approximation of the BPT model.

Note that the gamma distribution provides a good approximation to the BPT inter-arrival

time distribution, so we shall use it for subsequent computations. Note also that the hazard
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Figure 5.6: Hazard rate functions for interrarrival times of BPT model, Poisson model and
gamma approximation of the BPT model.

rate function of the BPT model approaches an asymptotic limit and is not monotonically

increasing, as compared to the monotonically increasing nature of the gamma inter-arrival

time distribution.

We next compute the expected financial losses for different values of tmax using the

Poisson model and the BPT model (approximated by the gamma distribution) for elapsed

time since the last mainshock, s, equal to 0 years, 98 years (the last rupture of the Mid-

Peninsula segment was in 1906) and 150 years. The results for the intact building are shown

in Figure 5.7. The BPT model with s = 0 gives considerably lower values of expected losses

as compared to the Poisson model because the hazard rate function starts from zero and

takes about 100 years (corresponding to about 2
3κ) before it increases to the level implied

by the Poisson model. This means that a mainshock in [0, tmax] (for tmax ≤ 100 years) is

highly unlikely for s = 0 as compared to the Poisson model, thus leading to much lower

values of expected losses. In contrast, for s = 98 years and s = 150 years, the hazard rate

functions are higher than that implied by the Poisson model such that a mainshock is more

likely in [0, tmax] for the corresponding BPT models as compared to the Poisson model, thus

resulting in higher values of expected losses. We have not considered repair in this example.

We now turn our attention to the losses in the aftershock environment using the tran-

sition matrix in Figure 3.8. We first compute expected losses, both undiscounted and

discounted, due to aftershocks given the mainshock rupture and site location described in
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Figure 5.7: Expected total mainshock losses ($M) for the intact building using Poisson and
BPT model for different values of tmax in the pre-mainshock environment.

Chapter 2 using the formulation in Sections 5.2.5 and 5.2.6. We shall also compare the

results with those obtained using stochastic dynamic programming, a numerical procedure

which will be described in detail in the next chapter, which provides us with more accurate

results. The resulting graphs for different values of tmax are shown in Figure 5.8. One

can see that for all initial post-mainshock damage states, the undiscounted and discounted

losses obtained using the analytical formulations agree almost exactly with those obtained

using the numerical dynamic programming procedure for tmax less than five years. The an-

alytical formulations with and without discounting also agree very well with each other for

tmax ≤ 5 years. For tmax more than five years, the formulation with no discounting provides

a conservative estimate of expected discounted losses. The expected losses obtained using

the analytical formulation with discounting also agree very well with the results obtained

from numerical dynamic programming (in Chapter 6) for all initial post-mainshock damage

states. In this case, we have not considered the possibility of any repair operations.

The procedure using dynamic programming (from Chapter 6) also allows us to incorpo-

rate repair operations back to the intact state. The time to repair is treated as a random

variable with, for example, a longer average time to repair for DS2 to intact than DS1

to intact. Details of the formulation including such repair operations will be described in

Chapter 6. Here, we provide a plot from Chapter 6 in Figure 5.9 for the weaker building

described in Chapter 3 which demonstrates the significant reduction of expected losses if
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(a) Intact
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(b) DS1
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(c) DS2
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Figure 5.8: Discounted and undiscounted expected aftershock losses ($M) for different values
of tmax in the post-mainshock environment for all post-mainshock damage states.

we introduce the possibility of repair back to the intact state.

We next use the formulation in Section 5.3.1 to compute the pre-mainshock expected

losses due to both mainshocks and aftershocks for different values of tmax. We assume that

mainshocks are modeled as a homogeneous Poisson process. The results for the original

building in Chapter 3 are shown in Figure 5.10. We consider both the exact and approximate

formulations described in Section 5.3.1. We observe that both formulations agree very well

with each other for all values of tmax. We also compute the expected aftershock losses and

pre-mainshock losses for the original building and the weaker building described in Chapter

3, assuming an initial intact state. The results are shown in Figure 5.11. One can see that
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(b) DS1
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(c) DS2

Figure 5.9: Expected total financial losses ($M) for all post-mainshock damage states with
repair (solid line) and without repair (dotted line) for different values of tmax in the post-
mainshock environment. In the former case, repair requires a random duration after arriving
in a particular damage state. (Numerical assumptions are given in Chapter 6.)

the expected losses are considerably higher for the weaker building. Such pre-mainshock

loss estimation can be used as an input to pre-mainshock design criteria to be described in

Chapter 6.

We next study the contribution of aftershocks to pre-mainshock financial loss estima-

tion. We consider only transition costs in the analysis, and we compute the expected total

transitions losses considering only mainshocks as well as the expected total transition losses

considering both mainshocks and the subsequent aftershocks. The results are shown in
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Figure 5.10: Expected financial losses ($M) from both mainshock and aftershocks using the
exact and approximate formulation for different values of tmax in the pre-mainshock environ-
ment.
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Figure 5.11: (a) Expected aftershock losses. (b) Expected pre-mainshock losses for both
buildings for different values of tmax assuming intact initial state.

Figure 5.12. One can see from Figure 5.12 that the inclusion of future aftershocks increases

the expected financial losses by about 25% as compared to the case where no aftershocks

have been taken into consideration. Hence, using the particular assumptions made here, the

consideration of financial losses due to future aftershocks has an impact on pre-mainshock
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Figure 5.12: Expected total pre-mainshock transition losses ($M) considering (1) Main-
shocks only and (2) Mainshocks and subsequent aftershocks. The results are obtained for
different values of tmax.

financial loss estimation as well.

Lastly, we compute pre-mainshock losses incorporating future potential aftershocks as-

suming several cases for the mainshocks: the homogeneous Poisson model and BPT model

with s = 0, 98 and 150 years for mainshocks. The results for the original building are

shown in Figure 5.13. Similar to the earlier observation in Figure 5.7, the BPT model with

s = 0 results in considerably lower expected losses as compared to the Poisson model, while

the BPT models with s = 98 and 150 years result in considerably higher expected losses.

This observation can again be attributed to the magnitude of the hazard rate function with

s = 0, 98 and 150 years when compared to the constant hazard rate function for the Poisson

model.

5.5 Conclusion

We present a sequence of gradually improving financial life-cycle loss models starting from

homogeneous Poisson mainshocks and nonhomogeneous Poisson aftershocks to models us-

ing renewal processes to describe mainshock occurrences with Markov descriptions of a

building’s damage states. We also developed models to estimate pre-mainshock losses by

incorporating future aftershock losses from potential future mainshocks. Such financial
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Figure 5.13: Expected total pre-mainshock financial losses ($M) including potential after-
shock losses using Poisson and BPT model for different values of tmax.

loss models serve as an input to the decision making methodology (both post- and pre-

mainshock) that will be the subject of discussion in the next chapter.
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6 SEISMIC DECISION ANALYSIS

In Chapter 4, we proposed a building tagging methodology for making evacuation and re-

occupancy decisions based on the life-safety threat posed by the aftershock environment.

The building tagging decision is an example of decision making in earthquake risk man-

agement. The proposed decision basis for building tagging is the rate of collapse due to

aftershocks, where the collapse rate is used as a proxy for individual fatality risk. There

are other examples of decision making in seismic risk management where different decision

bases are used to select the most desirable action. Such decision-analytic frameworks are

generally probabilistic in nature where there is explicit quantification of the stochastic na-

ture of earthquake occurrences and the large uncertainty in seismic demand and structural

capacity. Potential costs and benefits are also quantified. The “optimal” decision is gener-

ally selected to be the one that minimizes the expected value of a certain quantity, generally

defined in terms of financial losses as well as fatalities.

The building tagging methodology in Chapter 4 is based on the assumption that there

is complete knowledge of the post-event damage state of the building. In practice, one is

unlikely to have perfect information immediately after the mainshock. More information

about the building’s damage state (e.g., with detailed inspection and/or engineering anal-

ysis) may potentially allow one to make better tagging decisions. Hence, the methodology

developed in this chapter is designed to be sensitive to the state of information about the

damage sustained by the building. Other decisions in seismic risk management can poten-

tially be sensitive to the state of information about uncertain quantities as well. We next

discuss a few representative past economic risk management studies.

Chou et al. (1973) formulated the structural design problem of a seismic structure as a

decision analysis problem with two discrete options in which the choice was between steel

or reinforced concrete for the design of a (linear) one-story building structure based on

minimizing the total cost of construction and expected failure cost and the probability of
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yielding. They considered the randomness in earthquake magnitude and duration in the

decision analysis process.

In a multi-year project, Whitman et al. (1974) developed procedures for making rational

choices of seismic design requirements in building codes based on the quantification of the

risk of earthquake shaking (using the modified Mercalli intensity), the likelihood of building

damage and the cost of increasing levels of earthquake resistance. They considered decision

bases such as expected total financial losses, percentage of lives lost, etc.

Paté and Shah (1980) presented a method of probabilistic cost-benefit analysis for mak-

ing decisions about building code requirements and retrofit strategies of old existing struc-

tures. They used the expected cost per life saved as a decision basis for making such

decisions. Paté (1985) further studied the cost and benefits of seismic upgrading of un-

reinforced masonry warehouses and reinforced concrete buildings in the Boston area. She

concluded that on the basis of minimizing the expected cost per life saved, the optimal

decision is to strengthen the unreinforced masonry buildings.

PEER is currently spearheading an effort to develop a quantitative PBEE methodology

which will allow stakeholders to make better informed decisions by providing them with

probabilistic descriptions of system-level performance metrics. A consistent probabilistic

framework is used to explicitly and rigorously quantify the inherent uncertainties and ran-

domness in earthquake intensity measures (IMs), engineering demand parameters (EDP s),

damage measures (DMs) and decision variables (DV s). Details of the PEER methodology

can be found in Moehle and Deierlein (2004) and Porter (2003).

These past studies did not explicitly recognize the role of information in potentially

reducing the uncertainty in quantities such as post-earthquake building damage. The avail-

ability of more information can potentially have a significant influence on the decision mak-

ing process. In this chapter, we shall address the information-sensitive nature of decision

making and introduce a method to quantify the impact (and consequently, the financial

desirability) of additional information (at potentially higher costs) on the quality of de-

cision. We shall also outline procedures for making optimal decisions in both the post-

and pre-mainshock scenarios that explicitly include both financial losses and human fa-

talities. Examples of such decisions are pre-mainshock design and post-quake repair and

re-occupancy. The nonhomogeneous aftershock ground motion hazard which had not been

considered in previous studies will be explicitly quantified using APSHA. We use procedures

based on minimization of expected financial losses subject to a constraint on minimal level
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of individual life-safety as well as procedures where the cost of fatality is explicitly included.

The formulations of mean rate of collapse due to aftershocks developed in Chapter 4 and

life-cycle financial losses developed in Chapter 5 will be used. The ability to make optimal

decisions in both post- and pre-mainshock scenarios potentially has an important impact

on earthquake policy decision making.

6.1 Decision Analysis Using Decision Trees

Methods of making decisions under uncertainty, commonly referred to as decision analy-

sis, are well-established procedures. Decision analysis is a quantitative tool developed in

management science and operations research for selecting optimal decisions based on the

specification of the alternatives, information and preferences of the decision maker. See,

for example, Howard and Matheson (1984) and Raiffa and Schlaifer (1961) on the theory

of decision analysis. In this chapter, we shall focus on the most essential aspects of modern

decision theory as applied to earthquake engineering. It is worthwhile noting that decision

analysis continues to be an active area of research with applications in many diverse fields

such as medicine, engineering, business and finance.

The first step of decision analysis is to identify the alternatives that are available to

the decision maker. For example, in the post earthquake scenario, the building owner or

engineer can choose either to evacuate building occupants or not. Another decision faced

by the building owner is whether or not to repair the building, and if so, when repair should

commence. Pre-mainshock decisions include new building design alternatives and whether

or not to retrofit a building prior to the occurrence of an earthquake, etc.

The second step of decision analysis is to quantify the probabilities of occurrence of

events and the probability distributions of uncertain quantities. In the context of decision

analysis, probabilities represent individual, subjective degrees of belief of the chance of oc-

currence of an event or an uncertain quantity taking on a certain specified value. Thus,

probabilities assigned to random variables are conditioned on the current state of informa-

tion. With more information, such probabilities can potentially be “updated”, or revised

from previous estimate, using Bayes’ rule which will be discussed in an example to follow.

This view of probability is commonly referred to as the “Bayesian” view, which differs from

the classical “frequentist” view where probabilities are based on long-run frequencies of oc-

currences with fixed (albeit uncertain) values. In the Bayesian view, because probabilities

129



can potentially be changed with increasing levels of information, the decision maker might

be faced with the option to decide if obtaining more information (at potentially higher

costs) is financially desirable. Decision analysis provides a quantitative tool to calculate the

value of information, a concept which can be used to determine if more detailed information

gathering can potentially improve the decision making process. This will be discussed later

as well.

The third step of decision analysis is to quantify the preferences of the decision maker.

For example, the decision maker (the building owner, for example) may want to minimize

the expected monetary financial losses or the fatalities1 due to potential earthquakes. He

will then select the optimal decision as the one that minimizes that quantity. The above

approach to decision analysis provides a methodology to select the optimal decision based

on explicit quantification of the alternatives, information and preferences of the decision

maker. We shall adopt this procedure to several examples in seismic decision making with

a focus on examples involving post-mainshock decisions and the aftershock threats. One

objective of these examples is to demonstrate that these procedures have a role in the

formulation and solution of a variety of problems confronting the earthquake community.

6.1.1 Example

We adopt for illustration the base case aftershock scenario in Chapter 2 and the three-story

SMRF building described in Chapters 3 and 4. In Chapter 3, we have already calculated

the probability of each post-mainshock damage state due to a characteristic mainshock

(mm = 7.0) rupturing the Mid-Peninsula segment of the San Andreas fault. We have also

computed the damage state transition probabilities due to the occurrence of an aftershock

of random magnitude at a random location on the aftershock zone (given the above char-

acteristic rupture) for different post-mainshock damage states. We shall use these values in

the example.
1In addition to monetary values and fatalities, classical decision theory suggests that the expected utility

of the decision maker is the quantity that ought to be maximized. The utility function of a decision maker
takes into account his risk attitude, and is not considered in this study. If the expected financial losses is
chosen to be the quantity to be minimized, the implicit assumption is that the decision maker is risk-neutral.
See Howard (1998) for details.
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Updating Example

After a mainshock, a commonly faced decision by building owners and engineers is whether

or not to evacuate building occupants. In Chapter 4, we assumed that the post-mainshock

damage state of the building was known. Here, we shall assume that after the mainshock,

the damage state is not known with certainty and we model the decisions and uncertain-

ties involved using a “decision tree” in Figure 6.1. The two decisions (evacuate or not)

E(Loss), $M

Optimal Decision in terms of minimizing Expected Losses

66.04

85.6% 62

81

9.0% 135

5.4% 293

85.6% 54

0 66

9.0% 110

5.4% 185

Limited Information

Evacuate

Don't Evacuate

DS1

DS2

DS3

DS1

DS2

DS3

Figure 6.1: Decision tree with limited information about the post-mainshock damage state
of the building. Continued in Figure 6.2.

are indicated on the first “branch” of the tree. We assume that the building has not col-

lapsed but has suffered partial damage, the exact degree of which is unknown. Based on

this limited information, we can calculate the probabilities of the building being in dam-

age state DS1, DS2 or DS3 given that the building has not collapsed (C) and is not

intact (Intact). These conditional probabilities are calculated to be: P (DS1|C, Intact) =

85.6%, P (DS2|C, Intact) = 9.0% and P (DS3|C, Intact) = 5.4%. For example, using the

values obtained in Chapter 3, P (DS3|C, Intact) = 0.0085
0.133+0.0141+0.0085 = 5.4%. These condi-

tional probabilities are commonly referred to as the prior distribution (on the state variable)

which is conditioned on the current state of information that is available. We have very

limited information in this case, since we only know that the building has not collapsed and

has suffered partial damage. These conditional probabilities are indicated on the second set
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Given No Evacuation and DS1

Aftershock Collapse ProbabilitiesRepair Times
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Figure 6.2: Continuation of decision tree in Figure 6.1 assuming no evacuation and DS1.

of branches of the decision tree in Figure 6.12. We shall henceforth suppress the condition

on C and Intact.

The other major uncertainties are the length of the repair period and whether the

building collapses in an aftershock for each post-mainshock damage state of the building.

We assume here (simplistically) that repair can commence immediately after the mainshock,

and that the possible durations for repair for DS1, DS2, DS3 are 6, 18 or 30 days, 30, 60

or 90 days and 180, 270 or 360 days, respectively. Each of these three sets of durations for

repair is assumed to be equally likely. The broad range may reflect in part the post-quake

disruption in the construction industry. As defined in Chapter 4, the rate of collapse is

approximated by ECRDSi
col (td;mm = 7.0) for a building in damage state DSi.

We use the same cost information as in Chapter 5. Again, the value of the building

is assumed to be $160M and the value of the contents of the building is assumed to be

$50M. The expected downtime and damage costs from Chapter 5 are reproduced in Table

6.1, together with the expected repair costs for each post-mainshock damage state. The

expected disruption cost if the building is evacuated is taken to be $0.5M/day. We assume

that the number of building occupants is 400. In this example, we consider financial losses

due to fatalities explicitly by assuming a cost per life saved equal to $2M/person3. If
2Note that the decision nodes on the tree are denoted by solid squares and nodes from which uncertain

current (or future) states branch are denoted by solid circles.
3The economic value of human life is a much debated issue in economics and is not the main purpose
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Table 6.1: Potential financial losses for each building damage state

i Expected Disruption Losses($M/day), ri
Expected Transition Losses, l1i

Total V alue of Building

DS1 0.05 0.25
DS2 0.075 0.5
DS3 0.1 0.75

i Expected Repair Cost($M)
DS1 0.5
DS2 0.1
DS3 0.15

building occupants are not evacuated and the building collapses in an aftershock, we assume

for simplicity that the collapse occurs mid-way during the process of repair, all building

occupants are killed and the remaining value of the building is lost. If building occupants are

not evacuated and the building is further damaged due to the occurrence of an aftershock,

we assume that the expected transition losses, lij , for i 6= 1, can be found by taking the

difference between l1j−l1i. If building occupants are evacuated and the building collapses in

an aftershock, we assume that only one-fourth of the remaining value of the building is lost

as expensive equipment might have been removed from the building. If building occupants

are evacuated and the building is further damaged due to the occurrence of an aftershock,

we assume that the expected transition losses are one-fourth of that as from the case where

there is no evacuation.

In a next example, we assume that a structural engineer can provide the owner with

perfect information on the true damage state of the building, perhaps with very detailed

inspection results. This means that if the building is in DSi, then the probability that the

engineer says that the building is in DSi is equal to 1. In the example to follow, we shall

consider less than perfect information in which case this number is less than 1. In general,

we denote this conditional probability as P (“DSi”|DSi), where “DSi” represents the event

that the engineer says that the building is in DSi. This conditional probability is known

as the likelihood function. In this case, we should re-draw our decision tree in Figure 6.1

as Figure 6.3 such that the first branch represents the event that the engineer says that

of this report. One possible way to compute the economic value of human life is to approximate it by the
amount of investment into safety technologies necessary to reduce the risk of fatality by a given amount,
i.e., cost per life saved. See Paté-Cornell (1984) and a brief discussion in Chapter 4.
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the building is in post-mainshock damage state DSi (an event with the prior probabili-

ties indicated previously), followed by the decision to evacuate or not after obtaining the

information from the engineer. The information provided by the engineer is “perfect” in

66.03
E(Loss), $M

54.8

85.6% 54

53.9

111.1

9.0% 110

109.6

184.7

5.4% 185

184.9

Perfect Information
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"DS3"

Evacuate

Don't Evacuate

Evacuate

Don't Evacuate

Evacuate

Don't Evacuate

Change of optimal decision if engineer says building is in DS3

Figure 6.3: Decision tree with perfect information from engineer.

this case, and the engineer is referred to in decision analysis literature as being a clairvoy-

ant. The complete state of perfect information provided by him is commonly referred to as

“clairvoyance”.

In this example, if the engineer says that the building is in DS1 or DS2, the optimal

decision will be to not evacuate building occupants; if he says that the building is in DS3,

the optimal decision will be to evacuate building occupants. Note that the optimal decisions

in this case depend on what the engineer says after his inspection. The optimal decisions

have changed from the previous case when we had limited information about the post-

mainshock damage state of the building and where the optimal decision is to not evacuate

building occupants. The minimum expected financial losses is also reduced when we are able

to obtain the information about the true damage state of the building from the engineer.

Since we are able to reduce the minimum expected financial losses by approximately

$10,000 with perfect information from the engineer, this new information regarding the

true damage state of the building is useful to us. This sum of $10,000 is referred to as the

value of “perfect information” or value of “clairvoyance”. Thus, we ought to be willing to

pay the engineer up to a sum of $10,000 for the information about the true damage state

of the building as it lowers our minimum expected financial losses. The ability to compute

the value of clairvoyance allows one to decide if it is financially desirable to pay for perfect
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information.

Of course, in most cases, the information that we receive from engineers is not perfect.

For example, let us assume (for the sake of argument) that the engineer is not perfect but

still accurate with his assessment such that if the building is in DSi, then the probability

that he says that the building is in DSi (the likelihood function discussed earlier) is equal

to 98%, or P (“DSi”|DSi) = 98% (as opposed to a probability of one previously). Other

assumed values of P (“DSj”|DSi) are given in Table 6.2.

Table 6.2: Likelihood functions of “imperfect” engineer

P (“DS1”|DS1) 0.980 P (“DS1”|DS2) 0.005 P (“DS1”|DS3) 0.005
P (“DS2”|DS1) 0.015 P (“DS2”|DS2) 0.980 P (“DS2”|DS3) 0.015
P (“DS3”|DS1) 0.005 P (“DS3”|DS2) 0.015 P (“DS3”|DS3) 0.980

Now, using the prior distribution shown in Figure 6.1, we can calculate the probability

that the engineer will tell us that the building is in a particular state, P (“DSi”), using

Equation 6.1 by the total probability theorem.

P (“DSi”) =
∑

j

P (DSj)P (“DSi”|DSj) (6.1)

For example, P (“DS2”) is equal to (0.856) (0.015) + (0.09) (0.98) + (0.054) (0.015) = 0.102.

This probability, P (“DSi”), is referred to as the pre-posterior probability of state DSi. The

set of probabilities, for all DSi, is the pre-posterior distribution. Now, suppose that we hire

the engineer and he says that the building is in DSi, i.e., the outcome is “DSi”, one can

use Bayes’ Rule (see Benjamin and Cornell (1970)) to calculate the posterior probability,

defined as P (DSj|“DSi”), using Equation 6.2.

P (DSj|“DSi”) =
P (DSj)P (“DSi”|DSj)∑

j
P (DSj)P (“DSi”|DSj)

=
P (DSj)P (“DSi”|DSj)

P (“DSi”)
(6.2)

Thus, given that the engineer says that the building is in DS2, the probability that it is

indeed in DS2 is equal to (0.09)(0.98)
0.102 = 0.866. With this new information provided by the

engineer, the probability that the building is in DS2 increases from 0.09 to 0.87. Obtaining

more information commonly (but not always) increases the probability of one or more
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states, sharpening or narrowing the probability distribution on the possible states4. This

procedure of updating our probabilities with new information is commonly referred to as

Bayesian updating.

We re-draw our decision tree in Figure 6.1 as Figure 6.4 such that the first branch

represents the event that the engineer says that the building is in damage state DSi with

probabilities P (“DSi”) obtained from Equation 6.1. The second branch represents the two
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Figure 6.4: Partial decision tree with imperfect information from engineer.

4The exception is when the state “indicated” by the engineer’s study previously had a low probability.
While this state’s probability will be increased, it may not become the most likely state. The net effect may
be to broaden the distribution on the states.
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decisions to evacuate or not after obtaining the information from the engineer. The third

branch represents the events that the building is in DSj given that the engineer says that

the building is in DSi, with conditional posterior probabilities P (DSj|“DSi”) calculated

from Equation 6.2. In this case, the information provided by the engineer is “imperfect”.

This explains why it is necessary to include the third branch of the decision tree which is

not necessary in Figure 6.3 with “perfect” information. The optimal decisions are different

from the initial case with limited information but are the same as those obtained with

information from the clairvoyant engineer. The differences between the minimum expected

financial losses with perfect and imperfect information and the minimum expected financial

losses with limited information are approximately $10,000 and $5,000, respectively. Even

though the engineer can only provide us with imperfect information, his input still allows

us to reduce the minimum expected financial losses by $5,000. This means that his input

is of value to us, though not as “valuable” as the input of his clairvoyant counterpart. The

value of “imperfect” information in this case is equal to $5,000. This means that we ought

to be willing to pay him up to a sum of $5,000 (less than the value of clairvoyance of $10,000

previously) for his information.

Fractured SMRF Connection Inspection Example

A more realistic representation of the information gathering scenario could involve par-

tial inspection to estimate the percentage of the top-beam-flange connections that have

fractured in the building. We follow the approach described in Luco et al. (2002) for a

steel-moment-resisting-frame building. We shall assume in our simple example that know-

ing the (true) proportion of fractured top-beam-flange connections in the building allows

one to quantify the true damage state of the building. For example, with a full inspection of

all m connections in the building with n fractured connections, we can define the percentage

of fractured connections as f = m
n . We assume (very simplistically and for the purpose of

illustration) 0 < f < 0.2 corresponds to the intact state, 0.2 < f < 0.5 corresponds to DS1,

0.5 < f < 0.75 corresponds to DS2, 0.75 < f < 0.9 corresponds to DS3 and 0.9 < f < 1

corresponds to collapse. But full inspection is very expensive and time-consuming. Par-

tial inspections are more common in practice. From a partial inspection of n′ connections,

where n′ < n, we will find the number, m′, of top-flange fractures. The ratio, f ′ = m′
n′ , is an

estimate of the true fraction, f , of the percentage of fractures in the building. Without a

complete inspection, however, the percentage of top flange fractures in the whole building
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is a random variable which we denote as F . Using the prior distribution based on the

probabilities of each post-mainshock damage state obtained in Chapter 3, we can obtain

an approximate probability density function of F by mapping each damage state to the

corresponding values of f described above. Next, we obtain the cumulative distribution

function of F to which we fit a beta cumulative distribution function. The beta probability

density function (with parameters a and b) has the form shown in Equation 6.3, and it will

be used as our prior probability density function for F .

fF (z) =
Γ(a + b)
Γ(a)Γ(b)

za−1 (1− z)b−1 , 0 ≤ z ≤ 1 (6.3)

Γ(x) =

∞∫

0

ux−1e−udu, x > 0

See Rice (1995). The resulting fit of the beta model to the cumulative distribution is shown

in Figure 6.5. Based on the fit, we obtain a = 1 and b = 4.
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Figure 6.5: Beta distribution fit to cumulative distribution function estimated from the prior
probabilities of being in each post-mainshock damage state.

In order to study the benefits of a given degree of inspection, consider the case in which

we have decided to inspect m′ connections, out of which a random number, X, of them can

be fractures. We assume that conditioned on the true fraction F = z, the probability mass

function of X is a binomial distribution with the probability mass function in Equation 6.4.

pX|z(x|z) =
(

m′

x

)
zx (1− z)m′−x , x = 0, 1, 2, ..., m′ (6.4)
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The likelihood function in this case is the “likelihood” of a true fraction F = z given a sample

with X = x observed fractures. This likelihood function is assumed to be proportional to

the probability of X = x given F = z, i.e., the probability mass function of X conditioned

on F = z. We shall use Equation 6.4 as the likelihood function5.

The adoption of the beta and binomial functional forms for the prior distribution and

likelihood function, respectively, means that the posterior distribution after Bayesian updat-

ing is also a beta distribution, but with different values of a and b, i.e., the beta distribution

is a conjugate prior for the binomial distribution. See Rice (1995) for details. To confirm

this claim, we can calculate the posterior distribution, fF |X(z|x), using Bayes’ rule as shown

in Equation 6.5, similar to Equation 6.2.

fF |X(z|x) =
fF (z)pX|z(x|z)

1∫
0

fF (z)pX|z(x|z)dz

, 0 ≤ z ≤ 1 (6.5)

Note that the term
1∫
0

fF (z)pX|z(x|z)dz in Equation 6.5 is equal to pX(x), the probability

of observing any value of X in a sample of m′ connections, i.e., the pre-posterior probability.

pX(x) can be calculated using Equation 6.6.

pX(x) =

1∫

0

fF (z)pX|z(x|z)dz

=

1∫

0

Γ(a + b)
Γ(a)Γ(b)

za−1 (1− z)b−1

(
m′

x

)
zx (1− z)m′−x dz

=
Γ(a + b)
Γ(a)Γ(b)

Γ(a + x)Γ(b + m′ + x)
Γ(a + b + m′)

(
m′

x

)
, x = 0, 1, 2, ..., m′ (6.6)

Then, the posterior distribution, fF |X(z|x), can be calculated using Equation 6.5 such

that we obtain Equation 6.7.

fF |X(z|x) =
fF (z)pX|z(x|z)

pX(x)
5If the connections to inspect have been randomly selected (i.e., sampling involves a sequence of inde-

pendent Bernoulli trials, each with a probability z of being a fracture) and a connection which has been
inspected can potentially be inspected again (i.e., sampling is performed with “replacement”), then the use
of Equation 6.4 to model X will be exact. However, because the above conditions are usually not satisfied,
the binomial assumption only serves as an approximation.
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=
Γ(a + b + m′)

Γ(a + x)Γ(b + m′ + x)
za+x−1 (1− z)b+m′−x−1 , 0 ≤ z ≤ 1 (6.7)

Note that Equation 6.7 is also a beta probability density function (which verifies our above

claim), but with a′ = a+x and b′ = b+m′−x. The posterior probability of being in DSi can

then be approximated by integrating the posterior beta distribution over the above-stated

ranges defined for each post-mainshock damage state.

As an example, we assume that there are 100 connections in our building. To demon-

strate the effect of increased sampling, consider inspection sample sizes of 0, 20, 50 and 80

(i.e., 0%, 20%, 50% and 80% of the total number) and suppose in each case the result of the

inspection is 40% fractured connections (e.g., 8, 20 and 32 out of 20, 50 and 80 inspected

connections). We can compute the posterior distribution using Equation 6.7 and plot the

resulting updated probability density functions in Figure 6.6. We can see that when the
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Figure 6.6: Posterior distributions of fraction of fractured connections, F, with different
levels of inspection and a fixed fraction (40%) of observed fractures.

level of inspection increases, the posterior probability density function becomes more and

more concentrated around 40%, the pre-specified percentage of fractures.

Next, we consider the case where we have decided to inspect 5% of the connections at

random. In this case, m′ = 5 and X is a discrete integer random variable with values between

0 and 5. We can re-draw our decision tree by incorporating the information that we obtain
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from the engineer. The new decision tree is shown in Figure 6.7. The first branch of the tree
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Figure 6.7: Partial decision tree with 5% inspection of connections. X represents the number
of fractures in the sample.

is the pre-posterior probabilities (calculated using Equation 6.6) that the engineer inspects

and observes X = 0, 1, 2, 3, 4 and 5 fractured connections. The second branch indicates

the two actions to evacuate building occupants or not. The third branch is the posterior,

updated probabilities of being in each damage state. In this case, if the engineer observes

five fractured connections, the optimal decision will be to evacuate building occupants;

if he observes less than five fractured connections, the optimal decision will be not to

evacuate. The minimum expected financial losses is $74M. Without any inspection, the

minimum expected financial losses is $80M. Thus the value of inspection is equal to $6M.

If inspection can be carried out for $6M or less, it would be economically desirable to do

so. Notice that the values of the minimum expected financial losses that we obtain here are

different from those obtained previously: this difference can be attributed to the particular

way the fractions, f , have been related to the damage states.
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This example serves to illustrate the potential application of decision analysis to quantify

the value of inspection. If one were to perform the same analysis with several different levels

of inspection (at increasing cost for more detailed inspection), one could use the analysis

of the value of inspection to determine the optimal level of inspection. The analysis of the

value of inspection can also be used to decide if further inspections might be beneficial after

new results are obtained.

Example with Improving Knowledge of Mainshock Site Spectral Acceleration,

Samainshock

We have introduced above a methodology to quantify the value of new information on the

post-mainshock damage state. In this section, we shall use the same procedure to quantify

the value of increasing levels of information on the mainshock site spectral acceleration,

Samainshock.

As discussed in Chapter 3, the post-mainshock damage state probabilities of the building

after a mainshock of known magnitude and location are dependent on the mean and stan-

dard deviation of ln Samainshock, i.e., E(lnSamainshock) and σln(Samainshock). The probabilities

computed in Chapter 3 are based on using the magnitude and distance of the mainshock to

estimate E(lnSamainshock) and σln(Samainshock) from a standard ground motion attenuation

law (in this case, Abrahamson and Silva (1997)). Thus, if we can quantify Samainshock with

more confidence (as demonstrated by a reduction in the value of σln(Samainshock)), the post-

mainshock damage state probabilities, and consequently, the minimum expected financial

losses, will change. Thus, the optimal evacuation decision described earlier can potentially

be changed by such improved information.

For example, the use of “ShakeMap”, an online, automatically-generated spatial map

which relies on shaking levels recorded at an array of existing seismic stations to esti-

mate the spatial distribution of shaking, can potentially provide us with more informa-

tion on Samainshock than simply the use of an attenuation law. See USGS (2004) and

Wald et al. (1999) for details on ShakeMaps. Even better is to have a dedicated ground

motion accelerometer at the site of the structure which will provide an exact value of

Samainshock. Thus, on-site instrumentation will likely provide us with the most information

about Samainshock, followed by the use of ShakeMaps, and, followed by the use of ground

motion attenuation laws.
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We shall now study the impact of more information on Samainshock on the decision-

making process. We have previously computed the minimum expected financial losses

where we estimated Samainshock using an attenuation law. We used the mainshock rupture

scenario described in Chapter 2. The median value of Samainshock is computed to be 0.38g,

σln(Samainshock) is computed to be 0.568 and the minimum expected financial losses is equal

to about $66M. As an illustrative example, we assume that an instrument present at the

site of our building provides us with the exact value of Samainshock, taken to be equal to

0.5g in our example. σln(Samainshock) can be taken to be equal to 0. The revised decision

tree is shown in Figure 6.8, where the revised post-mainshock damage state probabilities

are also shown. The minimum expected financial loss in this case is reduced to about $56M.
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Figure 6.8: Partial decision tree with information about Samainshock from on-site instru-
mentation and a ShakeMap-based interpolation.

As a second case, for the sake of illustration, we assume that the online ShakeMap after

the mainshock provides us with the same median Samainshock as that obtained from the use

of an attenuation law (0.38g), but with σln(Samainshock) reduced by 50%. This value might
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result from the use of interpolation of the spatial array of instruments and the use of spatial

statistical analysis to evaluate the implied standard deviation (see, for example, Journel

(1978)). This results in the revised post-mainshock damage state probabilities and decision

tree, also shown in Figure 6.8, where the minimum expected financial losses is reduced

to about $57M. In both cases, the availability of more information results in the same

optimal no-evacuation decision, but increases the probability of being in DS1 from 85.6%

(attenuation law) in Figure 6.1 to 95.5% (ShakeMap) and 97.1% (instrumentation) despite

the higher median estimate assumed in the on-site instrumentation case, i.e., 0.5g rather

than 0.38g. Thus, in our illustrative example, more information on Samainshock improves

our knowledge of the post-mainshock damage state and reduces the minimum expected

financial losses.

The proposed framework can be used to quantify the potential benefits of ShakeMaps

and building instrumentation in terms of reducing the total expected financial losses. If

in addition one quantifies the cost of on-site instrumentation and/or the implementation

of ShakeMaps, the proposed framework can then be used to determine if such setups are

financially desirable.

6.2 Decision Analysis Allowing Damage-State Transitions

The decision tree procedure described in the previous section is based on the expected

financial losses given the occurrence of a mainshock in which we consider the possibility of

aftershocks that can potentially result in the collapse of the building. We have not taken

into consideration the possibility of incremental damage to the building due to the sequence

of aftershocks that follows the mainshock. To address this shortcoming, we can use the

mathematical formulation in Chapter 5 to explicitly quantify the expected financial losses

in a fixed period of time after the mainshock, allowing for multiple aftershocks and damage

state progression. This procedure assumes a fixed action for each possible post-mainshock

damage state immediately after the mainshock. For example, we continue to use the cost

information described in Section 6.1, except that we exclude the cost of fatalities – the cost

implications of evacuation are limited to economic disruption. We consider the original,

stronger building described in Chapter 3. One possible decision is to evacuate building

occupants as long as the building has been damaged in any way whatsoever; the second

possible decision is to not evacuate building occupants if the building has been partially
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damaged. The expected financial losses as a function of tmax after the mainshock (for tmax

less than or equal to five years) for each post-mainshock damage state is shown in Figure

6.9. We assume that we have no information about the post-mainshock damage state of
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Figure 6.9: Expected financial losses ($M) for each post-mainshock damage state for two
possible post-mainshock evacuation decisions. The expected financial losses are plotted as a
function of tmax.

the building. Then the expected financial losses for each decision is shown in Figure 6.10,

where we have weighed over each possible post-mainshock damage state. On the basis of

minimizing the expected financial losses, the optimal decision is to not evacuate building

occupants even if the building is damaged. We have not considered the possibility of revising

decisions after the mainshock when potentially more information about the post-mainshock
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Figure 6.10: Expected financial losses ($M) for both decisions assuming no prior information
about the post-mainshock damage state as a function of tmax.

damage state of the building and the subsequent aftershock sequence parameters might

become available. We shall address these issues in a more sophisticated model to follow.

The previous examples were concerned with the post-mainshock environment. We can

also use pre-mainshock expected life-cycle cost optimization (prior to the mainshock) to

decide on the optimal level of design taking into consideration performance of the damaged

building in the aftershock sequence. For example, one can use pre-mainshock life-cycle cost

to decide if it is desirable to expend additional funds to provide a structure with enhanced

aftershock performance (e.g., to introduce self-centering connections that reduce the resid-

ual displacement which is known to increase building capacity to withstand aftershocks

– see Kwan and Billington (2003a) and Kwan and Billington (2003b)). As an example,

we consider the two possible discrete building designs discussed in Chapter 3, the original

building being considerably stronger. We assume that the post-mainshock decision is to

not evacuate building occupants if the building has been partially damaged. For a building

in damage state i, we consider both a (random) transition cost of Lij (E (Lij) = lij) as

well as a constant (but random) disruption cost of Ri per unit time (E (Ri) = ri). We use

the same cost figures as shown in Table 6.1 and Chapter 5. We also assume that only the

Mid-Peninsula segment contributes to the mainshock hazard at the site: more potential

seismic sources can be included very easily based on our model in Chapter 5. The resulting

expected life-cycle costs for both designs are shown in Figure 6.11. If the design life-span
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Figure 6.11: Expected financial losses ($M) from both mainshocks and aftershocks for both
building designs as a function of tmax in the pre-mainshock environment.

of the building is 30 years, for example, one can determine the optimal choice between the

two designs based on the expected financial losses in Figure 6.11 and the cost of design

and construction for each design. Recall (in contrast to Section 6.1) that there has been no

consideration of fatalities. Such pre-mainshock life-cycle decision making potentially has a

significant impact on earthquake policy making and seismic design code development.

6.3 Decision Analysis Using Stochastic Dynamic Program-

ming

The procedure described in Sections 6.1 and 6.2 assumes a fixed stationary policy at the

start of the mainshock and aftershock sequence for each post-mainshock damage state; e.g.,

one will evacuate if the damage state is DS1 or worse at all times in the future. This as-

sumption might not be realistic. Here, we introduce a decision analysis procedure based on

stochastic dynamic programming in which we allow for the flexibility of re-considerations

of previously made decisions at any time after the mainshock. Such revisions of decisions

at different points in time in the future may have a significant impact on the expected

financial losses in the nonhomogeneous aftershock environment. For example, after initial
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evacuation, allowing subsequent re-occupancy of a damaged building is a decision which re-

duces downtime financial losses. Such re-occupancy decisions may be appropriate because

of the decaying aftershock ground motion hazard, or because more information about the

aftershock sequence (perhaps from aftershock sequence parameter updates based on Ger-

stenberger et al. (2002)) may reduce the perceived hazard. Also, inspection results after

the mainshock might provide us with more accurate information about the post-mainshock

damage state of the building such that previous evacuation decisions can potentially be

changed. Thus, the availability of more information after the mainshock about the after-

shock sequence and damage sustained by the building might offer a chance to revise the

previously made decisions which were based on more limited information. Here, we develop

a methodology which allows us to determine the optimal action and when it should be taken

after the mainshock.

Further, in Chapter 5, the formulation of financial losses for a building in damage state

i involves transitions to only a worse damage state j, where j > i, due to the occurrence

of aftershocks. We have not included the possibility of repair to the intact state in the

previous formulation. In order to use a analogous formulation developed in Chapter 5

which incorporates repair, one will have to assume exponential repair time distributions in

the transformed time space which might not be realistic. Here, we introduce a more flexible

formulation which incorporates non-exponential repair times, and includes the case with

exponential repair time distributions as a special case.

6.3.1 Methodology

Our goal in this section is to propose a much more general methodology based on stochastic

dynamic programming which allows one to determine the optimal action to be taken at

each discrete set of points in time so as to minimize the expected financial losses at time

zero, while still ensuring a tolerable level of individual life-safety for occupants of damaged

building. This methodology also allows us to obtain, as a by-product, the expected financial

losses in the aftershock environment where the building either can be incrementally damaged

due to the occurrence of aftershocks, or it can be repaired back to the intact state (damage

state 1) with a non-exponential repair time distribution. The individual life-safety constraint

will be based on the concept of ECRDS
col (td; mm) developed in Chapter 4. This more general

procedure allows decisions such as evacuation or re-entry decisions to be made at optimal

times so as to minimize financial losses without compromising life-safety. An output of the
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methodology to be proposed below is the expected financial loss at time zero with the set of

optimal actions to be taken at optimal times for each post-mainshock damage state. This

formulation encompasses several procedures that we have described earlier. For example,

the building-tagging methodology procedure described in Chapter 4 is a special case of this

new methodology if individual life-safety consideration in terms of limiting ECRDS
col (td;mm)

is the only constraint, and we do not seek to minimize financial losses. The formulations

for expected financial losses in Chapter 5 are special cases of the formulation in this section

in which we assess the expected loss under certain simplifying restrictions such as (1) the

decision to occupy or not can be taken only once, at the time of the mainshock, and (2)

the possibility of repair is ignored. The proposed methodology is motivated by Cantaluppi

(1981).

We use the same notations as in Chapter 5. We assume an expected transition cost

of lij and a expected constant disruption cost of ri per unit time for a building in state

i transiting to state j. A building in damage state i (i = 1 denotes the intact state) can

go to one of n damage states given the occurrence of an aftershock. A building in damage

state i goes to damage state j with probability P ′
ij given the occurrence of an aftershock.

µ(t) is the intensity function of all aftershocks above some lower bound magnitude given a

mainshock of known magnitude

Here, we allow further generality by allowing the costs and transition matrix to be

“action-dependent”. This means that at any point in time, we allow certain actions to be

taken which will alter the transition probability matrix and the cost structure of a building

originally in damage state i. We first consider a finite set of actions, A(i), from which we

select action a. We allow the set A(i) to be dependent on the damage state i of the building.

For example, we can denote the evacuation of building occupants at time y as action a.

If action a is decided upon, the cost structure after y will be altered because of a one-time

expected transition cost lij(y, a) due to relocation and an expected disruption cost ri(a)

per unit time due to downtime and non-operability of the damaged building. We can also

represent the decision to start repair as action a. The repair duration back to the intact

state, T , for a building originally in damage state i is assumed to be a random variable with

probability density function fi(t, a). The repair process is assumed to be a nonhomogeneous

Poisson process with intensity function ϕi1(t, a), where f1(t, a) = 0 and ϕ11(t, a) = 0 for all t,

i.e., no repair is necessary for the intact state. Given an arbitrary fi(t, a) with corresponding

cumulative distribution function Fi(t, a), one can calculate ϕi1(t, a) based on the definition
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of hazard rate function described in Chapter 5, reproduced here as Equation 6.8.

ϕi1(t, a) =
fi(t, a)

1− Fi(t, a)
(6.8)

The possibility of repair will alter the transition law of the building as it now has

the possibility at some future time of transiting to the intact state. We represent this

new transition law by the transition matrix P(t,a). The dependence on the action a is

explicitly included both in the transition matrix and the intensity function of the repair

process. Given either the occurrence of a loss event or completion of repair for a building

in damage state i, we first evaluate the mean rate of transitions out of state i, γi(t, a) using

Equation 6.9.

γi(t, a) = ϕi1(t, a) + µ(t)(1− P ′
ii) (6.9)

We can then form a transition probability matrix P(t,a) given either the occurrence of

a loss event or completion of repair using Equations 6.10, 6.11, 6.12 and 6.13.

P(t,a) =




0 P12(t, a) · · · P1n(t, a)

P21(t, a) 0
. . .

...
...

. . . 0 P(n−1)n(t, a)

Pn1(t, a) · · · · · · 0




(6.10)

Pik(t, a) = 0, i ≥ k, k 6= 1 (6.11)

Pik(t, a) =
µ(t)P ′

ik

γi(t, a)
, i < k, k 6= 1 (6.12)

Pi1(t, a) =
ϕi1(t, a)
γi(t, a)

(6.13)

γi(t, a), i = 1, ..., n, and P(t,a) allow us to describe both the aftershock process and the

repair process for all post-mainshock damage states. Note that if ϕi1(t, a) = ϕi1(a), a

constant independent of time, then the repair duration is assumed to be exponentially

distributed. Also, if µ(t) = µ, the above formulation generalizes to the case for Poisson

mainshocks, and for µ(t) which is time-dependent (corresponding to a renewal process to

model mainshock occurrences), the above formulation is also appropriate.
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We now consider discretizing γi(t, a) in “small” time steps so that for numerical pur-

poses, we can approximate it by piecewise constant functions at discrete points in time tj ,

where 0 ≤ tj ≤ tmax and j is an integer. As mentioned, we also consider the possibility of

taking a different action a at each discretization point in time, the actions being selected

from the finite set of actions A(i).

Figure 6.12 is a schematic plot of the discretization for the case where we consider only

loss events from aftershocks. Similar discretizations generalize to the case with repair. Since

the intensity function between tj and tj+1 is constant with γi,tj (a), the interarrival times

of aftershocks in [tj , tj+1] are exponentially distributed with (constant) intensity functions

γi,tj (a). This is due to the memoryless nature of the nonhomogeneous Poisson assumption

for both the loss events and repair process.

tmaxtj+1tj tttt-1

Elapsed time since mainshock, t

γ i,t j

γ i,t t

γ it

Figure 6.12: Schematic plot of discretization points in time of γi(t, a), assuming ϕi1(t, a) = 0
for all i.

Again, tmax is the total length of the time interval of interest. The length of each discrete

time interval [tj , tj+1] is selected to be small enough such that the probability of two or more

events (here, we refer to both loss events as well as completion of repairs) in [tj , tj+1] is

small based on the intensity function γi,tj (a). tt is selected so that the probability of any

event in [tt, tmax] is small. Note here that our proposed formulation requires the formation

of an augmented state space where we include both damage state and time.

Now, consider the discrete time interval [tj , tj+1] with intensity function γi,tj (a). We
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have a building in damage state i at time tj when we take action a, a ∈ A(i). We denote

L
tj
i,a as the expected financial losses in [tj , tmax] given initial building damage state i at time

tj when action a is taken. We wish to obtain [Ltj∗
i , a

tj∗
i ], where a

tj∗
i is the optimal action to

take if one is in state i at time tj ; a
tj∗
i minimizes the expected financial losses in [tj , tmax] to

L
tj∗
i . We also wish to limit ECRi

col(tj ; mm) to α1P0 or less, where α1P0 is the tolerable

level of collapse rate that we have discussed in Chapter 4. In order to obtain the optimal

actions and minimum expected financial losses for all values of tj , we employ the technique

known as stochastic dynamic programming by which we first obtain, for each state i, the

optimal action at tt−1, a
tt−1∗
i . a

tt−1∗
i minimizes the expected losses in the final time interval

[tt−1, tmax] to L
tt−1∗
i , subject to the constraint ECRi

col(tt−1; mm) ≤ α1P0, where a
tt−1∗
i is

selected from a ∈ A(i). Then, based on a
tt−1∗
i and L

tt−1∗
i for all i, we can next work

backwards in time to obtain the optimal action at tt−2 and minimum expected losses in

[tt−2, tmax] by recognizing that we have already chosen the optimal action to take at time

tt−1 for each state we might be in at tt−1, while ensuring that the ECR constraint is also

satisfied at tt−2. We can do the same for tt−3, tt−4, etc. Such a procedure where we work

backwards in time is known as the method of backward induction in stochastic dynamic

programming. See Bertsekas (2000) for more details on dynamic programming.

Using the principle of stochastic dynamic programming, since we have selected the length

of [tj , tj+1] to be small enough such that the probability of two or more events is small, we

can obtain [Ltj∗
i , a

tj∗
i ] by considering two mutually exclusive, collectively exhaustive cases

where either one event happens in [tj , tj+1] such that the building transits from state i to
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state k, or no event happens in [tj , tj+1], using Equation 6.14. We denote ∆tj = tj+1 − tj .

[Ltj∗
i , a

tj∗
i ] = min

aεA(i),
ECRi

col
(tj)≤α1P0





n∑
k=1

Pik(a)
∆tj∫
0

γi,tj (a)e−γi,tj
(a)u

lik(a)e−αudu

+
∆tj∫
0

γi,tj (a)e−γi,tj
(a)u

[
u∫
0

ri(a)e−αtdt

]
du

+
n∑

k=1

Pik(a)
∆tj∫
0

γi,tj (a)e−γi,tj
(a)u

[
∆tj∫
u

rk(a)e−αtdt

]
e−αudu

+
n∑

k=1

Pik(a)

[
∆tj∫
0

γi,tj (a)e−γi,tj
(a)u

du

]
L

tj+1∗
k e−α∆tj

+

[
∞∫

∆tj

γi,tj (a)e−γi,tj
(a)u

du

][
∆tj∫
0

ri(a)e−αtdt

]

+

[
∞∫

∆tj

γi,tj (a)e−γi,tj
(a)u

du

]
L

tj+1∗
i e−α∆tj





(6.14)

Equation 6.14, while initially of imposing appearance, is analogous to similar equations

described in Chapter 5. For the case where we assume that there is one event in [tj , tj+1],

we denote the time of first transition in [tj , tj+1] as tj+u, where u is exponentially distributed

with intensity function γi,tj (a).

The first four terms in Equation 6.14 are based on conditioning on having one event

resulting in a transition from damage state i to damage state k occurring in the interval

[tj , tj+1] at tj +u. The first term accounts for the expected transition cost, lik(a), discounted

to time tj , where γi,tj (a)e−γi,tj
(a)u is the probability density function of u. The second term

accounts for the expected disruption cost of ri(a) per unit time up to time tj +u before the

event happens, also discounted back to time tj . The third term accounts for the expected

disruption cost from time tj + u to tj+1 after the building has transited to state k. This is

discounted back to time tj as well. The fourth term is a unique characteristic of stochastic

dynamic programming. Now, conditioned on having a transition to a new state k, we

assume that we have taken the optimal action a
tj+1∗
k at tj+1 such that all future losses from

tj+1 on is denoted by L
tj+1∗
k . L

tj+1∗
k will be known because (as per the backward induction

procedure), before solving for [Ltj∗
i , a

tj∗
i ] at the time step tj , we will have already solved

the problem at tj+1. The last two terms of Equation 6.14 are based on conditioning on

having no events in the interval [tj , tj+1], and the formulation follows along the same line

of argument. Note that
∞∫

∆tj

γi,tj (a)e−γi,tj
(a)u

du is the probability of having no events in
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[tj , tj+1], and can be simplified to e
−γi,tj

(a)∆tj .

We simplify Equation 6.14 by neglecting the effects of discounting for durations less

than ∆tj . Then Equation 6.14 can be approximated as Equation 6.15.

[Ltj∗
i , a

tj∗
i ] = min

aεA(i),
ECRi

col
(tj)≤α1P0





n∑
k=1

Pik(a)
[
γi,tj (a)∆tj

]
lik(a)

+1
2 [ri(a)∆tj ]

[
γi,tj (a)∆tj

]

+
n∑

k=1

Pik(a)1
2 [rk(a)∆tj ]

[
γi,tj (a)∆tj

]

+
n∑

k=1

Pik(a)
[
γi,tj (a)∆tj

]
L

tj+1∗
k e−α∆tj

+
[
1− γi,tj (a)∆tj

]
[ri(a)∆tj ]

+
[
1− γi,tj (a)∆tj

]
L

tj+1∗
i e−α∆tj





(6.15)

Similar to Equation 6.14, the first term of Equation 6.15 accounts for the expected

transition cost, lik(a), where
[
γi,tj (a)∆tj

]
is the probability of the occurrence of one event

in [tj , tj+1]. The second term accounts for the expected disruption cost of ri(a) per unit

time up to time tj + u before the event happens, where conditioned upon the occurrence of

one event in [tj , tj+1], the expected arrival time of the event is at tj + 1
2∆tj , such that the

expected disruption loss is equal to 1
2 [ri(a)∆tj ]. The third and fourth terms can be obtained

analogously. The last two terms of Equation 6.15 are based on conditioning on having no

events in the interval [tj , tj+1], where the probability of no events is approximately equal to[
1− γi,tj (a)∆tj

]
.

Using the same simplifying assumptions, we can also further simplify the dynamic pro-

gramming formulation by using a discrete-time Markov chain to approximate the continuous-

time Markov chain; in the latter model, an event can happen at any time in the time-interval

[tj , tj+1], whereas in the former model, transitions are restricted to fixed points in time. We

assume then that all events (inclusive of both aftershock occurrences and completion of

repairs) can only happen at discrete points in time tj , tj+1, ..., for all tj up to tmax. We first

denote the vector of actions taken for all initial states as a, where a is given in Equation

6.16. We then denote Q(tj,a) as the transition matrix for the probability of an event re-

sulting in a transition from state i to state j, for all i and j, in the time interval [tj , tj+1],

assuming that action ai is taken at tj and the event occurs at tj+1. Q(tj,a) is obtained
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using Equations 6.17 to 6.21 for i = 1, 2, ..., n.

a =




a1

...

...

an




(6.16)

Q(tj,a) =




Q11(tj , a1) Q12(tj , a1) · · · Q1n(tj , a1)

Q21(tj , a2) Q22(tj , a2)
. . .

...
...

. . . . . .
...

Qn1(tj , an) · · · · · · Qnn(tj , an)




(6.17)

Qik(tj , ai) = 0, i > k, k 6= 1 (6.18)

Qik(tj , ai) = µ(tj)∆tjP
′
ik, i < k, k 6= 1 (6.19)

Qi1(tj , ai) = ϕi1(tj , ai)∆tj (6.20)

Qii(tj , ai) = 1− µ(tj)∆tj(1− P ′
ii)− ϕi1(tj , ai)∆tj (6.21)

Recall that the equations also assume that the “probabilities” µ(tj)∆tj and ϕi1(tj , ai) are

small. Note that Qii(tj , ai), the probability of no state transitions, is then close to unity.

The vector of optimal actions for all initial states at time tj is denoted as at∗j and the

vector of minimum financial losses from tj to tmax for all initial states is denoted as Lt∗j .

These vectors are defined in Equation 6.22.

at∗j =




a
t∗j
1
...
...

a
t∗j
n




, Lt∗j =




L
t∗j
1
...
...

L
t∗j
n




(6.22)

Furthermore, the expected financial loss incurred in [tj , tj+1] assuming that action ai is

taken at tj and the event occurs at tj+1 for a building originally in state i is denoted as

C
tj
i (ai). C

tj
i (ai) can be calculated using Equation 6.23 as the sum of the disruption losses

while in state i and the expected value of transition loss at the end of the interval. We

further denote Ctj(a) as the vector of expected financial losses incurred in [tj , tj+1] for all
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initial states, represented by Equation 6.24.

C
tj
i (ai) = ri(ai)∆tj +

n∑

k=1

Qik(tj , ai)lik(ai) (6.23)

Ctj(a) =




C
tj
1 (a)
...
...

C
tj
n (a)




(6.24)

Then, similar to Equations 6.14 and 6.15, the dynamic programming formulation can be

written in a much simpler format as Equation 6.25. As ∆tj → 0, Equation 6.25 converges

to Equations 6.14 and 6.15.

[Lt∗j ,at∗j ] = min
i=1,...,n, aiεA(i),
ECRi

col
(tj)≤α1P0

{
Ctj(a) + Q(tj,a)Lt∗j+1

}
e−α∆tj (6.25)

Thus, using backward induction from tt back to time zero based on Equations 6.14, 6.15

or 6.25, this procedure allows us to obtain the optimal action to take at any of the discrete

points in time for buildings that could be in any damage state. It also allows us to obtain the

minimum expected financial losses from any point in time to tmax, under the assumption

that we will have taken the optimal actions at all points in time to tmax. As we have

discussed earlier, this is a more general case of the previously proposed building-tagging

procedure and decision-making procedure based on computing the expected financial losses

in the aftershock environment. Thus, this methodology allows for much wider loss and

event modeling flexibility.

6.3.2 Example

We apply the procedure in Section 6.3.1 to the “weaker” building described in Chapter 3 to

determine if the building should be evacuated or if continued occupancy is permitted; the

decision is evaluated at multiple discrete points in time from day one for a duration, tmax,

equal to five years after the mainshock. We use the same cost information as in Section 6.1.

For this example, however, we consider the mainshock magnitude, mm, to be equal to 7.3, α1

from Chapter 4 for building tagging based on individual life-safety consideration to be equal

to 5, and the discount rate, α, to be equal to 5% per year. With available information on
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the aftershock ground motion hazard at the site and the building’s transition probabilities

given the occurrence of an aftershock, for all post-mainshock damage states, we can use the

dynamic programming procedure to determine the optimal decisions at all points in time

from day one and forward. We shall consider three separate cases about the treatment of

the economic and life-safety elements of the decision.

In the first case (Case 1), we impose only the individual life-safety constraint without any

explicit minimization of financial losses. The constraint is imposed at all discrete points in

time (i.e., ensuring ECRi
col(tj) ≤ α1P0 for all tj). As discussed earlier, adopting the dynamic

programming methodology in this manner is the same as using the building-tagging criteria

described in Chapter 4. In our example, for all post-mainshock damage states, the “optimal”

decision at day one is to evacuate building occupants because of the high aftershock hazard.

We say “optimal” even though there is in Case 1 no explicit minimization of cost; rather

it simply assumed re-occupancy will occur as soon as it is feasible, i.e., as soon as the life-

safety constraint is satisfied. From the results obtained using the dynamic programming

algorithm, if the building is in the intact, DS1 and DS2 post-mainshock damage states, the

optimal action changes from building evacuation to allowing re-occupancy after 3, 6 and

10 days (respectively) from the occurrence of the mainshock, as shown in Table 6.3. The

Table 6.3: Case 1: Times in days after mainshock when the optimal decision changes from
having evacuation to allowing re-occupancy. The individual life-safety constraint is enforced
in this case without explicit minimization of financial losses.

Damage
state i

Points in time when optimal decision
changes from building evacuation to
allowing re-occupancy (days)

Intact 3
DS1 6
DS2 10

change in optimal decision is attributable simply to the reduction in the aftershock hazard.

Having determined the points in time when re-occupancy is permitted by the individ-

ual life-safety constraint, we now wish to evaluate the expected financial losses for each

post-mainshock damage state assuming repair operations commence immediately after re-

occupancy is allowed. We consider repair only for DS1 and DS2 – the intact building does

not require repair and we assume for this example that the building in DS3 is so severely
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damaged that repair is not economically feasible. We use the probability density functions

of the repair duration, fi(t), in Figure 6.13, and compute the corresponding repair dura-

tion intensity functions, ϕi1(t) (also shown in Figure 6.13), using Equation 6.8. We show
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(c) Probability density function (DS2)

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Repair Duration (days)

R
at

e

(d) Intensity function (DS2)

Figure 6.13: Probability density functions and corresponding intensity functions for the
duration of the repair to intact condition for post-mainshock damage states DS1 and DS2.

in Figure 6.14 the expected financial losses for the intact, DS1 and DS2 post-mainshock

damage states using the optimal decision policy obtained from dynamic programming with

repair. The expected financial losses using the optimal policy with repair are significantly

lower in value as compared to the expected financial losses where the policy is to evacuate

building occupants as long as the building has been damaged by the mainshock, with no

consideration of repair. We can also take into account the repair cost for DS1 and DS2 to
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(b) DS1
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(c) DS2

Figure 6.14: Expected financial losses ($M) for Intact, DS1 and DS2 for (1) Repair when
re-occupancy is permitted using optimal policy (solid line) (2) Evacuation when building is
damaged with no repair (dotted line). The losses are plotted as a function of tmax in years.

decide if repair is financially feasible.

A second case (Case 2) of the application of the dynamic programming formulation seeks

to obtain the optimal policy based on minimizing the expected financial losses (including

the cost per life saved), but without considering repair or enforcing the individual life-safety

constraint. We assume 400 occupants in the building, and we consider a range of cost per

life saved from $0M (i.e., only economic losses are considered) to $10M. A typical output of

the optimal policy as a function of elapsed days after the mainshock for all post-mainshock

damage states is shown in Table 6.4 for the case where the cost per life saved is equal

159



to $2M. The conclusion is that, except for the case where the cost per life saved is not

Table 6.4: Typical output of dynamic programming algorithm for the case where the indi-
vidual life-safety constraint is not imposed, and where a cost per life saved of $2M is used.
The optimal policy is shown as a function of elapsed days after the mainshock for all post-
mainshock damage states.

Days after
mainshock

Intact DS1 DS2 DS3

1 Evacuate Evacuate Evacuate Evacuate
2 Evacuate Evacuate Evacuate Evacuate
3 Evacuate Permit re-

occupancy
Permit re-
occupancy

Permit re-
occupancy

4 Permit re-
occupancy

Permit re-
occupancy

Permit re-
occupancy

Permit re-
occupancy

5 Permit re-
occupancy

Permit re-
occupancy

Permit re-
occupancy

Permit re-
occupancy

...
...

...
...

...
...

...
...

...
...

included, for all post-mainshock damage states, the optimal decision is to evacuate building

occupants immediately after the mainshock. For the building in the intact, DS1 and DS2

damage states after the mainshock, the points in time when the optimal decision changes

from evacuation of building occupants to allowing re-occupancy are shown in Table 6.5.

Table 6.5: Case 2: Times in days after mainshock when the optimal decision changes from
having evacuation to allowing re-occupancy. The individual life-safety constraint is not en-
forced in this case.

Cost per life saved ($M)
0 1 2 5 10

Damage
state i

Points in time when optimal decision
changes from building evacuation to
allowing re-occupancy (days)

Intact 3 3 4 6 9
DS1 Never

Evacuate
2 3 5 10

DS2 Never
Evacuate

2 3 6 11
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When the cost per life saved is not included, if the building is in DS1 or DS2, the optimal

action is to permit continued occupancy at all times. If the building is in the intact state,

however, the optimal decision is to evacuate building occupants for the first two days after

the mainshock (when the aftershock hazard is high), and permit re-occupancy after that.

This conclusion is counter-intuitive, but we shall illustrate why it is logical based on the

cost values and state transition matrix that we use. The example helps to understand just

how the dynamic programming analysis works.

The counter-intuitive optimal policy obtained from the dynamic programming formu-

lation in the case where we seek to minimize only economic losses is to evacuate building

occupants in the intact building for the first two days after the mainshock, and permit

re-occupancy from the third day on, whereas no such evacuation is suggested if the building

is damaged! Without performing any analysis, one would expect the optimal policy to be

to permit continued indefinite occupancy in the intact building also. These two policies

differ only in the first two days after the mainshock. We shall make an approximation of

the expected financial losses in the first two days after the mainshock assuming (1) build-

ing occupants are evacuated and (2) building occupants are not evacuated. The expected

number of aftershocks (based on the formulation in Chapter 2) in the first two days after

the mainshock with magnitudes between 5.0 and the mainshock magnitude, mm=7.3, can

be estimated to be about 3. Given the occurrence of an aftershock, we see from the state

transition matrix of the weaker building in Chapter 3 (Figure 3.8) that the probability of

transiting to DS1 and DS2 is almost an order of magnitude higher than the probability

of transiting to DS3 and DS4, respectively. Thus, as a first estimate, we shall only con-

centrate on the possibility of the intact building transiting to DS1 and DS2 due to the

occurrence of an aftershock. From the same state transition matrix, the probability of the

intact building transiting to DS1 and DS2 given the occurrence of an aftershock is equal

to 0.0058 and 0.001, respectively. Thus the expected number of aftershocks in the first

two days that would result in a transition from the intact state to DS1 and DS2 is ap-

proximately equal to 3 x 0.0058 ≈ 0.02 and 3 x 0.001 = 0.003 respectively. Thus, we can

approximate the probability of an aftershock resulting in a transition from the intact state

to DS1 and DS2 in the first two days after the mainshock to be about 0.02 and 0.003,

respectively. The expected transition financial loss from the intact state to DS1 and DS2

is about $52.5M and $105M respectively if building occupants have not been evacuated,

and one-fourth that (i.e., $13M and $26M) if building occupants have been evacuated (see
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Section 6.1). If building occupants are evacuated, we have assumed an expected daily dis-

ruption cost of $0.5M (see Section 6.1); on the other hand, if building occupants are not

evacuated, there is no disruption cost. Thus, the expected financial losses in the first 2 days

after the mainshock (where the effect of discounting is negligible) can be approximated by

the sum of the expected transition losses and the expected disruption losses. If building

occupants have been evacuated, the expected transition losses (due to transitions to DS1

and DS2) can be estimated to be 0.02 x $13M + 0.003 x $26M ≈ $0.34M and the expected

disruption losses can be estimated to be about 2 x $0.5M = $1M, making the total expected

financial losses to be about $1.34M. On the other hand, if building occupants have not been

evacuated, the expected transition losses (due to transitions to DS1 and DS2) can be es-

timated to be 0.02 x $52.5M + 0.003 x $105M ≈ $1.37M and since there are no disruption

losses, the total expected financial losses is about $1.37M as well. Thus, it can be seen as

a first approximation that the optimal policy for the first 2 days based on minimizing the

expected financial losses is indeed to evacuate building occupants. This counter-intuitive

conclusion, namely that one should evacuate when the building is intact but not when it

is damaged (DS1 or DS2) is due in part to there being no life-safety constraint, in part

to the particular cost values adopted in this chapter and in Chapter 5, and in part to the

particular values in the state transition matrix of the building in Chapter 4. Note that it

is in fact about 5 times more likely (given an aftershock) that the intact building goes to a

worse damage state than it is that a damaged building does so. The cost assigned to making

these unanticipated damage state transitions is high. Therefore (for these numbers), the

optimal policy (economically) is to avoid the risk of a costly transition from intact to a

worse damage state by making a cheaper planned evacuation on day one.

Referring again to Table 6.5, when we introduce non-zero values for the cost per life

saved (say, $2M), the optimal decision is to evacuate the building for the first four days if

the building is in the intact state, three days if the building is in the DS1 or DS2 damage

state, and permit re-occupancy after that (Again, the factors described just above cause

this unexpected longer evacuation time for the intact than the damaged cases). As must

be expected, the length of elapsed time required before re-occupancy is permitted increases

as we use increasing values for the cost per life saved, which increases the expected losses

for the continued-occupancy decision.

A third example (Case 3) of the application of the dynamic programming formulation
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couples the first two cases just described in that the individual life-safety constraint (ensur-

ing ECRi
col(tj) ≤ α1P0 for all tj) is imposed, and the expected financial losses (including the

cost per life saved) are minimized. The points in time when the optimal decision changes

are shown in Table 6.6. Note that because we are now posing a constrained economic opti-

Table 6.6: Case 3: Times in days after mainshock when the optimal decision changes from
having evacuation to allowing re-occupancy. The individual life-safety constraint is also en-
forced in this case.

Cost per life saved ($M)
0 1 2 5 10

Damage
state i

Points in time when optimal decision
changes from building evacuation to
allowing re-occupancy (days)

Intact 3 3 4 6 9
DS1 6 6 6 6 10
DS2 10 10 10 10 11

mization problem, these times where revisions of decision occur are as long or longer than

the results obtained from each of the two previous cases where we either only imposed the

individual life-safety constraint, or only minimized the expected financial losses (including

the cost per life saved). By using such an approach, we are determining the optimal policy

by ensuring that expected financial losses (including the cost per life saved) are minimized

without violating the individual life-safety constraint. Again, from Table 6.6, as we use

increasing values for the cost per life saved, the length of time before re-occupancy is per-

mitted is also increased. By comparing Tables 6.3, 6.5 and 6.6, one can see that when we use

a cost per life saved of $2M, $5M and $10M for the intact building, the minimization of ex-

pected financial losses (including the cost per life saved) determines the points in time when

the optimal decision changes from building evacuation to permitting re-occupancy. For the

building in DS1 or DS2, the individual life-safety constraint determines the points in time

when the optimal decision changes from building evacuation to permitting re-occupancy for

values of cost per life saved between $0M and $5M; for a cost per live saved of $10M, the

minimization of expected financial losses governs instead.
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6.4 Conclusion

The objectives of this chapter are, first, to introduce earthquake engineers to elementary

decision analysis concepts – beyond simply the expected economic loss analyses that they

use now – which hold promise for informed earthquake engineering decisions, especially

with regard to information gathering and the value of new information. We introduce

different methods of decision analysis with examples in both the post- and pre-mainshock

environment. We use different decision bases for comparing different decisions, and we

consider both the losses per event (via the use of decision trees) as well as life-cycle losses

using the analytic formulations described in Chapter 5. Throughout this chapter, we have

emphasized the role of information in potentially improving our decision-making capability.

We have introduced the value of information which can be used to determine if obtaining

more information is financially desirable. A second major chapter objective has been the

introduction of a general methodology using stochastic dynamic programming to allow

for the flexibility of revisions of previously made decisions with the availability of more

information. This methodology enables us to determine the optimal policy at all times after

the mainshock, and it also allows us to determine the optimal policy based on minimizing

the expected financial losses (which can include the cost per life saved) while not violating

the individual life-safety constraint. The proposed procedures can potentially be applied

to earthquake policy and decision making, especially in terms of quantifying the value of

additional information in the information-gathering process.
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7 SUMMARY, LIMITATIONS AND FUTURE

WORK

7.1 Summary

In this report, we study the role of aftershocks in performance-based earthquake engineer-

ing. We begin by introducing Aftershock Probabilistic Seismic Hazard Analysis (APSHA) in

Chapter 2. APSHA is a procedure analogous to conventional mainshock PSHA to character-

ize aftershock ground motion hazard. The proposed methodology takes into consideration

the time-varying nature of the aftershock occurrence rate which decreases with increased

elapsed time from the initial occurrence of the mainshock. The aftershock ground motion

hazard at a site is also dependent on the magnitude and location of the causative main-

shock, the location of aftershocks being limited to an aftershock zone dependent on the

location and magnitude of the initial mainshock. We use APSHA in Chapter 4 to quantify

the rate of building collapse caused by aftershocks following the initial rupture to make

decisions for building tagging, including entry of damaged buildings for rescue, repair or

normal occupancy.

Chapter 3 introduces a methodology generalizing the work of Luco et al. (2004) to

characterize the performance of (possibly) mainshock-damaged buildings in the aftershock

environment under different levels of ground shaking due to potential aftershocks. The prob-

abilistic capacity of mainshock-damaged buildings to withstand future aftershock ground

shaking is quantified by considering several levels of mainshock-sustained damage. The

methodology used here involves back-to-back nonlinear dynamic time-history analysis and

fragility curves can be developed for all initial building damage states. The proposed

methodology allows one to quantify the likelihood of each post-mainshock damage state

after a mainshock of known magnitude and location. The novelty of the methodology is
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that it also allows one to compute the transition probability of a building in a given post-

mainshock damage state transiting to a worse damage state given the occurrence of an

aftershock of random magnitude at a random location with a specified aftershock zone.

Chapter 4 describes a risk management building tagging policy based on the quantifica-

tion of life-safety threat in the aftershock environment using the probability of collapse as

a proxy for fatality risk. The proposed methodology enables us to classify buildings after

a mainshock earthquake into three groups with red, yellow and green building tags. The

objective of yellow or red-tagging a building after an earthquake is to insure adequate life

safety during a period of enhanced seismic activity. A methodology for the life-safety eval-

uation of an earthquake-damaged building is proposed based on APSHA and the residual

capacity of (possibly) mainshock-damaged buildings against collapse due to possible future

aftershocks. We also propose a methodology to allow earlier entry into a red-tagged building

by introducing the concept of a controlled work force where we limit the total probability

of collapse faced by an informed and compensated volunteer worker.

Chapter 5 presents formal stochastic financial life-cycle loss models in both the after-

shock and pre-mainshock scenarios over the lifetime of the building. We begin our formula-

tion using the traditional homogeneous Poisson mainshock process. We extend this previous

model to include nonhomogeneous Poisson aftershock process with “immediate” repair of

the building to the initial building state. We then generalize our formulation to include

Markov and semi-Markov frameworks where we use both Poisson and renewal processes to

model mainshock occurrences with consideration of various building repair and/or damage

progression scenarios. Such financial loss models serve as an input to the decision making

methodology (both post- and pre-mainshock) that is the subject of discussion in Chapter

6.

Chapter 6 presents a decision analytic framework under improving states of information

for post- and pre-mainshock decision making. Decisions such as post-mainshock building

tagging and retrofit decisions prior to the occurrence of a mainshock are fundamentally

dependent on the life-safety threat due to building occupancy and financial life-cycle losses

which can potentially be incurred due to building damage and downtime. Different decision

bases are proposed to compare different decisions. Throughout this chapter, we emphasize

the role of information in potentially improving our decision-making capability. For exam-

ple, we study the impact of increasing levels of information of the post-mainshock building
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damage state (based, for example, on inspection and/or engineering analysis) on evacua-

tion decisions. Finally, we also introduce a general methodology using stochastic dynamic

programming to allow for the flexibility of revisions of previously made decisions with the

availability of more information. The proposed procedures have important implications in

terms of earthquake policy and decision making, especially in terms of quantifying the value

of additional information in the information-gathering process.

7.2 Conclusions

The methodologies proposed in this report are illustrated by a continuing example of a

three-story SMRF building located on the Stanford site. We observe that aftershock hazard

rate (e.g., per day or week) after the mainshock can be significantly higher than the pre-

mainshock hazard, especially for a short elapsed number of days after the mainshock. The

ratio of aftershock hazard to pre-mainshock hazard is less striking if we use a proposed new

concept, that of Equivalent Constant Rates (ECRs), introduced in Chapter 4 to address

the time-varying nature of the aftershock threat. This notion has potential application to

other time-varying safety problems as well.

We also believe that building-tagging should be based on explicit quantification of the

performance of (potentially) damaged building in the post-mainshock environment and the

quantitative evaluation of the enhanced time-varying aftershock hazard at the site. These

two factors have a direct impact on the life-safety threat that an arbitrary building occupant

would be exposed to if he were to occupy a damaged building, and thus should be taken

into consideration in the building-tagging process. In this report, we have used the rate of

building collapse as a proxy for the life-safety threat in the aftershock environment.

Besides life-safety considerations, we should also take into account financial losses and

disruption losses due to downtime in the performance-based earthquake engineering frame-

work. Aftershock life safety (implicitly at least) drives building evacuation decisions which

can potentially result in loss of revenues due to downtime. The financial formulations devel-

oped in Chapters 5 and 6 explicitly took into consideration both the one-time losses (such

as financial losses due to structural and content damage) and continuing disruption losses

(due, for example, to downtime of the building). The economic analysis models developed

in Chapter 5 provide explicit analytical equations which can be solved easily via the use

of computer software packages for the homogeneous Poisson and semi-Markov mainshock
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environment. Solving the same set of equations for the nonhomogeneous Poisson aftershock

environment requires a time-transformation and the use of Legendre expansions. These

formulations are more limited, however, in the modeling assumptions – specifically, with re-

gard to the accurate representation of realistic repair durations which require a non-realistic

exponential assumption in the previous formulations. The numerical analysis model devel-

oped in Chapter 6 is more flexible, and while numerically recursive in discretized time, is

actually less demanding computationally than the Chapter 5 models. We recommend the

use of the Chapter 6 model over the models developed in Chapter 5.

7.3 Limitations

This study presents an analytic framework for the incorporation of aftershocks into PBEE.

Since the subject of investigation is at its infancy, at every stage, a broad framework is

presented and certain assumptions are made. These assumptions define the limitations and

scope of this work as well as possible scheme for future research.

We assume that aftershocks can be appropriately modeled by a nonhomogeneous Poisson

process. The time-varying nature of aftershock occurrence rates has been studied, for exam-

ple, in Reasenberg and Jones (1989) and Reasenberg and Jones (1994), but the Poissonian

nature of aftershocks has yet to be validated by any studies to the author’s knowledge. The

time transformation described in Chapter 5 can be used to homogenize the time-varying

rate of aftershocks such that the Poissonian nature of aftershocks can be verified on the

transformed time scale, using standard procedures in, for example, Ross (2000). We also

use the aftershock parameters obtained by Reasenberg and Jones for California to estimate

the aftershock ground motion hazard at our site. The ability to estimate site-specific, event-

specific aftershock parameters based on Gerstenberger et al. (2002) might potentially allow

us to obtain a more accurate representation of a particular aftershock hazard. Their work

is based on Bayesian updating to use accumulated aftershock information to update the

coefficients in the Omori Law.

The example in this work uses the values of the median capacity Ŝa
DSi,DSj

cap and disper-

sion βDSi,DSj
R for a bilinear SDOF building model to compute the probability of being in

each post-mainshock damage state and the transition probabilities of the (potentially) dam-

aged building in the aftershock environment. Ideally, the values of Ŝa
DSi,DSj

cap and βDSi,DSj
R

should have been obtained using the results obtained from nonlinear dynamic time-history
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analysis of a MDOF representation of the building. Such studies are under way by Dr.

Nicolas Luco. The understanding of structural analysis and behavior of damaged buildings

is a rich area for future research. The quantification of the epistemic uncertainty, βDSi
U , also

deserves more in-depth studies. We also propose default values of coefficients α1 and α2 in

Chapter 4 to establish the ranges of acceptable collapse rate for buildings of different func-

tionality. The determination of appropriate levels of α1 and α2 is an issue of public policy

and requires more input from informed government regulatory bodies and social scientists.

The stochastic financial loss models developed in this work focus on obtaining the ex-

pected values of life-cycle cost. If full probability distributions are required, we recommend

Monte-Carlo simulation to be used (see, for example, Porter (2003)). The damage states

used in this study are defined based on peak roof drift ratios. It might be necessary to

consider a vector of engineering demand parameters to better define the damage states of

the building and its subsequent damage progression due to the occurrences of future earth-

quakes. The progression of damage states due to the occurrences of both mainshocks and

aftershocks is also assumed to be Markovian in nature. This needs to be further verified;

it might be necessary to use a vector of engineering demand and response parameters in

order to make the Markovian assumption of the damage progression process more accurate.

The earthquake occurrence model used in this work also assumes no fault and/or segment

interaction.

The decision analytic framework described in Chapter 6 uses decision bases consisting

of expected life-cycle cost and rate of collapse. As mentioned earlier in Chapter 6, decision

analysis and economics theory suggest that the expected utility of the decision maker should

be the quantity to be optimized. The utility function of a decision maker describes his/her

attitude towards risk; the process of soliciting the preferences of a decision maker in terms

of a utility function is described in Howard (1998). We have also stressed the role of

information on the decision making process. This is an area that deserves more attention

as Bayesian updating can potentially have an important influence on all aspects of seismic

decision making and the information gathering process.

7.4 Future Work

There are several areas of further research that would improve the incorporation of after-

shocks into the current PBEE framework. Here, we briefly describe two important areas.
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The values of Ŝa
DSi,DSj

cap and βDSi,DSj
R obtained using the bilinear SDOF model in this

work do not demonstrate much reduction in the values of the median capacities of the

building with increased levels of sustained damaged for all initial post-mainshock damage

states. This finding is contrary to most engineers’ current perceptions. The study of the

capacities of damaged buildings and the effects of multiple earthquake ground motions on

structures are areas that need more research by the structural engineering community.

Another important area of research is to identify potential areas of Bayesian updating

in seismic risk management decision making to develop the applications in depth. Subjects

might include the impact of ground motion information, inspection levels and analysis depth

on the knowledge of seismic capacity of intact and damaged buildings. A quantitative

approach to decision making in both the post- and pre-mainshock scenarios allows one to

identify the areas in which more information gathering is required, which will help to reduce

epistemic uncertainty and improve the quality of the decision.
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