Validation and Utilization of Physics-Based Simulated Ground Motions for Bridge Performance Assessment

2020 PEER Annual Meeting

The Future of Performance-Based Natural Hazards Engineering

Farzin Zareian

Acknowledgement

- Performance-based seismic assessment of skewed bridges (PEER TSRP 2008, with UCLA)
- Guidelines for Nonlinear Seismic Analysis of Ordinary Bridges: Version 2.0 (Caltrans 2011, with UCB and UCLA)
- Quantification of Variability in Performance Measures of Ordinary Bridges to Uncertainty in Seismic Loading Directionality and Its Implication in Engineering Practice. (PEER Lifelines 2012, with CSU-Chico)
- <u>Guidelines for Ground Motion modeling</u> for Performance Based Earthquake Engineering of Ordinary Bridges (Caltrans 2017)

HATSim		Ξ
HATSim		🗲 Caltran
Region*	WUS	
Latitude (Degrees)*	Verified only for Western US (WUS)	
Longitude (Degrees)*	Verified only for Western US (WUS)	
Vs30 (m/s)*		
Period of Structure (sec)*		
Hazard Level*	2% in 50 years	Progress here
Required Number of GMs*		
Do you only want the GMs that match the UHS at the specified Period of the structure?*	C Yes © No	
Sa tolerance to match UHS (g)*		
developed by Jawad Fayaz	Load Sample Values	Clear Submit Close

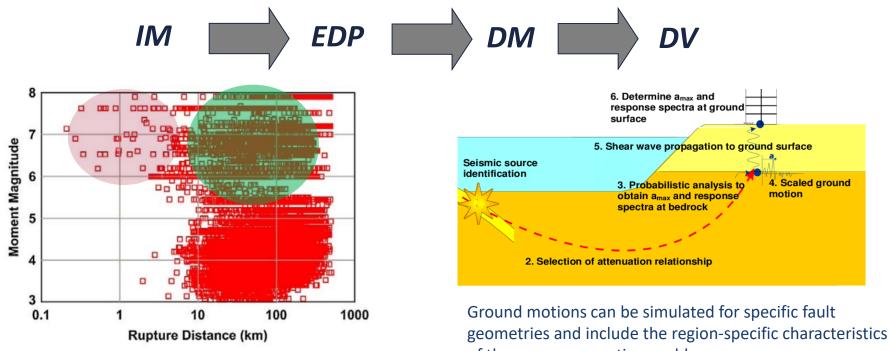
https://faculty.sites.uci.edu/pbee/links/

Acknowledgement

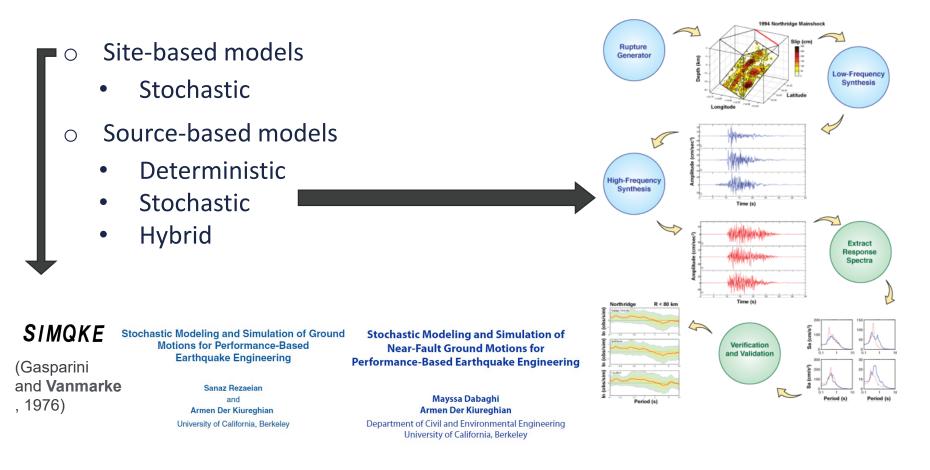
Mayssa Dabaghi

Jawad Fayaz

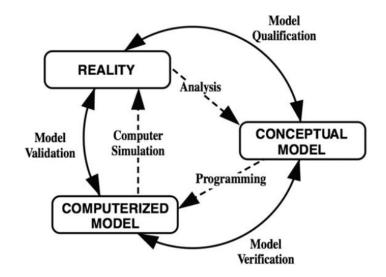
Sarah Azar


Farzin Zareian

Ground Motion Simulation Validation (GMSV) Technical Activity Group (TAG)


Need for simulated ground motions

Kenneth W. Campbell and Yousef Bozorgnia (2014) NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra: August 2014, Vol. 30, No. 3, pp. 1087-1115.


of the wave propagation problem.

Generating simulated ground motions

Validating simulated ground motions

- Key Issues in validation of simulated motions
 - Independent of simulation method
 - Dependent on engineering application
- Key steps in validation of simulated motions
 - Identify validation parameters.
 - Obtain best estimate of the validation parameters.
 - Compare validation parameters for simulated motions against their best estimate.
 - Judgement.

Oberkampf, W. L., Trucano, T. G., and Hirsch, C., 2002. Verification, validation, and predictive capability in computational engineering and physics

Validating simulated ground motions

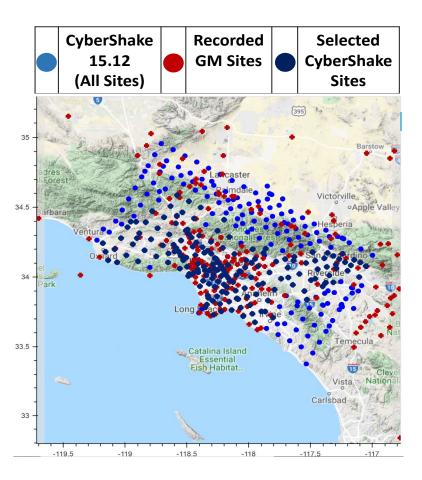
a)Comparison between waveform shapes. (comparing wiggles)

b)Spectral Acceleration and EDPs of recorded data from past earthquakes. (*Sa_{rec}* to *Sa_{sim}*, *EDP_{rec}* to *EDP_{sim}*)

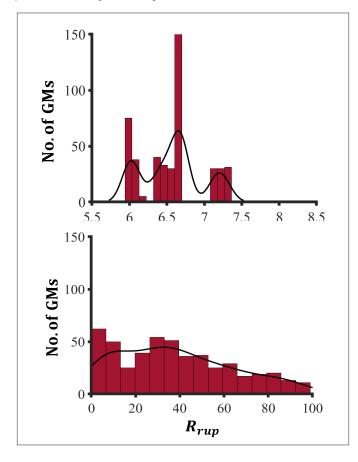
c) Enhanced Intensity Measures of recorded data from past earthquakes. (*RZZ_{rec}* to *RZZ_{sim}*)

d)Intensity Measure of simulated motions to empirical ground motion models. (IM_{sim} to IM_{GMPE})

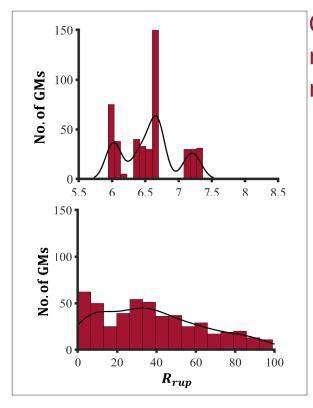
e)Enhanced Intensity Measures of simulated motions to empirical ground motion models. $(RZZ_{sim} \text{ to } RZZ_{GMPE})$


f)EDP conditioned on similarity of response spectra. (conditioned on similarity of Sa_{rec} to Sa_{sim})

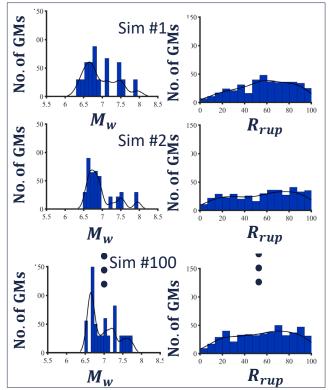
Problem Statement

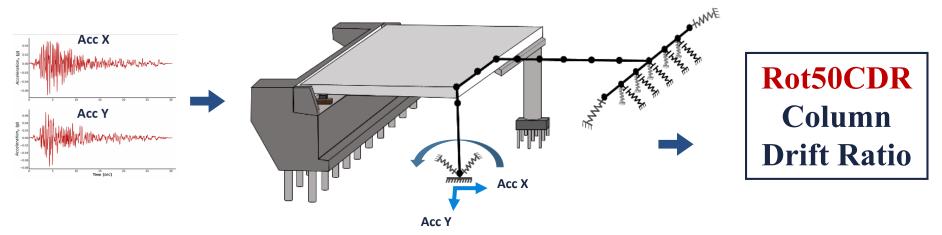

- Can we develop a validation test for simulated ground motions intended for the performance assessment of ordinary bridges?

 Can we use physics-based simulated ground motions for the performance assessment of ordinary bridges?

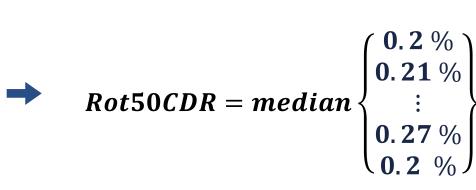

Approach

Identified distribution of event parameters (θ) in the past years from NGAWest2

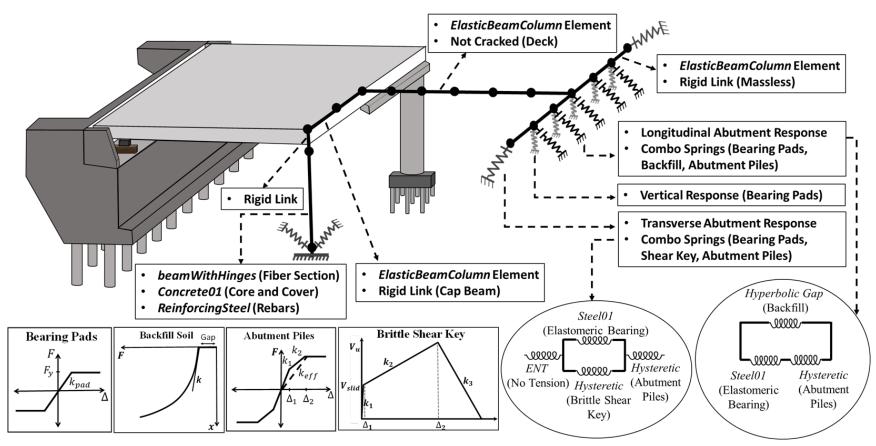

Approach


One catalogue of recorded ground motions.

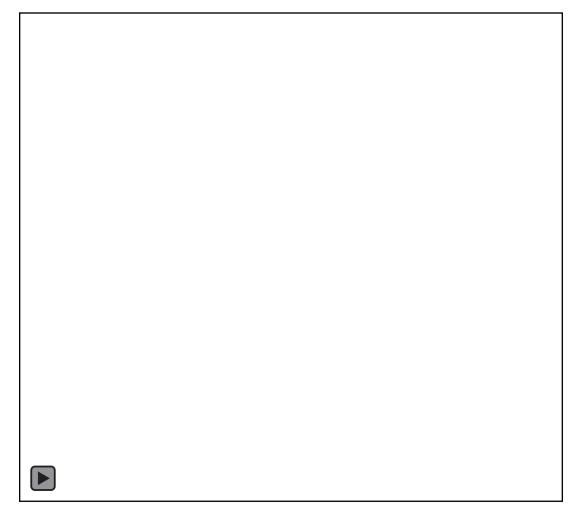
Similar statistics of event parameters (θ)


100 catalogues of simulated ground motions.

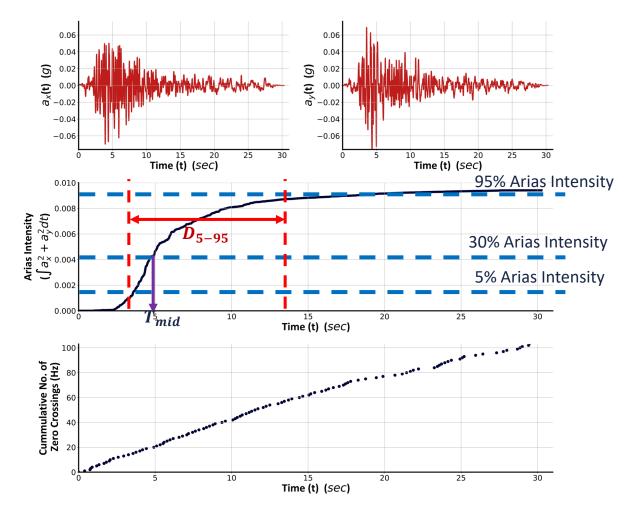
Approach



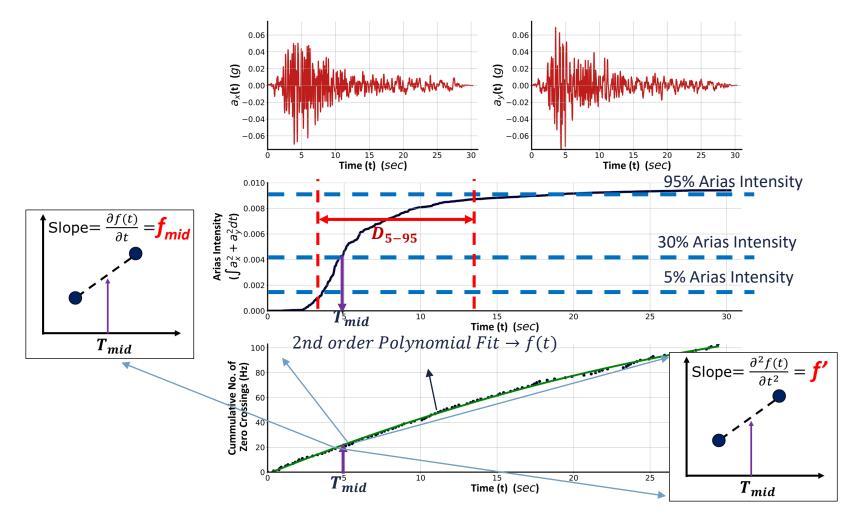
Rotation Angle	Column Drift Ratio
0 °	0.2 %
9 °	0.21 %
171 °	0.27 %
180 °	0.2 %



Approach



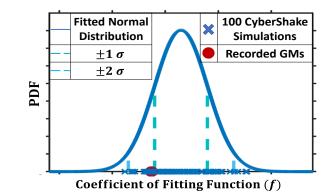
RZZ Parameters: **RZZ**(I_a , f_{mid} , D_{5-95} , etc.)



RZZ Parameters: **RZZ**(I_a , f_{mid} , D_{5-95} , etc.)

RZZ Parameters: **RZZ**(I_a , f_{mid} , D_{5-95} , etc.)

Approach


Event Parameters: $\Theta(M, R, V_{s30}, etc.) \rightarrow RZZ$ Parameters: $RZZ(I_a, f_{mid}, D_{5-95}, etc.) \rightarrow EDP: Rot50CDR$

$$\ln(\widehat{EDP}) = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip}$$

$$\ln(\widehat{RZZ}) = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip}$$

 $\ln(\widehat{EDP}) = f_{I_{a,maj}} + f_{I_{a,min}} + f_{f_{mid,maj}} + f_{f_{mid,min}} + f_{f'_{maj}} + f_{f'_{min}} + f_{T_{mid,maj}} + f_{T_{mid,maj}} + f_{T_{mid,maj}}$

Does the coefficient of each *f* for the recorded catalogue fall within ±2σ of the same coefficient of the simulated catalogues

0

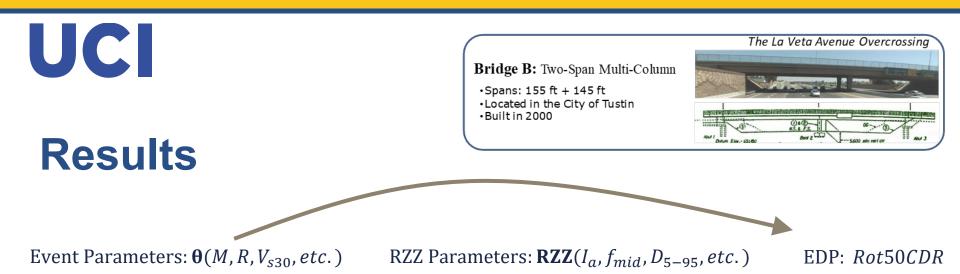
0.5

1

1.5

Approach Sample log la major Convergence = 99/100 For internal use (Intercept) c1 c5 0.25 OK MC. Signif.: 82/99 OK MC. Signif.: 99/99 OK MC. Signif.: 99/99 1.5 All MC Signif.: 1 All MC Signif .: All MC Signif.: 1 0.2 **OK** OK OK 4 Rec. Signif.: 1 Rec. Signif.: 1 Rec. Signif.: 1 0.15 3 1 0.1 2 0.5 0.05 Each Sim. 0 0 0 -6 -4 -2 0 2 4 2 2.5 -2.2 -2 -1.8 -1.6 1.5 1 c10 c8 c11 Dist. Sim. X X MC. Sign f. 84/99 **OK** MC. Signif.: 42/99 OK 2 MC. Signif.: 56/99 0.6 3 All MC Signif.: 1 All MC Signif.: 1 All MC Signif .: 1 OK OK Rec. Signif.: 0 Rec. Signif. 1 Rec. Signif.: 1 1.5 Med. Sim 0.4 2 1 0.2 0.5 The Rec. 0 0 0.5 6 -0.5 0 -2 0 2 4 -0.2 0 0.2 0.4 c16 c18 MC Catalogs: $R_{adj mean}^2 = 0.91$ All MC: $R_{adj}^2 = 0.9$ Recorded: $R_{adj}^2 = 0.72$ MC. Signif.: 61(99 All MC Signif.: 1 X OK OK MC. Signif.: 57/99 15 All MC Signif.: 1 OK 1 Rec. Signif.: 0 Rec. Signif.: 1 10 MC Cat. 0.5 Density of MC Cat 5 All MC

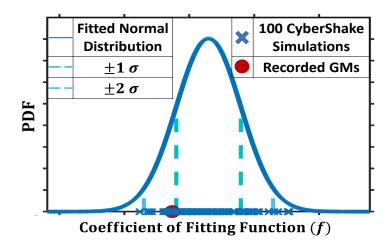
Rec


-0.1

-0.05

0

0.05


0.1

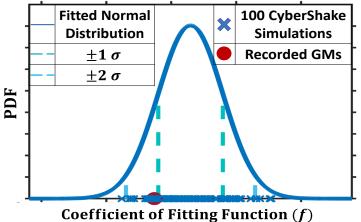
 $\ln(\widehat{EDP}) = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip}$

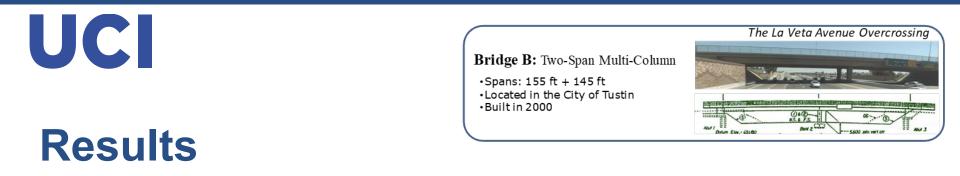
EDP	Bias	f _{mag}	f _{dis}	f _{site}	f _{sed}	f _{hyp}
$\pm 1 \sigma$		\checkmark	×	\checkmark	\checkmark	\checkmark
$\pm 2 \sigma$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Relations between the Event parameters and EDP for recorded and simulated GMs tend to be statistically similar



UCC Bridge B: Two-Span Multi-Column •Spans: 155 ft + 145 ft •Located in the City of Tustin •Built in 2000


Event Parameters: $\theta(M, R, V_{s30}, etc.)$

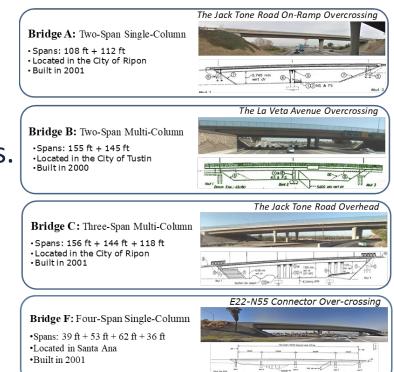

RZZ Parameters:
$$\mathbf{RZZ}(I_a, f_{mid}, D_{5-95}, etc.) \longrightarrow$$
 EDP: Rot50CDR

$$\ln(\widehat{EDP}) = f_{I_{a,maj}} + f_{I_{a,min}} + f_{f_{mid,maj}} + f_{f_{mid,min}} + f_{f'_{maj}} + f_{f'_{min}} + f_{T_{mid,maj}} + f_{T_{mid,min}}$$

Relations between the RZZ parameters and EDP for recorded and simulated GMs tend to be statistically similar (and sufficient)

Event Parameters: $\Theta(M, R, V_{s30}, etc.) \rightarrow RZZ$ Parameters: $RZZ(I_a, f_{mid}, D_{5-95}, etc.)$ EDP: Rot50CDR

 $\ln(\widehat{RZZ}) = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip}$


I _{a,maj}	Bias	f _{mag}	f _{dis}	f _{hng}	f _{site}	f _{sed}	f _{hyp}	f _{mid,maj}	Bias	f _{mag}	f _{dis}	f _{hng}	f site	f _{sed}	f _{hyp}
$\pm 1 \sigma$	\checkmark	\checkmark		\checkmark	×	×	\checkmark	$\pm 1 \sigma$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	X
<u>+</u> 2 σ	\checkmark	\checkmark	\checkmark	\checkmark	×		\checkmark	$\pm 2 \sigma$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
D _{5-95,1}	maj Bia	$s f_{mag}$	f_{dis}	f _{hng}	f _{site}	f _{sed}	f _{hyp}	f ' _{mid,ma}	ıj Bia	$s f_{mag}$	f dis	f _{hng}	f _{site}	f _{sed}	f _{hyp}
±1 0	г 🗙	X	X	\checkmark	×	×	\checkmark	$\pm 1 \sigma$	X	×	X	\checkmark	\checkmark	\checkmark	X
±2 o	г 🗸	\checkmark	\checkmark	\checkmark	\checkmark	X		$\pm 2 \sigma$		\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark

Validation of simulated motions based on RZZ parameters is ~stringent

Next Steps

- Repeat for 3 other bridge structures.
- Conduct a similar study but using Broadband simulations (event parameters of the simulation catalogues will be identical to the recorded one).

Current Differences	CyberShake	Broadband Platform				
Purpose	PSHA	Scenarios				
Methods	Graves & Pitarka	Several (7)				
Basin effects	3-dimensional	1-dimensional				
Frequency band	~~1+ z	0-100 Hz				
Computer needed	Supercomputer	Personal computer				
Validations	Relatively limited	Relatively extensive				

 Develop a validation test for simulated ground motions intended for the performance assessment of ordinary bridges.

Thank You