
LEARNING TO MANAGE BRIDGES SUBJECT TO
SEISMIC HAZARD USING DEEP Q-NETWORKS

PEER TRANSPORTATION SYSTEMS RESEARCH PROGRAM
Principal Investigator: Jack Baker, Stanford

Student Investigator: Gitanjali Bhattacharjee, Stanford
Department of Civil and Environmental Engineering, Stanford University

Discussion

References

Learning to manage bridges
This project investigates the application of (double) deep Q-learning to an open problem
in civil engineering: the optimal management of a network of bridges subject to seismic
hazard. The reinforcement learning agent’s goal is to manage each bridge in network
such that some network performance objective – for example, total travel time across
the network – is met over a planning horizon.

Deep Q-learning (DQN) is a reinforcement learning technique in which a neural network
(NN) approximates the action-value function, Q(s, a), where s is a state and a is an action
[1]. For this application, the function represents the future network-level performance of
the system, subject to actions taken to repair or retrofit bridges. Double deep Q-learning
(DDQN) partially decouples action selection and evaluation, reducing error in Q-value
estimates [2].

Deep Q-network inputs and outputs
The NN input is a state vector with b elements, each a fragility function parameter f of a
bridge (from CalTrans).

Unless damaged, a bridge has a non-zero f. Larger values of f indicate greater resistance
to ground shaking. The agent can do nothing to, retrofit (double the f of), or repair
(restore the original f of) each bridge. The size of the action space |A| = 3b, so the NN
outputs a vector with 3b elements, each corresponding to a predicted Q(s, a).

The figure below diagrams a NN with two HLs (of 3 and 2 nodes, respectively) for a
problem involving two bridges (b = 2) and three actions at each bridge (|A| = 9). Each of
the 9 output nodes corresponds to a predicted Q(s, a) for the input state s and a possible
action for the system. For this project, we consider three bridges; thus b = 3 and |A| = 27.

One-step episode returns
In a multi-step episode in Q-learning,

where r(s, a) is a rewards function, γ is a discount factor with value [0, 1], and s’
and a’ are the next state and next action, respectively. For a one-step episode,
this reduces to

which makes evaluation of an NN’s predictive power straightforward. Since there
are no standard NN architectures for this problem, multiple NNs were tested on
their ability to predict one-step episode returns.

Classic verification problems
We have implemented a DDQN agent and used it to solve the verification problems
CartPole-v0 and MountainCar-v0. As shown in the figures below, the agent’s
performance meets or exceeds the solution threshold for each problem, indicating
successful implementation. For CartPole, the agent used an NN with two hidden layers
(HLs) of 8 and 4 nodes. For MountainCar, the agent used an NN with three HLs of 256,
128, and 64 nodes. All HLs had rectified linear unit (ReLU) activation functions with He
uniform variance scaling initialization; the output layer used a linear activation function.

The DDQN agent solves OpenAI Gym verification problems: CartPole (left)
after 195 episodes and MountainCar (right) after 457 episodes.

The NNs’ predictive power was measured by the loss recorded on a batch of 64 one-
step episodes randomly selected from memory and periodically evaluated during
training. The following rewards function was used as a proxy for system
performance, with b = 3 bridges in the network. All actions were free. This function
will be replaced with a traffic model and real costs in future iterations.

Multiple NNs were tested, with two to
five HLs, each with five to 500 hidden
units. All HLs had ReLU activation
functions with He uniform variance
scaling initialization, while the output
layer used a linear activation function.
All NNs used the Adam optimization
algorithm and a mean-squared-error
loss metric. The best-performing NN
had two HLs, each with 300 nodes.
The DDQN agent outperformed the
DQN agent, with a minimum loss of
1.1 after 80000 episodes, compared to
2.7 for the DQN agent.

Loss of one-step return predictions
over time, with zoom inset.

Predicting one-step episode returns

1. Mnih, Volodymyr, et al. Playing Atari with deep reinforcement learning. NIPS Deep Learning Workshop, 2013.
2. van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with double Q-learning. arXiv preprint

arXiv:1509.06461, 2015.

The DDQN agent learns to repair and retrofit bridges, improving its average
episodic return with training. However, the improvement is slight. As bridge repairs
and retrofits are free under the above reward function used for testing, the agent
was expected to achieve a near-optimal return during evaluation, but did not. As
increasing the NN depth from 2 to 5 HLs did not improve results over 50k training
episodes, under-fitting may not be the primary concern. The agent trained for a
maximum of 150000 episodes in an action space of size 27. Mnih et al. trained their
agent for 10 million episodes, though it acted in much smaller action spaces (of size
4 to 18) [1]. This suggests that training may have been too short. Immediate future
work will include more closely examining how the agent policy changes with
training. The risk function will be refined to represent realistic network
performance, costs, more bridges, and a longer planning time horizon.

Longer-term results
The undiscounted return – that is,
the sum of the reward, r(s,a), at each
time-step – for a ten-year episode
ranges from -10 to 10. The agent was
evaluated every 100 training
episodes; its average return over 10
decade-long evaluation episodes
with random starting states is
plotted at left. Over 150000 training
episodes, the DDQN agent achieved
a maximum return of 6.4 during
evaluation.

In general, an agent chooses an action to
take at each time-step of an episode. In this
context, a time-step is one year. At the
beginning of each time-step, the agent has
the chance to repair or retrofit bridges. After
the agent has chosen an action, an
earthquake (from the UCERF2 catalog) may
occur. Bridges may sustain damage due to
earthquakes. Here, we consider bridges with
at least extensive damage to be “damaged”.

