Hazard-Based Risk and Cost-Benefit Assessment of Temporary Bridges in California

PI: Floriana Petrone (UNR) Ph.D. Student: Mehdi Kashizadeh (UNR)

Co-PI: Sashi Kunnath (UCD)

2024 PEER Researchers' Workshop August 15, 2024

Motivation & Goal

No general consensus exists on what hazard level should be utilized in the seismic design of temporary bridges whose service life is ~5 years

□ Current practice for *ordinary bridges* is based on a hazard level of 5% probability of exceedance in 50 years (~975-year return period). Extending this approach to the design of temporary bridges would be overly conservative and not economical

□ In 2011, Caltrans issued a memo to designers advocating the use of design spectra based on 10% probability of exceedance in 10 years (~100-year return period)

However broad consensus on the most appropriate hazard level is yet to be achieved

This project carried out a systematic set of analyses across a range of hazard levels and locations of different seismicity in California to lay the foundation for the development of recommendations to achieve economical, performance-based and hazard-consistent design

Selected Temporary Bridge Typology & Locations in California

Source: ACROW Bridge. Building Bridges. Connecting People. Technical Handbook, 5th edition, 2016

ACROW superstructure (2-span continuous beam):

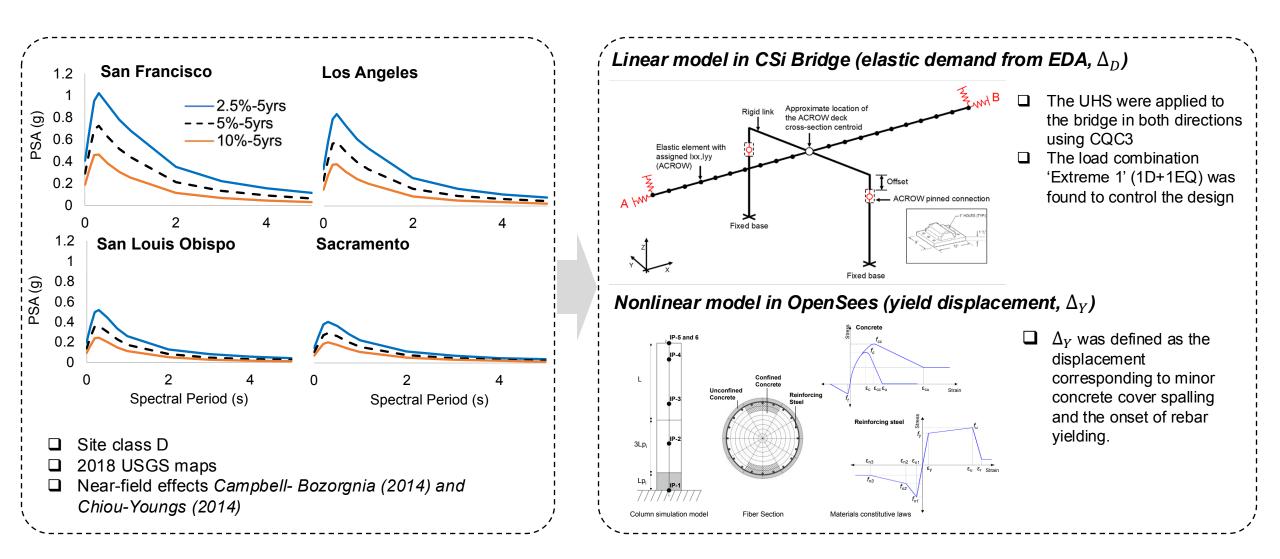
- □ Assigned geometry and inertial properties
- □ Assumed to remain linear (w/ distributed mass)

Two-column bent:

- □ Reinforced concrete (RC) columns
- Circular cross-section
- □ Nonlinear elements (plastic hinge)

Data Basin. California Department of Transportation (Caltrans) State Highway routes. (Accessed August 2024)

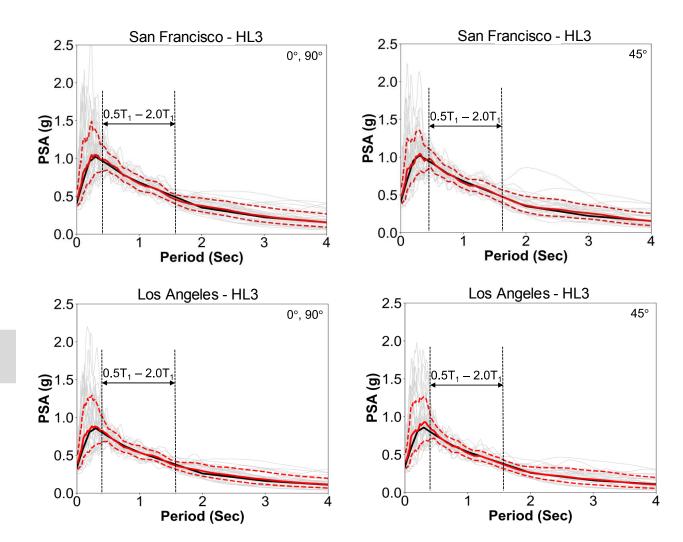
Analysis Approaches

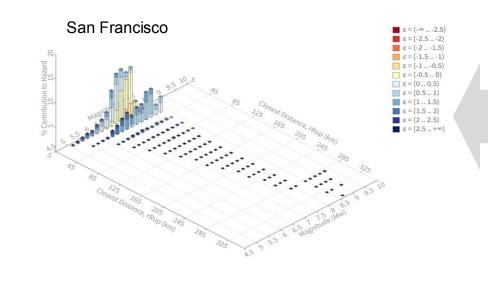

Approach #1: site-specific & hazard-consistent design

Three hazard levels (HLs) are selected (50, 100 & 200-year return period), temporary bridges are designed for each HL and location, and fragility functions are generated. *Note: The design is performed based on the strength and ductility criteria in the SDC (2019), but minimum design requirements of AASHTO (2020) are not applied.*

Approach #2: baseline bridge model

The bridge designs at the considered locations are updated to meet the *AASHTO* min reinforcement requirements, two additional HLs are investigated (500 & 1,000-year return period) to identify the level of hazard causing the bridge to attain Life-Safety performance.

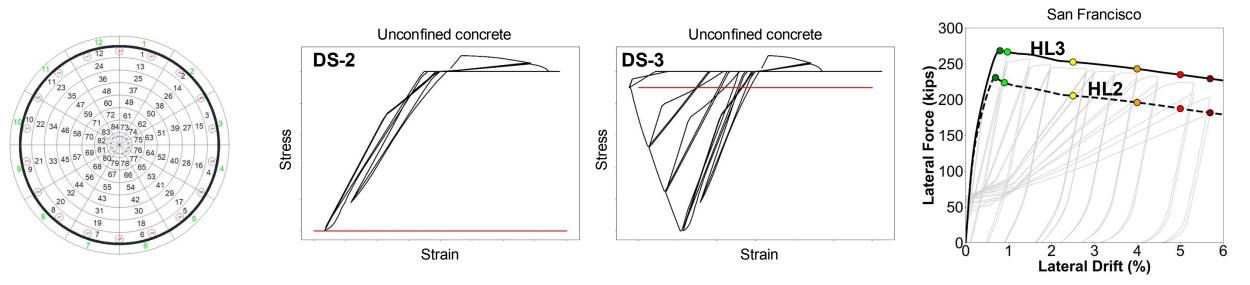

The site-specific & hazard-consistent bridge design was carried out based on the columns' displacement ductility, $\mu_D = \Delta_D / \Delta_Y$

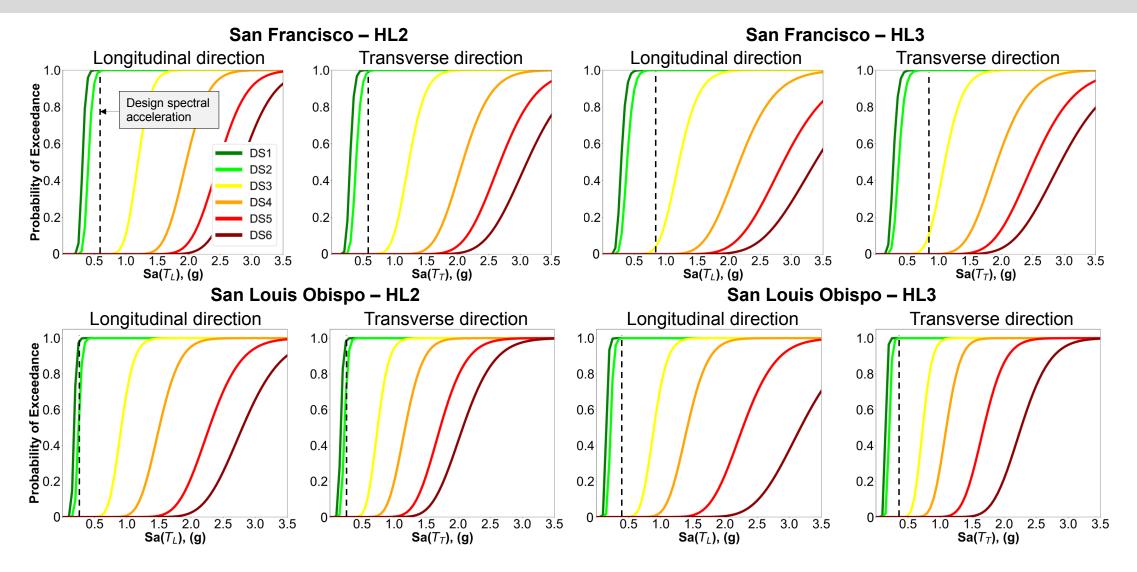


	H (ft)	D (ft)	Longitudinal		Transverse			
Location			Reinforcement			Reinforcement		
			(#Rebars) [%]			(#Rebars) [%]		
			HL1	HL2	HL3	HL1	HL2	HL3
San Francisco	24	4	15#9	20#9	26#9	1#4@6 in [0.3%]		
			[0.8%]	[1.1%]	[1.4%]			
Los Angeles			8#9	12#9	20#9			
			[0.4%]	[0.7%]	[1.1%]			
San Luis Obispo	18	3	8#7	10#7	14#7			
			[0.5%]	[0.6%]	[0.8%]	1#3@4.5 in [0.3%]		0.20/1
Sacramento			6#7	8#7	10#7			0.5 /0]
			[0.4%]	[0.5%]	[0.6%]			

Summary of design data (μ_D < 2)

Thirty pairs of ground motions were selected, rotated twice by 45 deg, and scaled <u>for each location and HL</u>

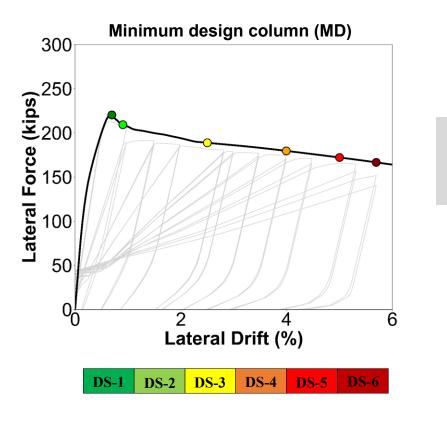


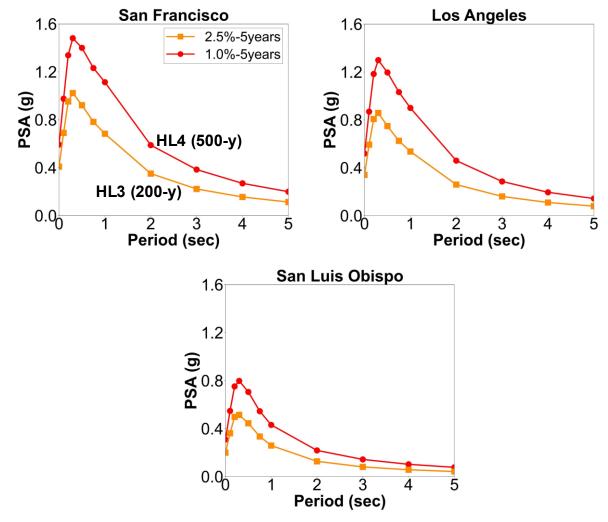


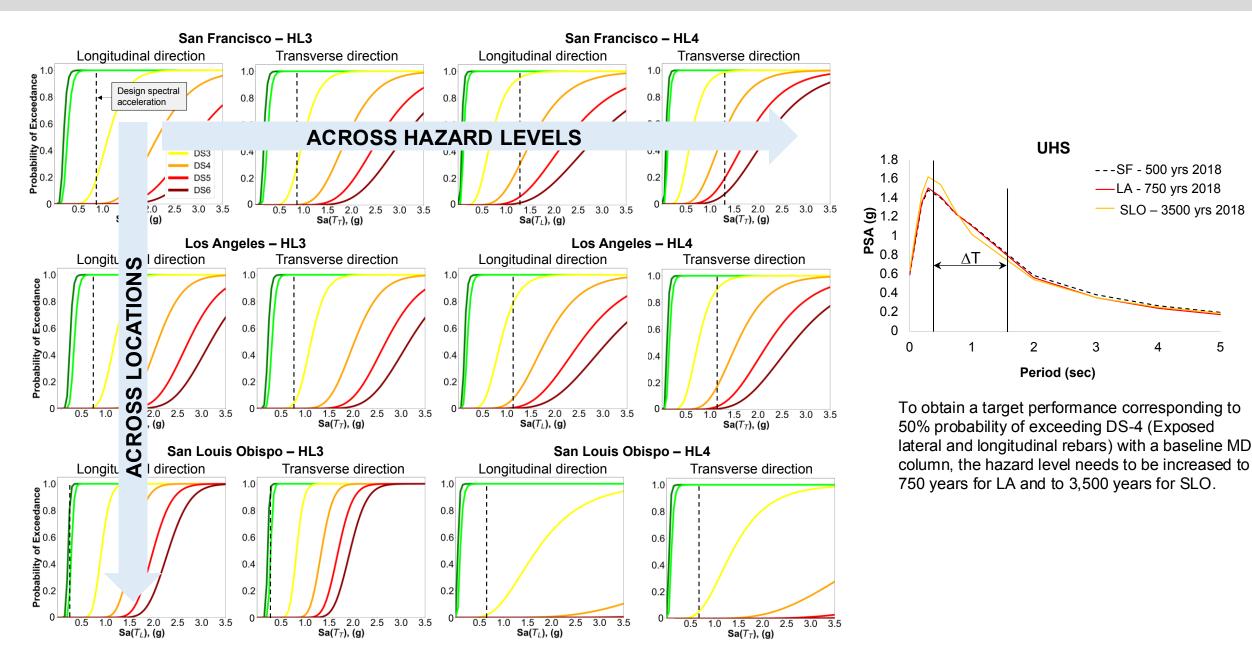
Damage States Definition

Column Damage State	Definition from Vosooghi and Saiidi (2010)	Criterion
DS-1	Flexural cracking	Zero tensile stress is attained in the concrete cover.
DS-2	Minor concrete cover spalling and shear cracks	The maximum compressive stress of unconfined concrete is attained in the concrete cover ($f_c = f'_c$) and at least one rebar has yielded
DS-3	Extensive flexural cracks and relatively large concrete cover spalling	Zero stress – corresponding to crushing – is attained in the concrete cover.
DS-4	Exposed lateral and longitudinal rebars	The maximum compressive stress is attained in the confined core concrete (f_{cc})
DS-5	Initiation of concrete core damage and initiation of longitudinal rebars bucking.	80% peak stress is attained in the confined core concrete (0.80 f_{cc}) on the softening branch
DS-6	Loss of axial load bearing due to the extensive rebar buckling and core crushing	Buckling/rupture of at least two longitudinal rebars is attained.

A set of strain and stress-based criteria were introduced based on cyclic pushover analysis






From a performance-based design perspective, this means that if temporary bridges are designed for earthquakes with return periods of 100 or 200 years, demands will not exceed **repairable damage state even when the AASHTO minimum reinforcement requirements are not met.**

Based on this evidence, this study takes a step forward and attempts to identify the HL for which a 'baseline' temporary bridge designed to strictly meet the AASHTO minimum reinforcement requirements can ensure Life Safety performance, thus avoiding the need to perform a site-specific analysis.

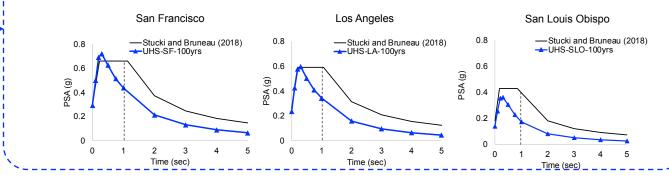
Column height (H)	24 ft
Column diameter (D)	4 ft
Long. reinforcement	1%
Transv. reinf. (hinge)	1 #5@ 8in

5

Approach #1 vs Approach #2

<u>Results from Approach#1</u> demonstrated that if a hazard-consistent design for temporary bridges across locations of different seismicity is targeted (e.g., 100-year return period), **the current design requirements for ordinary bridges must be relaxed.**

<u>Results from Approach#2</u> demonstrated that if the current minimum design requirements are extended to temporary bridges, **hazard-inconsistent designs would be obtained**, **particularly at sites of low-to-moderate seismicity**.


Concluding remarks

Objective

Provide the basis for the development of recommendations to achieve economical, performancebased and hazard-consistent design for temporary bridges. There is a need for developing <u>minimum design requirements</u> specific to bridges employing lightweight superstructures and with a service life of 5 years, for which <u>concrete creep</u> controlling current minimum reinforcement ratios is expected to be mitigated (Ziehl et al., 1998; Kim and Gong, 2018).

A satisfactory performance (DS-2) can be achieved for HL up to 200-y return period when <u>design minimum requirements for ordinary</u> <u>bridges are relaxed</u>

The *methods currently proposed in the literature to obtain reduced spectral amplitudes* can lead to overestimates of the spectral accelerations up to a factor of ~2.4 when using AASHTO-compliant design spectra

