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ABSTRACT 

The seismic loss modeling of transportation networks is a multifaceted procedure for calculating 

monetary losses due to damage to the transportation links in an earthquake.  This report focuses 

on providing a rational method to evaluate damage potential and to assess probable highway 

bridge losses for critical decision making regarding the post-earthquake safety and repair of a 

highway network.  Loss fragilities were defined for each individual bridge using PEER’s 

performance-based earthquake engineering framework.  Decision variables were related to 

earthquake intensity through a series of disaggregated models (demand, damage, and loss).  The 

fragilities provided in this report are intended for application in two ways.  First, bridge 

designers may use them to investigate how variation of bridge design parameters is reflected in 

the amount of expected losses after an earthquake.  Second, highway network planners may use 

bridge fragilities to more reliably evaluate the losses in a highway transportation network. 

In the process of developing bridge fragilities, intensity measures were first coupled with 

engineering demand parameters to formulate probabilistic demand models.  Two damage models 

were then formulated.  Component damage models utilized experimental data to predict response 

levels at which observable damage states were reached.  System damage models utilized finite 

element reliability analysis to predict the loss of lateral and vertical load-carrying capacity.  

Improved methods for computing system damage were introduced.  Last, two loss models were 

formulated.  Component damage states were described in terms of repair costs of returning 

bridges to full functionality.  System load-loss states were described in terms of bridge traffic 

capacity and collapse prevention.  System loss fragilities were enhanced using the same 

improved methods developed for damage models.  
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1 Introduction 

1.1 DECISION MAKING FOR HIGHWAY BRIDGES 

Most decision criteria ultimately assume a monetary decision-making form, even when they 

include a measure of the loss of life.  Therefore, the terms “cost,” and “cost due to loss” are used 

throughout this decision-making discussion.  For the case of reinforced-concrete highway 

overpass bridges in California, there are two principal lines of development that contribute to 

economic-based decision making.  The total expected loss after an earthquake includes not only 

the cost associated with damage to the structure itself (direct losses), but also the cost associated 

with the loss of function (indirect losses).  Functional loss is particularly relevant in the case of a 

highway network system because the indirect losses to an urban area might greatly exceed the 

direct losses.  Therefore, in this report, loss is defined as decision making based on cost and loss 

of function.  The actual costs due to the loss of function are not presented here; they are the 

subjects of transportation network simulations.   

Large-scale simulations on urban regions and transportation networks have been the 

focus of numerous projects, such as HAZUS (HAZUS 1997), REDARS (Werner 2000), and 

associated PEER highway demonstration research (Moore 2000).  The goal of such simulations 

is to provide an economic impact analysis of damage to a transportation system in an extreme 

event, such as an earthquake, on an urban area.  The economic impact can be defined in terms of 

damaged and failed links in the transportation network and link costs associated with traffic 

flow.  Identification of critical paths is an important part of post-earthquake emergency response.  

Economic impact is also defined explicitly in terms of monetary losses.  Direct losses to the 

region include damage to components (bridges) as well as time delays in the damaged network.  

Indirect losses are due to the interruption of goods and services to those businesses affected by 

the earthquake.   
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Highway network risk assessment is performed as a decision-making aid in both the pre-

earthquake and post-earthquake settings to make better-informed decisions on the allocation of 

resources for retrofit, design, and the improved redundancy of a network.  Similarly, post-

earthquake repair and capacity management are improved by the outcome of network analysis.  

Bridges can be considered as the critical links in a highway network that are vulnerable to 

earthquake hazard both in terms of ground shaking and ground deformation.  Inputs into such 

simulations are bridge-level assessments of repair and loss of function.  This study focuses solely 

on individual bridges in the network and on methods for improving the prediction of direct and 

indirect costs due to damage and loss of function to such bridges treated individually. 

As applied to individual highway bridges, there are two categories of decision criteria.  

First, a bridge functional decision criterion may be defined as the post-earthquake operational 

state of the bridge.  This implies a graded system of performance objectives involving lane 

closures, reduction in traffic volume, or complete bridge closure that is useful for traffic network 

modeling.  The loss of function can be assessed directly after an earthquake as well as at several 

stages of repair in the aftermath of the quake.  This return to functionality over time plays an 

important role in the highway network simulations.  Second, a bridge repair decision criterion is 

the time (cost) of bridge repair and restoration.  This decision variable is triggered only if the 

bridge function decision criterion crosses the repair threshold.  Therefore, the total cost (due to 

an individual bridge in the network) for a given earthquake scenario is the sum of the indirect (or 

operational) costs from the loss of function, and the direct costs to restore previous functionality.  

Given the need to assess both the direct and indirect losses to a highway network, and 

therefore individual bridges in that network, it follows that two parallel lines of development are 

necessary for applying a performance-based methodology to earthquake engineering of highway 

bridges.  In this report, cases are formulated and presented in this report for each of these lines of 

development.  The first case demonstrates bridge component-level decision making (distinctly 

different from bridges as components in a network setting), and is therefore applicable to 

decisions regarding direct losses.  The second case demonstrates bridge-level decision making, 

and is therefore applicable to indirect loss assessment (at the individual bridge level) and 

decision making.  The framework presented provides the background for probabilistic 

assessments that will be used in larger-scale (i.e., network) loss estimation research in the future.  

Consequently, no transportation network calibration of the individual loss models (direct and 

indirect costs) was made in this study.   
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In the evolving world of performance-based earthquake engineering, engineers are 

transitioning away from development of deterministic design criteria for site-specific seismic 

hazard.  Describing the resulting structural performance as safe or unsafe is misleading when 

considering the uncertainty inherent in not only the seismic hazard, but also in structural capacity 

and function.  Therefore, current seismic performance assessment methodologies are tending 

toward fragility curves as a means of describing the fragility of structures, such as highway 

bridges, under uncertain input.  Fragility curves describe probabilities of exceeding design or 

performance criteria at different levels of seismic input intensity.  These are particularly useful 

when applied to highway bridges because in a transportation network setting, numerous bridges 

of the same class may exist in a spatially distributed network with differing expected seismic 

hazard. 

The formulation of bridge fragility curves, sometimes termed vulnerability curves, has 

historically transitioned from empirical to analytical methods.  The development of empirical 

fragility curves was motivated by the reconnaissance data obtained from, in particular, two 

recent urban earthquakes, namely the 1994 Northridge and 1995 Hyogo-ken Nanbu events.  

Basöz and Kiremidjian developed fragility curves (Basöz 1997, 1999a) for different observed 

damage states from the Northridge (and Loma Prieta) data.  Yamazaki developed similar curves 

using the Kobe event (Yamazaki 1998).  Experimental fragility curves suffer from numerous 

pitfalls, including lack of sample points for all damage states, subjective or unverifiable 

definitions of damage states, and lack of correlation with bridge geometry and structural 

properties.  However, they have been useful in providing a basic form for highway bridge 

fragilities and motivating analytical fragility work.  

A large array of analytical bridge fragility studies has been undertaken.  For example, 

Mander and Basöz (Basöz 1999b) developed a theoretical approach to developing fragility 

curves for HAZUS, compatible with categories of bridges from the National Bridge Inventory 

(NBI) and new proposed subcategories by Basöz (1996).  A capacity spectrum method was the 

basis for these curves, with capacity derived from previous experimental and analytical work.  

These curves, and associated repair cost information, were compared with the Northridge 

empirical data.  Karim and Yamazaki used simplified analysis and finite element techniques to 

develop analytical curves that were subsequently compared to the Kobe data (Karim 2001).  This 

study incorporated the use of ground motion time histories in the demand simulation, but made 

use of ductility and hysteretic energy-based damage states.  Elnashai compared Northridge and 
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Kobe empirical curves to a more rigorous analytical method for reinforced concrete highway 

bridges (Elnashai 2003).  Uncertainty in the ground motions and structural components was 

included; however, damage was still defined in terms of deformation-based demand quantities. 

Analytical work is, for the most part, based on mimicking the damage states obtained 

from empirical studies.  Previous analytical work has neither consistently addressed the 

uncertainty in both the demand and capacity sides of the problem, nor extended the fragility 

concept to the decision or loss level.  A rigorous probabilistic study by Gardoni (2002) 

introduced reliability into the prediction of reinforced concrete bridge fragility by updating 

traditional deterministic predictions of capacity and demand using a Bayesian approach.  Sample 

fragility curves were generated for the one- and two-bent reinforced concrete highway bridges 

used in this study.  Shear and deformation failure limit states were considered for univariate 

fragility curves, as well as for failure of these limit states in series.  The demand was determined 

from inelastic spectra using variations on multiple degree-of-freedom nonlinear pushover 

analyses.   

Another method of presenting performance-based results is the hazard curve.  However, 

derivation of hazard curves requires site-specific hazard and is therefore not applicable to all 

bridges in a spatially distributed highway network.  Therefore, the remainder of this report will 

focus primarily on the development of bridge fragility curves.  The ultimate goal of a highway 

bridge decision-making procedure then becomes the generation of the conditional probability of 

exceeding a loss measure (or decision variable), given the earthquake intensity.  Such fragilities 

may subsequently be utilized by others to make better-informed decisions regarding network loss 

modeling and loss estimation. 

1.2 PEER DECISION-MAKING FRAMEWORK 

Recent developments in the design and analysis of structures under seismic loading have led 

away from traditional code-based, prescriptive design strategies and toward probabilistic 

strategies.  Probabilistic methods allow for the definition of performance acceptance criteria 

under uncertain hazard levels.  The Pacific Earthquake Engineering Research Center (PEER) 

developed a probabilistic framework for performance-based earthquake engineering (PBEE) in 

the effort to achieve a consistent reliability-based approach for seismic decision making.  

Performance objectives are defined in terms of annual frequencies of socio-economic decision 
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variables (DVs) being exceeded in the seismic hazard environment of the urban region and site 

under consideration.  While a general probabilistic model directly relating DVs to measures 

describing the site seismicity is useful to owners, decision makers, and engineers alike, it is too 

complex to derive directly. 

Instead, the PEER performance-based design and evaluation framework utilizes the Total 

Probability Theorem to disaggregate the problem (Cornell 2000) into several interim 

probabilistic models that address sources of randomness and uncertainty more rigorously.  This 

disaggregation of the decision-making framework involves global or component damage 

measures (DM > dm), structural engineering demand parameters (EDP > edp), and seismic 

hazard intensity measures (IM > im).  The limit-state probability of a DV related to a structure 

exceeding a limiting value, dv, for a single earthquake event is shown in Equation 1.1.  The 

convention of probabilistic variable names in uppercase text and values of random variables in 

lowercase text is adopted throughout this report.  

 
( ) ( ) ( )

( ) ( )imdGimedpdG

edpdmdGdmdvGdvDVP

IMIMEDP
dm edp im

EDPDMDMDV

⋅

⋅⋅=> ∫ ∫ ∫
|

||

|

||
 (1.1) 

If it is assumed that the arrival of earthquakes follows a Poisson process (with mean rate of 

occurrence ν), then the annual hazard (of an earthquake intensity IM exceeding a value im) is 

equal to λIM im( )= ν ⋅ P IM > im( ).  However, due to the presence of non-renewing uncertainties 

in the structure, correlations between events prevent the writing of similar annual hazard 

relations for EDP, DM, and DV.  The probability of exceeding a limit value dv at least once in a 

year is approximately equal to the mean annual frequency only under assumptions regarding the 

non-renewing nature of uncertainties (Der Kiureghian 2005).  The annual probability 

approximation always yields a conservative value for conventional structures and is sufficiently 

accurate for smaller probability values (less than 0.01).  

The commonly recognized form of PEER framing equation (Cornell 2000) is shown in 

Equation 1.2.  The term λDV(dv) is the mean annual frequency (MAF) of a DV exceeding a 

limiting value dv.  This is a robust quantity because Equation 1.2 holds even in the presence of 

non-renewing uncertainties and non-Poisson renewal models.  Therefore, the MAF is implied for 

the remainder of the report when discussing hazard. 

 ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ⋅⋅⋅=
dm edp im

DV imdimedpdGedpdmdGdmdvGdv λλ |||  (1.2) 
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 The interim probabilistic models in Equations 1.1 and 1.2 are: 

• G(DV|DM) is a loss or performance model, predicting the complementary cumulative 

distribution of a DV (such as repair cost or traffic capacity reduction), conditioned on a 

DM; 

• G(DM|EDP) is a capacity or damage model, predicting the complementary cumulative 

distribution of a DM (such as amount of spalling or crack density), conditioned on an EDP; 

• G(EDP|IM) is a demand model, predicting the complementary cumulative distribution of 

an EDP (such as drift ratio or steel rebar stress), conditioned on a seismic hazard IM; and 

• G(IM) is a seismic hazard model, predicting the complementary cumulative distribution of 

a seismic hazard IM (such as peak ground acceleration) in a single earthquake event. 

• λ(IM) is a seismic hazard model, predicting the MAF (of exceeding) of an IM in a 

particular seismic hazard environment. 

 

 The application of the total probability theorem in Equation 1.1 implies that the interim 

models are mutually exclusive and collectively exhaustive.  The intermediate variables (DM, 

EDP, IM) are chosen so that probability conditioning is not carried over from one model to the 

next, known as “Markovian dependence” for stochastic processes.  Additionally, the 

uncertainties over the full range of model variables are systematically addressed and propagated, 

making the selection of each interim model critical to the final outcome.  Nevertheless, these 

independent models can be designed separately and used interchangeably, making it easier to 

develop a general performance-based framework for decision making (Mackie 2003).  The 

disaggregated nature of the framework makes it applicable to a wide range of earthquake 

engineering problems, not just for highway bridges.   

 Disaggregation of the decision-making process is depicted in Figure 1.1 for the case of a 

highway overpass bridge.  First, seismic hazards, evaluated using a regional hazard model, are 

expressed using IMs.  A demand model, built for this class of bridges, is then used to correlate 

hazard IMs to structural EDPs for this bridge.  Next, a damage model is used to relate structural 

EDPs to DMs.  Finally, DMs are used to effect the loss in performance, evaluated in terms of 

DVs.  Decision variables describe the performance of a typical overpass bridge after an 

earthquake in terms of its function in a regional traffic network.  This includes reduction in load-

carrying capacity and assessment of speed limits and traffic capacity, or duration of bridge 

closure and cost of bridge repair (Mackie 2003). 
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Fig. 1.1  PEER performance-based earthquake engineering framework 

 

The results of a complete performance-based evaluation (Eq. 1.2) of an overpass bridge 

would be the mean annual frequencies of exceeding decision variable values.  In addition, the 

site hazard need not necessarily be convolved with the loss models.  The framing equation also 

predicts standard fragility curves.  Fragility is defined as the conditional probability of exceeding 

a prescribed limit state, given a level of earthquake intensity.  For each limit state, there is a 

unique cumulative distribution function (CDF) with ground motion intensity measure (IM) 

values on the horizontal axis as an outcome of fragility analysis.  If decision variables are 

conditioned on the earthquake IM, the framing equation yields a standard loss- or decision-

fragility curve (Eq. 1.3). 

 ( ) ( ) ( ) ( )∫ ∫ ⋅⋅==>
edp

IMEDP
dm

EDPDMDMDV imedpdGedpdmdGdmdvGimIMdvDVP |||| ||| (1.3) 

However, the power of the PEER framework lies in the ability to disaggregate the total process 

into interim models.  Therefore, at each interim level (demand and damage), it is also possible to 

cast the framework in either an annual frequency or fragility format.  The interim cumulative 

distribution functions (fragility curves) obtained are also useful for loss modeling and decision 

making of individual highway bridges. 
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1.2.1 Demand Model 

Demand models are usually formulated using nonlinear dynamic finite-element simulations 

under multiple ground motions.  This does not preclude the demand models from being 

generated experimentally; however, the time cost associated with analysis is lower.  Each ground 

motion can be described by one or more IMs.  These IMs are selected to provide unique 

characteristic information about the earthquake of interest.  The response of a structure subjected 

to an earthquake motion, characterized by the descriptor IM, is designated an engineering 

demand parameter (EDP).  In the case of highway overpass bridges, possible EDPs are grouped 

into three categories.  Global EDPs describe overall bridge behavior, such as maximum column 

displacement, motion at the abutments, and residual displacements.  Intermediate EDPs describe 

performance of bridge structural components, such as maximum column curvature, and shear 

force in the abutment shear tabs.  Finally, local EDPs describe material level responses (stress 

and strain) anywhere of interest in the bridge.  

 The result of probabilistic seismic demand analysis (PSDA) is a probabilistic seismic 

demand model (PSDM).  The PSDM is the mathematical model that relates IMs to EDPs.  It is 

possible to use stripe analysis to find a probability distribution of EDPs for a single IM level.  A 

stripe analysis involves scaling all ground motions to the same intensity level.  Several stripe 

analyses together are termed an “incremental dynamic analysis” (IDA) (Vamvatsikos 2002).  

Alternatively, PSDA can be performed using a cloud approach.  The cloud describes the 

selection of earthquakes with variable IMs.  Both methods can be used to determine the median 

(or mean) relationship between EDP and IM, and an associated measure of uncertainty.  

Parameters of the median relationship and the associated uncertainty completely define the 

PSDM. 

1.2.2 Damage Model 

Damage models can be obtained from a variety of sources.  The most common source is 

experimental tests of structural components, subassemblies, or systems.  In this context, damage 

models are often termed “capacity models.”  The response predicted by analytical demand 

models does not necessarily correlate to physical descriptions of damage, failure, and collapse.  

Therefore, observed, experimental, or analytical estimates of damage are often incorporated into 
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the PBEE formulation by determining capacity and damage induced at different levels of 

structural response.  Response is described in terms of EDPs and damage in terms of damage 

measures (DM).  DMs are usually discrete, such as observations of the onset of certain damage 

states.  Examples of damage states of reinforced concrete columns include cracking, spalling, 

transverse reinforcement fracture, longitudinal reinforcement buckling, and failure.  However, it 

is also possible to determine continuous DMs such as loss of lateral load-carrying capacity.   

There are numerous sources of uncertainty in experimental results and subjective damage 

assessments; therefore, the capacity approach is sometimes performed analytically using finite 

element reliability analysis.  This is particularly useful when considering bridge systems rather 

than individual components because little experimental data are available for large 

configurations or subassemblies.  Reliability analysis also allows development of a mathematical 

model specifically for the bridge of concern, rather than interpolating between previous 

experimental geometry and material designs.  Reliability analyses introduce epistemic 

uncertainties related to the finite element model used but may reduce the uncertainties inherent to 

experimental testing.  The uncertainties captured by the two approaches should not necessarily 

be assumed equal. 

Damage states are often individual discrete values, rather than continuous variables.  Due 

to the discrete nature of most DMs, or the individual determination of DM limit states, it is often 

difficult to describe a median (or mean) DM relationship conditioned on EDP, as was done in the 

demand model case.  There is no loss of generality in the method, however, as the damage 

assessment procedure invariably provides the probability of exceeding a limit state, given an 

EDP level.  This CDF can be used without modification in the annual frequency or fragility 

formulations of Equations 1.2 and 1.3, respectively.  In the case of a continuous DM, the 

mathematical model relating EDPs to DMs is sought.  Parameters of the median relationship 

between EDP and DM and the associated uncertainty completely define the damage model. 

1.2.3 Loss Model 

Empirical and analytical sources of loss data for highway overpass bridges (needed to formulate 

a loss model) are sparse.  Loss model, or alternatively decision model, data can be obtained from 

professional surveys and opinion, reconnaissance data from previous earthquakes, repair data 

from post-earthquake reconstruction, or inference of policy decisions.  Sometimes these data 
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already exist but were not systematically applied for the purpose of loss estimation.  Some loss 

model data may be obtainable from the research laboratory through repair of experimental 

specimens or from construction estimates using Means (RS Means 2004) catalogs.  The decision 

criteria does not need to include repair cost or repair time, although previous research has 

focused largely on these.  The return of a highway bridge to differing degrees of functionality in 

a highway network is also an important loss criterion.  Functionality may be measured in terms 

of lateral load resistance in aftershocks, traffic volume, lane and speed reductions, or access to 

emergency vehicles. 

As with probabilistic damage models, it may not be possible to describe a continuous 

relationship between DMs and DVs.  This is compounded by the fact that both the DM and the 

DV may be discrete variables.  Decision quantities are highly likely to be binary in nature.  For 

example, highway bridges might be categorized as either open or closed.  Therefore, loss models 

are often also in the form of probabilities of exceeding explicit discrete decision states given 

different DMs (CDFs).   However, when both the DM and DV are chosen as continuous 

variables, the median relationship between DM and DV and the associated uncertainty 

completely define the loss model.  

1.3 HIGHWAY BRIDGE CLASS 

The Federal Highway Administration (FHWA) maintains a national bridge inventory (FHWA 

2003).  Highway bridges are classified according to material type and structure type.  From the 

2003 census of California bridges, 15670 (66%) bridges were constructed of either concrete or 

prestressed concrete.  The structural types included slab, stringer/multi-beam or girder, box beam 

or girder, and culvert.  A total of 10291 (43%) of the total are either box beam or girder or 

culvert type.  Additionally, from highway network studies specifically on the San Francisco Bay 

Area (Moore 2000; Kiremidjian 2002), a total of 2640 bridges were further characterized by 

type, year built, number of spans, etc.  Of this subset, 1415 (54%) were reinforced concrete box 

beam, girder, or culvert.  The predominance of these bridge characteristics guided the selection 

of the bridge type investigated in this study.   

Typical new reinforced concrete California highway overpass bridges were selected as 

the class of structures in this study.  A class is defined by geometry, components, and methods of 

design.  Ideally, each of these can be investigated in a parameter sensitivity study using the 
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resulting PSDMs.  The bridges presented in this report were designed according to Caltrans’ 

Seismic Design Criteria (Caltrans 1999) for reinforced concrete bridges.  Consistent with the 

displacement-based design approach used by Caltrans for new bridges, it was assumed that 

reinforced concrete columns developed plastic hinges in flexure rather than experienced shear 

failure (Mackie 2003). 

 Structural configurations for bridges in this class are shown in Figure 1.2.  Longitudinal 

variations include single-span, two-span, and three-span overpasses (including abutments) and 

stand-alone components of multi-span viaducts divided at expansion joints.  In the transverse 

direction, typical California overpasses have single, two-column, or multi-column bents.  Only 

single-column bents (in the transverse direction) were considered for all of the bridges in this 

study.  At abutments and expansion joints these bridges have varying degrees of restraint.   

 

 

Fig. 1.2  Bridge longitudinal and transverse configurations 

 

Common to all bridge types is a single-column bent with uniform circular cross section 

over the complete column height above grade, continuing into an integral Type I pile-shaft 
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foundation.  All bridges are of reinforced concrete construction, including a continuous 

reinforced concrete box girder superstructure, as designed by Caltrans (Yashinsky 2000).  All 

bridges in the class were seated on cohesionless sand sites with uniform soil profile properties.  

The water table was assumed to be below the base of the pile shafts.   

Each individual bridge generated for analysis was not intended to correspond directly to 

any existing bridge design.  Rather, a bridge portfolio was developed to represent a class of 

highway overpass bridges with varying designs.  The portfolio would then cover a full range of 

bridge design possibilities.  Starting from a realistic base bridge configuration, the suite of 

bridges was developed by varying certain design parameters.  The spectrum of designs in the 

bridge portfolio was made possible by the parametric variation of these bridge design 

parameters, using acceptable engineering ranges for each.  Each parameter was varied against the 

base configuration, not necessarily against all the other parameters.  This limited the number of 

bridges analyzed to a scope acceptable for the rigorous amount of computations required 

(Mackie 2003).  Details of the design strength of the base bridge configuration are contained in 

Section 2.1. 

1.4 ORGANIZATION OF REPORT 

The analytical bridge models developed for this study were common to all the PBEE models and 

their analysis methods.  Therefore, they are detailed separately in Chapter 2.  The subsequent 

chapters each address one of the interim models of the PEER decision-making formulation (Eq. 

1.2).  Consequently, each chapter stands alone as a useful engineering entity but also is integral 

when building up results in the overall PBEE format.  The interim models are addressed in order 

moving from the right of Equation 1.2 to the left. 

The probabilistic demand model is addressed in Chapter 3.  This chapter focuses on the 

nuances of developing a large array of probabilistic seismic demand models for the highway 

bridges in this study.  This includes choice of analysis methods, optimal choice of constituent 

variables, and sensitivity to different bridge design parameters.  Development of a probabilistic 

damage, or capacity, model is addressed in Chapter 4.  The damage models are formulated both 

analytically and based on results from thousands of experimental studies.  These damage models 

are developed in parallel for the component and bridge level to address the need for direct and 

indirect losses, respectively.  Chapter 5 introduces the specific loss models pertaining to highway 
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bridges.  The decision variables in Chapter 5 are closely related to the two damage variable 

counterparts in Chapter 4. 

Also discussed in each probabilistic model chapter is coupling with previous models to 

obtain more meaningful loss modeling results.  Specifically, fragilities and hazard curves are 

generated at the end of each chapter.  Finally, a general PBEE formulation is presented for the 

entire decision-making process in Chapter 6.  This chapter includes examples with some 

simplifying assumptions and resulting descriptive equations.  Conclusions, future work, and 

appendices wrap up the report. 

 



 

2 Analytical Bridge Models 

Bridge models were generated for each of the overpass configurations (Fig. 1.2) shown in the 

highway bridge class.  Primary model development took place on single-column-per-bent, 

single-bent bridges for demand model generation.  Such a bridge subclass was then used to 

further investigate damage and loss models.  The single-bent model was subsequently extended 

to two- and three-bent bridges, but only to investigate demand model validity on different 

structures in the bridge class.   

The PEER OpenSees (McKenna 2000; OpenSees) program was selected as the nonlinear 

finite element platform for all computational aspects of this study.  Particular effort was made to 

accurately model the nonlinear behavior of all the bridge components contributing to seismic 

response.  A more realistic bridge model allowed higher confidence in the response over other 

simplified models or analysis methods (elastic analysis, e.g.).  Even though the benefits of using 

a more complex model were not evident in the medians of the demand models, a significant 

reduction of the modeling (epistemic) uncertainty was achieved.  This was reflected directly in 

the reduction of total dispersions inherent to the demand models and the overall improvement in 

the confidence afforded by the computed fragility curves.  

2.1 SINGLE-BENT BRIDGE 

The OpenSees single-bent bridge model was derived from the same single-bent bridge used in 

previous PEER research (Mackie 2003).  More detailed analytical and material model 

information is contained therein.  Only a summary, including modifications for this study, is 

included here.  A reduction in the number of design parameter variations performed was 

necessary to pursue damage and loss models.  More in-depth treatment of design parameter 

variation in demand models is contained elsewhere (Mackie 2002b, 2003).   

 



 16

2.1.1 Design Parameters 

Analyses were performed for nine different design parameters, detailed in Table 2.1 along with 

the ranges assigned to each of the parameters.  Four equally spaced values of each parameter 

were chosen.  The design parameters are shown graphically in Figure 2.1.  The span length 

parameter (L) was applied directly to each of the equal spans.  Column height above grade was 

then obtained from the span-to-column height ratio (L/H).  As the span-to-column height ratio 

(L/H) was varied, the length (L) was held constant, thereby altering only the column height (H).  

Conversely, as L was varied, the L/H ratio remained constant, thereby making the L design 

parameter a measure of the overall size of the bridge, not just the span lengths (Mackie 2003). 

 

Table 2.1  Design parameter variation for single-bent overpass bridge 

Description Parameter Range 

Span length L 18–55 m (60–180 ft) 

Span-to-column height ratio L/H 1.2–3.5 

Column-to-superstructure dimension ratio Dc/Ds 0.67–1.33 

Reinforcement nominal yield strength fy 470–655 MPa (68–95 ksi) 

Concrete nominal strength f'c 20–55 MPa (3–8 ksi) 

Longitudinal reinforcement ratio ρs,long 1–4% 

Transverse reinforcement ratio ρs,trans 0.4–1.1% 

Foundation soil internal friction angle φ’ 20, 27, 35, 42 (°) 

Foundation soil dry unit weight γ’ 16.5 kN/m3 (105 pcf), 17.3 

(100), 18.1 (115), 21.2 (135) 

Additional bridge dead load Wt 10–75% self-weight 

Deck depth Ds 1.5 m (5 ft) 

 

 The column-to-superstructure dimension ratio (Dc/Ds) was used to size the column, given 

a fixed superstructure deck depth detailed below.  The ranges of this parameter were governed by 

the Caltrans SDC (Caltrans 1999).  Material properties were varied for both concrete and 

reinforcing steel.  Steel nominal yield strength (fy) ranged from fye in the SDC document to 

higher values that can be expected for modern reinforcing steel.  These steel properties were 
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applied to the column for both longitudinal (ρs,l) and transverse (ρs,t) reinforcement.  The 

nominal unconfined concrete strength (f'c) was varied between strengths universally available in 

modern construction practice. 
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Fig. 2.1  Single-bent bridge design parameters 

 

 Different possible site conditions below grade were accounted for through the use of 

nonlinear soil p-y springs acting on the pile shafts.  The properties of these springs were 

developed from values of the internal friction angle (φ’) and the unit weight (γ’) of the assumed 

continuous soil profile (see Section 2.1.3).  The model soil property values were selected to 

correspond to values in the region of USGS soil groups A, B, C, and D, or their corresponding 

NEHRP soil groups B, C, D, and E.  These soil groups are designated Ksoil in the remainder of 

the report.  It was not intended to perform a site-specific soil analysis, however, to provide the 

base of the column with some rotational and displacement flexibility.  The flexibility provided 

more realistic global bridge behavior than did assuming a rigid foundation. 

The final two design parameters considered were additional bridge dead load (Wt) and 

the deck depth (Ds).  The dead load was applied in percentages of the existing bridge self-weight.  

The additional load increased the column axial load ratio, reported as a response quantity, and 

made the column more susceptible to nonlinear geometric effects.  While the deck depth was not 

explicitly varied as a design parameter, it allowed control of the overall stiffness of the bridge 
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due to the relationship to the column diameter (through Dc/Ds).  A value of 1.5 m (5 ft) was 

selected for all bridge realizations in this study. 

A base bridge configuration was derived to simplify comparisons between design 

parameters.  The single-bent base bridge configuration included two 18.3 m (60 ft) spans, a 

single-column bent 7.6 m high (25 ft), with a 1.6 m (5.25 ft) diameter circular column, 2% 

longitudinal reinforcement, and 0.7% transverse reinforcement.  Roller boundary conditions 

were assumed for the abutments, and the soil below grade was assumed to have a friction angle 

of 37° and a unit weight of 18.1 kN/m3 (115 pcf).  The additional deadweight was assumed to be 

at 25% of the superstructure deadweight to amplify dynamics demands on the bridge.  Only one 

design parameter was varied from the base configuration at a time.  

The strength of the base bridge (in terms of the R-factor) was 2.1 and 3.9 in the 

longitudinal direction with respect to the averaged bin spectrum (RCS) and the 2% in 50-year 

USGS spectrum (RUSGS), respectively (see Section 3.2 for definitions).  The LMSR bin was 

selected for the RCS factor, and the USGS spectrum was obtained for a site in Berkeley, 

California (see Section 6.1).  The transverse R-factors were 1.5 and 3.6 for RCS and RUSGS, 

respectively.  For comparison, using the Caltrans hazard map (PGA of 0.6g for Berkeley, 

California) and ARS curves (Caltrans 1999), the longitudinal and transverse R-factors were 2.5 

and 2.2, respectively. 

A subset of the bridges was used in this study to evaluate such issues as the dependence 

of demand model efficiency on structural period.  The bridges used, their design parameters, and 

lowest longitudinal and transverse periods are presented in Table 2.2.  The periods designated 

with “pre” refer to the initial elastic periods, while those designated “post” refer to the elastic 

period after gravity load equilibrium.  To be strictly accurate, there is only one fundamental 

period (the lowest period) per structure; however, the earthquake response of the structure is 

considered separately in the longitudinal and transverse directions.  The mode shapes also exhibit 

deformation in each direction exclusively.  Therefore, the lowest period corresponding to each of 

those directions is shown in Table 2.2.  This notation is adopted, because the longitudinally 

dominated mode may be mode 1, 2, or 3 in the post–gravity-load analysis case.  Post–gravity-

load periods are listed only for the bridges utilized in Section 3.4.3. 
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Table 2.2  Single-bent bridge periods for sample bridge configurations 

Structure 

number 
Design parameter T1,long pre T1,tran pre T1,long post T1,tran post 

0001 Base 1.40 1.57 1.45 2.09 

0005 L/H = 3.5 1.15 1.31 1.19 2.03 

0009 L/H = 1.8 1.76 1.94 1.82 2.20 

0013 L/H = 1.2 2.54 2.74 2.64 2.94 

0017 Dc/Ds = 0.67 1.63 1.77 1.69 2.18 

0021 Dc/Ds = 1.00 0.98 1.23 1.03 1.98 

0025 Dc/Ds = 1.30 0.76 1.08 0.78 1.58 

0029 ρs,long = 0.01 1.46 1.62 - - 

0033 ρs,long = 0.03 1.36 1.53 - - 

0037 ρs,long = 0.04 1.31 1.50 - - 

0041 L = 1080 in. 2.38 2.74 - - 

0045 L = 1440 in. 3.57 4.20 - - 

0049 L = 2160 in. 6.64 8.01 - - 

0053 Wt = 0.10 1.32 1.47 - - 

0057 Wt = 0.50 1.53 1.72 - - 

0061 Wt = 0.75 1.66 1.85 - - 

0065 Ksoil = C 1.56 1.73 - - 

0069 Ksoil = D 1.75 1.92 - - 

0073 Ksoil = A 1.27 1.44 - - 

 

2.1.2 Column and Deck 

Reinforced, uniformly circular, concrete column cross sections were used throughout.  The 

diameter of the columns was determined from the Dc/Ds design parameter.  All columns had 

perimeter longitudinal reinforcement.  Longitudinal bars were all #9 (1.128 in. diameter, 1.0 in.2 

cross-sectional area), evenly spaced at a radius determined using 3.8 cm (1.5 in.) cover and the 
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diameter of transverse reinforcement.  Transverse spiral reinforcement was used to confine the 

concrete, consisting of #6 bars (0.750 in. diameter, 0.44 in.2 cross-sectional area). 

 The columns were modeled in OpenSees using three-dimensional, fiber-discretized, 

nonlinear, beam-column elements (Neuenhofer 1998).  Nonlinear geometry was addressed 

through inclusion of big P-∆ effects for the columns.   Constitutive models used for concrete 

were based on the Kent-Scott-Park stress-strain relation (Kent 1971), as modeled in OpenSees.  

For this study, the maximum confined concrete stress was determined from the Mander confined 

concrete model (Mander 1988).  The constitutive model used for the steel reinforcement was an 

elastic-plastic trilinear model with inclusion of the Bauschinger effect.  The steel had initial 

stiffness E = 200000 MPa (29000 ksi), and post-yield hardening stiffness of 1.5% pre-yield 

stiffness, or 3 MPa (435 ksi).  Including the Bauschinger effect gave a more realistic estimate of 

energy dissipation during cyclic loading.  The Bauschinger steel model hardened until a strain of 

0.08, after which it softened at a slope of 0.75% (of the elastic modulus) until it reached an 

ultimate fracture strain of 0.12.  While this strain is higher than that prescribed by Caltrans 

(Caltrans 1999), modern steels can be expected to easily achieve such ultimate strain.  Softening 

was required to achieve a degradation of global bridge strength after ultimate strength was 

reached and more closely mimics parabolic hardening (and softening) behavior.   
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Fig. 2.2  Deck and column dimensions 
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 Shear was included in the model of the column by aggregating a nonlinear shear force-

shear strain relationship with each element.  The bilinear relationship was defined by a shear 

strength and stiffness.  Caltrans SDC (Caltrans 1999) shear equations for steel and concrete were 

utilized to determine the strength value.  The stiffness was assumed equal to the initial shear 

modulus of concrete.  As initially assumed for all bridges in the class, the shear capacity exceeds 

the shear demand; therefore, the specification of a shear constitutive relation was unnecessary for 

the earthquake intensity range employed.   

The deck cross section utilized was of reinforced concrete box girder construction.  A 

typical 3 lane (design traffic lane width 3.66 m), four-cell box girder was used, with a width of 

10.9 m (36 ft) and a variable depth (Ds).  See Figure 2.2 for dimensions.  Each bridge deck node 

had six mass terms, three translational (masses) and three rotational (moment of inertias).  The 

nonlinear deck was discretized into two elements per span with 4 integration points each and a 

distributed mass (mass/unit length) to achieve the same total mass.  Rotational mass terms were 

lumped at the nodes.  Steel reinforcement (the box girder was assumed not to be post-tensioned) 

was then placed both in the soffit and deck slabs. 

2.1.3 Pile Shafts and Soil Springs 

The Type I integral pile shafts (Caltrans 1999) used in this study featured a continuous amount of 

longitudinal reinforcement running through both the column and pile shaft.  There was no 

increase in concrete cover below grade.  Any lap splices and discontinuous longitudinal 

reinforcement were assumed to be located outside of the expected plastic hinge zones.  In this 

configuration, the expected location of plastic hinging was at the column-deck connection and in 

the pile shaft below grade. 

 The plastic hinge assumptions were confirmed by plotting a typical maximum moment 

diagram over the height of the column and pile shaft (Fig. 2.3).  The moment and curvature 

distributions were generated from a longitudinal pushover analysis of the base bridge 

configuration.  The section forces and deformations were sampled at a column tip displacement 

of 76 cm (30 in., µ∆ ≈ 5.5) using distributed plasticity elements (the location of the plastic hinges 

was not assumed apriori).  Plastic hinging was concentrated at the top of the column, whereas 

hinging was distributed below grade (spread-plasticity).  The difference between moment values 
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at a constant curvature value was due to the increase in axial force on elements closer to the base 

of the pile shaft.  

 The pile-shaft cross section and reinforcement were identical to that of the column, as 

described above.  Pile-shaft length was arbitrarily assumed to be 1.75 times the length of the 

column above grade.  The pile shafts were discretized into six elements for the express purpose 

of accommodating 14 (two at each node) soil p-y springs to model the soil stiffness acting on the 

pile shaft.  Mass was assigned to each pile-shaft node based on pile self-weight properties.  A 

spring oriented in both the longitudinal and transverse directions (with the same stiffness 

properties) was placed at each pile-shaft node.  The node at the ground surface was assigned a 

torsional single-point constraint.  The use of a pile shaft and p-y springs allows for some rotation 

and displacement of the bridge column at ground level.  This is more realistic than assuming a 

fixed-base column. 
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Fig. 2.3  Location of plastic hinges over length of column and pile shaft 
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 The material constitutive law used for the p-y springs was derived from load-deflection 

curves for cohesionless soils (Boulanger 1999) and implemented in OpenSees.  Parameters to the 

constitutive model included the ultimate lateral bearing capacity (pult), the displacement at which 

50% of the ultimate strength is mobilized (y50), the drag resistance, and free-field radiation 

viscous damping.  The ultimate bearing capacity was derived using relations for sand in the API 

code (API 1993), or from simple relations for sand by Brinch-Hansen (Brinch-Hansen 1961) 

shown in Equation 2.1. 

 cvcvppult DDKCp 020 '
2
'45tan

10
'' σφφσ ⎟

⎠
⎞

⎜
⎝
⎛ +°==  (2.1) 

The effective stress at the depth of each spring (σ 'v0) was determined using the unit weight of 

soil (γ’) input as a design parameter into the model.  Similarly, the friction angle (φ’) was also 

input directly as a design parameter.  The water table was assumed below the site of interest; 

therefore, the spring stiffnesses will typically be higher than in analyses incorporating the 

hydrostatic pore water pressure and the excess pore water pressure that is developed as a result of 

earthquake shaking. 

As the API recommendations for initial subgrade modulus were obtained from drained 

tests at shallow depths, the initial stiffness (k⋅xh) at large depths is overestimated by the API 

equation (and hence the y50 parameter underestimated) and should be reduced (Boulanger 1999).  

The variable xh indicates the depth below grade.  Therefore, two reduced approximations of y50 

were made for comparison.  The initial stiffness was obtained from the Gmax low strain modulus 

(Seed 1984) for sand.  A G/Gmax ratio of 0.25 was then assumed as per Boulanger (Boulanger 

1999).  The K0 coefficient was obtained directly from the friction angle as K0 =1− sinφ ' .  Blow-

counts (N60) were estimated based on the friction angle input into the model and subsequently 

corrected for overburden (N1,60). 

The initial subgrade modulus k was then determined using a simplified form of Vesic’s 

elastic theory (Vesic 1961).  The resulting y50 value was calculated according to the API equation 

shown in Equation 2.2.   

 y50 = 0.56pult

kxh

 (2.2) 

A second value was compared with the y50 equation of Matlock (Matlock 1970) for clays merely 

as a comparison.  The parameter y50 was estimated as 2.5εcDc, with εc for triaxial tests on 
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noncohesive soils assumed to be 0.01.  At larger depths, the two values coincided.  The first 

method described above was adopted for analysis.  It should be noted that by substituting xh  

for xh in Equation 2.2, the predicted y50 values are approximately the same.  This is consistent 

with the notion that the modulus increases roughly in proportion to the square root of the 

confinement, not linearly.  A sample load-deflection relationship (p-y) is shown in Figure 2.4, 

where the soil resistance was multiplied by the pile contributing length to obtain a force.   

 

−10 −8 −6 −4 −2 0 2 4 6 8 10
−800

−600

−400

−200

0

200

400

600

800
p−y Material Model

Displacement (in)

F
or

ce
 (

k)

 

Fig. 2.4  OpenSees material constitutive model PySimple1 

2.2 MULTIPLE-BENT BRIDGE 

The remainder of the California highway overpass bridge class of structures includes two-, and 

three-bent (three-, and four-span) configurations (Fig. 1.2).  This selection of spans was intended 

to cover a large range of frames used in stand-alone analyses performed in current design 

practice.  The resulting designs are typical of long overpass bridges with segments separated by 

expansion joints, where individual frames are expected to perform independently (Caltrans 

1999).  The base configuration used for the multiple-bent bridges resembled the single-bent 

bridge base configuration.  Specifically, the reinforced concrete bridges featured a single circular 

column for each bent, integral pile shafts, and continuous box girder superstructures spans that 

were not necessarily equal.  The multiple-bent bridge models used in this report were the same as 

those used in previous PEER research (Mackie 2003). 
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The influence of multiple bridge spans on their seismic behavior, such as the effect of 

higher mode response, was investigated.  As bridge designs become more complex (more bents), 

it becomes less likely they can be expected to respond in single-degree-of-freedom fashion.  Of 

particular interest was whether the optimal PSDMs from single-bent bridges remained optimal 

for all bridge bent configurations considered.  If so, this would imply that the PSDA method was 

sufficiently general for application to all bridges in the class of structures selected, making it a 

very powerful tool for risk assessment.   

2.2.1 Design Parameters 

For each multiple-bent configuration, the bridge design was varied through a series of design 

parameters.  These included the parameters developed for single-bent bridges (Table 2.1), as well 

as those specific to multi-span bridges.  Additional parameters for two- and three-bent bridges 

are shown in Tables 2.3 and 2.4, respectively.  The two-bent base configuration included 27.4–

36.6–27.4 m (90–120–90 ft) continuous spans.  The columns were 15.2 m (50 ft) high above 

grade, with 1.7 m (5.6 ft) diameters, 2% longitudinal, and 0.8% transverse reinforcement.  

Definitions of the design parameters for the two-bent case are shown in Figure 2.5. 

When the design parameters were varied, L1 was always set equal to L3,;therefore the 

spans were always symmetric.  Irregularity was introduced only when varying L2, L2/H1, and 

Dc1/Ds.  Irregularity is defined as the increasing difference in response between bents in the 

transverse direction.  In this study, L1, L2, Dc2, and H2 all remained constant throughout.  

Therefore, the height of the left column (H1) was determined solely by the values of L2 and 

L2/H1.  Design parameter analyses for the two-bent model were all carried out with an analytical 

abutment model (a trilinear stiffness material model) at both ends of the bridge.  Further details 

of the abutment model formulation used and sensitivity to abutment model parameters are 

discussed elsewhere (Mackie 2003).   
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Fig. 2.5  Two-bent bridge design parameters 

 

 The three-bent bridge model adopted the same configuration as the two-bent model, with 

the addition of another 36.6 m (120 ft) interior span.  A limited subset of design parameters was 

selected for analysis; therefore, L1 was fixed at 27.4 m (90 ft) and L3 at 36.6 m (120 ft).  

Similarly, the properties of the left column were fixed at L1/H1 = 1.8 and Dc1/Ds = 0.8.  The right 

column properties were fixed at L1/H1 = 2.4 and Dc1/Ds = 0.8.  The height of the middle bent in 

the three-bent model (H2) was determined solely by the values of L2 and L2/H2.  This 

determination was different from the two-bent bridge case. 

 

Table 2.3  Design parameter variation for two-bent overpass bridge 

Description Parameter Range 

Span length left L1 27–64 m (90–210 ft) 

Span length right L2 27–64 m (90–210 ft) 

Span-to-column height ratio L2/H1 1.2–3.5 

Column-to-superstructure dimension ratio Dc1/Ds 0.67–1.33 

Longitudinal reinforcement ratio ρs,long 1–4% 
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Table 2.4  Design parameter variation for three-bent overpass bridge 

Description Parameter Range 

Span length middle L2 27–64 m (90–210 ft) 

Span-to-column height ratio L2/H2 1.2–3.5 

Column-to-superstructure dimension ratio Dc2/Ds 0.67–1.33 

 

All base bridges for both the two-bent and three-bent models were on a USGS class B 

(NEHRP C) soil site.  However, unlike the single-bent bridge, stiff bilinear soil springs were 

employed, as in Mackie (Mackie 2001, 2003).  For the three-bent bridge design parameter study, 

the abutment boundary conditions were assumed to be rollers.  The rollers best mimic a stand-

alone bridge configuration that can be strung together in longer chains with expansion joints to 

form a complete viaduct-type bridge.   

 For the assumed roller boundary condition at the abutments, the fundamental mode for all 

three bent types (one-, two-, and three-bent) was in the transverse direction.  This mode involved 

a simple transverse translation of the deck (Fig. 3.5).  The second mode was also common to all 

three bent types, involving a longitudinal translation of the superstructure, coupled with small 

rotations of the columns and supports (Fig. 3.6).  When analytical abutment models were added 

to any of the bridges, the transverse stiffness increased beyond that of the longitudinal direction.  

The gap in the longitudinal direction before abutment impact provided the same initial elastic 

stiffness in the longitudinal direction as the roller boundary condition.  Hence the fundamental 

mode of the bridge with abutment model became longitudinal, and the second mode transverse.  

The first two periods for the two-bent bridge configurations and three-bent configurations are 

shown in Tables 2.5 and 2.6, respectively. 
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Table 2.5  Two-bent bridge periods for sample bridge configurations 

Structure number Design parameter T1 (sec) T2 (sec) 

0001 Base 1.54 1.06 

0005 L2 = 1080 in. 0.84 0.45 

0009 L2 = 2160 in. 1.34 0.61 

0013 L2 = 2520 in. 1.46 0.80 

0017 L2/H1 = 1.2 1.79 1.31 

0021 L2/H1 = 1.8 1.16 0.50 

0025 L2/H1 = 3.5 0.85 0.48 

0029 Dc1/Ds = 0.67 1.14 0.50 

0033 Dc1/Ds = 1.00 0.88 0.49 

0037 Dc1/Ds = 1.30 1.18 0.80 

0041 ρs,long = 0.01 1.07 0.50 

0045 ρs,long = 0.03 0.99 0.50 

0049 ρs,long = 0.04 0.96 0.49 

 

Table 2.6  Three-bent bridge periods for sample bridge configurations 

Structure number Design parameter T1 (sec) T2 (sec) 

0001 Base 1.54 1.06 

0005 L2 = 1080 in. 1.46 0.80 

0009 L2 = 2160 in. 1.79 1.31 

0013 L2 = 2520 in. 1.88 1.40 

0017 L2/H2 = 1.2 1.71 1.27 

0021 L2/H2 = 1.8 1.64 1.16 

0025 L2/H2 = 3.5 1.35 0.90 

0029 Dc2/Ds = 0.67 1.61 1.15 

0033 Dc2/Ds = 1.00 1.03 0.43 

0037 Dc2/Ds = 1.30 1.18 0.80 

 



 

3 Demand Model 

In current practice, probabilistic seismic demand evaluation is routinely done as a part of 

performance-based design of important structures.  In such projects, complex nonlinear structural 

models are typically subjected to a large number of real and artificial ground motions to estimate 

the required probabilities of exceeding predetermined values of project-specific demand or 

decision variables.  Such computationally intensive seismic risk assessment approaches are 

applicable only to unique structures and cannot be used in routine performance-based design 

(Mackie 2003). 

A disaggregated performance-based design framework (Eq. 1.2) is a practical alternative 

for such nonunique structures.  One reason for extensibility in this framework is that 

probabilistic seismic demand analysis (PSDA) applies to an entire urban region, rather than to a 

unique location.  Second, it applies to an array of possible decision variables rather than a single 

one.  And finally it applies to a class of structures, rather than to a unique structure.  Resulting 

probabilistic seismic demand models (PSDMs) are therefore quite general (Mackie 2003). 

 The PSDM formulated herein is the outcome from PSDA.  PSDA has previously been 

used (Bazzurro 1998; Shome 1998; and Carballo 2000) to couple probabilistic seismic hazard 

analysis (PSHA) with demand predictions from nonlinear finite element analysis.  This is done to 

estimate the annual frequency of exceeding a given demand, and results in a structural demand 

hazard curve (Luco 2001a).  Alternatively, PSDA can be used alone to provide probabilities of 

exceeding demand limit states, given measures of intensity.  Such a relationship is termed a 

“demand fragility curve” in this study. 

 The procedure (PSDA) used to formulate the PSDMs of interest involves five steps.  

First, a set of ground motions, representative of regional seismic hazard, is selected or 

synthesized (Section 3.1).  Instrumental in selecting these motions is categorizing them 

according to computable intensity measures descriptive of their content.  Second, the class of 

structures to be investigated is selected, as defined in Section 1.3.  Associated with this class is a 
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suite of engineering demand parameters (Section 3.2) that can be measured during analysis to 

assess structural performance under the considered hazard.  Third, a nonlinear finite element 

analysis model is generated to model the class of structures selected, with provisions to vary 

designs of the class through the use of design parameters.  Thus, a portfolio of structures is 

generated by different realizations of the design parameters.  The different finite element models 

developed for this study are detailed in Chapter 2.  Fourth, nonlinear dynamic analyses are 

performed until all motions and structural model combinations have been exhausted (Section 

3.3).  Fifth, a demand model is formulated between resulting ground motion IMs and structural 

EDPs (Mackie 2003).   

3.1 HAZARD AND INTENSITY 

The hazard environment for all bridges in this study was formed based on previously recorded 

earthquakes in California.  This section addresses the selection of these earthquake records, how 

they were grouped and utilized for analysis, and definitions of the ground motion intensity 

measures used to describe them.  Specific details of the individual earthquake records used can 

be found in the Appendix. 

3.1.1 Ground Motions 

The PSDA method used herein to formulate the PSDMs involved the ground motion bin 

approach.  It would also be possible to perform the analysis using a standard Monte Carlo 

simulation (Deodatis 1997; Foutch 1992) involving hundreds or thousands of ground motions, or 

by generation of synthetic ground motions.  Synthetic motions are site specific and include both 

expected acceleration time histories or motions generated based on design spectra.  The bin 

approach that was proposed and used by Shome and Cornell (Shome 1999) is used to subdivide 

ground motions into hypothetical bins based on magnitude (Mw), closest distance (R), and local 

soil type.  The use of magnitude and distance allows parallels between standard attenuation 

relationships and existing PSHA (Mackie 2003). 

 Advantages of the bin approach include the ability to assess the effect of generalized 

earthquake characteristics, such as frequency-domain content or duration, on structural demands.  

For example, bins differentiate between near- and far-field earthquake types, rather than between 



 31

individual near- and far-field records.  Ground motion intensity can also be abstracted by scaling 

the earthquakes in a bin to the same level of intensity (otherwise known as “stripe”), such as 

spectral acceleration at the fundamental period of a structure.  This approach is adopted in 

incremental dynamic analysis (IDA).  Second, the use of bins is substantial in limiting the 

number of ground motions selected for analysis.  Shome and Cornell (Shome 1998) show that, 

assuming a lognormal probability distribution of structural EDPs (conditioned on IM), the 

number of ground motions sufficient to yield response quantity statistics that have a required 

level of confidence is proportional to the square of a measure of dispersion in the demand model.  

They also show (Shome 1999) that the bin approach, and scaling motions within bins, by itself 

does not introduce bias into the relation between EDPs and ground motion IMs (Mackie 2003). 

 Four bins with 20 ground motions each were obtained from the PEER Strong Motion 

Database (PEER Strong Motion Catalog).  These motions are characteristic of non–near-fault 

motions (R > 15 km) recorded in California.  The delineation between small (SM) and large 

(LM) magnitude bins was at Mw = 6.5.  Ground motions with closest distance R ranging between 

15 and 30 km were grouped into a small distance (SR) bin, while ground motions with R > 30 

km were in the large distance (LR) bin.  All ground motions were recorded on NEHRP soil type 

D sites.  The specific records selected were similar to those used by Krawinkler (Gupta 2000; 

Medina 2001) in a companion PEER research project related to building structures.  The 

distribution of motions selected within the four bins (in Mw and R space) is shown in Figure 3.1.  

Details of all the ground motion records used, including earthquake names, sensor location, 

magnitude, distance, soil type, faulting mechanism, and peak waveform ordinates are provided in 

the Appendix.  

 The fifth bin, also containing 20 ground motions (as seen in Fig. 3.1, labeled “Near”), 

comprised ground motions from Luco's (Luco 2001b) near-field bin.  These are high-magnitude 

earthquakes measured at a distance (R) of less than 15 km.  Structural response to earthquakes in 

this bin was then expected to exhibit some near-field effects such as directivity, fling, and pulse 

response.  The choice of records on medium soil (NEHRP D) provided a conservative approach 

to evaluating performance because the expected spectral acceleration on firm, dense soil 

(NEHRP B, C) and rock sites (NEHRP A) for an equivalent earthquake is less likely amplified in 

the range of periods expected for the fundamental bridge modes under consideration.  The 

structural periods of all bridge types in this study are detailed in Chapter 2. 
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Fig. 3.1  Distribution of ground motion records in Mw-R space 

 

 All three orthogonal component accelerograms were utilized for each earthquake 

selected.  This allowed for a fully three-dimensional analysis without the generation of artificial 

or rotated records.  Each component of all the earthquake records was filtered to set all sampling 

frequencies to 50 Hz (0.02 sec).  As the primary bridge modes of vibration occurred at periods 

higher than 0.02 sec, little higher-mode accuracy was lost in reducing all records to a 0.02 

second sampling rate.  The magnitude and frequency content of the records used was otherwise 

unaltered.  Due to the absence of very high-magnitude California records, and to ensure 

nonlinear structural response, especially in the smaller intensity bins, the records were scaled by 

a factor of two if used as is.  Such artificial record amplification was limited to preserve realistic 

record characteristics as much as possible.  The scaling was achieved by a simple amplification 

of all the acceleration values during any of the probabilistic seismic demand model analyses.  

During IDA, record intensities required by the method were attained by amplitude scaling as 

needed. 

3.1.2 Intensity Measures 

Three classes of intensity measures (IMs) are used in current practice.  The first class contains 

traditional IMs that describe the earthquake source characteristics and time history record.  These 

IMs are predominantly duration, maxima, and energy based.  Not included specifically as IMs in 
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this class are the earthquake magnitude (Mw) and distance (R), as they cannot be obtained 

directly from the accelerogram.  The second class includes the IMs that describe the time history 

obtained using a single-degree-of-freedom system filter on the original record.  All Class I IMs 

can therefore be calculated directly from this new filtered record.  However, there are numerous 

IMs in the literature specific to Class II, so they are included directly.  Among these are the 

traditional spectral quantities, such as spectral acceleration.  The third class extends the filter 

concept to IMs that result from applying an arbitrary filter to the original time history.   

3.1.2.1 Class I Intensity Measures 

Class I intensity measures are defined as those that can be generated directly from the recorded 

earthquake time history (from time t = 0 to time t = Df, the record duration).  Time history 

information is usually presented in acceleration units; therefore, integration of the time history to 

obtain velocity and displacement histories may also be necessary.  In this study, 17 Class I IMs 

were considered.  These are summarized in Table 3.1, with their associated IM number in this 

study.  Note that not all IM numbers in forthcoming tables are consecutive.  The range of IM 

numbers is enumerated within each IM class. 
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Table 3.1  Class I intensity measures 

IM 

number 
IM name Definition Units 

1 Strong motion duration TD = t 0.95IA( )− t 0.05IA( ) s 

2 Peak ground acceleration )(max tuPGA g&&=  g 

3 Peak ground velocity )(max tuPGV g&=  cm/s 

4 Peak ground displacement PGD = max ug (t)  cm 

5 Arias intensity (Arias 1970) [ ]∫=
fD

gA dttu
g

I
0

2)(
2

&&
π  cm/s 

6 Velocity intensity [ ]∫=
fD

gV dttu
PGV

I
0

2)(1
&  cm 

7 Displacement intensity [ ]∫=
fD

gD tu
PGD

I
0

2)(1  cm-s 

8 Cumulative absolute velocity ∫=
fD

g tuCAV
0

)(&&  cm/s 

9 Cumulative absolute displacement ∫=
fD

g tuCAD
0

)(&  cm 

10 Cumulative absolute impulse ∫=
fD

g tuCAI
0

)(  cm-s 

11 Root mean square acceleration [ ]∫=
fD

g
D

rms dttu
T

A
0

2)(1
&&  cm/s2 

12 Root mean square velocity [ ]∫=
fD

g
D

rms dttu
T

V
0

2)(1
&  cm/s 

13 Root mean square displacement [ ]∫=
fD

g
D

rms dttu
T

D
0

2)(1  cm 
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Table 3.1 — continued 

14 Characteristic intensity IC = Arms
1.5 TD

0.5  cm1.5/s2.5 

15 Frequency ratio 1 FR1 = PGV
PGA

 s 

16 Frequency ratio 2 FR2 = PGD
PGV

 s 

17 Medium period IM (Fajfar 1990) I = PGV TD
0.25( ) cm/s0.75 

3.1.2.2 Class II Intensity Measures 

Class II and Class III intensity measures are both defined as Class I IMs acting on earthquake 

time histories that have been filtered using different processes.  Therefore, the definitions in 

Table 3.1 are still valid except ug (ground motion) has been replaced by uf (filtered ground 

motion).  Class II IMs are the special case of a single-degree-of-freedom (SDOF) system used as 

the filter.  This is the origin of the traditional spectral quantity Sd (spectral displacement).  Sd is 

simply the maximum of uf(t), as defined for PGD in Table 3.1, hence the new notation SDOFPGD.  

As there is a large body of research on IMs using this type of filter, there are numerous SDOF 

specific IMs that are included in this class of IMs in addition to Table 3.1.  These are summarized 

in Table 3.2.  Note once again that the IM numbers are not consecutive between Tables 3.1 and 

3.2, but are enumerated following Table 3.2. 
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Table 3.2  Class II intensity measures 

IM 

number 
IM name Definition Units 

35 Pseudo-spectral velocity PSv Ti( )= ω iSd Ti( ) cm/s 

36 
Pseudo-spectral 

acceleration 
PSa Ti( )= ω i

2Sd Ti( ) g 

54 
Luco 1st mode predictor 

(Luco 2003) 
IM1I = PF1

[1] SdI =
SdI T1,ζ ,dy( )

Sd T1,ζ( )
Sa T1,ζ( ) cm/s2 

55 
Cordova predictor 

(Cordova 2000) 
( ) ( )

( ) 2
1

1

1
11 ,2,

,
,, ==⎥

⎦

⎤
⎢
⎣

⎡
= α

ζ
ζζ

α
c

TSa
cTSaTSaIM eff  cm/s2 

56 
Effective peak 

acceleration (ATC 1978) EPA =
Saavg Ti,ζ( )

0.1

0.5=Ti

2.5
 g 

57 Effective peak velocity EPV =
Svavg Ti,ζ( )

0.7

2.0=Ti

2.5
 cm/s 

58 
Effective peak 

displacement EPD =
Sdavg Ti,ζ( )

2.5

4.0=Ti

2.5
 cm 

59 

Acceleration response 

intensity (Von Thun 

1988) 

( )∫ ==
5.0

1.0
05.0, dTTSaASI ζ  g 

60 
Velocity response 

intensity 
( )∫ ==

0.2

7.0
05.0, dTTSvVSI ζ  cm/s 

61 
Displacement response 

intensity 
( )∫ ==

0.4

5.2
05.0, dTTSdDSI ζ  cm 

62 
Response spectrum 

intensity (Housner 1959) 
( )∫ ==

5.2

1.0
05.0, dTTSvSI ζ  cm 

63 
Average spectral 

acceleration 
( )

∑=
nT

T

i
avg

n
TSaSa

1

,ζ  g 
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Table 3.2 — continued 

64 Average spectral velocity 
( )

∑=
nT

T

i
avg

n
TSvSv

1

,ζ  cm/s 

65 
Average spectral 

displacement 
( )

∑=
nT

T

i
avg

n
TSdSd

1

,ζ  cm 

 

Intermediate IM values not listed, for example 18 to 34, are simply Class I IMs from 

Table 3.1 acting on the SDOF filtered record.  Specifically, 18 to 34 are elastic SDOF systems at 

T1 and 5% viscous damping, and 37 to 53 are inelastic SDOF systems at T1, 5% viscous 

damping, yield strength fy of the structure, and 1% strain hardening.  IM numbers 63 to 65 

(average spectral quantities) are repeated 7 times, each for different period bands about T1.  

These are summarized in Table 3.3. 

 

Table 3.3  Averaged spectral combination Class II IMs 

IM number(s) Name Tlower Tupper 

63–65 Band 1 0.5 T1 2 T1 

66–68 Band 2 4/7 T1 7/4 T1 

69–71 Band 3 8/13 T1 13/8 T1 

72–74 Band 4 2/3 T1 3/2 T1 

75–77 Band 5 8/11 T1 11/8 T1 

78–80 Band 6 4/5 T1 5/4 T1 

81–83 Band 7 8/9 T1 9/8 T1 

3.1.2.3 Class III Intensity Measures 

Like Class II IMs, Class III IMs are Class I IMs acting on filtered time history records.  This is a 

completely general method for viewing IMs, as soon as one realizes the choice of filter is 

arbitrary and not limited to a SDOF system.  This section attempts to introduce several other 

types of filters that can be used to obtain more efficient demand models.  Two filters were used.  
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One is structure-specific (a two-degree-of-freedom system), and the other is a common signal-

processing concept: the bandpass filter. 

For a structure with response dominated by more than just the fundamental mode, it may 

be beneficial to introduce more information about the second mode into the demand model 

computation.  This can be achieved using a lumped mass and stiffness, two-degree-of-freedom 

(2DOF) system (Fig. 3.2).  For simplicity, it was assumed that each mass in the model is excited 

equally by the ground motion, and the first mass (m1) and stiffness values (k1) are normalized to 

unity.  The remainder of the 2DOF system can be determined with the input of the first- and 

second-mode periods, T1 and T2.  The resulting values for m2 and k2 are shown in Equations 3.1 

and 3.2, respectively. 

 

k1 k2
m1 m2

 

Fig. 3.2  Two-degree-of-freedom system IM filter 

 

 m2 = −1
16π 4 4π 2 − T1

2( ) 4π 2 − T2
2( ) (3.1) 

 k2 = 1
T1

2T2
2 −4π 2 + T1

2( )4π 2 − T2
2( ) (3.2) 

 

In the case of this study, the 2DOF filter was elastic with four input parameters: T1, T2, ζ, 

and u1 or u2.  The final argument specified which output record to use as uf in the subsequent 

Class I IMs.  The damping matrix was formulated using a superposition of modal damping 

matrices with each of the two modes having damping ratio ζ.  

A large amount of computation was required to average spectral quantities from Class II 

IMs over a range of periods.  As demonstrated later, these may be more efficient than spectral 

quantities at specific periods; therefore, an alternative method of achieving these results is 

desirable.  In signal processing, the bandpass filter is often used to isolate or separate out a range 

of frequency components from the original source.  For this study, a fourth-order Butterworth 

bandpass filter was used with bandwidth B.  The bandwidth is the frequency separation between 



 39

the upper and lower half-power points.  A sample filter magnitude plot is shown in Figure 3.3 for 

cutoff frequencies corresponding to periods of 1.25 and 1.50 sec. 
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Fig. 3.3  Sample Butterworth bandpass filter with 0.25 sec bandwidth 

 

Time history records can be efficiently filtered using signal processing enabled programs, 

such as Matlab.  The resulting filtered record (e.g., Fig. 3.4) was then used as uf in calculating 

subsequent Class I IMs.  Both records were scaled to the original record’s PGA; however, the 

magnitude of BPPGA is generally not the same.  Similar to the 2DOF system filter, it is possible 

to design digital filters of arbitrary cutoff frequencies and frequency bands.  Therefore, if 

desirable, a filter with two or more pass bands could also be used to generate further Class III 

IMs.  This method is considerably more general than developing specific multiple-degree-of-

freedom (MDOF) structural models.  There are also considerable computational speed 

advantages over performing numerical solutions of the equations of motion. 
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Fig. 3.4  Sample bandpass filtered acceleration record 

3.1.3 Probabilistic Seismic Hazard Analysis 

Probabilistic seismic hazard analysis (PSHA) has existed since the 1960s (Cornell 1968).  As 

opposed to deterministic hazard analysis, PSHA provides a probabilistic means for predicting the 

rate of exceeding different IM values at a particular site.  Therefore, inherent in the method is a 

treatment of uncertainty that accompanies the inception of earthquakes.  Specifically, the 

uncertainty accompanies the site’s proximity to known faults, or the seismic source model, and 

the prediction of intensity given the source model.   

 While highway network or basic urban post-earthquake assessment requires a spatial 

distribution of earthquake intensities, it suffices for a single integral (Eq. 1.1) evaluation to 

consider only site-specific hazard.  Determination of the seismic source model includes detailing 

known faults, their magnitude, proximity to the site, and rate of occurrence.  Also included are 

background seismicity, blind faults, or any regional or local hazard described by a recurrence 

versus magnitude relation.  The prediction of intensity follows from the source according to pre-

derived attenuation relationships.  Attenuation relationships provide a probability distribution of 

a particular IM (usually PGA or Sa), conditioned on distance, magnitude, fault mechanism, soil 

type, etc.  The probabilities of exceeding a specified IM value are integrated over the range of all 

these variables and weighted by the rate of each constituent event.  The total rate of exceedance 

is then the summation over all sources of seismicity affecting the site (Eq. 3.3). 
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 ( ) ( ) ( ) ( )∑ ∫∫
=

⋅⋅=≈=>
N

i
iiiiRMiiRMIMiIM drdmrmdGrmimGimtimIMP

1
,,| ,,|1, νλ  (3.3) 

 

The mean rate of exceeding different IM values (assuming a Poisson process) is then 

termed a hazard curve.  An equal hazard spectrum (e.g., spectral acceleration versus period) can 

be obtained from an IM with equal probabilities of exceedance.  It is also possible to 

disaggregate each IM at a probability of exceedance level into contributing magnitude (Mw) and 

distance (R).  The issue of residual independence of response on Mw and R is termed sufficiency 

(Section 3.4).  However, for the purposes of the hazard model used in this study, a form of the 

hazard curve alone is required. 

For small probabilities of exceedance, the hazard curve can be written in closed form as 

Equation 3.4.  The constants need to be derived for each site and each IM using PSHA.  Rarely is 

the full domain of im values covered by PSHA.  For example, often only three discrete levels of 

hazard are specified: 2% in 50 years, 10% in 50 years, and 50% in 50 years.  Therefore it is 

helpful to write Equation 3.4 in log format (Eq. 3.5).  This form lends itself to least-squares 

determination of the coefficients. 

 λIM im( )= k0 im( )−k  (3.4) 

 ln λIM (im)( )= ln k0( )− k ln im( ) (3.5) 

3.1.4 Aftershocks 

The same methodology applied to the generation of PSDMs for first-shock earthquake scenarios 

was applied to aftershocks in this study.  The only extension involved the selection of bins, 

aftershocks bins, and the sequence of first-shock and aftershock events.  To maintain continuity, 

the same first-shock bins were employed.  After each first shock, the structure was allowed to 

come to rest before randomly selecting an aftershock record from one of five different aftershock 

bins.  A single bin of specific recorded aftershock time histories was selected from the PEER 

ground motion catalog (PEER Strong Motion Catalog).  Details of individual records in this bin 

are contained in the Appendix, and plotted with the first-shock bins in Figure 3.1, labeled “AS” 

for “aftershock.”   
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The aftershock records were scaled up by a factor of two to ensure that damage in the 

structure occurred.  The remaining four bins were identical to the first-shock bins, but with 

intensity scaled by a factor of a half.  Each first-shock bin was paired with each aftershock bin, 

creating a total of 20 bins for analysis.  Therefore, for every structure, the required computations 

increased by a factor of 5.  The IM of the first-shock is maintained throughout the aftershock 

analysis and used in the prediction of the ultimate EDP value.  The first-shock (FS) IM was 

termed IMFS = IM1, while the aftershock (AS) IM was termed IMAS = IM2.  

3.2 ENGINEERING DEMAND PARAMETERS 

The bridge EDPs were originally chosen from the database of experimental results for concrete 

bridge components (Hose 2000, PEER Capacity Catalog).  The database detailed specific 

discrete limit states for each of the EDPs considered, complete with visual depictions at each of 

five different limit states.  By mirroring the component database, it would be possible to directly 

evaluate damage in a bridge, given the analysis demands.  However, this database was not used 

in subsequent damage model derivations (Chapter 4) because the damage was only quantified 

into arbitrary (numbered) damage limit states.  The EDPs adopted for this study ranged from 

global parameters, such as drift ratio, to intermediate parameters, such as cross-sectional 

curvature, to local parameters, such as material strains. 

Several other descriptive measures were also added to assess the loading (axial load ratio) 

and relative strength of the bridge (R-factors).  The axial load ratios ranged from 3.3%–29.5% 

and the longitudinal RCS and RUSGS-factors ranged from 1–3.2 and 1–10.4, respectively.  The 

transverse RCS and RUSGS-factors ranged from 1–2.4 and 1–10.2, respectively.  All the EDPs in 

this study are shown in Table 3.4.  For the equations defining the strength reduction factors, m 

was the total mass of the bridge column and superstructure.  Fy' was the yield force.  Vb was the 

base shear at the column of interest.  
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Table 3.4  Engineering demand parameters 

Name Formula Units 

Axial load ratio ALR = N
′ f c Ag

 % 

Yield displacement uy in. 

Yield curvature φy 1/in. 

Yield energy ∫=
))(max(

0
)(

Fu
y duuFE  k-in. 

Maximum displacement umax = max u(t)( ) in. 

Drift ratio ∆ = umax

H
 % 

Maximum curvature φmax = max φ(t)( ) 1/in. 

Maximum moment Mmax = max M(t)( ) k-in. 

Maximum shear force Vmax = max V (t)( ) k 

Maximum steel strain εs,max = max εs(t)( ) % 

Maximum steel stress σ s,max = max σ s(t)( ) ksi 

Maximum concrete strain εc,max = max εc (t)( ) % 

Maximum concrete stress σ c,max = max σ c (t)( ) ksi 

Residual displacement uresid = u(tmax )  in. 

Residual displacement index RDI = uresid

uy

 % 

Hysteretic energy 

∫=
θ

θθ dMHE )(  or 

∫=
u

duuPHE )(  
k-in. 

Normalized hysteretic energy NHE = HE
Ey

 % 

Peak strength Pmax = max abs Vb( ){ } k 

R-factor (capacity spectrum) RCS =
m ⋅ Saavg,bin (T)

′ F y
 - 
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Table 3.4 — continued 

R-factor (USGS) RUSGS =
m ⋅ Sa2%−50year(T)

′ F y
 - 

Displacement ductility µ∆ = umax

uy

 - 

Curvature ductility µφ = φmax

φy

 - 

Plastic rotation θpl =
umax − uy

H
 rad 

3.3 PSDA PROCEDURE 

The PSDMs in this study were formulated using two analysis methods, probabilistic seismic 

demand analysis (PSDA) and Incremental Dynamic Analysis (IDA).  The first method attempts 

to represent seismicity through a wide selection of many ground motions, grouped into bins.  The 

latter method achieves the same by stepwise incrementation of a select few ground motion 

records.  The procedure referred to as PSDA in this study is otherwise known as the “cloud” 

analysis method.  This is due to the use of the ground motion bins described above without any 

prior scaling within or between bins.  Therefore, there are a cloud of data points within the Mw-R 

space of earthquakes (Fig. 3.1).  The alternative approach (IDA) is to scale ground motions 

within bins to a common  value (or an intensity “stripe”).  The basic formulation for the two 

analysis methods remains the same, however.  The procedures common to both methods are 

presented first. 

3.3.1 Single Earthquake Analysis Procedure 

Nonlinear models were generated for each of the bridge configurations and analyzed for each 

ground motion.  Each routine involved a static pushover analysis to determine yield values, a 

modal analysis to determine natural frequency and mode shape information, and a dynamic time 

history analysis to determine demand.  Static pushover analyses included separate routines for 

the bridge longitudinal direction, transverse direction, and also the vertical direction (executed 
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separately).  For the case of a single-bent bridge, lateral pushover analysis was performed by 

incrementing the lateral load at the top of the column and monitoring displacement until failure.  

As would be expected, for the case of the single-column, single-bent bridge, the pushover 

diagrams were quite similar in the longitudinal and transverse directions.  The vertical pushover, 

otherwise termed a “pushunder” analysis, was performed by incrementing the vertical load on 

the column and monitoring vertical displacement until failure.  Residual lateral displacements 

impacted the pushunder ultimate capacity due to geometric nonlinearities.   

 While single-bent bridges used standard static pushover techniques for both longitudinal 

and transverse directions, multiple-bent bridges required a modification of the procedure in the 

transverse direction.  Similar to the modal pushover procedure for buildings (Chopra 2001) and 

the pushover analysis in the N2 method (Fajfar 1997), the distribution of lateral forces was 

determined from the shape of the fundamental transverse mode, weighted by tributary mass.  

This method was also employed by Gardoni (Gardoni 2002).  Displacements at column tips were 

then monitored along with shear forces induced in the columns, such as base shear in buildings.  

This allowed for irregular bridges to be accurately analyzed as well, producing separate yield 

data for different bents.  Irregularity frequently occurs when the properties of each bent are 

varied from each other.  

Modal analysis was performed before each analysis (elastic stiffness), as well as after 

each analysis, to assess the change in natural frequencies at the onset of damage in the bridge.  

For the assumed roller boundary condition at the abutments, the fundamental mode for all three 

bent types (one-, two-, and three-bent bridges) was in the transverse direction.  This mode 

involved a simple transverse translation of the deck (Fig. 3.5).  The second mode involved a 

longitudinal translation of the superstructure, coupled with small rotations of the columns and 

supports (Fig. 3.6).  As mentioned previously, when abutment models were added, the transverse 

stiffness (from the abutments) became dominant (over the longitudinal stiffness) due to the gap.  

Hence the fundamental mode of the bridge shifts to the longitudinal mode described above, and 

the second mode becomes transverse. 

 Sample period information for various single-bent bridge configurations was listed in 

Table 2.2.  The fundamental period values ranged from 1.08 for short bridges to 2.74 for long-

span bridges.  Second-mode periods varied similarly from 0.76 to 2.54.  Similar period 

information was also presented for two-bent bridges (Table 2.5) and three-bent bridges (Table 

2.6).  The time history analyses were performed for all ground motions and bridge instantiations.  
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A static analysis was performed first to allow application of the gravity loads.  Following this, 

the constant average acceleration Newmark numerical integrator was used with 2.5% Rayleigh 

damping to perform the dynamic time steps.  Numerous quantities were monitored and then 

passed to the data extraction routines to extract maximum dynamic quantities, such as stress, 

strain, moment, displacements, etc. 

 

 

Fig. 3.5  Single-bent 1st mode trans. 

 

Fig. 3.6  Single-bent 2nd mode long. 

 

3.3.2 PSDA “Cloud” Results 

PSDA uses a bin approach, where a portfolio of ground motions was chosen to represent the 

seismicity of an urban region.  The single earthquake procedure (Section 3.3.1) was repeated for 

each of the 20 ground motions in a bin.  As mentioned previously, first-shock records were 

scaled by a common factor of two to ensure nonlinear structural response, especially in the 

small-magnitude and long distance bins.  Any number of bins can be analyzed in this manner, 

but the primary four bins are shown here.   Similarly, the entire procedure can be repeated any 

number of times for an arbitrary number of bridge designs obtained from varying the different 

bridge design parameters.  A single example is shown below for the single-bent bridge base 

configuration.  Figure 3.7 shows the resulting demand model using the cloud approach, plotted in 

linear space.  For comparison, Figure 3.8 shows the same data plotted in (natural) log space. 

All of the demand models formulated and presented in later chapters were generated 

using this PSDA, or “cloud” procedure.  Hence, these terms are used synonymously from this 
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point on.  Other researchers have selected the IDA method (Jalayer 2003; Krawinkler 2002), 

particularly for research related to steel frame buildings.  For the case of reinforced concrete 

highway overpass bridges, a comparison of the two methods was performed to assess the 

equivalency of the ensuing PSDMs (Mackie 2002c).  It was shown that for similar computational 

effort (i.e., 8 ground motions incremented 10 times each, or 10 ground motions incremented 8 

times each), there is good agreement between the first and second moments (see Section 3.3.4) 

obtained from mathematical models using the PSDA and IDA procedures (Mackie 2002c).   
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Fig. 3.7  Sample PSDM using cloud method, 
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Fig. 3.8  Sample PSDM using cloud method, 

Sa(T1)-∆, log space 

3.3.3 IDA Results 

IDA is the dynamic equivalent to a familiar static pushover analysis.  Given a structure and a 

ground motion, IDA is done by conducting a series of nonlinear time history analyses.  The 

intensity of the ground motion, measured using an , is incrementally increased in each analysis. 

An EDP, such as global drift ratio, is monitored during each analysis. The extreme values of an 

EDP are plotted against the corresponding value of the ground motion IM for each intensity level 

to produce a dynamic pushover curve for the structure and the chosen earthquake record.  To 

achieve comparison with an equivalent PSDA cloud, several motions are required, and IDA 

intensities must cover a similar range.  Stripe analysis is simply a special case of IDA.  A single 

IM level is selected and EDP data are obtained, providing a one-dimensional “stripe” of response 

data. 
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 The only variance between the two analysis tools (PSDA, IDA) was in the first step 

described in the PSDA analysis method (Chapter 3). The PSDA and IDA were conducted using 

the same portfolio of recorded ground motions; however, IDA used a smaller subset of these.  

The theory behind IDA lies in the ability to take a small subset of ground motions from a larger 

catalog or series of bins and reuse the same motion to mimic variable intensities.  This variation 

in intensity is achieved by incrementally increasing the amplitude of the ground motion record 

(Vamvatsikos 2002).  Careful selection of PSDA bins described above ensured that intensity 

values were clustered at approximately the same values as the increments used in IDA, allowing 

comparable demand results.  Ideally, a ground motion could be scaled until the structure 

collapses, generating a dynamic pushover plot.  

 Example IDA curves are shown in Figure 3.9.  Usually plotted in linear scale, each curve 

depicts one ground motion as it was incremented.  The PGA of each record was scaled 

individually in each increment, not the spectral acceleration.  To see “stripes” in the analysis 

results, all records in the bins utilized would need to be scaled to the same Sa(T1) increment at 

each analysis step.  A seamless transition to PSDMs was obtained when plotting the data points 

in log-space (Fig. 3.10) with Sa(T1) as the IM.  All of the above figures were obtained using an 

IDA comprising 8 ground motions scaled 10 times each on the single-bent bridge base 

configuration.  Therefore, they are comparable to Figure 3.8 of the cloud approach. 

Of primary interest when using IDAs is the evolution of the median values 

(effectiveness), and dispersion (efficiency) surrounding functional fits to the data (see Section 

3.4.4).  Previous research showed as the number of ground motions used in IDA was increased 

from 4 to 8 and beyond, the first and second PSDM moments were in good agreement (Mackie 

2002c).  Using too few (4 or less) IDA ground motions led to the underprediction of the true 

model dispersion and introduction of model bias due to the ground motions selected.  As 

mentioned previously, since the computational effort between PSDA and IDA is the same, 

PSDA “cloud” analysis was selected for all remaining demand model computations in this study. 



 49

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200
S

a 
T 1 L

on
gi

tu
di

na
l (

cm
/s

2 )

Drfit Ratio Longitudinal

IDA Intensity Measure vs Demand Measure (Parameters)

LMSR
LMLR
SMSR
SMLR

Fig. 3.9  Sample PSDM using IDA curves, 

Sa(T1)-∆, linear space 

10
0

10
1

10
2

10
3

IDA Intensity Measure vs Demand Measure (Parameters)

Drift Ratio Longitudinal               

S
a 

T 1 L
on

gi
tu

di
na

l (
cm

/s
2 ) 

   
   

   
 

base only=2.4

 

Fig. 3.10  Sample PSDM using IDA method, 

Sa(T1)-∆, log space 

3.3.4 PSDM Formulation 

With the complete database of IMs and EDPs generated from either analysis method, it was then 

possible to generate an arbitrary PSDM by selecting a single variable from each group.  In each 

subsequent PSDM, the data were plotted in (natural) log scale, with the demand measure (EDP) 

on the abscissa and the intensity measure on the ordinate.  This is a standard method for plotting 

any IM-EDP relationship even though the demand measure is regarded as the dependent variable 

in all the models.  Each demand model was constructed in the longitudinal and the transverse 

direction independently.  Where applicable, the demand model was also generated for the 

vertical direction, although these were not the focus of attention for developing optimal models. 

Each PSDM was analyzed separately to determine the form of the mathematical model.  

The functional form in Equation 3.6 was fitted to the data.  

 ln(EDP) = ln(E ˆ D P) + σε  (3.6) 

The best estimate of the resulting model, E ˆ D P , was defined as the median, or the mean of the 

natural log of the n data points (Eq. 3.7).  The error term, ε, was assumed to be a normally 

distributed (standard normal) random variable with N(0, 1).  As is commonly assumed (Gardoni 

2002), the standard deviation of the model error (σ) was assumed to be independent of the 

independent variable (IM).  This assumption may not be valid at higher intensities, but sufficed 

for the range of IMs considered in this study.  The standard deviation of the model error (Eq. 3.8) 
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is termed “dispersion” in this study, as in Shome (Shome 1999).  The dispersion is dependent on 

the number of parameters (df) being estimated in a linear regression on the EDP data. 
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Due to the presentation of PSDMs in log space, if the EDPs follow a power-law 

relationship, the IM-EDP relationship will appear customarily linear.  Additionally, it is often 

assumed the conditional distribution of EDP on IM is lognormal.  The lognormality assumption 

for EDPs has been observed by numerous researchers (Shome 1999; Gardoni 2002; Mackie 

2003).  Due to the lognormal form of the model, the coefficient of variation of the EDPs was 

approximately equal to σ (for small values of σ).  The assumed (normal) simple form for the 

median EDP ( E ˆ D P ) relationship in log space is shown in Equation 3.9 and linear space in 

Equation 3.10. 

 ln(E ˆ D P) = A + B ln(IM) (3.9) 

 E ˆ D P = a(IM)b  (3.10) 

The parameters determined from linear least-squares regression are A and B (i.e., df = 2).  The 

two equations are equivalent if A = ln(a) and B = b.  A single linear fit was applied to the PSDMs 

obtained from PSDA and IDA in Figures 3.8 and 3.10, respectively.  The resulting coefficients 

obtained from least-squares regression are A = -4.287 and B = 0.932 (cloud approach).  The 

dispersion was 0.25.  A comparison of the resulting fits (PSDA and IDA) is shown together in 

Figure 3.11.  

 



 51

10
0

10
1

10
2

10
3

PSDA vs IDA Intensity Measure vs Demand Measure

Drift Ratio Longitudinal               

S
a 

T 1 L
on

gi
tu

di
na

l (
cm

/s
2 ) 

   
   

   
 

PSDA data
PSDA fit
IDA fit
IDA data

 

Fig. 3.11  Comparison of PSDM obtained from PSDA and IDA methods 

 

While the linear fit is customarily made over the complete domain of the data, it is also 

possible to make piecewise linear fits in situations where a single fit does not describe the 

behavior being modeled.  For the purposes of this study, bilinear and trilinear least-squares 

regressions were also performed on the data to reduce the model dispersion.  Only the aleatory 

uncertainty due to the inherent randomness nature of earthquake input was considered in all 

PSDMs of this chapter.  A treatment of epistemic and total uncertainty is included in Sections 

3.9, 4.3, and 5.3. 

3.4 OPTIMAL DEMAND MODELS 

This section addresses the search for an optimal PSDM amongst the possible IM (Tables 3.1 and 

3.2) and EDP (Table 3.4) combinations.  Optimal was defined in Mackie (Mackie 2002a; Mackie 

2003) as being practical, sufficient, effective, efficient, and robust.  In summary, an IM-EDP pair 

is practical if it has some direct correlation to known engineering quantities and makes 

engineering sense.  Specifically, IMs derived from known ground motion parameters are 

practical.  EDPs obtained from subsequent nonlinear analyses are practical.  The correlation 

between analytical models and experimental data lends further practicality to the EDPs of the 

demand model.  A further criterion for evaluating practicality is whether the IM is readily 

described by available attenuation relationships or other sources of hazard data.   
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 As discussed in Equation 1.2, the PEER performance-based design framework achieves 

disaggregation of the hazard and demand model if and only if the IM-EDP pair does not have a 

statistical dependence on ground motion characteristics, such as magnitude and distance.  Such 

demand models with no conditional dependence are termed “sufficient” (Luco 2003).  The 

effectiveness of a demand model is determined by the ability to evaluate Equation 1.2 in a closed 

form.  For this to be accomplished, it was assumed that the EDPs followed a power-law 

relationship (Shome 1999).  Thus an equation describing the demand model can be written as 

Equation 3.10 to which a linear, or piecewise-linear, regression in log-log space can be applied to 

determine the coefficients (Eq. 3.9).  Demand models lending themselves to this form allow 

closed-form integration of Equation 1.2 and casting the entire framework in an LRFD type 

format (Lee 2002).  An example of such an implementation is the SAC project (Cornell 2002; 

FEMA 2000b) for steel moment frames that proved to be crucial for wide adoption of 

probabilistic performance-based design in practice. 

Efficiency is the amount of variability of an EDP given an IM.  The measure used to 

evaluate efficiency is the dispersion (Eq. 3.8).  An efficient demand model requires a smaller 

number of nonlinear time history analyses to achieve a desired level of confidence.  In general, 

dispersion is a measure of randomness, or aleatory uncertainty, but is not the only source of 

uncertainty. Epistemic uncertainty, derived from such issues as modeling, nonlinearity, 

approximate analysis methods, and limited number of ground motions considered (Cornell 

2002), is considered in Section 3.9.  As mentioned previously, bilinear and trilinear fits were 

made to some PSDMs to reduce the calculated dispersion (increase efficiency). 

Robustness describes the efficiency trends of an IM-EDP pair across different structures 

(and therefore fundamental period) ranges.  Many of the Class I IMs used on unfiltered ground 

motion records produced nonrobust PSDMs.  For example, PGA is practical, but only efficient 

for stiff (low-period) structures as it is a measure of the ground (zero-period structure) response.  

Similarly, PGD is only efficient for flexible (long-period) structures as it is a measure of the 

deformation of an infinitely flexible structure.  A robust IM would approximately satisfy the 

relation in Equation 3.11. 

 ∂σ EDP |IM

∂T1

≈ 0 (3.11) 
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 A number of IM-EDP pairs presented in the literature in recent years have been aimed at 

performance-based design of buildings (FEMA 2000b).  Thus, a principal milestone in the 

development of a PSDM for highway overpass bridges is the search for an optimal intensity and 

demand measure pair for this class of structures.  Several important distinctions should be made 

regarding the choice of IMs in the optimal PSDMs.  First, efficiency is not the only measure for 

evaluation of optimality.  Therefore, while some models exhibit lower dispersions than others, 

this alone does not make them optimal.  Careful attention should be paid to practicality, 

effectiveness, and sufficiency.  Second, among the models that are deemed optimal (specifically, 

they are practical, effective, and efficient), dispersion then becomes the measure of which PSDM 

is considered the “best.”  PSDMs with dispersions on the order of 0.20–0.30 are considered 

superior.  However, the final PSDM selected not only exhibits all of these characteristics, but 

also does so for PSDMs generated for structures across a wide range of periods (robustness). 

3.4.1 Existing IMs 

Due to the prevalence of certain IMs currently adopted by both researchers and practitioners in 

the earthquake engineering field today, it was beneficial to develop optimal PSDMs from among 

these IMs only.  The group of IMs under consideration was therefore IMs #1–5, 8, 11, and 14 

from Table 3.1 and IMs #35–36, and 55 from Table 3.2.  These IMs describe maximum 

quantities (e.g., PGA or Sa(T1)), energy based quantities (e.g., Arias intensity or CAV), or 

duration quantities (e.g., strong motion duration).  The common feature between all the IMs is 

that they are either described by an attenuation relationship, are used in site-specific hazard 

analysis, or are combinations of the other IMs selected.  It should be noted that Sa, Sv, and Sd are 

used interchangeably in this section.  As Sa and Sv are pseudo-spectral quantities (related to Sd 

by a constant factor of T), the resulting PSDMs in log-space all showed the same dispersion. 

Presented below is a small subset of the entire parametric study performed, focusing on 

the parameters that produced an optimal demand model.  All of the design parameters presented 

are in reference to the single-bent base bridge configuration.  Design parameters referenced in 

this section were limited to the column-to-superstructure depth ratio (Dc/Ds), and the span-to-

column height ratio (L/H).  The RCS factors for the base bridge (LMSR bin) are 2.1 and 1.5 for 

the longitudinal and transverse directions, respectively.  For the SMLR bin, the RCS factors 

dropped to unity (earthquakes do not produce inelastic behavior).  The RUSGS factors for the base 
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bridge were 3.9 and 3.6 for the longitudinal and transverse directions, respectively.  For each 

design parameter shown in subsequent PSDM plots, the corresponding dispersion value is 

displayed in the upper-left of the figure.  Dispersions less than 0.3 are considered superior. 

 Given the varying engineering usefulness of each of the EDPs calculated (Table 3.4), an 

optimal demand model for each was developed.  Several of the EDPs were mutually dependent 

and therefore produced a demand model with the same dispersion.  For example, maximum 

displacement, displacement ductility, and drift ratio are related by constants (height and yield 

displacement).  This is also true of maximum curvature and curvature ductility.  Residual 

displacements, hysteretic energy, and plastic rotations yielded poor IM-EDP relationships and 

were therefore neglected in this section.  The remaining EDPs considered can be categorized as 

either local, intermediate, or global. 

3.4.1.1 Local Engineering Demand Parameters 

Local demand quantities, such as material stress in the column, proved to be good performance 

indicators.  Peak stress values in both steel and concrete materials were computed at the critical 

column cross section (location of maximum response).  These values were obtained from 

monitoring the stress and strain directly in each fiber of the cross section.  A PSDM for steel 

stress (σsteel) was first developed showing L/H as the design parameter of variation.  Four design 

parameters (four bridges) are shown on the same plot in order to assess the robustness of the 

chosen IMs across different bridge fundamental periods.  Using first-mode spectral displacement, 

the resulting PSDM (Fig. 3.12) produced very efficient fits, largely due to the stress-plateau 

behavior at high stress levels.  The bilinear PSDM fits reflect a bilinear material stress-strain 

envelope when the strain is thought of as a function of earthquake intensity.   
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Fig. 3.13  PGV-σsteel, L/H sensitivity 

longitudinal 

 

 The use of Sd can be confusing since changing design parameters also modifies the 

bridge period (e.g., stiffness in the L/H case, Fig. 3.12).  The result is lack of commonality 

between the PSDMs shown in the same plot.  If a single earthquake scenario is selected, then the 

IMs will be different for each bridge.  Hence, there is no way to draw a single line of constant 

intensity across the PSDM plot to assess changes in performance.  This became particularly 

important when considering design parameter sensitivities (Section 3.5).  Therefore, an IM was 

sought which was necessarily independent of the bridge period, but still exhibited properties of 

an optimal PSDM.  Results indicated the use of Arias intensity or PGV as period-independent 

IMs yielded models with dispersions approximately 50% higher than Sd.  In the PGV case (Fig. 

3.13), a line of constant intensity can be drawn across the plot to determine performance.  

 A PSDM was also developed for concrete stress (not shown here) using the same design 

parameter variation and IMs as the steel stress above.  The bilinear PSDM fits were both efficient 

and effective.  However, PSDMs involving concrete stress exhibited interesting behavior, as the 

separate maxima from unconfined and confined concrete could be discerned.  Unlike steel, 

which continues to harden until high strains, concrete begins to soften post-peak at strains less of 

than 0.01.  Therefore, each value of f'c (for each separate bridge design) depicted two plateau 

regions in the results.  As with steel, the stronger designs attracted more stress. 
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Fig. 3.15  Sa(T1)-εconcrete, Dc/Ds sensitivity 

longitudinal 

 

 While all of the local stress-based PSDMs developed show good qualities in terms of 

effectiveness and efficiency, none are practical from an engineering testing standpoint.  At a 

local level, the only measure quantifiable during experimentation is strain.  Deriving stress from 

this quantity would require analytical material models.  Therefore, PSDMs using local material 

strains were also investigated, but suffered from a lack of efficiency.  The steel strain model (Fig. 

3.14) dispersion ranged between design parameters, even when using Sa(T1).  The use of the 

period-independent IMs PGV and Arias Intensity resulted in dispersions approximately 50% 

higher.  The steel model showed stiffer designs reduced demand, while the concrete strain model 

(Fig. 3.15) showed a similar trend for stronger designs.  The increase in dispersion when using 

strain-based PSDMs (on the order of 100%) over stress-based PSDMs was enough to direct 

attention to the intermediate and global engineering demand parameters. 

3.4.1.2 Intermediate Engineering Demand Parameters 

The intermediate EDPs were obtained from the same critical column cross section used for the 

local EDPs.  Figure 3.16 shows the ensuing PSDM for maximum moment in the longitudinal 

direction.  The optimal IM for parametric variation of column diameter-to-superstructure depth 

ratio (Dc/Ds) was first-mode spectral acceleration.  Spectral displacement provided an adequate 

extension of this relationship to the transverse direction (Fig. 3.17).  It should be noted that T1 
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and T2 can be used interchangeably in the transverse direction and still maintain efficiency.  The 

determination of optimal period is investigated in Section 3.4.3. 
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Fig. 3.17  Sa(T1)-Mmax, Dc/Ds sensitivity 

transverse 

 

As would be expected, the stiffer the column was made, the more force it attracted.  More 

flexible structures resulted in higher dispersions.  Results indicated the use of Arias intensity or 

PGV yielded models with dispersions approximately 40% higher than Sa(T1).  In addition, PGV 

and Arias intensity demand models exhibited higher dispersions for stiffer structures, indicating 

unpredictable behavior of these IMs except in the extreme low-period regime (T < 0.3 sec). 

 The most efficient and effective fits for column curvature ductilities were once more 

obtained by using Sa(T1) as the IM.  The PSDM varying Dc/Ds for curvature ductility is shown in 

Figure 3.18.  The large period dependence of the dispersions in this model should be noted, as 

was the case with local steel and concrete strain quantities.  Therefore, for optimal demand 

models, the force-based quantities were more efficient than the deformation-based quantities (at 

the element level).  As discussed earlier, it may be useful for the designer to consider period-

independent parameters.  Therefore, to eliminate Sd intensity shifts due to variation in T1, the use 

of Arias intensity, characteristic intensity, or PGV as an IM increased dispersions by 

approximately 30% over Sa(T1).  This dispersion increase resulted in very high dispersions 

(0.70–0.80) for some longer-period structures.  Therefore, the curvature ductility demand model 

was not considered optimal. 
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3.4.1.3 Global Engineering Demand Parameters 

The final PSDM developed was for drift ratio (or drift angle) of the column.  Due to the relative 

rigidity of the deck, this response quantity also described the longitudinal movement of the deck 

at the abutments.  The optimal model was obtained by varying Dc/Ds and again using Sa(T1) as 

the IM (Fig. 3.19).  Other possibilities included incorporating Arias Intensity, CAV, or inelastic 

spectral displacement of the first mode as the IM.  These options increased dispersions by 

approximately 33%–40% from using Sa(T1).  Spectral acceleration and drift ratio exhibited all of 

the qualities of an optimal PSDM.  Specifically detailed here are its extremely high efficiency 

(dispersion on the order of 0.20–0.30), and therefore ability to fit a single linear model to the data 

(effectiveness).  Sufficiency is explored in the next section. 
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Fig. 3.19  Sa(T1)-∆, Dc/Ds sensitivity 

longitudinal 

 

The PSDM for Sa(T1) and drift ratio was also constructed in the transverse direction.  

This PSDM exhibited slightly higher dispersions, on the order of 0.30–0.40.  Therefore, in order 

to produce a PSDM with efficiency roughly equivalent to the longitudinal direction, IM1eff 

(Cordova 2000) was employed.  This IM incorporates more period information and is more 

efficient in predicting the transverse drift behavior (Fig. 3.20).  If it is desired to use only the 

spectral quantities alone, Sa should be used for the transverse direction at the optimal transverse 

period (see Section 3.4.3.1). 

 



 59

10
0

10
1

10
2

Intensity Measure vs Demand Measure (Parameters)

Drift Ratio Transverse                 

S
a 

T 1 C
or

do
va

 T
ra

ns
ve

rs
e 

(c
m

/s2 ) 
   

 
σ=0.28, 0.27, 0.28, 0.31

Dc/Ds=0.67
Dc/Ds=0.75
Dc/Ds=1
Dc/Ds=1.3

Fig. 3.20  IM1eff-∆, Dc/Ds sensitivity 

transverse 

10
0

10
1

10
2

10
3

Intensity Measure vs Demand Measure (Parameters)

Drift Ratio Longitudinal               

S
a 

T 1 L
on

gi
tu

di
na

l (
cm

/s
2 ) 

   
   

   
 

σ=0.25, 0.22

Dc/Ds=0.75
Dc/Ds=1.3

 

Fig. 3.21  Sa(T1)-∆ ± 1σ stripes, Dc/Ds 

sensitivity longitudinal 

3.4.2 Verification of Optimality Conditions 

From the previously discussed models, the relationship between Sa(T1) and longitudinal drift 

ratio for the column diameter (Dc/Ds) parameter variation (Fig. 3.8) was selected as the best 

existing IM optimal demand model based on efficiency and effectiveness.  Therefore, it was 

investigated here for other demand model properties.  As with any of the models, it is possible to 

generate not only the median fitted relationship (Eq. 3.9), but also the ± 1σ (16th and 84th 

percentile) distribution stripes.  These stripes were calculated using the standardized residual 

form (Vardeman 1994) rather than simply adding the dispersion to the fitted EDP values (Eq. 

3.12).  The sample size is (for each structure and each PSDM of interest) once again n.  
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This probability distribution is shown in Figure 3.21 for the optimal PSDM. 

 Efficiency and effectiveness have already been established; however, sufficiency and 

practicality remain to be confirmed.  The classification of practicality is, unfortunately, a 

subjective exercise.  If the perception of the EDP is of holding a particular definition in the 

engineering sense, maximum material stress is then also practical.  However, in terms of 

instrumentation and physical test specimens, stress by itself is an indeterminable physical 

quantity.  A clearly practical EDP is the global drift ratio. 
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 Sufficiency is required to determine whether the total probability theorem can be used to 

disaggregate the various components of the PEER framework equation.  This cannot be done if 

there are any residual dependencies on Mw, R, etc.  Equation 3.13 can be used with the form of 

the hazard curve in Equation 3.4 if the demand model is statistically independent (of Mw, R).  

Otherwise, Equation 3.3 must be utilized, necessarily complicating evaluation of Equation 1.2.  

Equation 3.13 describes the MAF of exceeding a demand limit state. 

 ( ) ( ) ( )
∫= dim

dim
imdimedpGedp IM

IMEDPEDP
λλ ||  (3.13) 

 

 To assess this sufficiency, regression on the IM-EDP pair residuals was performed, 

conditioned on Mw, R.  The same formulation can also be applied to assess dependence on strong 

motion duration, D, even though this is usually not included in PSHA.  The resulting sufficiency 

plots for the PSDM of interest are shown in Figure 3.22 for Mw, Figure 3.23 for R, and Figure 

3.24 for D.  The first takes moment magnitude (Mw) from the database of IMs and plots it versus 

the residual of the chosen IM-EDP fit.  Similarly, the second plots residual versus closest 

distance (R), etc.  The slopes of the linear regression lines in the plot are shown at the top of each 

of the plots.  Small slope values for all parameters indicate that these demand models have the 

sufficiency required to neglect the conditional probability as described above.  
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 A more rigorous definition of sufficiency can also be used when the regression lines 

described above are ambiguous.  Fitting of residual data is equivalent to the multivariate linear 

regression of Equation 3.14.  In attenuation relationships, R is often treated in log form; therefore 

ln R( ) could also be used in Equation 3.14, if desired. 

 ln EDP( )= A + B ln IM( )+ CM M( )+ CR R( )+ CD D( )+ ε (3.14) 

While median coefficient values are shown in the plots, it is also possible to obtain statistics for 

an arbitrary confidence interval.  If there is no residual dependence on Mw, R, and D, the 

coefficients CM, CR, and CD are zero somewhere within the defined confidence interval.  For 

purposes of this study, no residual dependence on a 90% confidence interval is termed sufficient.  

The optimal PSDM of interest does not exhibit any residual dependence on these quantities, as 

shown. 

The final requirement for an IM to be classified as optimal is its usefulness across a large 

range of periods common to design.  This implicit assumption is in large part the cause for 

rejection of such IMs as PGA or CAV.  While these IMs may give efficient correlations for low-

period structures (stiff), they lose efficiency in the longer periods.  Given the practicality, 

efficiency, effectiveness, and sufficiency of Sa(T1), this IM is selected to investigate robustness 

across design parameters.  The method used to evaluate robustness is the dispersion of the drift 

ratio and Mmax PSDMs, given the IM and a set of bridges with specific design parameters varied 

(see Mackie 2003). 

 Four parameter groups were chosen (L/H, Dc/Ds, L, and Wt) because changing these 

parameters also alters the period of the bridge.  The period values were normalized with respect 

to the period of the base bridge configuration and the dispersions were normalized with respect 

to the PSDM for the base bridge configuration.  These normalized quantities facilitated 

comparisons between not only different IMs (and consequently different efficiencies) but also 

between different choices of the EDP (∆ and Mmax are considered here) used in the PSDM.  Sa 

efficiency improved in the long- and short-period ranges.  In contrast, PGA rapidly lost 

robustness at longer periods.  This phenomenon was in addition to PGA's lack of overall 

efficiency. 

 To simplify the robustness trends, a linear regression across all the design parameter 

values (periods) was performed (according to Eq. 3.11).  Figure 3.25 shows the robustness 

Sa(T1), PGA, and CAV.  As with PGA, CAV continued to lose efficiency at longer periods, albeit 
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a somewhat more effective measure than PGA.  Spectral acceleration even showed somewhat of 

a decrease in dispersion at longer periods (in the range of periods considered).  Therefore, the 

previous conclusion regarding Sa(T1) being the optimal IM remains true when robustness in the 

presence of different design parameters is considered. 
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In summary, it was found that first-mode spectral displacement (Sd(T1)) was the optimal 

existing IM when coupled with a variety of EDPs.  These EDPs included local measures 

(maximum material stresses), intermediate measures (maximum column moment), and global 

measures (drift ratio).  Regardless of the fundamental vibration mode shape, T1 remained the 

optimal period at which to sample the spectral quantities.  This was useful for avoiding confusion 

over whether the longitudinal or transverse bridge response was being considered.  With a 

sometimes large trade-off in efficiency, the use of period-independent Arias intensity or PGV as 

the IM was also acceptable as an optimal IM.  Advantages to using period-independent IMs 

become readily apparent when varying bridge design parameters (Section 3.5). 

 Of the EDPs considered, the most efficient demand model was the relationship between 

Sa(T1) and drift ratio.  This was also verified to be effective, sufficient, practical, and robust.  

The spectral values can be considered as superior IM quantities as they not only incorporate 

measures of the motion frequency content, but also are directly related to modal response of the 

given structure.  Arias intensity does not include this structure-dependent information, but does 

include the cumulative effect of energy input from the ground motion.  There are several 

practical reasons to utilize Arias intensity though, given that it can be used to compare structures 
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at constant intensity levels, and has been recently described by an attenuation relationship 

(Travasarou 2003). 

 As described after the definition of an optimal PSDM, this section does not address the 

issue of finding the lowest dispersion only.  Further increases in efficiency of the demand 

models, beyond the basic spectral quantities used here, was possible and is pursued further in 

later sections using various spectral combinations (Section 3.4.3).  These are not included here as 

they are only effective and efficient on a case-by-case basis.  Also, they are not currently 

described by attenuation relationships, and are possibly difficult to scale to the same intensity 

level, making them an impractical general choice. 

3.4.3 Highly Efficient IMs 

While Section 3.4.1 covered the search for optimal PSDMs among IMs commonly used in 

research and practice today (for example, PGA and spectral acceleration), this section 

concentrates on the issue of finding extremely efficient PSDMs at the expense of familiarity with 

the resulting IMs.  This section addresses improvement in PSDMs through selection of input 

parameters to the second class of IMs and the use of new filters to the third class.  An efficient 

demand model requires a smaller number of nonlinear time history analyses to achieve a desired 

level of confidence.  Therefore by minimizing the dispersion, tighter confidence bands on 

resulting demand, and ultimately decision, performance objectives can be achieved.  For 

example, lowering the dispersion by a factor of two would require four times fewer ground 

motion records (Luco 2003) to achieve the same confidence interval.  

There are two primary caveats to using the cloud procedure here as opposed to stripe 

analysis.  First, the dispersion includes not only the randomness inherent in ground motions, but 

also a contribution from the error due to the choice of regression form over an IM range.  

Therefore, the total error might be overestimated due to this model error.  Second, the dispersion 

is assumed constant over the entire IM range, an assumption that is often false at high intensities.  

However, for the purposes of this study, the standard PSDA approach is acceptable, as the IM 

range does not include extremely high intensities and a treatment of collapse.  Additionally, as 

mentioned above, highly efficient models are implicitly effective, and as the dispersion is 

reduced, so is the model error.  The dispersion was used solely as a means for comparing 

multiple IMs, therefore determining the proportion of model error in each was less important.   
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As an initial baseline, the efficiency of all Class I (Table 3.1) IMs are plotted in Figure 

3.26 for several choices of structural period.  In this medium-period range, the IMs exhibiting 

best efficiency are PGV, PGD, CAD, Vrms, and I.  The IM number on the horizontal axis 

corresponds to the number in Table 3.1.  It would be expected that many Class I IMs are largely 

period dependent.  For example, PGA (IM #2) exhibited higher efficiency for stiff structures. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.4

0.5

0.6

0.7

0.8

0.9

IM number

D
is

pe
rs

io
n 

σ E
D

P
|IM

Efficiency of unfiltered Intensity Measures

T
1
 = 1.08

T
1
 = 1.31

T
1
 = 1.57

T
1
 = 2.74

 

Fig. 3.26  Efficiency of Class I IMs 

 

The period dependence is confirmed by the robustness plot in Figure 3.27.  Only PGD 

(IM #4) showed improved efficiency at higher periods.  This would be expected as the maximum 

displacement approaches the PGD in the long-period range.  The period-dependent phenomenon, 

however, made any of the Class I IMs a poor choice for an arbitrary structure.  Therefore, 

structure-specific quantities were pursued in the next two series of IMs. 

The efficiency of all Class II (Table 3.2) IMs is plotted in Figure 3.28.  The IM number 

on the horizontal axis corresponds to those listed in Table 3.2.  Intermediate values not listed, for 

example 18–34, are simply Class I IMs from Table 3.1 acting on the SDOF filtered record.  

Specifically, 18–34 are elastic SDOF systems at T1 and 5% viscous damping, and 37–53 are 

inelastic SDOF systems at T1, 5% viscous damping, yield strength fy of the structure, and 1% 

strain hardening.  IM numbers 63–65 (average spectral quantities) are repeated seven times, each 

for different period bands about T1.  These are summarized in Table 3.3. 
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Fig. 3.27  Robustness of Class I IMs 

 

The most efficient IMs in this class were (filtered SDOF records) elastic SDOFPGA (IM 

#19), elastic pseudo SDOFPGA (IM #36), inelastic SDOFPGD (IM #40), Luco first-mode predictor 

(IM #54), EPD (IM #58), DSI (IM #61), and the averaged spectral combinations from Table 3.3.  

While DSI exhibited the lowest dispersion of any IMs for several periods, it was not pursued 

further due to the large-period dependency.  It should be considered, however, for long-period 

structures (T1 > 2.5 sec). 

 

20 25 30 35 40 45 50 55 60 65 70 75 80

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IM number

D
is

pe
rs

io
n 

σ E
D

P
|IM

Efficiency of Class II Intensity Measures

T
1
 = 1.08

T
1
 = 1.31

T
1
 = 1.57

T
1
 = 2.74

 

Fig. 3.28  Efficiency of Class II IMs 
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In most current demand analyses, Sa(T1) is used as the IM.  This is in fact usually the 

pseudo-spectral acceleration (IM #36), not the actual maximum obtained from differentiating the 

time history displacement response twice.  However, at the low levels of damping considered in 

this study, and for bridges in general, these quantities are essentially equivalent and only the 
SDOFPGA as defined in Table 3.2 will be used henceforth (this is the true spectral acceleration). 

Given the traditional SDOFPGA as a benchmark, it can be seen from Figure 3.29 that 

inelastic SDOFPGD and averaging Sa offered improved efficiency.  By narrowing the band around 

the period of interest, the efficiency of the results continued to improve.  However, above band 6, 

the change in efficiency became negligible until it increased back to the level of SDOFPGA.  It 

should be noticed that all of the IMs from Figure 3.29 were relatively insensitive to changes in 

the period.  This made them appealing for use in any structural system.  In practical application, 

the slight improvement in efficiency from using averaged spectral quantities is offset by the large 

amount of computation required to determine SDOF filtered records at all the intermediate 

periods.  A single inelastic SDOF filtered record achieved similar results and requires only a 

single analysis.  
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Fig. 3.29  Robustness of Class II IMs 

 

Although not shown here, the same trends above were true in the transverse direction.  

However, it should be noted that there was slight negative correlation between period and 

efficiency in the transverse spectral quantities.  This implies shorter-period structures (T < 1 sec 
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in this case) would be less efficient; however, this was found not to be the general trend (Mackie 

2003).   

Class III efficiency and robustness results are shown in Figures 3.30 and 3.31, 

respectively.  The IMs with numbers 84–100 are Class I IMs acting on the u1 2DOF filtered 

record; 101–117 acting on u2.  Promising 2DOF filtered IMs included 2DOFPGD (IM #87), 
2DOFArms (IM #94), 2DOFIC (IM #97), and 2DOFI (IM #100).  The most robust choice was once again 
2DOFPGD.  

A large amount of computation was required to average spectral quantities from Class II 

IMs over a range of periods.  As shown above, these may be more efficient than spectral 

quantities at specific periods; therefore, an alternative method of achieving these results is 

desirable.  The efficiency of Class I IMs acting on bandpass filtered records is shown in Figure 

3.30 (IM numbers 120–134).  Interestingly, for the bandpass filter, the same IMs were efficient 

as for the 2DOF filter.  The highest efficiency was generated by BPIC (IM #131) and BPIA (IM 

#122); however, this was for the long-period range only.  The best choice of IM was BPPGA (IM 

#119) for efficiency and robustness.  BPI (IM #134) was also robust with slightly higher 

dispersion.   
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Fig. 3.30  Efficiency of Class III IMs 
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Fig. 3.31  Robustness of Class III IMs 

3.4.3.1 IM Filter Parameter Sensitivity Study 

With the introduction of filters described for Class II or III IMs comes a choice of filter 

parameters.  All of the filters attempted to improve the predictive qualities of the resulting IMs 

by incorporating some knowledge of the structure, mainly through structural period.  However, 

numerous other parameters exist and can be tuned to obtain more efficient results.  The 

parameters for Class II are rigorously investigated in the subsection below.  Some insight gained 

is then applied to Class III in the subsequent subsection. 

3.4.3.1.1 Class II Parameter Sensitivity 

The SDOF system filter has two possible parameters for elastic systems and four possible 

parameters for inelastic systems.  The common arguments are period, T, and viscous damping 

ratio, ζ.  The inelastic bilinear system behavior was governed by the yield strength, fy, and the 

hardening ratio, αh.  A parametric study of each is explored below. 

Selection of the fundamental structural period, T1, is an uncertain proposition by itself.  

Therefore, basing all Class II and III IMs on this quantity is imposing a lack of knowledge 

limitation on the resulting PSDMs.  The elastic period was largely dependent on the selection of 

materials and elements in a finite element model or the choice of data sets in empirical period 



 69

predictions.  The elastic period also changed after a structure had experienced inelastic 

excursions during earthquake excitation.  Therefore, this parametric study focuses on the trends 

in the data to help rationally select a modification factor for filter periods.  SDOFPGD was selected 

as the single IM on which to vary parameters, as it showed consistently high efficiency. 

The sensitivity to period is shown in Figure 3.32 for the longitudinal direction for the 

case of three separate structures.  The elastic SDOF filter (blue) is contrasted with the inelastic 

SDOF filter (green) on the same plot.  The structures can be identified by the period at the 

minima from the entries in Table 3.5.  A similar sensitivity plot is shown in Figure 3.33 for the 

transverse direction.  The selection of a single period at which to develop a SDOF filter appeared 

as a clear minimization problem.  Both Figures 3.32 and 3.33 were plotted with a fraction of the 

fundamental period T1 on the horizontal axis.  It was necessary to correct the period ratio based 

on the actual lowest period in the direction of interest.  This was accomplished (see Table 3.5) 

using the pre– and post–gravity-load analysis periods in Table 2.2 and the locations of minima 

from the above plots (Lfac and Tfac, or longitudinal factor and transverse factor, respectively). 
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Fig. 3.32  Longitudinal period sensitivity 
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Fig. 3.33  Transverse period sensitivity 

 

The results indicated the optimal transverse period was TT ≈ 1.36(T1) and the optimal 

longitudinal period was TL ≈ 1.20(T2).  T1 and T2 in this case referred to the initial elastic periods 

in the transverse and longitudinal directions, respectively.  Clearly, by choosing the initial elastic 

period, the single selection of T1 for Class II IMs does not yield optimal results.  It was therefore 

attempted to relate these period shifts to the loaded condition (post-gravity), a partially damaged 

condition (post-earthquake), and the complete post-earthquake event (displacement ductility 

EDP). 
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Table 3.5  Class II IM period modification factors 

Post-gravity Post-earthquake Structure 

number 

Tfac (xT1) Lfac (xT1) Lfac 

(xTlong) ∆Tfac ∆Lfac ∆Tfac ∆Lfac 

0001* 1.40 1.12 1.25 0.07 0.21 0.08 0.08 

0005* 1.43 1.05 1.20 0.12 0.17 0.07 0.08 

0009* 1.23 1.02 1.12 0.10 0.09 0.05 0.27 

0013 1.20 1.10 1.19 0.13 0.15 0.04 0.15 

0017* 1.30 1.10 1.20 0.07 0.16 0.09 0.09 

0021 1.45 0.97 1.22 0.16 0.17 0.16 0.15 

0025 1.48 0.85 1.21 0.02 0.18 0.01 0.18 

 

The condition labeled post-earthquake was a low-level (elastic) earthquake simulation 

using the Covina-West Badillo Northridge earthquake record.  By applying a ductility demand 

on the order of 0.5–0.8, cracking and nonlinear concrete behavior was induced, thereby 

somewhat elongating the period values.  Table 3.5 shows the difference (∆Tfac and ∆Lfac) 

between the observed minima and the post-gravity and post-earthquake normalized periods.   

For the transverse direction, three predictive equations are proposed for estimating Tfac 

(relative to original T1, initial elastic period) a priori (Eq. 3.15).  The residuals are assumed to be 

normally distributed with a standard deviation indicated at the end of each equation.  The 

response in the transverse direction was well described by the period after gravity-load analysis 

has been performed.  Only to refine the estimate of Tfac (designated Tfac*) would it be necessary 

to incorporate information about the expected displacement ductility demand.  The post-gravity 

( Tfac,gravity = Tpost−gravity /T1) and post-earthquake (Tfac,eqk = Tpost−eqk /T1) period factors should be 

determined for the bridge of interest prior to predicting the optimal transverse period with 

Equation 3.15. 
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For the longitudinal direction, the results differed somewhat.  The post–gravity-load-

analysis period gave a poor estimate of Lfac (relative to original T2, initial elastic period); 
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however, the expected displacement ductility demand and post-earthquake period were better 

predictors (Eq. 3.16).  To reduce the scatter in the prediction, the post–gravity-load factor was 

combined with the average displacement ductility demand to better estimate Lfac (designated 

Lfac*).  Similarly, the post-gravity ( Lfac,gravity = Lpost−gravity /T2 ) and post-earthquake 

( Lfac,eqk = Lpost−eqk /T2 ) period factors should be determined prior to predicting the optimal 

longitudinal period with Equation 3.16. 
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The displacement ductility demands (µ∆) used in the analyses were the mean plus half standard 

deviation for each given structure, unless otherwise noted. 

Almost all spectral analyses done today use a damping coefficient of 5% of critical.  This 

may not agree with the damping in any of the actual structural modes under consideration.  The 

finite element model of the bridge used Rayleigh damping calculated for the first two modes.  

The specified damping ratio was 2.5% of critical.  Using the calculated α1 and β2 parameters 

(mass and stiffness proportional damping), the effective damping ratio in each of the modes was 

back calculated.  For both the longitudinal and transverse directions, this value was 2.6% for 

both pre- and post-gravity-load analyses.  These values were then also verified by free-vibration 

tests on the structure in each of these directions.  Free-vibration tests indicated whether other 

modes were present in the two primary directions.  The results yielded similar damping values, 

2.3% for the longitudinal direction, and 3.1% for the transverse direction.  Transverse free 

vibration included a small contribution from the third mode, especially for structures 0021 and 

0025. 
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Fig. 3.34  Longitudinal damping ratio (ζ) 

sensitivity 
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Fig. 3.35  Transverse damping ratio (ζ) 

sensitivity 

 

Figure 3.34 shows the sensitivity to damping ratio in the longitudinal direction, Figure 

3.35 in the transverse direction for structures marked with an asterisk in Table 3.5.  There were 

no apparent trends in either direction that suggested an improved value of the damping ratio to 

use in SDOF filters.  While not the optimal value, the use of 5% damping in each case yielded 

better results than using the system damping ratio.   

For the case of the inelastic SDOF filter, the yield strength of the system needed to be 

specified as an additional parameter.  A bilinear fit to the nonlinear force-displacement pushover 

response of the structure was made.  The yield strength was chosen to minimize the area between 

the pushover curve and bilinear approximation (FEMA 2000a).  Yield strength sensitivity in the 

longitudinal direction is shown in Figure 3.36 and the transverse direction in Figure 3.37. 
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Fig. 3.36  Longitudinal yield strength (fy) 

sensitivity 
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Fig. 3.37  Transverse yield strength (fy) 

sensitivity 

 

While there appeared to be some benefit to allowing the onset of hysteretic behavior 

(lower fy), there was no definitive optimal choice of this parameter.  The values on the abscissa 

were normalized with respect to the selected yield strength of the system.  It should also be noted 

that selection of fy from a nonlinear pushover is not exact, but given the bounds on the fy 

parameter in this study, it would suggest the exact value chosen is unimportant.   

The hardening ratio can be determined from the bilinear fit made to the pushover of the 

structure.  Only the sensitivity to the hardening ratio in the longitudinal direction is shown (Fig. 

3.38).  The value was varied widely and had little impact on the model efficiency.  A value of 

0.02 is recommended for use with inelastic SDOF filters.  It should be noted that the value used 

for steel strain hardening in the finite element model was 1.5%.  The transverse results were 

comparable but not shown here.   

3.4.3.1.2 Class III Parameter Sensitivity 

Focusing on the 2DOF filter introduced earlier, the individual values of T1 and T2 were varied 

neither explicitly nor with respect to each other.  However, the relationships developed for the 

SDOF filter periods (Tfac* and Lfac* in Eqs. 3.16 and 3.15, respectively) were applied to the 

2DOF filter to determine if this was beneficial to the efficiency of the 2DOF filter as well.  

Compared to the values for the basic MDOF filter in Figure 3.30, the selection of optimal SDOF 

periods also slightly improved the overall performance for the 2DOF filter. 
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Focusing on the bandpass filter, a parameter study was performed using the same 

procedure as for the SDOF filter.  It was assumed that the optimal single period, and therefore 

the central frequency, was determined using Equations 3.15 and 3.16.  The only parameter that 

was varied was then the bandwidth B of the filter.  The same values were used as in Table 3.3 to 

facilitate comparison.  A comparison of results is shown for the bandpass filter and the 

corresponding averaged spectral combinations in Figure 3.39.  As with the average spectral 

quantities from Table 3.3, choosing a bandwidth between bands 5 and 6 produced optimal 

results.   
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Fig. 3.38  Longitudinal hardening ratio 
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Fig. 3.39  Longitudinal band sensitivity 

 

Several thousand existing and new IMs were considered in this exhaustive study.  The 

goal was to develop a PSDM that exhibited a higher level of efficiency than conventional IMs 

(Section 3.4.1).  This allows a higher level of confidence in achieving performance objectives, 

both at the demand level, and as part of the complete PBEE framework.  It was not intended to 

achieve increased efficiency by developing spectral or other combinations with calibrated 

structure-specific constants.  Rather, from the existing pool of IM knowledge, it was intended to 

isolate the input parameters that make IMs better predictors in PSDMs.  By choosing a medium- 

and long-period range of bridge structures with which to generate these models, the period 

dependence (lack of robustness) of Class I (unfiltered) IMs was revealed.  This facilitated the 

optimal selection of parameters for Class II (SDOF filtered) IMs and possible future 

development of new Class III (arbitrary filter) IMs. 
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While current use of Sa(T1) as the IM in seismic performance assessment provides better 

efficiency than previously used IMs such as PGA, Sa(T1) is neither the best IM choice, nor is T1 

the best period choice.  It was determined that inelastic SDOFPGD outperforms elastic SDOFPGD 

(standard spectral displacement) for a large period range.  Depending on the direction of concern 

(longitudinal or transverse), a modified period value outperforms the initial elastic period.  By 

performing gravity-load analysis, or low-level static or dynamic analysis on the structure, the 

resulting period is a better predictor for post-earthquake response.  It is also possible to modify 

the initial elastic period by the expected displacement ductility demand on the structure during 

the earthquake.  Equations 3.16 and 3.15 can be used to accomplish this period modification.  

For the inelastic SDOF filter, the yield strength obtained from the nonlinear pushover response 

should be used.  The hardening ratio corresponding to the global structural hardening ratio 

should be employed, and a damping ratio of 5% of critical selected.   

If improved efficiency above SDOFPGD is desired, this quantity should be averaged over a 

narrow band (0.8–1.25 times period) around the filter’s structural period.  To be more 

computationally efficient, this procedure can also be accomplished using a bandpass filter with 

the same frequency band.  For a structure with earthquake response in several modes, the 

concept of a MDOF or multiple pass-band Class III filter can be investigated.  The use of the 

bandpass filter for the Class III IMs was more computationally efficient than solving the 

equations of motion.  All of the IMs were evaluated with respect to a PSDM containing drift ratio 

as the EDP.  It was also found that the optimal choice of IM and selection of T1 using Equations 

3.16 and 3.15 were applicable to PSDMs containing maximum column moment, displacement 

ductility, and residual displacement.  PSDMs featuring cumulative EDPs, such as normalized 

hysteretic energy, were optimal with inelastic SDOFIC and inelastic SDOFIA IMs.  The best results 

were once again obtained when modifying the period using Equations 3.16 and 3.15. 

3.5 DESIGN PARAMETER VARIATION 

This section addresses the trends evident in PSDMs obtained from varying various bridge design 

parameters, and development of methods employing PSDMs to predict bridge response without 

coupling to the complete PBEE framework.  All of the design parameters presented are in 

reference to the same single-bent base bridge configuration.  Once again, the variation of design 
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parameters from this base configuration (Table 2.1) was intended to cover the complete spectrum 

of possible bridge designs, even if independent values were uncommon in design practice.   

 In the parametric study of this section, the IMs were limited to the spectral quantities, 

PGV, PGD, and CAD only.  First-mode spectral displacement Sd(T1), Sa(T1), and Sv(T1) were 

used interchangeably, as the dispersions in the PSDMs were independent of the choice of 

spectral quantity.  Of the total possible EDP combinations, only a few were selected for the 

design parameter study, as based on their previously determined optimal properties.  Two global 

EDPs, used in current bridge design practice, are the column drift ratio (∆) and displacement 

ductility (µ∆).  These are two kinematically dependent measures that can be used interchangeably 

in the PSDMs.  The other EDPs that yielded optimal PSDMs were maximum column moment 

(Mmax) and curvature ductility demand (µφ), intermediate EDPs, and concrete material strain 

(εconc), a local EDP.  

 The consequence of choosing spectral quantities for the demand model is the period 

dependence of the IM.  Since the initial elastic stiffness was used to compute the measure of 

Sa(T1), design parameters that vary the stiffness of the bridge system will cause intensity shifts in 

the demand models for a given earthquake.  Alternative IMs, which introduced more dispersion, 

were PGV, PGD, and CAD.  To alleviate the IM period dependence, these IMs can be used when 

comparing EDPs.  In this case, the result is a single line of constant IM value parallel to the EDP 

axis that aids direct evaluation of varying design parameters on performance. 

Given the trends due to design parameter variation described by period-independent IMs, 

a set of design equations can be written.  A single design equation for each design parameter was 

generated for each IM-EDP combination.  The equation can be used explicitly by designers 

without coupling to Equation 1.1.  This was done at the expense of efficiency, albeit eliminating 

T as a design variable.  The general form of a design equation was found to follow Equation 

3.17. 

 
ln E ˆ D P( )= Aix

2 + A j x + Ak( )+ Bix
2 + B j x + Bk( )ln IM( )

= A(x) + B(x)ln IM( )
 (3.17) 

This form was not suitable for all IM-EDP combinations, but in general, for any PSDM that was 

both effective and efficient, Equation 3.17 provided a good estimate of the median response (σfit 

< 0.05).  An estimate of the model dispersion to use for a PSDM obtained from this equation is 

suggested in Section 3.8.1. 
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Specifically, the design parameters considered in this section were Dc/Ds, L/H, ρs,long, and 

L.  The three geometric design parameters were marked by varying bridge stiffnesses, evident in 

the period differences within parameter groups (Table 2.2).  The initial stiffness of the bridge 

was only minimally influenced by the amount of reinforcement (longitudinal and transverse) in 

the reinforced concrete column section.  The only parameter that altered the mass, and 

accordingly the spectral values, was the additional deadweight, Wt.  In order to understand the 

effect of design parameters, constant intensity lines (black dashed lines) have been added to the 

figures below.  This was performed regardless of the period dependence of the IM selected in 

each PSDM. 

As a demonstration of the pitfalls of selecting Sa(T1) as the IM of choice for design 

parameter comparison, two optimal models (local and intermediate EDPs, respectively) for the 

column diameter parameter (Dc/Ds) sensitivity are shown in Figures 3.40 and 3.41, respectively.  

Also shown on the figures are sample design trends when evaluating performance by varying the 

column diameter.  Variation of column-to-superstructure dimension ratio (Dc/Ds) was based on 

varying the column diameter as the superstructure depth and other properties were held fixed 

throughout.  By increasing the diameter, the bridge stiffness increased and there was a resulting 

decrease in the maximum concrete strain demand in the column (Fig. 3.40).  Similarly, as the 

diameter increased, the maximum curvature ductility demand was also reduced (Fig. 3.41).  

Lines of constant intensity were included for the case of the Sunnyvale-Colton Avenue (Table 

A.1) earthquake scenario.  Assessing trends is an iterative process in this case as the period needs 

to be calculated for each bridge design parameter value selected. 
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Fig. 3.43  Sa(T1)-∆, Dc/Ds sensitivity 
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 A desirable property of design parameter PSDMs is therefore to include a period-

independent IM and also to be effective (described by a single linear fit in log-space).  Any 

PSDM of this form lends itself to the uncomplicated determination of a design equation (Eq. 

3.17).  For example, using PGV and the maximum column moment, a desirable PSDM was 

formed (Fig. 3.42).  As the column diameter was increased, the stiffness and strength of the 

column were also increased and more force (moment) was attracted.  The slope of the fits 

corresponded directly to the rate of change of performance (demand).  Steep slopes resulted in 

minimal demand changes, while shallow slopes produced large demand reductions for small 
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variations in design parameter values.  The design equation for Figure 3.42 is shown in Equation 

3.18. 

 
ln Mmax, long.( )= −3.59x 2 + 8.45x + 4.96( )+

0.435x 2 − 0.474x + 0.445( )ln PGV , long.( )
 (3.18) 
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Fig. 3.45  CAD-µφ, L/H sensitivity 
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 Maintaining Dc/Ds as the design parameter, the design parameter (and thus period) 

dependent change in dispersions between a period-dependent (Sa(T1)) and period-independent 

(CAD) IM was assessed directly.  The optimal global EDP (∆) PSDM was selected for 

comparison.  The PSDM formed with Sa(T1) is shown in Figure 3.43, including trends showing 

the decrease in drift ratio as the column stiffness was increased.  Figure 3.43 is typical of how 

shallow slopes show larger performance differences.  The corresponding period-independent 

PSDM is shown in Figure 3.44, formed with CAD.  The drawbacks of period-independent IMs 

are immediately evident, as efficiency values dropped by 35–100%.  The continuously efficient 

IM across the complete design parameter period range was noticeably absent, as Class I IMs are 

not robust (Section 3.4.3).  Therefore, confidence in the PSDMs used for design parameter 

variation was lower; however, they provided the best means to investigate the effect of design 

parameter variation.  The design equation stemming from Figure 3.44 is shown in Equation 3.19. 

 
ln ∆,long.( )= −2.70x 2 + 6.81x − 7.74( )+

0.490x 2 −1.41x +1.72( )ln CAD, long.( )
 (3.19) 
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The drop in efficiency using period-independent IMs is not always as pronounced as the 

case above.  For example, the PSDM formed between Sa(T1) and curvature ductility demand 

already exhibited higher dispersions (Fig. 3.18).  Therefore, the introduction of CAD in Figure 

3.45 had little impact on the model efficiency.  Therefore, CAD-µφ was used to illustrate trends 

in performance due to variation of the span-to-column height ratio design parameter (L/H).  The 

span length was held fixed while the value of L/H determined the column height.  Therefore, as 

L/H was increased, the bridge became stiffer (more squat).  A single line of constant intensity 

shows the increase in curvature ductility demand as the column becomes shorter (stiffer).  While 

it was possible to write a design equation for this PSDM and L/H sensitivity, the use of a 

piecewise linear median fit to reduce the model dispersion introduced the need for two design 

equations and IM limits for usage.  The intersection of the bilinear fit varied based on the value 

of the design parameter; therefore, it is easier to solve both equations and select the larger 

response value if the fits are concave, and the smaller value if the fits are convex (as viewed 

from the origin).  The two design equations for Figure 3.45 are shown in Equation 3.20. 

 ( )
( ) ( )

( )
( ) ( )
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Similar to the variation of Dc/Ds, the period-independent PSDM for L/H was formed with 

CAD and a single linear median fit (Fig. 3.46).  As L/H was increased (column is shorter), the 
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drift ratio actually increased.  While this may seem counterintuitive, it should be realized that the 

maximum displacement (umax) was decreasing with increased stiffness; however, drift ratio is a 

normalized quantity.  Therefore, the change in column height was larger than the change in umax 

between design parameter values.  The design equation for Figure 3.46 is shown in Equation 

3.21. 

 
ln ∆, long.( )= −0.350x 2 + 2.55x − 8.34( )+

0.0466x 2 − 0.340x +1.50( )ln CAD,long.( )
 (3.21) 

 

 The steel reinforcement ratio (ρs,long) was one of the parameters not causing large 

intensity shifts in PSDMs formed with spectral quantities.  Using Sa(T1), the reduction in 

displacement ductility demand was immediately correlated to the design strength (Fig. 3.47).  A 

linear increase in reinforcement did not correspond to a linear decrease in demand, however.  

The sensitivity of performance at lower reinforcing ratios was more pronounced.  Similarly for 

forces, increasing the reinforcing amount had a drastic effect on the amount of moment attracted 

to the column (Fig. 3.48).  This PSDM used CAD instead of Sa(T1), as the dispersions remained 

low.  Evident are two linear regimes for each design parameter, as may be expected of an 

idealized bilinear moment-curvature relation of the column cross section.  A design equation is 

only shown (Eq. 3.22) for the single linear fit of Figure 3.47. 

 
ln µ∆ , long.( )= 884x 2 − 63.5x + 0.894( )+

−87.1x 2 + 3.18x + 0.894( )ln Sa(T1),long.( )
 (3.22) 
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Fig. 3.49  PGD-µφ, L sensitivity longitudinal 

 

 The L design parameter effects the overall size of the bridge, as the column height grows 

according to a constant L/H ratio.  Therefore, as L was increased, overall flexibility increased.  

Performance trends due to varying L are shown for curvature ductility and drift ratio in Figures 

3.49 and 3.50, respectively.  The large values of L resulted in bridge periods beyond 2 sec; hence 

the period-independent IM PGD became more efficient.  For stiffer bridges (small L), the 

curvature ductility demand increased.  The corresponding design equation is shown in Equation 

3.23.  Similar to the L/H variation, the drift ratio actually increased for stiffer structures (small 

L).  However, the maximum displacement was increasing for larger values of L.  The drift ratio 

response for L can be described by Equation 3.24. 

 
ln µφ ,long.( )= 2.07e−7x 2 − 0.00191x − 0.793( )+

−2.04e−7x 2 + 7.14e−4 x + 0.776( )ln PGD,long.( )
 (3.23) 

 
ln ∆, long.( )= 1.94e−7x 2 − 0.0019x + 0.349( )+

−1.33e−7x 2 + 6.94e−4 x + 0.241( )ln PGD, long.( )
 (3.24) 

 

As seen in Table 2.1, the small change in period attributed to bridge mass resulted in a 

similarly small moment demand reduction.  However, when a large mass was considered 

(150%), significant P-∆ effects caused an increase in moment demand (not shown here).  In the 

context of the response spectrum, larger mass can be equated with a flexible structure, or longer 

period.  Therefore, dispersions increased with longer-period design parameter models when 
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using period-independent IMs such as PGA and IA.  However, for a Wt of 150%, the period was 

akin to larger bridges from varying the L parameter; hence PGD and CAD became more 

efficient.  The lack of a single period-independent IM for the Wt parameter led to its exclusion 

from a design parameter equation.   
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 Figure 3.51 shows the relationships for variation of soil properties, Ksoil.  The variable 

Ksoil assumed values of the USGS soil groups in the figure legend.  The particular effect on 

bridge modeling was described by the unit weight (γ’) and internal friction angle (φ’) in Table 

2.1.  While there was a reduction in demand when considering either a rock or soft soil site, the 

difference between a USGS B or C site was small.  However, the presence of soil springs was 

effective in elongating the fundamental period of the bridges to a more realistic value.  The high 

stiffness bilinear soil springs used in previous studies (Mackie 2003) were more closely 

analogous to a fixed-base column end condition.   

This section described the derivation of design equations given the trends due to design 

parameter variation.  The design parameters varied were Dc/Ds, L/H, ρs,long, and L.  Only period-

independent IMs (e.g., PGV) were used and a single design equation for each design parameter 

was generated for each IM-EDP combination.  The design equations (Eq. 3.17 general form) can 

be used explicitly by designers without coupling to Equation 1.1.  This was done at the expense 

of efficiency but eliminated the natural period of the structure as a design variable.  
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3.6 MULTIPLE-BENT HIGHWAY BRIDGES 

The PSDA approach was subsequently applied to the remainder of the bridges in the California 

reinforced concrete bridge class.  This included the commonality of optimal demand models 

between different bent configurations in the class as well as design parameter studies akin to the 

single-bent variations.  The multiple-bent bridges used in analysis were detailed in Section 2.2 

and in Mackie (Mackie 2003).  The base bridge configurations for all three bent types (one-, two-

, and three-bent) shared the same column heights and cross-sectional details.  Therefore, it was 

possible to assess trends in performance between the bridge designs.  As would be expected, 

adding bents increased the longitudinal stiffness and therefore reduced deformations.  However, 

the transverse direction remained similar to the single-bent case (stiffness and deformation-wise) 

as the bents were added in longitudinal series, not in the transverse direction.  Nevertheless, to 

demonstrate the applicability of the PSDA method to bridges with and without analytical 

abutment models, the two-bent bridge was selected for abutment modeling. 
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Comparisons of the bent types were achieved using a period independent IM, PGV, with 

drift ratio (∆) as the EDP.  The added stiffness resulted in the two- and three-bent bridges having 

similar longitudinal stiffness (Fig. 3.52).  In the transverse direction, only the two-bent bridge 

with abutments exhibited reduced deformations.  From the single-bent bridge study, optimal 

candidate PSDMs using existing IMs were Sa-∆, Sa-Mmax, and Sa-σ.  The same PSDMs were 

evaluated in terms of efficiency, effectiveness, and sufficiency for multi-bent bridges.  Some 
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other PSDMs formulated using local and intermediate EDPs were also included to show the 

similarity with single-bent PSDMs, even though the efficiency of the models was lower.  The 

local EDP PSDM between Sa(T1) and maximum steel stress (σsteel) is shown in Figure 3.54.  As 

with the single-bent counterpart (Fig. 3.12), the efficient bilinear fit resembles the bilinear steel-

strain constitutive model.  However, because steel stress is not a practical EDP, this PSDM was 

not considered optimal.  The PSDMs utilizing material strains demonstrated lower efficiency but 

were otherwise optimal.  Such a PSDM is shown for concrete strain and Sa(T1) in Figure 3.55. 
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 As with the single-bent PSDMs, maximum column moment (maximum is obtained from 

observing critical cross section of both bents) yielded a highly efficient PSDM when paired with 

any of the spectral quantities (Fig. 3.56).  An alternative intermediate EDP can be used at the 

expense of a significant dispersion increase.  The PSDM between column curvature ductility (µφ) 

and Sa(T1) is shown in Figure 3.57.  The same two PSDMs were formulated in the transverse 

direction with similar results; however, the dispersions were 50% higher.   
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 While drift ratio was used as the global EDP in the single-bent PSDMs (e.g., Fig. 3.19), 

displacement ductility is presented in the two-bent PSDMs.  As mentioned previously, these two 

EDPs are related kinematically through constants (uy and H); therefore, they produced the same 

dispersions when PSDMs were formulated in log-space.  Displacement ductility was used here as 

the parameter variation trends were more apparent for the variation of L2.  The global EDP (µ∆) 

shown in Figure 3.58 was once again the best choice for practicality, effectiveness, efficiency, 

and robustness.  The only caveat for the two-bent bridges was the extension of the PSDMs to the 

transverse direction.  Figure 3.59 shows the increase in dispersion in the transverse direction over 

the longitudinal direction for the same IM-EDP pair.  However, it should be noted that the 

increased stiffness provided by the abutments reduced the transverse ductility demands to the 

elastic range for most of the ground motions considered.  As shown later for the three-bent 

model with no abutments, the presence of the abutment is the main contributor to increased 

dispersion in the transverse direction.   
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The final condition for optimality requires the PSDMs also be sufficient.  Sufficiency was 

verified for the global EDP PSDM shown in Figure 3.58.  The residuals in log space were 

regressed against moment magnitude (Mw), closest distance (R), and strong motion duration (D).  

There was a slight positive correlation between the residuals and magnitude.  However, 

according to Equation 3.14, the conditional dependence on magnitude could be neglected.  No 

conditional dependence on closest distance was evident.  Once again, not explicitly required for 

the hazard analysis, conditional dependence on strong motion duration was also assessed.  There 

was slight correlation with D; however, the CD coefficient was zero somewhere in the 90% 

confidence intervals.  All residual dependence plots are contained in Mackie (Mackie 2004).  

Therefore, sufficiency was verified, and the same PSDMs deemed optimal for single-bent 

bridges were similarly optimal for two-bent bridges in the structural class. 

Design parameter sensitivity studies were performed for the two-bent bridge 

configuration specific design parameters from Table 2.3.  As with the single-bent case, variations 

in the fundamental period of the different structures obtained from design parameter variation 

made it desirable to use a period-independent IM.  PGV was selected as the IM as it produced the 

lowest dispersion of the period-independent IMs analyzed for the two-bent bridges.  Arias 

intensity and CAV can also be used, but dispersions were approximately 30–40% higher than 

those with PGV.  Figure 3.60 shows the sensitivity of ductility demand to L2.  As L2 was 

increased, H1 also increased (the bridge became larger on the left side); therefore the structure 

became more flexible.  As indicated, more flexible realizations resulted in increased demand at 

all intensity levels. 
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Fig. 3.61  PGV-∆L, 2 bent L2/H1 sensitivity 
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While changing L2 altered the overall size of the bridge (span length and column height), 

L2/H1 effected only the left column height (H1).  As L2/H1 was increased, H1 decreased thereby 

making the two-bent bridge stiffer.  The increased stiffness and corresponding decrease in 

displacement was best viewed at the left bent level where the column height changes occurred. 

Figure 3.61 shows the sensitivity of drift ratio of the left column (∆L) to changes in L2/H1 in the 

transverse direction.  While there was a slight reduction in overall bridge longitudinal 

displacement (not shown here) with increasing stiffness, there was an increase in drift ratio due 

to the reduced column size.  Similarly, in the transverse direction, the abutment contribution 

prevented large transverse displacement as the column became more flexible.  Therefore, the 

drift ratio also increased as the column height was reduced (stiffer configuration), even though 

this is counterintuitive.  
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Fig. 3.63  PGV-µφ, 2 bent ρs,long sensitivity 

longitudinal 

 

Performance changes from varying the column cross section were best viewed with 

intermediate EDPs.  As the column diameter was increased (Dc1/Ds), the longitudinal curvature 

demand (Fig. 3.62) on the left column was reduced.  Similarly, adding strength by increasing the 

amount of longitudinal column reinforcement resulted in a decrease in curvature ductility 

demand (Fig. 3.63).  However, both increased stiffness (Dc1/Ds) and strength (ρs,long) attracted 

more force into the column.  Figure 3.64 shows the increase in the left column maximum 

moment (Mmax,L) as the section was made stronger.  While it is possible to write design equations 

for piece-wise linear period-independent PSDMs, it was easier when a simple linear fit was used.  

For the case of Sa(T1)-Mmax,L, the resulting design equations are shown in Equation 3.25.  The 

design parameter value selected was x = ρs,long.  It was possible to use Sa as the amount of 

longitudinal reinforcement did not alter the initial elastic period of the structure.   

 
ln Mmax,L , long.( )= 302x 2 − 26.7x + 9.21( )+

−129x 2 +11.5x + 0.262( )ln Sa(T1),long.( )
 (3.25) 

 

A similar procedure to assess optimal PSDMs and design parameter sensitivity was 

followed with the three-bent, stand-alone, type configuration (with no abutments).  No new IM-

EDP pairs were introduced; however, the extension of existing optimal IMs to the three-bent 

configuration was explored.  To maintain brevity, optimal models with local EDPs are not shown 

here.  However, as with one- and two-bent models, material stress PSDMs were highly efficient 

(e.g., Fig. 3.12) but not necessarily practical.  Material strain PSDMs lost efficiency (e.g., Fig. 
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3.14) but were more comparable to observable phenomenon.  At the intermediate EDP level, 

maximum column moment (with a spectral IM) was the most efficient PSDM (Fig. 3.65).  

Additionally, curvature ductility also provided a low dispersion alternative (Fig. 3.66), as 

compared to its single-bent (Fig. 3.18) and two-bent (Fig. 3.57) counterparts. 
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Continuing previous trends, it was the global EDP PSDM formed from drift ratio or 

displacement ductility (Fig. 3.67) that provided the most robust and effective (single linear fit) 

PSDM.  In Figure 3.67, the design parameter used to illustrate robustness was L2/H2.  As 

mentioned in Section 2.2, the spans were held constant while only the middle column height (H2) 
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was changed.  This resulted in locally stiffer behavior that did not effect the overall longitudinal 

deck displacement, but was important for deflections in the transverse direction.  Therefore, the 

drift ratio of the middle bent (∆M) was used in the longitudinal (Fig. 3.67) and transverse (Fig. 

3.68) PSDMs.  Comparable to previous models, the transverse PSDM was not as efficient as the 

longitudinal PSDM, but still exhibited optimal characteristics.  Sufficiency of the Sd(T1)-∆M 

PSDM was investigated, but not shown here.  There was no conditional dependence on either 

magnitude (Mw), distance (R), or duration (D).   
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Fig. 3.69  CAD-∆M, 3 bent L2 sensitivity 
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As with the two-bent bridge configuration, only the design parameters specific to the 

three-bent model (Table 2.4) were varied here.  The period-independent IM chosen to allow lines 

of constant intensity in the PSDMs was CAD.  Alternatively, PGV or CAV could have been used, 

but exhibited dispersions 10–20% higher than CAD.  The L2 design parameter effected the 

overall size of the bridge as both the span length and column height (H2) increased with 

increasing L2.  As L2 was increased, displacements increase slightly in the longitudinal direction, 

but the overall drift ratio of the middle column (∆M) decreased (Fig. 3.69).  Transverse 

displacements increased minimally as well, reproducing the increase in drift ratio in the 

transverse direction (Fig. 3.70). 
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Fig. 3.71  CAD-∆M, 3 bent L2/H2 sensitivity 

longitudinal 

 

To isolate the effect of disparate column heights within a multiple-bent bridge, the middle 

column height (H2) was altered according to L2/H2.  As the design parameter increased, H2 

decreased.  The resulting increase in stiffness decreased the overall displacement slightly; 

however, the drift ratios increased.  This behavior was true in both the longitudinal (Fig. 3.71) 

and transverse (Fig. 3.72) directions when examining the drift demand at the center column.  

Both of these PSDMs lent themselves toward a single linear design equation.  The resulting 

design equation for the longitudinal direction is shown in Equation 3.26, and the transverse 

direction in Equation 3.27.  The design parameter value selected was x = L2/H2. 

 
ln ∆M , long.( )= −0.127x 2 +1.25x − 7.02( )+

0.00414x 2 − 0.0733x +1.05( )ln CAD,long.( )
 (3.26) 

 
ln ∆M ,tran.( )= 0.0105x 2 + 0.610x − 6.72( )+

−0.0245x 2 + 0.0649x + 0.993x( )ln CAD, tran.( )
 (3.27) 
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Fig. 3.73  CAD-Mmax, 3 bent Dc2/Ds sensitivity 
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Finally, the diameter of the center column was varied through the Dc2/Ds design 

parameter with a constant deck depth.  As would be expected for a stiffer column, the 

displacements were reduced while the force demands were higher.  Figure 3.73 shows the PSDM 

between CAD and maximum column moment (all columns considered).  For the case of Dc2/Ds = 

0.67, the diameter of the other two columns dominated the moment demand (the other two 

columns remained at Dc/Ds = 0.80); therefore, the lowest two design parameter values were 

equivalent.   

 In summary, when applied to multiple-span highway bridges, the criteria required for 

disaggregation were maintained in the resulting PSDMs, thus allowing seamless integration into 

the PEER framework.  More importantly, the same IM-EDP pairs derived as optimal for single-

bent bridges were also optimal for multiple-bent bridges.  The wide use of spectral acceleration 

in current practice makes it a useful property for bridges.  As tools for designers, the PSDMs for 

multiple span bridges were especially useful, as they were not subject to deterioration of 

effectiveness or sufficiency due to bridge irregularity.  Optimality of IM-EDP pairs was 

maintained across a broad range of irregular configurations.  This standardization allows 

designers to evaluate bridge response without an initial requirement that a bridge design qualify 

as an “ordinary standard bridge” (Caltrans 1999). 

While only California reinforced concrete highway overpasses were investigated in this 

section, the optimal selection of a spectral IM (such as spectral acceleration or spectral 

displacement) and a global EDP, such as drift ratio, appear to be insensitive to the choice of 

structure.  Prudent choice of the natural period for use in the spectral IM was important, but 



 94

followed directly from the primary mode of deformation expected for the structure, regardless of 

whether it fell at the lowest period or not.  This optimal IM-EDP combination also appeared 

optimal over a variety of design parameter variations, making it a good choice for assessing 

performance trends in demand models.   

3.7 AFTERSHOCK PSDMS 

Due to computational power constraints, a comprehensive PSDM study was not attempted for 

the inclusion of aftershocks.  However, results were computed for two values of the L/H design 

parameter for the single-bent configuration (L/H = 2.4 and 3.5).  Keeping track of both the first-

shock intensity (IMFS) and aftershock intensity (IMAS), a PSDM was constructed in three 

dimensions with the post-aftershock response being conditioned on both IMs.  For simplicity, the 

same IM was used for both IMFS and IMAS.   

As a simple extension of Equation 3.9, a best-fit plane was sought to describe the 

response, given the intensities (Eq. 3.28).  The same selection of feasible EDP and IM 

combinations were possible as with the single-bent bridge first-shock case.  A sample PSDM is 

shown in Figure 3.74 for L/H = 2.4, Sd(T1) as the IM, and drift ratio in the longitudinal direction 

as the EDP.  The corresponding coefficients were A = -1.49, BFS = 0.0744, BAS = 0.728, and a 

dispersion of 0.28.  For better visualization, the L/H = 3.5 case was excluded from the plot; its 

dispersion was 0.34. 

 ln E ˆ D P( )= A + BFS ln IMFS( )+ BAS ln IMAS( ) (3.28) 

 

Given the sensitivity of PSDM efficiency to period in the spectral quantities (Section 

3.4.3.1.1), it would suggest the choice of the initial elastic period was an especially poor choice 

in the aftershock scenario.  The softening due to cycling from two ground motion events would 

suggest an elongated period would have been a better choice.  For computational reasons, this 

sensitivity was not performed. 
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Fig. 3.74  Sd(T1)-∆ aftershock PSDM, L/H = 2.4 longitudinal 

 

However, as an alternative, a period-independent IM good at describing such elongated 

period motions was an efficient choice.  It was determined the best Class I IM for the design 

parameter values selected was PGD.  The PSDM formed using PGD and longitudinal drift ratio 

is shown in Figure 3.75 for L/H = 3.5.  The resulting dispersions for both L/H values were 0.35 

and 0.37, respectively.   

 

10
0

10
1

10
0

10
0

PGD Longitudinal (cm)                  

AS Vector Intensity Measure − Demand Measure

PGD Longitudinal AS (cm)               

D
rif

t R
at

io
 L

on
gi

tu
di

na
l  

   
   

   
   

 

L/H=3.5

 

Fig. 3.75  PGD-∆ aftershock PSDM, L/H = 3.5 longitudinal 
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3.8 ALTERNATIVE DEMAND FORMATS 

The PSDM is the building block of all subsequent demand outputs.  However, there are 

numerous other methods of presenting the data.  These include plotting the PSDM directly as a 

probability distribution, rather than simply the data points and best fit, and convolving the PSDM 

with site-specific hazard to create a demand hazard curve.   

3.8.1 Demand Fragility 

The most intuitive of the alternative formats is to plot a demand cumulative distribution function 

(CDF).  This is accomplished by selecting a demand limit state (edpLS), such as 1.5% drift ratio.  

The probability of exceeding a specific value of the demand limit state can then be calculated for 

each intensity value considered in the PSDM.  Owing to the definition of a fragility curve, such a 

conditional distribution is termed a demand fragility curve.  The CDF, or fragility, plot can be 

obtained directly from a vertical stripe of EDP data, or from the (assumed) lognormal 

distribution and associated distribution parameters ( E ˆ D P  and σ).  Given the parameters A, B, 

and σ from PSDA simulation, the demand fragility form becomes Equation 3.29. 
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A plot of single (complementary CDF) demand limit-state fragility curves (edpLS > 3%) 

is shown in Figure 3.76 for Dc/Ds parameter variation.  The PSDM used to derive the fragility 

curve was shown in Figure 3.19.  This form of presenting demand models is particularly useful 

for designers and engineers to quantify performance changes due to design parameter variation 

probabilistically.  However, for demand fragility curves using period-dependent IMs, lines of 

constant intensity are not vertical.  As an example, using Gilroy Array #3 as the design scenario 

earthquake, the probability of exceeding a 3% drift demand was 0.99 for Dc/Ds = 0.75 but only 

0.3 for Dc/Ds = 1.0.  The period-independent alternative is illustrated in Figure 3.77 for CAD as 

the IM and L/H design parameter sensitivity.  In this case, direct assessment was possible by the 

single vertical constant intensity line. 
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Fig. 3.76  Sa(T1)-∆ demand fragility, Dc/Ds sensitivity longitudinal 
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Fig. 3.77  CAD-∆ demand fragility, L/H sensitivity 

 

The two-dimensional demand fragility presentation of Figure 3.76 is useful when discrete 

known design parameter values and limit-state values (or simply a single demand fragility curve) 

are desired.  However, to assess overall trends, an entire series of demand fragility curves can be 

plotted together as a demand fragility surface.  Numerous fragility curves for different limit-state 

values (edpLS) for a single bridge realization (Dc/Ds = 0.75) can be conveniently visualized as a 



 98

fragility surface (Fig. 3.78).  Each black line on the demand fragility surface is a traditional 

demand fragility curve at a specific limit-state value.  Given an array of fragility curves 

corresponding to different values of the same limit state, it is possible to assess the effect of 

earthquake intensity on structural fragilities (i.e., Fig. 3.78).  This format is compatible with all 

possible IMs, as only one structure is considered in each surface. 
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Fig. 3.78  Sa(T1)-∆ demand fragility surface, ∆ limit states 

 

Alternatively, given an array of fragility curves corresponding to different bridge designs 

(or design parameters) at the same value of the limit state, it is possible to assess the effect of 

different designs on the probability of exceeding set performance levels (limit states).  This 

approach also produces a three-dimensional demand fragility surface.  However, trends between 

design parameter values need to be determined, and thereby, the design parameter becomes 

another independent variable.  As mentioned in the design parameter section (Section 3.5), 

design equations utilizing period-dependent IMs (such as Sa(T1)) are not useful as they do not 

account for implicit period dependence.  While it may be possible to solve Equation 3.17 using 

iterative techniques, this requires determination of the fundamental period for numerous 

intermediate structures.  

For illustration of three-dimensional demand fragility, the (period-independent) PSDM 

between CAD and drift ratio was adopted for L/H sensitivity.  First, the design equation from 

design parameter variation during PSDA was obtained.  The general form of the design equation 
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was shown in Equation 3.17.  To further simplify the subsequent probability computations, the 

standard deviation of the assumed lognormal distribution was calculated from the dispersions 

obtained during PSDA and was assumed constant.  A value equal to the mean plus one-half 

standard deviation of these dispersions was adopted due to the introduction of model error in 

determining the coefficients Ai to Bk.  With this information, the demand fragility surface with 

design parameter variation can be described exactly by Equation 3.30.  The median EDP value 

( E ˆ D P ) is dependent on the design parameter value x as in Equation 3.17.  This term is therefore 

dependent on both the intensity and the design parameter; hence Equation 3.30 describes a 

complete surface of values. 
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Equation 3.30 is the best estimate of the demand fragility surface given a constant 

standard deviation (σ).  As a practical form, however, it may be difficult to use; therefore, a 

nonlinear regression was performed on the data.  The functional form fit to the data is indicated 

in Equation 3.31. 

 P EDP > edpLS | IM = im,X = x( )= 1
1+ exp Af + Bf im( )β1 + C f x( )β 2( )

 (3.31) 

Therefore, for each PSDM generated, it was possible to obtain not only a design equation (Eq. 

3.17) for demand values, but also a design equation for a demand fragility surface (Eq. 3.31).   

The results of the sample demand fragility surface are presented in Figure 3.79.  The 

regression coefficients in Equation 3.31 were Af = -16.74, Bf = -2.435, β1 = 0.3182, Cf = 33.25, 

and β2 = -0.0757.  For verification purposes, the fragility surface described by Equation 3.30 was 

plotted in the figure as the transparent grey surface.  The surface in full color is the fragility 

surface described by Equation 3.31 with the aforementioned coefficients.  The largest 

(probability) discrepancy was 0.08 at small values of the design parameter and IM. 
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Fig. 3.79  CAD-∆ demand fragility surface, L/H sensitivity 

 

If the array of ground motions chosen completely described the expected hazard at the 

site of interest, then the limit-state probability of exceeding each EDP value in the demand 

model could also be calculated.  This can be achieved in two ways.  The first method takes the 

distribution of IM data input into the demand analysis method (fIM) and integrates with the 

PSDM, as shown in Equation 3.32.   

 ( ) ( )∫=< dimimfimedpPedpEDPP IMIMEDP )(||  (3.32) 

Since IM values can be related to EDPs through Equation 3.9, it is not necessary to actually 

perform the integration in Equation 3.32.  Instead only the distribution of response (fEDP) data 

need be integrated (Eq. 3.33). 

 ( ) ( )∫=< dedpedpfedpEDPP EDP  (3.33) 

3.8.2 Demand Hazard Curves 

The hazard curve can be extended to the demand model by integrating the median hazard (Eq. 

3.4) and the PSDM (Eq. 3.10).  The result is still an annual hazard curve; however, it shows the 

mean annual frequency of exceeding a demand limit state according to Equation 3.13.  This 

effectively removes the dependence of the demand model on the intensity.  Integrating a PSDM 
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that relates Sa(T1) to drift ratio (Fig. 3.19), for a variation of the column diameter design 

parameter, with the hazard curve derived in Section 6.1 produced the structural demand hazard 

curve (SDHC) shown in Figure 3.80. 
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Fig. 3.80  Sa(T1)-∆ structural demand hazard curve, Dc/Ds sensitivity 

 

This integration can be performed numerically with the demand model data, or can be 

evaluated in closed form using the coefficients of the linear fit to the demand model (Eqs. 3.10 

and 3.9).  Details of the integration by parts are demonstrated by other researchers (Jalayer 

2003).  The resulting closed-form SDHC is shown in Equation 3.34.  To be strictly accurate, 

Equation 3.34 does not include epistemic uncertainty or the uncertainty from the hazard curve.  

The uncertainty from the hazard curve can be included explicitly in Equation 3.34, or it can be 

included by using the mean hazard curve (rather than the median).  The inclusion of epistemic 

uncertainty is detailed further in the following section. 
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3.9 UNCERTAINTY 

Until this point, all the PSDMs were constructed considering only the variability inherent in the 

random processes of earthquake records.  In the case of nonoptimal models, the total uncertainty 

in the problem was largely dominated by this aleatory uncertainty, so only including randomness 

remained a good assumption.  However, in the case of highly efficient PSDMs (low aleatory 

dispersion), additional epistemic uncertainties may have a more pronounced affect on the overall 

uncertainty.  Such epistemic uncertainty can nevertheless be included in any demand model by 

introducing an additional dispersion term in each subsequent analysis.   

The total uncertainty in the demand model can be estimated by the square root of the sum 

of squares (SRSS) of the aleatory and epistemic contributions (Cornell 2002; Jalayer 2003), as 

shown in Equation 3.35. 

 σT ,PSDM = σ EDP |IM
2 + σ PSDM

2  (3.35) 

The epistemic term (σPSDM) can be estimated based on professional opinion or simulation studies.  

It can be introduced as a penalty for bias introduced by approximate analysis methods or poor 

modeling assumptions.  For buildings, the SAC project sought to quantify this uncertainty (Lee 

2002); however for bridges little information is currently available on appropriate values.   

A complex nonlinear time history analysis was performed for each bridge in the PSDA 

procedure in this study; therefore, it was assumed that a relatively low level of epistemic 

uncertainty was present.  A value of σPSDM = 0.15 was assumed for the remainder of this report.  

The resulting total uncertainty can be used without modification by substituting σT,PSDM for 

σEDP|IM in either Equation 3.29 or 3.34 for demand fragilities and demand hazard curves, 

respectively.  The net result would be the prediction of a mean structural hazard curve (mean 

MAF) in Figure 3.80, as the MAF also becomes a lognormally distributed random variable.  Due 

to the relatively low dispersions considered, the mean hazard curve was not plotted separately 

here. 

However, it is instructive to consider different forms of the demand fragility curve.  The 

median fragility curves are shown in Figure 3.76, considering only the aleatory portion.  As an 

example, the base bridge fragility curve was selected (Dc/Ds = 0.75).  Equation 3.30 was 

modified to include the epistemic uncertainty separated from the aleatory portion, as shown in 

Equation 3.36 (Bazzurro 2004). 
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The variable y is the standard normal value corresponding to the desired probability band.  For 

example, for the 84th percentile, y = 1.  Three values of y (0, -1, and 1) are plotted with the mean 

fragility curve in Figure 3.81.  The same approach can be applied to any of the demand fragility 

curves created in this chapter. 
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Fig. 3.81  Sa(T1)-∆ demand fragility percentiles, base bridge longitudinal 

 

Another means of quantifying the uncertainty surrounding least-squares parameter fitting 

in the demand model was to examine confidence intervals on the mean (or median) EDP-IM fit.  

Traditional two-sided intervals were derived for each set of data at varying levels of confidence.  

In this case, the 90% confidence level was selected for illustration.  This confidence interval 

brackets the selection of the median in approximately 90% of repeated applications and is 

indicative of the amount of scatter (aleatory) in the model.   

The base bridge configuration was once again selected, and four more parameters 

estimated (A and B for each side of the interval).  It was assumed the median and each interval 

exhibited the same dispersion; however this is not strictly true.  For the purposes of this section 

though, it allowed plotting of confidence intervals in a demand fragility format, as shown in 

Figure 3.82 (50% intervals also included). 
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Figure 3.82  Sa(T1)-∆ demand fragility confidence intervals, base bridge long 

 

No particular probability levels are associated with the confidence intervals in Figure 

3.82; however, they are illustrative of the level of confidence in the median demand model.  The 

optimal demand models in this chapter were fairly certain and therefore the 50% intervals were 

quite narrow; but it will be demonstrated in later chapters that even the 50% intervals were large 

for functional EDPs and DMs.   

 



 

4 Damage Model 

Demand and damage are often used interchangeably.  However, this is not technically accurate, 

as demand simulations performed using finite element analysis are usually unable to completely 

capture complex natural phenomena such as global and local buckling, cracking, rebar buckling, 

and the onset of collapse.  Such phenomena are identified as structural damage.  Therefore, to 

perform any seismic risk assessment on bridges, it is necessary to introduce the capacity of 

bridge components and/or the complete bridge system, and subsequently make comparisons with 

the expected levels of demand.  Another grey area is the use of demand limit states to define 

different levels of damage.  This study will not rely on these deterministic demand limit states in 

the damage model formulation; rather, complete demand and damage analyses will be performed 

separately.  For the purposes of this study, the terms “capacity model” and “damage model” are 

used interchangeably.  

Discussion of appropriate damage measures (DM) for use in damage models should not 

be separated from the underlying needs of calculating losses for individual highway bridges.  

Specifically, this chapter is divided into two sections that correspond directly to the two paths 

constituting total losses to a highway network in an earthquake scenario.  The first section 

(Section 4.1) focuses on the DMs corresponding to direct costs associated with bridge repair and 

restoration.  The second section (Section 4.2) focuses on post-earthquake bridge function, or loss 

thereof, that results in indirect losses.  Quantifying damage is pursued at the individual bridge 

level only.   

The DMs required for each of the two types of losses must be realistic.  Realistic DMs 

address relevant damage states that can be related to dollar losses, function losses, or collapse, 

and include treatment of bridge system as well as component damage.  At the component level, 

localized damage models involving observable damage and loss of capacity are obtained.  The 

corresponding DVs relate to repair and restoration of function.  At the bridge system level, 

functional damage models involving loss of lateral and vertical load-carrying capacity are 
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obtained.  Resulting DVs lend themselves to evaluation of traffic capacity and safety factors for 

an earthquake scenario.   

Further insight into post-earthquake decision-making may be gained from the 

introduction of the probability of collapse during aftershocks.  Barring collapse, the subsequent 

decrease in performance as compared to the initial performance goals may also be of interest.  

Aftershock residual capacity can be seen as another method of determining post-earthquake 

capacity, such as the lateral load-carrying capacity described above.  Due to the different sources 

of damage data, and the different possible outcomes in terms of DMs, there is no single 

procedure that defines probabilistic damage analysis (such as was the case for demand).  

Therefore, probabilistic damage model (PDM) formulation is covered explicitly with each DM 

considered in this chapter. 

The ultimate goal of generating individual demand and damage models is to combine 

them for a meaningful result.  One method of visualizing damage probability is the fragility 

curve.  The formulation for damage fragility using the PEER framework is shown in Equation 

4.1.  The damage fragility shows the conditional probability of exceeding a damage limit state 

given an IM.  This necessarily includes demand model information beyond the PDMs of this 

chapter.  Unless otherwise noted, the demand models used in the damage fragilities of this study 

were presented in Chapter 3. 

 ( ) ( ) ( )∫ ⋅==< edp IMEDPLSEDPDMLS imedpdPedpdmPimIMdmDMP || ||  (4.1) 

The first term in Equation 4.1 is the CDF obtained directly from the PDMs of this chapter.  The 

second term is the derivative of Equation 3.29, or simply the PDF of the demand model at the 

specified IM level.  The resulting damage fragility curve is also a CDF for a single damage limit 

state (dmLS) with intensity on the horizontal axis.  

The chapter concludes with results from an experimental study to validate analytical 

predictions of the loss of axial load-carrying capacity of reinforced concrete specimens.  By 

developing an experimentally verified two-step analytical process, it will be possible to better 

predict the load capacity loss of more complex bridge structures.  The experimental procedure 

involved lateral excitation using displacement histories with prescribed maximum ductility 

demands, followed by axial compression until failure.  The analytical procedure involved 

developing a relationship between the loss of axial capacity and the maximum lateral ductility 

demand.  Such experimental or analytical curves can be used as displacement-based damage 
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models in the framework of Equation 4.1, with the added benefit of lower dispersions than the 

bridge-level analytical methods derived in Section 4.2.3. 

4.1 COMPONENT LEVEL 

This section is by no means a comprehensive assessment of component-level damage critical to 

highway bridges.  It concerns only damage to the column of the single-column reinforced 

concrete highway bridge configuration.  This excludes discussion of other classes of highway 

bridges, as well as other critical components in a highway overpass bridge system.  Component-

level damage would be anticipated at any number of locations in this class of highway bridges.  

These include abutment embankment and backfill slumping, abutment wing wall and bridge 

shear key failure, damage to the bearings, pile cap and pile damage below grade, deck-column 

joint damage, and offsets or damage at expansion joints.  Therefore, the total direct losses to the 

bridge are the sum over all bridge components.  However, there are currently experimental data 

available for columns to form a comprehensive framework study, whereas other essential bridge 

elements are lacking in currently available research.  Therefore, only the column losses were 

included in this study. 

The bridge under consideration in this section is the single-bent base bridge configuration 

detailed in Section 2.1.  In summary, it contains two equal spans, a single-column bent, and 

roller abutment supports.  Where applicable, several design parameters have been varied.  These 

were limited to the span length-to-column height ratio (L/H) and the column diameter-to-

superstructure depth ratio (Dc/Ds).  These design parameters were chosen because they directly 

induce geometric changes in the column.  Design parameters involving the material properties of 

the column, such as reinforcement ratio and concrete strength, were not varied in this study (and 

remained constant), although they can also be correlated with experimental column damage 

research. 

4.1.1 Component Damage Measures 

Large databases of experimental results exist (PEER SPD, CEB 2003) that are a collation of 

experimental tests on reinforced concrete columns performed by numerous researchers and 

organizations.  These tests included pseudo-static, pseudo-dynamic, and fully dynamic uniaxial 
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bending tests of columns in different geometric and material configurations.  Measurements of 

response were usually deformation-based and included strains, curvatures, drift ratios, or 

displacements.  Numerous tests also included observations of damage and response levels 

corresponding to each observation.  This implies a whole family of component DM values such 

as spalling and cracking that can be related directly to EDP values.   

For the purposes of this study, the DM can be thought of as component damage with 

specific values ranging from spalling to failure.  This discrete DM variable has numerous interim 

values, including yielding, the onset of longitudinal bar buckling, longitudinal bar fracture, 

transverse reinforcement fracture, and loss of axial-load capacity.  An important distinction with 

this selection of damage states is that the DM becomes a discrete variable and there fails to exist 

a mathematical PDM that relates DMs to EDPs.  The loss of axial-load capacity refers to the loss 

of the ability to support the initial gravity load, not the state of zero axial-load capacity.  Failure 

does not necessarily imply the collapse of the specimens; rather a significant drop in the post-

peak lateral force, or the first observation of any bar fracture or buckling.  Each of these DM 

values was defined at a specific EDP level at the first sign of occurrence.  

4.1.2 Experimental Damage Models 

Collations of numerous experimental studies on reinforced concrete columns have been 

performed.  The PEER Center developed one such database of experimental results expanded 

from past NIST results (Berry 2004).  The resulting Structural Performance Database (PEER 

SPD) can be used for columns described by numerous design parameters and for several 

different damage states.  Data exist in the form of force-displacement time histories as well as 

observations of damage at given demand levels (EDP).  Specifically, the EDP derived for 

immediate use from the database is drift ratio.  Damage observations include all those in Section 

4.1.1, except for yielding.  

 The specification of column properties, for example rebar yield strength and column 

aspect ratio, lends itself to regression of damage states with respect to these properties.  Given 

enough experimental data points, this can be performed using simple linear regression for any of 

the damage states above.  The resulting equation can be used to predict the mean (or median) 

EDP at which the damage observation occurred.  With an estimate of the variation of the data, 
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CDFs can be developed that describe the probability of exceeding a damage state (DM), given a 

demand level (EDP).  These CDFs completely describe the PDM for the case of a discrete DM.   

The procedure is illustrated for the bar buckling limit state and the design parameter 

values for the single-bent bridge (Table 2.1) in Equation 4.2.  The H and Dc column-level 

variables were derived from the L/H and Dc/Ds bridge-level variables, respectively.  A plot of the 

predicted damage model CDFs is shown in Figure 4.1 for the Dc/Ds design parameter.  The 

reinforcement ratios (ρs,long, ρs,trans) are in units of percent (not decimal).  To be consistent with 

the demand models, it was assumed that the conditional probability distributions of DM on EDP 

were lognormal.  The coefficient of variation associated with this linear model was 0.37.  The 

median values predicted by Equation 4.2 for variation of the Dc/Ds design parameter were 5.40, 

5.43, 4.80, and 3.45 (%), respectively.   
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Alternatively, parameterized regressions may yield more suitable equations for describing 

the mean relationship between demand and damage.  Such equations exist (Berry 2003) for bar 

buckling (Eq. 4.3) and cover concrete spalling (Eq. 4.4) for circular concrete columns.  These 

equations reduce uncertainty in the prediction of damage because they are derived using the 

principles of mechanics and, therefore, incorporate the variables that describe the relevant 

properties of the column.  

 



 110

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Drift ratio (%)

P
ro

ba
bi

lit
y 

of
 B

ar
 b

uc
kl

in
g

Damage model for Bar buckling from linear regression

DcDs=0.67
DcDs=0.75
DcDs=1.0
DcDs=1.3

 

Fig. 4.1  Bar buckling component PDM from linear regression, Dc/Ds sensitivity 
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The associated measures of uncertainty (coefficients of variation) for the above two 

equations are 0.25 and 0.33, respectively.  These formulas and coefficients of variation are valid 

only for the case of spirally reinforced circular concrete columns.  See Eberhard and Berry 

(Berry 2003) for more recent and general equations describing these damage limit states. 

The drift measurements (∆) are all in units of percent.  The steel reinforcement properties 

include the yield strength (fy), diameter of longitudinal bars (db), and percent of transverse 

reinforcement (ρs,trans).  The term containing the axial load (N) is simply the axial load ratio of 

the column.  The remaining variables are concrete strength (f’c), the effective cantilever height 

(H) and column diameter (Dc).  Parameterization in this manner is important because the 

variables correspond in large part to the design parameters employed throughout this study. 
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Fig. 4.2  Bar buckling component PDM from Eq. 4.3, Dc/Ds sensitivity 

 

Equation 4.3 was used to predict drift ratio at bar buckling.  The median values were 

5.48, 5.31, 4.87, and 4.52 (%) for Dc/Ds sensitivity.  The column height was halved for the 

effective cantilever length because the bridge column was in double curvature in the longitudinal 

direction.  Two distributions were assumed and plotted together in Figure 4.2.  For consistency 

with other probabilistic models in this study, the lognormal assumption is shown in solid lines 

while the normal distribution is dashed.  This form of the bar buckling model was superior to the 

one obtained using linear regression (Fig. 4.1) in both the median and variance. 

Focusing on the base bridge configuration, the lognormal CDF for bar buckling is shown 

in Figure 4.3, along with the CDFs derived for spalling and failure.  The spalling CDF was 

derived from Equation 4.4, while the failure CDF was derived from linear regression mentioned 

above.  While the normal distribution shown in bold lines is appropriate for a numerical 

integration of the PEER integral, to make some simplifying assumptions and develop closed-

form solutions, a lognormal distribution is required.  A comparison of the two distributions is 

included in the figure.  As can be seen, the tails vary only minimally for the calculated standard 

deviation values. 

Given the damage model derived above, it was possible to convolve it with intensity to 

obtain two useful outcomes.  The first was a traditional damage fragility curve (Eq. 4.1) that 

shows the probability of exceeding a damage limit state as a function of IM.  This damage 

fragility is shown (Fig. 4.4) for the three DM limit states from the damage model in Figure 4.3.  
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The second outcome incorporated the expected site hazard to obtain the annual frequency of 

exceeding each of the three DM limit states.  The specific hazard is detailed in Section 6.1.  This 

damage hazard curve is shown in Figure 4.5 for the numerical case (discrete), as well as an 

approximate continuous curve fitted through the points.  The continuous curve was obtained by 

assuming that the value of the DM variable is in fact the median drift ratio for each limit state.  

This made it possible to provide a smooth curve with numerical values on the abscissa.   
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Fig. 4.3  Component damage models 

 

 Useful information can be gleaned from the DM fragility curves in Figure 4.4.  For a 

given earthquake event with an expected intensity (IM) of Sa(T1) = 800 cm/s2, the probability of 

spalling is 1.0 (100%), but the probability of bar buckling is only 0.80.  Similarly, the probability 

of failure is slightly less at 0.65.  This information is general within the limits of analyzed bridge 

types and earthquake scenarios typical for California, and within these limits it can be applied to 

any earthquake scenario for a given bridge.  It is also possible to draw vertical lines of constant 

intensity with the period-dependent IM Sa(T1) in this case, as no structural parameter variations 

were performed.   
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Fig. 4.4  Component damage fragility curves 
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Fig. 4.5  Component damage hazard curve 

 

In a similar manner, the ultimate chord rotation (equivalent to drift ratio in this case) for 

reinforced concrete members was predicted using nonlinear regression models based on an 

experimental database developed by Panagiotakis (Panagiotakis 2001) and improved in the fib 

report (CEB 2003).  For a similar spiral reinforced column as utilized for spalling (Eq. 4.4) and 

bar buckling (Eq. 4.3), the mean prediction of ultimate displacement was made using Equation 
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4.5 (CEB 2003).  Quantities not relevant to the columns in this bridge class were removed from 

the equation.  For the purposes of this study, it was assumed that bar buckling is a failure 

mechanism, and therefore the ultimate displacement limit state and bar buckling were 

comparable between the two databases. 
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The drift measurements are in units of percent.  The coefficient of variation is 0.47.  All 

stress quantities are in MPa units.  The acyc constant describes the loading history by assuming a 

value of 0 for monotonic loading and 1 for cyclic.  The variables with apostrophes indicate clear 

distances (e.g., s’) between transverse reinforcement.  The confinement effectiveness term was 

introduced into the equation according to Mander (Mander 1988) for spirally reinforced 

columns.  As a comparison with Equation 4.3, the base bridge configuration ultimate chord 

rotation was 6.04 for monotonic loading and 3.74 for cyclic loading.  The average of these values 

(4.89%) is in close agreement with Equation 4.3. 

4.1.3 Analytical Damage Models 

Calibrated equations (Eqs. 4.3, 4.4, and 4.5) are useful, as they have been simplified for general 

usage and are applicable to a wide range of columns with input parameters in the range of data 

points considered.  However, in the scenario of a nontypical column, a bridge system as a whole, 

or a structural component behaving in a manner different than a column (beam for example), it is 

beneficial to generate damage data specific to the structure or component of concern.  

Additionally, a damage state other than that described by the equations may be sought, 

particularly when a continuum of damage measure values is required (see Section 4.2.1).  On the 

other hand, reliability analysis is applicable to any configuration or damage state, and it is faster 

than performing an experimental proof test of a particular component/system.  Therefore, an 

attempt was made to analytically simulate a specific damage state using a reliability approach. 

Numerous uncertainties are present in the drift predictions made with Equations 4.3, 4.4, 

and 4.5.  Measurement error may lead to large bias in the prediction of the mean (or median).  

This error includes equipment, calibration, instrument fidelity, placement of displacement 



 115

monitoring devices, and most important, the observations of the onset of damage.  Model error 

associated with Equations 4.3, 4.4, and 4.5 includes unknown variables and incorrect 

mathematical form.  Finally, statistical error is also largely due to the insufficient number of tests 

for a given geometry and material property case.  The form of the predictive probability 

distribution is also assumed.  However, the main caveat of analytical models is the (possibly 

unknown) magnitude of the error (depending on the damage state) introduced due to the finite 

element approximation utilized.  Additionally, a single reliability analysis is applicable only to 

the specimen at hand, making rapid evaluation of design choices more difficult.  Consequently, 

to validate an analytical procedure for predicting damage, the case for which experimental 

column data (and predictive equations) were available for comparison was chosen.  

A reinforced concrete column in a cantilever (single curvature) configuration was 

adopted for an analytical reliability-based study to mimic the results generated through the 

experimental databases.  For simplicity, a circular cross section was chosen with spiral 

(transverse) reinforcement.  The column was modeled using OpenSees 

(http://opensees.berkeley.edu/) in the same manner as the bridge columns of the reinforced 

concrete bridge class.  OpenSees contains a set of reliability tools; incorporated by Haukaas and 

Der Kiureghian (Haukaas 2003), to supplement its finite element capabilities.  A nonlinear force-

formulated element with a fiberized cross section was used in the analysis.  The cover and core 

concrete constitutive models followed the Kent-Park-Scott relationships for concrete.  The 

longitudinal reinforcing steel used a linear strain-hardening constitutive model with no 

discontinuities in the loading tangent stiffness.   

For the purposes of this study, only a single loading condition was applied to the column.  

The loading condition employed was a static linearly increasing displacement history.  This 

simulated the static backbone response of the column.  For this loading case, displacements (and 

strains) were monotonically increasing; therefore, the peak strain always occurred at the final 

displacement demand imposed on the column.  Future publications by the authors will address 

the issue of cyclic displacements and further intricacies surrounding the choice of limit-state 

functions. 

During loading, three different response quantities were monitored, namely drift ratio (∆), 

hysteretic energy (HE), and column base shear (P).  These three response quantities were 

monitored until one of three damage limit states was reached.  The first damage state considered 

in this study was the ultimate column lateral strength (Pmax).  The second damage state 
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considered was buckling of the longitudinal reinforcement.  The final damage state considered 

was spalling of the cover concrete.  The ultimate column strength was defined in terms of the 

force response quantity only.  The bar buckling and spalling states were defined in terms of both 

drift and HE response quantities.  For example, the drift ratio at buckling (∆b.b.) is defined as the 

maximum drift ratio response before the onset of bar buckling.  Similarly, HEb.b. is a cumulative 

measure up to the onset of damage, obtained by integration of the base-shear, tip-displacement 

diagram.   

4.1.3.1 Limit-State Functions 

To perform reliability analysis of the column, it was necessary to specify the limit-state functions 

corresponding to each damage state.  While not comparable to the database equations, the lateral 

strength of the column was also included as a damage state.  The limit-state function (Eq. 4.6) 

did not depend on time as long as the test was run long enough to attain the maximum force.  

The vector of random variables is x.  Pθ is the parametric demand, varied to produce different 

values on the fragility curve. 

 g1 x,θ( )= Pmax − Pθ  (4.6) 

 

The onset of bar buckling was determined using longitudinal reinforcement strain 

histories.  However, buckling is usually formulated in force or stress space.  For an elastic 

system, the critical buckling load or stress is proportional to the modulus of elasticity and the 

inverse of the square of the unsupported length.  For nonlinear problems, this critical load can be 

determined by iterations using the tangent stiffness.  However, nonlinear constitutive material 

relationships prevented reaching the elastic critical stress.  Therefore, the secant stiffness was 

used and the corresponding strain was determined from the steel stress-strain relationship.  The 

strain at bar buckling was also a function of the random variables, including the volume of 

transverse reinforcement (s = spacing) and the size of reinforcing (db) bars used.  A closed-form 

expression for the critical buckling strain is shown in Equation 4.7.  The end condition constant 

was taken as 0.75.  This is midway between the constant expected for pinned and fixed-end 

conditions.   
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The end condition constant (kbb) was verified using an analytical study on individual 

reinforcing bars.  Bars of varying diameter (#3 to #8) and center-to-center spacing (3.5–8.5 in., 

or 8.9–21.6 cm) were used in a fixed-fixed condition.  An axial load was applied to each bar with 

a small lateral perturbation in the center of the bar.  By using a large displacement geometric 

transformation (corotational formulation), the strain corresponding to a stress 25% of the peak 

strength was measured.  Comparisons to Equation 4.7 were made to determine a suitable value of 

kbb.  Results indicated an average of 0.75 and a standard deviation of 0.05.   

 εcr,b.b. x( )= π 2db
2

16kbb
2 s2  (4.7) 

 

The limit-state function for bar buckling was then written in strain space as Equation 4.8.  

It is in the traditional format of capacity less demand, implying that failure occurs when demand 

exceeds capacity.  Strain was monitored only in the extreme steel fiber in the direction of 

loading.  A maximum compressive strain up to time tf is used.  Time indicates only the 

termination of the test, not to imply a time-dependent problem.  Strictly speaking, Equation 4.8 is 

not differentiable as written (due to the max function); therefore, care should be exercised when 

using reliability methods that require limit-state function gradients. 

 ( ) ( ) ( )( )ttg isc
tt

bbcrfbb
f

,
:0

..,.. maxx,x εε
=

−=  (4.8) 

 

To generate fragility curves in displacement (or drift) space, it was necessary to rewrite 

the limit-state function as Equation 4.9.  The time at bar buckling (t@b.b.) was generated from the 

solution of gb.b.(x,t@b.b.) = 0.  The parametric demand (∆θ) remained constant for each reliability 

analysis.  While this formulation appears cumbersome, it was employed because it allowed 

arbitrary specification of the response quantity for use in the fragility functions.   

 g2 x,θ( )= ∆ t@ b .b .( )− ∆θ  (4.9) 

Similarly, it was necessary to rewrite the limit-state function in hysteretic energy space.  The 

result is Equation 4.10. 

 g3 x,θ( )= HE t@ b.b.( )− HEθ  (4.10) 

 



 118

The concrete spalling limit state was simpler to measure, as the spalling strain used in the 

concrete constitutive model was a random variable by itself.  In the mean, at a strain of 0.005, the 

cover concrete was assumed to lose strength as cover concrete is lost.  It was assumed zero 

strength was reached in the cover by a strain of 0.006.  The resulting strain limit-state function is 

Equation 4.11.  As with bar buckling, only the compressive strain in the extreme fiber was 

considered, and Equation 4.11 is not differentiable as written. 

 ( ) ( )( )ttg ic
tt

spfsp
f

,
:0

. max,x εε
=

−=  (4.11) 

Once again, the time at spalling (t@sp.), or design point time, was generated from the solution of 

gsp.(x,t@sp.) = 0.  The limit functions in drift and hysteretic energy space then became Equations 

4.12 and 4.13, respectively. 

 g4 x,θ( )= ∆ t@ sp.( )− ∆θ  (4.12) 

 g5 x,θ( )= HE t@ sp.( )− HEθ   (4.13) 

 

The static backbone curve (pushover curve) was produced through a displacement control 

scheme.  Displacements were incremented in the lateral direction in steps of 0.001 inches until a 

maximum load was reached and the strength subsequently decayed to zero.  To reduce the 

number of finite element computations, only 12 random variables were used to describe the 

problem.  A description of the random variables, along with their means and standard deviations, 

is shown in Table 4.1 for the first column analyzed.  The reduction in random variables was 

accomplished by inserting the same material random variables into the finite element model at 

each integration point rather than assigning a separate variable to each material parameter at each 

point.  This strategy also made it possible to utilize finite elements for which response quantity 

sensitivity gradients do not exist.  All of the different analysis combinations are summarized in 

Table 4.2. 
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Table 4.1  Analytical component damage model random variables 

Name Description Type Mean Std. Dev. 

H Column height Normal 7.6 m (300 in.) 5 cm (2 in.) 

Lat Lateral eccentricity Normal 0.03 cm (0.01in.) 0.64 cm (0.25 in.) 

Ef Steel elastic modulus Lognormal 2e5 MPa (29000 

ksi) 

3450 MPa (500 

ksi) 

fy Steel yield strength Lognormal 470 MPa (68 ksi) 41 MPa (6 ksi) 

f’c Concrete Unconfined 

strength 

Lognormal 34.5 MPa (5 ksi) 8.6 MPa (1.25 ksi) 

ρs,long Percent longitudinal 

reinforcement 

Normal 2% 0.1% 

Dc Column diameter Normal 114 cm (45 in.) 1.9 cm (0.75 in.) 

Wt Axial load ratio Normal 10% 2% 

ρs,trans Percent transverse 

reinforcement 

Normal 0.7% 0.075% 

ε0 Strain at unconfined 

peak stress 

Lognormal 0.002 0.0005 

εsp Spalling strain Lognormal 0.006 0.00075 

kbb Buckling length 

constant 

Normal 0.70 0.05 

 

Table 4.2  Analytical component damage model analyses 

Analysis # Displacement 

profile 

Response quantity Limit-state function 

1 Linear Pmax g1 

2 Linear ∆b.b. g2 

3 Linear HEb.b. g3 

4 Linear ∆sp. g4 

5 Linear HEsp. g5 
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 A mean value, first-order, second-moment analysis (MVFOSM) was performed for each 

limit-state function to determine the mean and standard deviation of each of the response 

quantities.  This was followed by parametric first-order reliability method (FORM) analysis to 

determine the probability of failure over a range of each response quantity.  Due to the extensive 

computational demands of performing finite element reliability analysis, random variable 

reduction was performed to allow refinement to the finite element solutions.  This was achieved 

by removing the unimportant random variables (importance measure less than 5%).  Therefore, 

parametric FORM analysis was consequently performed only with the reduced random variable 

set.  This reduced set is detailed for each limit state and displacement history below. 

4.1.3.2 Linear Displacement Profile (LDP) Results 

MVFOSM analysis was performed by a first-order approximation of the limit-state functions 

expanded around the mean point.  The gradients were determined from finite difference 

perturbations of all random variables.  Response quantity first and second moments are reported 

in Table 4.3.  These quantities were used as bounds on the parametric FORM analyses.  The 

gradients computed were also used to generate approximate importance measures ( ˜ α ) by 

multiplying by the standard deviation (∇xg ⋅σ ∇xg ⋅σ ).  These importance measures are 

reported in Table 4.4. 

 

Table 4.3  Analytical component damage LDP first and second moments 

 Before random variable reduction After random variable reduction 

Analysis µMVFOSM σMVFOSM µMVFOSM σMVFOSM 

1 134.53 k 12.395 134.53 12.304 

2 6.759 % 1.546 6.7593 1.546 

3 2293.8 k-in. 559.88 2293.8 558.66 

4 1.857 % 0.1751 1.8574 0.1737 

5 537.8 k-in. 82.948 537.8 80.952 

 

FORM analysis was then performed to obtain a first-order estimate of the failure 

probability for several response quantity (θ) values.  As well as the failure probability, 
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information at the end of the analysis was used to determine the correlated importance measure, 

ˆ γ .  This is reported with the MVFOSM importance measures in Table 4.4.  The least important 

random variables were eliminated from the set of random variables.  Retained random variables 

are indicated in bold in Table 4.4. 

 

Table 4.4  Analytical component damage LDP importance measures 

  1 2 3 4 5 
˜ α full  -8.00e-2 5.83e-2 1.47e-2 1.51e-1 4.45e-2 1 

ˆ γ reduced  -8.26e-2 5.89e-2  1.42e-1  
˜ α full  -4.89e-2 1.53e-3 -2.18e-2 -1.13e-3 -4.43e-2 2 

ˆ γ reduced       

˜ α full  2.07e-2 -5.34e-3 5.59e-3 -7.58e-2 -2.94e-2 3 

ˆ γ reduced     -8.54e-2  
˜ α full  5.90e-1 9.54e-2 3.70e-1 5.43e-1 6.00e-1 4 

ˆ γ reduced  5.92e-1 7.71e-2 3.91e-1 5.53e-1 5.91e-1 

˜ α full  6.06e-1 -1.06e-1 9.62e-3 -1.81e-1 4.34e-1 5 

ˆ γ reduced  6.03e-1 -8.73e-2  -1.65e-1 4.46e-1 

˜ α full  3.48e-1 1.75e-1 3.08e-1 4.53e-2 2.13e-1 6 

ˆ γ reduced  3.47e-1 1.72e-1 3.17e-1  1.99e-1 

˜ α full  3.20e-1 5.83e-2 1.81e-1 -1.81e-1 1.11e-1 7 

ˆ γ reduced  3.23e-1 6.35e-2 1.88e-1 -1.85e-1 1.22e-1 

˜ α full  1.45e-1 -1.06e-1 -1.32e-1 -2.86e-1 -4.45e-2 8 

ˆ γ reduced  1.64e-1 -1.18e-1 -1.81e-1 -2.70e-1  
˜ α full  -1.93e-2 8.00e-1 7.05e-1 1.47e-2 -8.63e-3 9 

ˆ γ reduced   7.74e-1 6.65e-1   
˜ α full  -1.48e-1 2.17e-1 2.03e-1 1.51e-1 -1.50e-1 10 

ˆ γ reduced  -1.36e-1 2.14e-1 2.03e-1 1.39e-1 -1.62e-1 

˜ α full  9.78e-2 0.00e+0 5.58e-3 7.10e-1 6.05e-1 11 

ˆ γ reduced  9.51e-2   7.16e-1 6.09e-1 
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Table 4.4 — continued 

˜ α full  0.00e+0 -4.93e-1 -4.24e-1 0.00e+0 0.00e+0 12 

ˆ γ reduced   -5.39e-1 -4.41-1   

 

Complete parametric FORM analysis was performed for Equation 4.6 under both the 

complete and reduced random variable sets.  The resulting fragility (CDF) curve and distribution 

(PDF) are shown in Figure 4.6. It is ostensible from the figure that the parametric FORM results 

coincide well with the distributions fitted to the MVFOSM data.  The lognormal fit is 

particularly good at capturing the distribution tail behavior. 
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Fig. 4.6  Analytical component damage Pmax LDP parametric FORM results 

 

The limit-state function in Equation 4.9 was solved using both the complete and reduced 

sets for bar buckling (both drift and energy response quantities).  The resulting CDF and PDF for 

drift at bar buckling are shown in Figure 4.7.  For this analysis, the iHLRF algorithm failed to 
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converge for two of the parametric drift ratio demands.  This is due to the trade-off between 

numerical accuracy of the finite element results, the perturbation factor used to calculated 

numerical gradients, and the size of the displacement-controlled static increment.  To lower 

computation time, the displacement increment was increased to 0.00125 in.  The perturbation 

factor (actual perturbation is scaled by random variable standard deviation) was selected as 25.  

This factor was selected to effect a quantifiable difference in response for each random variable 

so that the importance measures were unique for each variable considered.  For this reason, the 

displacement increment and perturbation factor were selected separately for each analysis to 

optimize the calculation of the complete parametric curve.  For the points where convergence 

failed, the CDF value was interpolated from neighboring values (and the PDF estimated from the 

derivative of these values). 

Results for hysteretic energy at bar buckling (Eq. 4.10) were very similar to drift.  The 

fragility curve and PDF are shown in Figure 4.8.  In order to aid comparison with different 

column configurations, it is possible to normalize the abscissa by the hysteretic energy in a single 

cycle or hysteretic energy under Pmax; however, this was not performed in this study.  As would 

be expected from the LDP case, the coefficient of variation of the drift ratio and hysteretic 

energy response values at bar buckling are roughly equivalent.  Once again, the lognormal fit 

through the MVFOSM data was a good predictor of tail behavior. 

 



 124

2 4 6 8 10 12
10

−4

10
−2

10
0

EDP = ∆
b.b.

P
f

Analysis #2, LDP, response ∆
b.b.

norm fit
logn fit
FORM
FOSM

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

EDP = ∆
b.b.

P
D

F

norm fit
logn fit
FORM

 

Fig. 4.7  Analytical component damage ∆b.b. LDP parametric FORM results 
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Fig. 4.8  Analytical component damage HEb.b. LDP parametric FORM results 

 

The onset of spalling occurs at low drift ratios; therefore, the resolution of finite element 

results needed to be increased at these lower displacements.  The results shown here were 

derived using a displacement increment of 0.0005 in.  The fragility curve for drift ratio at 

spalling, shown in Figure 4.13, exhibited low standard deviation.  The coefficient of variation is 

9.4% as compared to the bar buckling limit states that had values of 23 and 24%, respectively.  

The standard deviations will be compared with experimental values in the next section; however, 

from the outset it is apparent that this value is low. 

Hysteretic energy is a cumulative quantity and the resulting finite element limit-state 

surface is usually smoother.  The fragility curve derived using the reduced random variable set is 

shown in Figure 4.10. Interestingly enough, the coefficient of variation for hysteretic energy at 

spalling is higher (15%) than that for drift ratio.  The same trend was evident with the cyclic 

displacement profiles (see below) and is due to the sensitivity of hysteretic energy to the force 
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(as well as displacement) in the response.  At spalling especially, many specimens exhibit a 

plateau or slight strength decrease before strain hardening. 
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Fig. 4.9  Analytical component damage ∆sp. LDP parametric FORM results 
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Fig. 4.10  Analytical component damage HEsp. LDP parametric FORM results 

4.1.3.3 System Analysis 

Each column could be considered a critical link in an individual bridge system if bar buckling 

occurred or the shear demand exceeded the peak strength.  Therefore, a column with several 

failure modes can be modeled as a series system with N components.  The generalized system 

failure probability can be approximated as Equation 4.14. 

 pf ,series ≈1− ΦN B,R( ) (4.14) 

B is simply a vector of reliability index values for each column component, and R is a correlation 

matrix derived from the dot product of ˆ α  importance vectors. 

It was then possible to derive the bivariate fragility surface for each column.  For N = 2, 

the series failure probability can be evaluated in closed form from Equation 4.15.  The constant ρ 

refers to the correlation coefficient.  The two limit states used in the bivariate fragilities are the 

peak strength and drift ratio at bar buckling. 
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ρ
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21221, ,,1 drrp seriesf  (4.15) 

For each column individually, the bivariate CDF or fragility surface was derived with known 

correlation between the limit-state functions.  A correlation coefficient of ρ = -0.082 was derived 

from the ˜ α  values in Table 4.4.  The resulting bivariate CDF is shown in Figure 4.11. 
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Fig. 4.11  Analytical component damage bivariate CDF 

4.1.3.4 Experimental Comparison 

To facilitate comparison with experimental results, a second column with different aspect ratio 

and properties was also analyzed.  The values of the random variables for each column are 

shown in Table 4.5.  Column 1 is equivalent to the column used for all of the preceding analyses.  

Properties for Column 2 were selected to keep the transverse bar spacing constant.  Limit-state 

functions 1 (Eq. 4.6) and 2 (Eq. 4.9) were used in the computation of the fragility curves.   
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Table 4.5  Component damage column 1 and 2 properties 

 RC column 1 RC column 2 

H mean 7.6 m (300 in.) 9.1 m (360 in.) 

fy mean 470 MPa (68 ksi) 470 MPa (68 ksi) 

f’c mean 34.5 MPa (5 ksi) 34.5 MPa (5 ksi) 

Dc mean 114 cm (45 in.) 182 cm (72 in.) 

Wt mean 0.10 0.04 

ρs,trans mean 0.7 % 0.43 % 

Pmax mean (LDP) 593 kN (133.30 k) 2128 kN (478.41 k) 

∆b.b. mean (LDP) 6.626 % 5.559 % 

 

Using the results for both RC columns 1 and 2, it was possible to compare the 

experimental predictions (Eqs. 4.3, 4.4, and 4.5) with the reliability analysis in this section.  

Table 4.6 summarizes all of the mean and standard deviation drift quantities (in units of percent) 

for both column configurations.  The ultimate drift (Eq. 4.5) tends toward a higher value than the 

bar buckling drift (Eq. 4.3).  This phenomenon would be expected, as the onset of bar buckling 

does not necessarily indicate the ultimate displacement capacity of a column.  However, the 

average of the monotonic and cyclic values for Equation 4.5 is roughly equivalent to the 

predictions from Equation 4.3. 

For the bar buckling limit state, the reliability method captures not only the mean, but 

also the overall uncertainty very well (between methods).  While difficult to quantify the sources 

of uncertainty individually from the experimental equations, the summation of uncertainties was 

captured well by the choice of random variables in the analytical method.  In particular, the 

buckling length constant, kbb, was sufficient to capture the required uncertainty in the finite 

element analysis prediction of the bar buckling phenomenon without employing a more complex 

model. 

In contrast, the analytical prediction of spalling provided a much lower coefficient of 

variation (0.094) than the database equation.  As mentioned, this is lower than the experimental 

predictor as the drift at the onset of spalling is not subject to observation/measurement error.  It 

may also often be the case that spalling initiated before any visible deterioration of the cover 

concrete occurred.  The net result is the analytical prediction should always underestimate the 
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experimental value (mean), and the spalling limit state is a discrete point in simulation time for 

analysis but tends toward a continuum of values based on the first observation experimentally.   

 

Table 4.6  Component damage analytical and experimental comparison 

 Column 1 drift (%) Column 2 drift (%) 

 
Experimental Analytical LDP Experimental Analytical LDP 

∆b.b. mean 6.6 6.8 5.3 5.56 

∆b.b. σ 1.7 1.5 1.2 3.19 

∆sp. mean 2.4 1.9 2.3 1.60 

∆sp. σ 0.79 0.18 0.76 0.10 

∆u mono. 8.1 6.8 6.9 5.56 

∆u cyclic 5.0 - 4.3 - 

∆u avg. 6.6 6.8 5.6 5.56 

∆u σ 3.1 1.5 2.6 3.19 

 

This section discussed a rigorous analytical reliability-based technique for deriving EDP-

DM fragilities for circular reinforced concrete columns.  Five limit states were considered under 

a linear displacement profile: peak strength, drift ratio at bar buckling, hysteretic energy at bar 

buckling, drift ratio at spalling, and hysteretic energy at spalling.  Twelve random variables were 

used; however, these were reduced based on importance measures to allow faster computations.  

Fragility curves were generated for the limit states using parametric FORM analysis over a range 

of response values.  The first and second moments were then compared with experimentally 

based predictive equations for spalling and bar buckling.   

The purpose of analytically modeling fragilities was to provide an alternative procedure 

to the existing experimental database founded predictive equations.  The reliability procedure 

allows for the description of material, property, and geometric uncertainties without suffering 

from the measurement, model (incorrect form and missing variables), and statistical errors of the 

experimentally based predictive equations.  However, the analytical procedure does suffer from 

model error due to the choice of finite element modeling capabilities and ability to reproduce a 
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complex phenomenon such as bar buckling.  The analytical method also introduces statistical 

error due to first-order failure probability approximations, and the assumed input probability 

distributions.  Additionally, it should be recognized that the limit-state functions are not 

applicable to the case of a cyclically applied load.  However, overall analysis is advantageous 

because it can be applied to particular geometries and material properties of interest, with 

quicker production of results than an experimental program.  The analytical procedure is applied 

to bridge systems in the next section. 

4.2 BRIDGE LEVEL 

Using the familiar single-bent base bridge configuration, a damage evaluation of the complete 

(entire) structural system was performed here considering possible structural system, or bridge-

level, variables.  In PEER meetings with the California Department of Transportation (Porter 

2002), several bridge-level outcomes had been discussed.  The bridge-level variables all related 

to a graded system of bridge performance levels such those in ATC-49 (ATC 2001).  These are 

discrete tables with traditional language such as “immediately operational,” “emergency traffic 

only,” and “closed.”  The goal was to provide rational criteria for selection of these performance 

levels by first defining appropriate damage models.  

Currently, Caltrans decision makers use information from post-earthquake bridge 

inspections to determine whether certain transportation links remain open or closed.  Data 

entering the decision-making process are observed damage to the roadway, settlement, 

permanent deformation, cracking, fracture, and buckling.  Largely subjective decisions are then 

made on whether the bridge can support live load, and whether it has enough lateral load 

capacity to withstand an aftershock.  This information may be supplemented by pictorial 

databases (Hose 2000) relating types of observable damage with expected post-earthquake 

performance.  However, on a more rational basis, quantified data on loss of the vertical and 

lateral load-carrying capacity can be used to distinguish different performance levels of a bridge.  

These need not only be open and closed, and can include a continuous distribution based on 

traffic load-carrying capacity relative to the initial or design value.  Therefore, the bridge-level 

DMs to be developed must include information on the degradation of a bridge's load-carrying 

capacity.  The issue of structural safety also arises when considering subsequent earthquake 
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shocks.  The decision to assign a damaged bridge to a certain performance level may be more 

influenced by this safety consideration, rather than its immediate load-carrying capacity.   

4.2.1 Bridge Damage Measures 

A category of EDPs not previously addressed in Chapter 3 is the functional EDP.  These are 

more explicitly related to the bridge structural system performance.  Specifically, the functional 

EDPs considered in this study are the post-earthquake residual load-carrying capacity of the 

bridge.  The residual load-carrying capacity can be determined in both lateral directions 

(longitudinal and transverse), as well as the vertical direction.  The value of the EDP was 

determined from a static nonlinear pushover of the structure in the lateral directions and a 

pushunder in the vertical direction.  A pushunder is analogous to a pushover, except that the load 

is applied vertically downward, and the vertical displacement (at the top of the column) is 

monitored.  Results of a pushunder may be interpreted in terms of a gravity load safety factor 

(Mehanny 2001). 

These functional EDPs became measures of demand, as they were executed after a 

dynamic time history analysis.  Therefore, the residual load-carrying capacity of a bridge was 

expected to degrade as the intensity of an earthquake event increased.  To facilitate simpler 

demand model computations, the EDP (in force units) was defined relative to the load-carrying 

capacity at IM = 0 (Eq. 4.16).  The functional demand parameter was thus termed the “loss of 

load-carrying capacity” (in force space), but should not be confused with the variability inherent 

in the capacity of the bridge system in the absence of earthquake loading.  The resulting PSDMs, 

once again using Sd(T1), for the loss of longitudinal and vertical load-carrying capacities are 

shown in Figures 4.12 and 4.13, respectively.  

 EDP = EDPIM = 0 − EDPi  (4.16) 
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Fig. 4.12  PSDM Sd(T1)-capacity loss, L/H sensitivity longitudinal 

 

Unlike Figure 3.19, for example, these functional EDPs cannot be described effectively 

by a single linear fit (in log space).  They exhibited two regimes of behavior that required 

separate fitting.  The low intensity response of bridges was primarily linear; hence there was 

little or no degradation in the residual load-carrying capacity.  This regime is shown in Figure 

4.12 as the nearly vertical lines in log-space (and truly vertical lines in linear space) at small IM 

values.  The second regime defined the range of intensities that damaged the bridge structure and 

decreased its ability to carry post-earthquake loads according to Equation 3.10. 

The vertical axis on Figure 4.13 is a geometric combination of earthquake IMs, Sa(T1), in 

the longitudinal and transverse directions, and does not include a spectral IM in the vertical 

direction.  However, to maintain commonality with the fragility formulation in this study, only 

the lateral IMs were included.  As seen by the large scatter, however, the lateral intensities may 

not be the best predictors of the residual vertical load capacity.  The ability to capture strength 

and stiffness degradation post-earthquake is also highly dependent on the finite element platform 

and material models selected. 
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Fig. 4.13  PSDM Sd(T1)-capacity loss, L/H sensitivity vertical 

 

The wide amount of scatter in the degrading regime lowered the confidence in using 

these demand models directly, as the selection of the median fit was highly uncertain.  Not only 

was confidence in the median low, but there were also large dispersion values associated with the 

model fit.  As an illustration, demand fragility curves created from the median, 50%, and 90% 

confidence intervals are shown in Figure 4.14.   
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Fig. 4.14  Sa(T1)-capacity loss demand fragility confidence intervals, base bridge vertical 
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Compared to Figure 3.82 where the component-level confidence intervals were shown, it 

is evident that not only is the dispersion huge, so are both the 50% and 90% confidence intervals.  

The principal distinction between the two figures is the small discrepancy between the 50% and 

90% confidence intervals in Figure 4.14 (hence lack of confidence at all levels).  Therefore, 

methods to improve the prediction of capacity loss through reduction in model uncertainty were 

investigated and are in Section 4.2.3. 

Given the bridge system functionality implied by the EDP (loss of load-carrying 

capacity), it was necessary to extend the EDPs to DMs at the bridge level as well.  The 

corresponding DM was the loss of lateral or vertical load-carrying capacity (as a percent of the 

original).  This DM value was produced by introducing a prediction of pre-earthquake load-

carrying capacity and then comparing to the residual load-carrying capacity in a demand/capacity 

evaluation.  The pre-earthquake load-carrying capacity was determined using a nonlinear static 

pushover or pushunder in the same manner as the demand model.  However, to incorporate 

uncertainty in the pre-earthquake capacity, a structural reliability approach was adopted.   

4.2.2 Reliability-Based Damage Models 

The introduction of capacity at the bridge level is a difficult proposition using experimental 

results.  Not only are there numerous components constituting the structural system, but they 

may also interact in nonlinear ways.  Experimental tests on the (structural) system level are few 

(Pantelides 2002; Eberhard 1997), especially when specifying a bridge using arbitrary design 

parameter values.  Therefore, this study incorporated uncertainty in the capacity domain by 

reliability analysis, as was performed for the component-level case in Section 4.1.3.  This was 

achieved using reliability tools integrated into finite element analysis in OpenSees (Haukaas 

2003).  Using this approach, the variability or uncertainty of the geometry, materials, and loads 

was accounted for by assigning probability distributions to the input variables in the finite 

element analysis. 

This approach, however, did not include uncertainty from model error or lack of 

knowledge, as the same finite element model was used for both demand and damage 

assessments.  Subsequent use of this method should therefore be penalized by a larger epistemic 

uncertainty term in fragility or hazard analyses incorporating the achievement of designated 

levels of confidence.   
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Structural reliability methods were employed to estimate the probability of exceeding 

values of specified limit-state functions.  As a convention, the limit-state function is usually 

denoted as g x( ), where x  is the vector of random variables considered in the problem, and 

g x( )≤ 0 usually defines the failure domain (e.g., when demand exceeds capacity).  The problem 

was simplified by using only ten random variables.  These random variables were assumed to 

have a normal or log-normal distribution as shown in Table 4.7.  

While it was possible to insert individual random variables at every element for each 

material property, the same material random variables were assigned to every element 

throughout the structure to facilitate reasonable computation time.  The limit-state function was 

defined in terms of the pre-earthquake lateral load-carrying capacity from longitudinal pushover 

analysis (Eq. 4.17) at different levels of demand (EDPi).  For the bridge level, bar buckling and 

spalling were not considered as damage limit states. 

 g x( )= P
@ DM = dm LS ,long

x( )− EDPi (4.17) 

 

Table 4.7  Bridge-level single-bent random variables 

Rv num Variable Type Mean Std. dev. 

1 L Normal 18.3 m (720 in.) 7.6 cm (3 in.) 

2 L/H Normal 2.4 0.05 

3 Ef Normal 2e5 MPa (29000 

ksi) 

4800 MPa (700 

ksi) 

4 fy Lognormal 470 MPa (68 ksi) 55 MPa (8 ksi) 

5 f’c Lognormal 34.5 MPa (5 ksi) 6.9 MPa (1 ksi) 

6 Dc/Ds Normal 0.75 0.02 

7 φ’ Normal 35° 6° 

8 γ’ Normal 18.1 kN/m3 (115 

pcf) 

1.6 kN/m3 (10 

pcf) 

9 ρs,trans Normal 0.007 0.0015 

10 Wt Normal 0.25 0.1 
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The probability of failure was estimated using FORM analysis at each level of demand.  

FORM uses a linearization of the limit-state function at the design point to determine the failure 

probability.  The design point is the most likely failure point in the failure domain. For the limit 

state DM = 0 (no loss of load-carrying capacity), the results of FORM analysis are shown for 

longitudinal load and vertical load in Figures 4.15 and 4.16, respectively.  The estimated PDF for 

the damage model is shown in the bottom pane of each plot.  These damage models are 

analogous to the Pmax component damage models obtained in Section 4.1.3. 

 

120 140 160 180 200 220 240 260 280 300 320
0

0.2

0.4

0.6

0.8

1

EDP

P
f

norm fit
logn fit
FORM

120 140 160 180 200 220 240 260 280 300 320
0

0.005

0.01

0.015

0.02

EDP

P
D

F

norm fit
logn fit
FORM

 

Fig. 4.15  Bridge damage model longitudinal, dmLS = 0 

 

Each point on the CDF curves corresponded to a FORM analysis at a given EDP level 

(EDPi).  Each curve represented one value of the damage limit state (dmLS).  To facilitate 

computations with the damage models shown, normal and lognormal distributions were fit to the 

data points to facilitate closed-form solutions.  The lognormal fit was used in subsequent damage 

models rather than the first-order approximation points. 
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Fig. 4.16  Bridge damage model vertical, dmLS = 0 

 

Similar damage models were obtained for a limited number of other values of dmLS (Fig. 

4.17).  In between the computed dmLS values, interpolation was carried out by scaling the 

lognormal distributions according to a constant coefficient of variation.  The damage limit state 

was incorporated into Equation 4.17 as the force at the location on the pushover curve where 1-

dmLS (%) of ultimate load existed, consistent with the DM definition in Section 4.2.1.   

The damage models were then integrated with the demand models to produce the damage 

fragility curves in Figure 4.18.  Alternatively, numerous fragility curves can be plotted as a 

fragility surface, as shown in Figure 4.20.  As determined by the demand model, an extremely 

large earthquake intensity would be required to cause more than 60% loss of load-carrying 

capacity.  This is reflected in the damage fragility surface by the shelf at higher DM values.  

Confidence in finite element results diminish as the structure softens and becomes highly 

damaged or close to collapse.  Consequently, caution should be exercised when utilizing damage 

fragilities at these high DM values. 
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Fig. 4.17  Bridge-level damage model longitudinal 
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Fig. 4.18  Bridge-level damage fragility longitudinal 

 

Finally, the inclusion of hazard into a damage hazard curve was significantly simpler than 

the component-level case (see Fig. 4.5) due to the continuous lognormal form of the damage 

model (as opposed to a discrete-valued damage model for components).  For the case of vertical 

load-carrying capacity as the DM, the resulting damage hazard curve using data from Section 6.1 

is shown in Figure 4.19.  The closed-form solution is discussed in more detail in Section 6.3; 
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however, the numerical solution was obtained simply from the damage model and the numerical 

derivative of the demand hazard curve according to Equation 4.18. 

 ( ) ( ) ( )∫ ⋅=>= edpdedpEDPdmDMPdm EDPDM λλ |  (4.18) 
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Fig. 4.19  Bridge-level damage hazard curve vertical 

4.2.3 Improved Methods for Post-Earthquake Capacity 

While it was possible to directly assess the post-earthquake capacity using the traditional PEER 

formulation, the large uncertainty in this method necessitated development of better methods of 

prediction.  The alternative formulations were also important when determining the aftershock 

load-carrying capacity of the bridge.  The large amount of computation required to develop post-

earthquake residual load-carrying capacity curves was multiplied when developing curves for 

aftershock scenarios.  The direct method (formulation used in Section 4.2.2) was addressed as 

Method A below, followed by three alternative methods for better predicting damage fragility in 

terms of loss of load-carrying capacity. 
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4.2.3.1 Method A — Direct Method 

This method was a specific application of Equation 4.1 to the PSDMs involving residual load-

carrying capacity shown in Figures 4.12 and 4.13.  The resulting damage fragilities showing the 

loss of lateral and vertical load-carrying capacity are shown in Figures 4.20 and 4.21, 

respectively.  To reduce the scope of this study, only the vertical load-carrying results are 

presented from this point on. 
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Fig. 4.20  Bridge damage fragility Method A longitudinal 

 

While Method A appeared to generate effective results, the selection of the median 

PSDM for a first-shock post-earthquake became more and more uncertain with increasing first-

shock intensity.  The dispersion value used to generate the PSDMs was artificially low due to the 

lack of dispersion in the linear regime of bridge behavior.  The difference in low intensity 

behavior became apparent when comparing all of the subsequent methods.  Nonetheless, the 

dispersion in the nonlinear range of response was large, creating an inordinately long tail of the 

PDF.  The magnitude of the IM axis was curtailed at Sd(T1) = 150 cm (corresponds to a spectral 

acceleration of 2.4g).  The net result was a probability of 1.0 not being obtained for all but the 

smallest DM values.  Method A is compared with the other improved methods in Section 4.2.5.   
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Fig. 4.21  Bridge damage fragility Method A vertical 

4.2.3.2 Method B — MDOF Residual Displacement Method 

This method introduces the importance of the correlation between post-earthquake capacity and 

residual displacement.  An intermediate variable, post-earthquake residual displacement (ures), 

was introduced between the EDP and IM variables.  The resulting formulation is shown in 

Equation 4.19.  This method was beneficial because the relationship between residual 

displacement and earthquake intensity was already developed during previous PSDM studies 

(Chapter 3).  The PSDM employed for this method is shown in Figure 4.22, with L/H sensitivity.  

However, there was large uncertainty in predicting residual displacement, especially given a 

spectral IM such as Sd or Sa.  A better IM for predicting ures for this bridge was PGD.  But to 

maintain consistency between examples, Sd(T1) was used. 

 ( ) ( ) ( )
( ) resresIMU

resUEDPLSEDPDMLS

dudedpimudP
uedpdPedpdmPimIMdmDMP

res

res

⋅
⋅⋅==< ∫∫

|
|||

|
||  (4.19) 
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Fig. 4.22  PSDM Sd(T1)-ures, L/H sensitivity longitudinal 

 

In order to utilize Method B, a relationship between residual displacement and loss of 

capacity needed to be developed.  This is shown in Figure 4.23 for the vertical direction.  The 

loss of capacity was due to not only the degradation of stiffness and strength, but also the 

presence of P-∆ effects for large residual displacements.  A linear fit was made to the residual 

displacement values larger than 5.1 cm (2 in.) and extended to the origin to provide a smooth 

transition to earthquake intensities.  This prevented an unrealistic jump in load-carrying capacity 

loss around zero intensity (and therefore zero residual displacement). 

The resulting damage fragility surface showing the probability of exceeding different 

levels of vertical load-carrying capacity loss is shown in Figure 4.24.  Due to the large intensity 

required to obtain large residual displacements (Fig. 4.23), the probabilities of exceeding large 

load losses were small.  Not only this, but the method suffered from the same large dispersion 

problem as Method A, this time due to the uncertainty in the residual displacement PSDM.  Once 

again, all methods are compared in Section 4.2.5. 
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Fig. 4.23  ures-capacity loss vertical 

 

0.2
0.4

0.6
50

100

150
0

0.2

0.4

0.6

0.8

1

DM = Loss vert. load capacity (%

Damage Fragility [DM|IM]

IM = Sd(T
1
) (cm)

P
[D

M
 >

 d
m

LS
] D

M
 =

Lo
ss

 v
er

t. 
lo

ad
 c

ap
ac

ity
 (

%
)

 

Fig. 4.24  Bridge damage fragility Method B vertical 

4.2.3.3 Method C — SDOF Residual Displacement Method 

Methods B and C utilize the same formulation (Eq. 4.19) involving residual displacements.  The 

difference with this method is the assumption that residual displacements can be derived using a 

residual displacement spectrum from equivalent single-degree-of-freedom (SDOF) systems.  The 
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large uncertainty in the PSDM term in Method B motivated a better method for predicting ures.  

Residual displacement spectra have been examined previously (Kawashima 1998).  Sensitivity to 

earthquake intensity was only examined for measures such as magnitude and distance.  In this 

study, the residual displacement of single-degree-of-freedom oscillators was regressed against all 

measures of earthquake intensity (IM) in Section 3.4.1.  This made the procedure analogous to 

PSDA for more complex structures (Section 3.3).   

The inelastic SDOF oscillator employed in this method had the same initial elastic period 

of the bridge (T1).  The entire spectrum was not generated for each ground motion, i.e., only the 

residual displacement at T1 was calculated.  The inelastic oscillator’s yield strength was taken 

from the nonlinear pushover of the bridge in the longitudinal and transverse directions.  Previous 

analyses had shown the R-factor for this bridge configuration with respect to the USGS 2% in 

50-year hazard spectrum was 3.6 for T1 (transverse direction) and 3.9 for T2 (longitudinal 

direction). A value of R = 4 and a hardening ratio of 1.5% for the bilinear SDOF oscillator were 

therefore assumed.  The resulting residual displacements can be plotted in a manner consistent 

with PSDMs, as shown in Figure 4.25.  Note the relatively large dispersion.   
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Fig. 4.25  PSDM Sd(T1)-ures, SDOF 

 

The intent of Method C was to reduce the dispersion in the PSDM term used in Method 

B.  As evidenced in Figure 4.25, SDOF oscillators also have a large amount of uncertainty in 

predicting residual displacements (with Sd).  Therefore, the results are similar for Methods B and 
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C, with the slight discrepancy arising from the residual displacement values predicted with either 

SDOF or MDOF systems and the resulting loss in capacity from Figure 4.23.  The advantage of 

this method was avoiding PSDA on a complex bridge structure and using SDOF data instead.  

The disadvantage of using this method was the selection of T1 for the SDOF oscillator.  More 

complex finite element models captured the softening of the fundamental period with 

accumulation of damage (Method B), but the period of the SDOF system remained fixed.   

4.2.3.4 Method D — EDP Correlation Method 

This method attempted to eliminate the dependence on interim models that have low efficiency.  

To accomplish this, the maximum displacement was introduced and correlated with residual 

displacement.  The PSDM involving maximum displacement (or drift ratio) was known to be 

highly efficient (Section 3.4.1).  By introducing yet another interim variable, umax, it was 

attempted to improve the prediction of vertical loss in load-carrying capacity.  The form of the 

framing equation becomes Equation 4.20. 

 ( ) ( ) ( )
( ) ( ) maxmax|max|

||
||

|||
maxmax dududedpimudPuudP

uedpdPedpdmPimIMdmDMP
resIMUresUU

resUEDPLSEDPDMLS

res

res

⋅⋅⋅
⋅⋅==< ∫∫∫ (4.20) 

 

The only relationship not yet formulated in this method is that between maximum 

displacement and residual displacement.  These data were also obtained from previous PSDM 

studies for this bridge.  Even though the residual displacement was plotted on the ordinate, the 

power-law fits were made with maximum displacement as the dependent variable (this is 

opposite to the other PSDMs presented).  The resulting plots for the longitudinal and transverse 

directions are shown in Figures 4.26 and 4.27, respectively. 

Employing PSDM data for all of the umax, ures, and IM data may violate the mutual 

exclusivity criteria required for use of the total probability rule.  Therefore, future models 

relating umax and ures should be derived from bridge stiffness and material relationships.  For 

example, the maximum possible residual displacement can be related to the maximum 

displacement through the softened global unloading stiffness of the bridge.  However, such 

approximations are not included in this study, as this section was merely illustrative of the 

method. 
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Fig. 4.27  umax-ures, L/H sensitivity transverse 

 

A further option is to eliminate residual displacement altogether and develop an interim 

determinate or probabilistic analytical model between maximum displacement and loss of load-

carrying capacity only that features parameters such as initial and post-peak stiffness.  The 

benefit of such a method would be the efficient demand models associated with maximum 

displacement as opposed to residual displacement.   
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Fig. 4.28  Bridge damage fragility Method D vertical 
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Integrating all of the interim models together provided a final form for the loss of vertical 

capacity (Fig. 4.28).   The form was very similar to all of the previous methods but had the 

advantage of higher confidence in the results due to the lower dispersions of the interim models.  

However, it suffered from the number of parameters required to fully describe all the models, 

and the model error associated with each of these.   

4.2.4 Improved Methods for Post-Aftershock Capacity 

Several of the methods above were applied directly to the performance of highway bridges 

during aftershock scenarios.  This was accomplished by using the PSDM planes presented in 

Section 3.7 that describe the EDP in terms of two IMs, one for the intensity of the first shock, the 

other for the intensity of an aftershock.  Response to aftershock events was conditioned on the 

intensity of the first-shock by using response functions involving both intensities (joint 

probabilities).  As an example in this section, a first-shock intensity of Sd(T1) = 40 cm 

(corresponding to a spectral acceleration of 0.65g) was selected.   

4.2.4.1 Method A — Direct Method 

The direct method is presented only as it was useful for benchmark comparisons of the other 

methods.  Otherwise, the computational power required to generate the aftershock PSDMs was 

too intensive to justify the lack of efficiency in the results.  A best-fit plane was not the best form 

of a PSDM model to describe the capacity loss behavior (nor was a higher-order surface).  

Therefore, any values predicted using this linear equation (Eq. 3.28) are necessarily biased.  The 

benefit, however, was the more accurate calculation of degraded strength due to both the first-

shock and aftershock.  The resulting cumulative damage fragility curve for aftershocks is shown 

in Figure 4.29. 
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Fig. 4.29  Bridge damage fragility Model A aftershock vertical 

4.2.4.2 Method B — MDOF Residual Displacement Method 

The same methodology was applied in the aftershock scenario as for the Method B first-shock 

case.  The third term in Equation 4.19 was the only modification, containing data from the 

aftershock PSDM conditioned on IM1 (the first-shock intensity).  This aftershock PSDM for 

residual displacement is shown in Figure 4.30.  As with the first-shock case (e.g., Fig. 4.22), the 

dispersions about the best-fit plane were also high.   

The resulting fragility surface is shown in Figure 4.34.  In this figure, the IM axis now 

describes the intensity of the aftershock, once again using Sd(T1).  It should be noted that this 

may not be the best choice of IM for an aftershock scenario as the fundamental period of the 

structure would have shifted due to the first-shock.  However, to maintain commonality between 

methods, it was necessary to keep the same T1 value.  A better solution would be to determine 

the optimal non–structure-dependent IM for this bridge, allowing objective comparisons between 

arbitrary events.  Structure-independent IMs were discussed in Section 3.4.1. 
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Fig. 4.30  Sd(T1)-ures aftershock PSDM, L/H = 2.4 longitudinal 
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Fig. 4.31  Bridge damage fragility Method B aftershock vertical 

 

A further distinction involving the response from the aftershock scenario is also required.  

The PSDMs of Figures 3.74 and 4.30 provided a relationship between global displacement 

response due to an aftershock intensity IM2, conditioned on a first-shock intensity IM1.  

However, loss of load-carrying capacity is obtained separately, independent of both intensities.  

Therefore, the vertical load-carrying capacity loss surface does not describe the cumulative effect 
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of both the first-shock and the aftershock.  An estimate of the total fragility for the aftershock 

was made in the next section.  

4.2.4.3 Method D — EDP Correlation Method 

Similarly, Equation 4.20 was applied as for Method D in the first-shock case.  The fourth term in 

the equation now contained data from the aftershock PSDM for umax.  The aftershock PSDM for 

drift ratio (Fig. 3.74) can be used if modified by a constant (H).  As mentioned previously, the 

dispersions were the same for any two kinematically dependent EDPs.  The resulting damage 

fragility surface is shown in Figure 4.32. 
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Fig. 4.32  Bridge damage fragility Method D aftershock vertical 

 

Once again, the lowest dispersion is associated with Method D; therefore, it appeared to 

be the best choice.  However, as with the first-shock case, the increased number of interim 

models increased the likelihood of the introduction of model error.  In addition, in the aftershock 

case, the maximum displacement after the aftershock was a function primarily of the aftershock 

intensity (IMAS).  As mentioned in Method B, the total loss of capacity also included a 

contribution from the first-shock.  Therefore, an estimate of the total capacity loss (due to first-

shock and aftershock) was made in the following section. 
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4.2.5 Method Comparison 

All of the proposed methods are compared here for two limit-state values: 10% and 25% loss of 

the vertical load-carrying capacity.  These are now plotted as single fragility curves (Fig. 4.33 for 

dmLS = 10% and Figure 4.34 for dmLS = 25%), obtained directly from the fragility surfaces in the 

preceding figures.  The average of all the methods was also included for comparison.  It is 

ostensible from Figure 4.33 that methods B, C, and D give different results from the single step 

Method A.  This was to be expected given the lack of confidence in the median relationship 

between IM and EDP in Figure 4.13.  In the vertical direction, Method A did not exhibit a linear 

regime of behavior at low intensities.  This resulted in an immediate increase in damage, even for 

low-intensity events.  The immediate onset of damage was not realistic; the curve should be 

shifted to the right.  Therefore, Method A gave a conservative upper bound.  

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IM = Sd(T
1
) cm

P
[L

os
s 

Lo
ad

 C
ap

ac
ity

 >
 1

0%
|IM

]

FS Vertical load carrying loss fragility method comparison

A
B
C
D
Mean

 

Fig. 4.33  Bridge first-shock method comparison, dmLS = 10% 

 

Of interest when comparing the different methods was the value of the IM at the mean 

and the standard deviation of the fragility curve.  Methods B and D had a similar mean.  This 

would be expected given that the PSDM data for all interim models came from the same finite 

element analysis.  Method C had the same form as Method B due to its formulation; however, 

the mean was shifted because the SDOF system was not modified by a modal participation factor 

in this analysis and did not account for more complex system interaction.  All of the methods 
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except D exhibited large dispersion in the final fragility.  This was due to the large uncertainty in 

the interim models and results in inaccurate probability distribution tails.   

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IM = Sd(T
1
) cm

P
[L

os
s 

Lo
ad

 C
ap

ac
ity

 >
 2

5%
|IM

]

FS Vertical load carrying loss fragility method comparison

A
B
C
D
Mean

 

Fig. 4.34  Bridge first-shock method comparison, dmLS = 25% 

 

Of the multiple step methods (B, C, and D), they all correctly predicted a threshold 

intensity value, below which there is no damage.  As mentioned, the SDOF mean was shifted but 

could be corrected based on the modal participation factor even though the problem was not 

strictly linear (for modal superposition analysis).  Of the individual methods, method D appeared 

the best single method (based on dispersion) for prediction of the loss of vertical load-carrying 

capacity.  Several other methods are possible but were not investigated in this study. 

While only four methods were presented in this section, there are numerous other 

possibilities for improving the final outcome.  Based on the results of Method D, a method that 

relates loss of vertical load-carrying capacity directly to maximum displacement might prove 

more efficient than Method D.  Also, seamless normalization (by H or uy) to the ures and umax 

probabilistic models would allow comparison of the methods between different bridge design 

parameters.  This modification is simple because the slope of the demand models does not 

change (for example the slope B). 

The methods were also compared using data from the aftershock fragilities.  Due to the 

large amount of computation required and the lack of a best-fit plane, Method A was shown to be 

a poor prediction tool when considering aftershocks.  For comparison, the aftershock curve from 
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Method A was included in Figure 4.35 for the dmLS = 10% example.  This curve was obtained 

from the series probability of the original fragility curves predicted for the first-shock and 

aftershock scenarios.  The correlation between the two scenarios was obtained from the slope 

(angle between) of the PSDMs (ρA = 0.32).  The three fragility curves (A, B, D) for both the first-

shocks alone and cumulative effect of the aftershocks are shown in Figure 4.35. 

Since residual displacement and maximum displacement were functions of the aftershock 

intensity (IM2), they were not good reflectors of cumulative damage during multiple events.  This 

was indicated by aftershock Method D’s fragility curve closely mimicking the behavior of its 

first-shock counterpart (not shown here).  To estimate the cumulative aftershock effect, the 

probability of exceeding the damage limit state at an aftershock IM2 = 0 was assumed equal to 

the probability of exceeding the first-shock limit state at Sd(T1) = 40 cm (the postulated first-

shock intensity). Given the first-shock probabilities from Figure 4.33, as well as the adjusted 

aftershock probabilities of IM2 conditioned on IM1, it was possible to find the cumulative 

probability by the union of the events.   
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Fig. 4.35  Bridge aftershock method comparison, dmLS = 10% 

 

Correlations for methods B and D were obtained from the slope of their respective 

PSDMs (ρB = 43, ρD = 0.12).  This cumulative fragility curve is also shown in Figure 4.35 (for 

methods B and D), and reflects the likely probability of exceeding 10% loss in vertical load-

carrying capacity with an aftershock of intensity IM2 on the abscissa.  Similar to the first-shock 
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scenario (Fig. 4.33), Method A was a conservative upper bound with bias in the median 

relationship.  Methods B and D were comparable, with Method D providing the lower 

dispersion. Figure 4.35 cannot be used to directly compare an arbitrary IM1 and IM2 as the 

aftershock fragilities were derived conditionally on IM1 = 40.  The first-shock fragilities were 

included to show the increase in the probability of exceeding the given limit state in an 

aftershock scenario.  

4.2.5.1 Simplified Reconnaissance Tool 

The primary use of post-earthquake load-carrying capacity is envisioned as a decision-making 

tool for engineers and policy makers in a highway network environment.  Proposed decision 

states based on the loss of load-carrying capacity are presented in Table 4.8.  Using such a table, 

calibrated by the institution evaluating the highway bridges, and a simplified method for 

determining the residual load-carrying capacity of a bridge, it would be possible to effect a more 

rational performance-based decision-making process.   

In a pre-earthquake design or emergency response analysis, it may be possible to predict 

earthquake intensities at individual geographically distributed sites.  However, a more useful tool 

in the hands of a field engineer would be a rational basis for decision making that is based on 

criteria that do not require the input earthquake intensity at the bridge site.  While the methods 

developed in Sections 4.2.3 and 4.2.4 were only preliminary indications that residual 

displacement provides a useful pathway for prediction of loss of load-carrying capacity, residual 

displacement has long been used in practice as a means for evaluating a bridge post-earthquake. 

Table 4.8  Proposed performance levels using bridge-level DVs 

Objective name Traffic capacity 

remaining (volume) 

Loss of lateral load-

carrying capacity 

Loss of vertical load-

carrying capacity 

Immediate access 100% < 2% < 5% 

Weight restriction 75% < 2% < 10% 

One lane open only 50% < 5% < 25% 

Emergency access 

only 

25% < 20% < 50% 

Closed  0% > 20% > 50% 
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With the frameworks presented in this chapter, it was possible to develop such a tool by 

integrating only the first two terms of Equation 4.19 (Method B).  The resulting formulation is 

shown in Equation 4.21. 

 ( ) ( ) ( )∫==< dedpuedpdPedpdmPuIMdmDMP resUEDPLSEDPDMresLS
res ||| ||  (4.21) 

By using the same interim models as Method B, Equation 4.21 was evaluated for different limit 

states of interest.  Fragility curves for three limit states are plotted versus residual drift (residual 

displacement divided by column height) in Figure 4.36 for the loss of vertical load-carrying 

capacity.  This form of the reconnaissance tool allowed direct comparison with other bridge 

designs by using a dimensionless abscissa.  RDI (defined in Section 3.2) could be used as an 

alternative dimensionless quantity.  Conceptually, this simplified tool could also be generated 

using the first three terms of Equation 4.20 (from Method D) to reduce the dispersion.  A similar 

plot can be generated for the loss of lateral load-carrying capacity but is not shown here. 
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Fig. 4.36  Bridge reconnaissance tool 

 

For example, Table 4.8 and Figure 4.36 can be used to assess the post-earthquake 

performance of a bridge within a highway network.  A rejection (acceptance) criterion for each 

performance objective in the table must be selected.  For example, a bridge weight restriction 

criteria may be a 75% probability that greater than 10% of the vertical load-carrying capacity has 

been lost.  Conversely, the same criteria may be stated as 25% probability that less than 10% 
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vertical load-carrying capacity remained. A field engineer can then assess the condition of the 

bridge according to its residual displacement.  If the residual displacement was determined to be 

2 in. (0.67% drift ratio), then from Figure 4.36, the probability of exceeding a 10% loss of 

capacity is 0.87 and the probability of exceeding a 25% loss of capacity is 0.02.  The 87% 

probability of exceedance surpasses the 75% threshold; therefore weight restrictions should be 

issued.   The 2% probability of exceeding 25% loss does not exceed the next performance 

threshold, so no lane closures are required.  The performance thresholds and acceptance criteria 

are merely examples, to be modified based on practitioner input.   

These improved methods provided a proof of concept for more rational and quantifiable 

decision-making criteria for reinforced concrete highway bridges and are extended further in the 

next chapter.  The criteria selected to evaluate functionality of bridges after a first-shock or 

aftershock scenario were the loss of bridge lateral and vertical load-carrying capacities.  While 

current decisions to limit traffic or to completely close a bridge in a highway network system 

rely on inspection data, these can be supplemented by the use of the reconnaissance tool and a 

sample set of graded performance criteria proposed in this section.  The specific values of load-

carrying capacity loss at different performance levels remain to be finalized; however, the 

methods utilized in this paper can be generalized to any such values. 

Four methods of obtaining the loss of load-carrying capacity were investigated.  The 

methods introduced post-earthquake residual displacement as a better proxy for capacity loss 

rather than measures of earthquake intensity.  To reduce the dispersions inherent in each interim 

model, subsequent methods attempted to further disaggregate the problem until more efficient 

models existed.  In this manner, Method D was shown to be the best single method for 

determining vertical capacity loss, expressed in the form of a damage fragility surface.  This 

method correlated two EDPs (maximum displacement and residual displacement) and capacity 

loss through a series of models obtained from PSDA and finite element simulation.  The methods 

were also applied to aftershock post-earthquake capacity, although more work is needed on 

damage dependence for aftershocks. 

Residual displacement gave a prediction of loss of load-carrying capacity, as desired, but 

it was still not the best correlation between IM and loss of capacity.  Dispersions were still large 

and, while some sources are aleatory, most epistemic sources still need to be more precisely 

defined.  For example, there may be a bias in computing residual displacement introduced by the 

hysteretic model used in finite element analysis.  The power of using Method B, C, or D is that 
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each interim model can be optimized to reduce dispersion.  For example, a better IM predictor of 

residual displacement can be used to greatly enhance the overall prediction of load-carrying 

capacity loss.  Even the highly efficient IMs (Section 3.4.3) were unable to properly capture the 

residual displacement response.   

4.2.6 Residual Axial Load-Carrying Capacity 

Current knowledge of the post-earthquake load-carrying capacity of reinforced concrete columns 

is limited.  During earthquake excitation, ductile reinforced concrete columns lose strength and 

stiffness as they accumulate damage.  The primary question remaining after an earthquake 

scenario is what level of residual load-carrying capacity exists for columns, both laterally and 

axially.  This residual strength is particularly important for highway bridges where post-

earthquake decision making hinges on functionality of the primary nonredundant load-carrying 

elements, namely the columns.  

 This section specifically addresses the experimental and analytical program to test the 

residual axial load-carrying capacity of small-scale rectangular reinforced concrete column 

specimens.  These cantilever specimens were tested in two separate phases.  The first phase 

involved lateral cycling using a prescribed displacement history.  Phase two involved crushing 

the specimen axially to determine the residual axial force versus axial deformation relationship.  

Specimens were tested to varying maximum displacement ductility levels to facilitate 

development of axial loss versus ductility demand curves.  The specimens had less confinement 

in the plastic hinge region to localize the failure mechanism.  

By developing an analytical model that mimics axial strength and stiffness degradation, 

this knowledge was applied directly to the computation of decision criteria for reinforced 

concrete highway bridges in a PBEE context, such as Section 4.2.  Specifically, rational 

decision-making criteria can be developed for engineers and inspectors to evaluate the load-

carrying capacity of a bridge after an earthquake, and therefore its functionality in a highway 

network system. 

Recent seismic codes have made progress toward preventing brittle failure modes in 

columns.  Unless complete failure occurs, columns subjected to earthquake excitation have some 

level of residual strength remaining.  Quantifying this level of residual strength has seen little 

treatment in current research.  Numerous researchers (e.g., Elwood 2002) have looked at the 
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issue of axial failure, defined as the lateral demand at which a column fails to carry its prescribed 

dead load.  Testing setups included constant axial loads applied during lateral excitation (Kato 

2002; Yoshimura 2002), as well as several axial load control strategies based on levels of lateral 

deformation (Tasai 1999).  However, the explicit force-deformation characterization in the axial 

direction post-excitation has largely been ignored.  Tasai conducted an experimental and 

analytical program to investigate this; however, the axial capacity envelope was based largely on 

sectional analysis (Tasai 1999).  The analytical results showed little or no axial degradation 

under low axial loads during the lateral testing. 

Rather than observing loss of axial-carrying capacity of a prescribed level, the specimens 

were tested to prescribed lateral levels and subsequently evaluated for residual axial strength-

axial deformation behavior.  The remainder of this chapter investigates whether the analytical 

model can mimic the strength degradation observed in these tests.  These analytical models can 

then be applied with more confidence to more complex structures in damage model simulations. 

4.2.6.1 Experimental Approach 

Four T-shape reinforced concrete column-footing assemblages were constructed for testing.  

Specimen geometry and dimensions are detailed in Figure 4.37.  These specimens were intended 

to be quarter-scale columns similar to those in the Van Nuys building.  The reinforced concrete 

details were obtained from similar cyclic tests conducted at Berkeley by Shin and Moehle (Shin 

2002). The more lightly reinforced vertical member is henceforth designated the column.  Rebar 

layout is also shown for the beam, or footing, although this portion was intentionally 

overdesigned. 

The specified unconfined compressive strength of the concrete was 20.7 MPa (3 ksi).  

Grade 60 steel was used for the longitudinal reinforcement.  Four longitudinal reinforcing bars 

(#3 designation) were placed at the corners of the column.  Transverse steel reinforcement was 

purposely reduced in the plastic hinge zone in order to generate a failure mechanism at the base 

of the column.  The first two hoops (2.38 mm diameter, 135 degree hooks) were placed at 11.4 

cm (4.5 in.) on center, while the remainder of the column height had hoops at 2.5 cm (1 in.) on 

center.  The cover was 12.7 mm (0.5 in.) all around.  Unconfined cylinder tests (15.2 cm 

diameter) showed an average compressive strength of 26.4 MPa (3.83 ksi) after approximately 

28 days.  The average steel yield stress was 483 MPa (70 ksi). 
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Fig. 4.37  Reinforced concrete specimen dimensions and reinforcement layout 

 

 It was initially intended to test one specimen only in the axial direction, in order to 

determine undamaged load-carrying capacity, followed by three specimens both laterally and 

axially.  The initial axial test on the undamaged specimen (Fig. 4.38) exposed an important flaw 

in the design of the specimens for the desired testing scheme.  Due to termination of the 

confinement where the longitudinal bars were hooked (90 degrees) at the top of the column, 

there were large disparities in the compressive strength along the specimen length.  Therefore, 

when axial load was applied, an end condition failure developed at the actuator head where the 

unconfined concrete was crushed without transferring any load to the longitudinal bars or 

confined concrete core.   
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Fig. 4.38  Pre-retrofitted specimen 

 

Fig. 4.39  Retrofitted specimen 
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Fig. 4.40  Axial test results for pre- and post-retrofit specimens 

 

 A retrofit of all the specimens was then undertaken to resolve this end failure mechanism.  

Steel pipe sections (20.3 cm nominal diameter) 15.2 cm (6 in.) in length were grouted to the top 

of the specimens using Hydrostone nonshrink, high-strength grout.  Due to the damage to the top 

of the initial specimen tested, an additional 5.1 cm (2 in.) of grout-filled pipe was added to the 

top to reproduce the initial column length.  This retrofitted specimen (Fig. 4.39) was then 
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retested using the same axial setup until failure occurred.  During this test, the longitudinal bars 

buckled and the core concrete was crushed in the plastic hinge zone, as expected.  A comparison 

of the force-displacement behavior of the pre- and post-retrofit specimen is shown in Figure 

4.40.  Due to some initial damage to the specimen during the pre-retrofitted tests, the axial load-

carrying capacity of the specimen was estimated to be 489 kN (110 k). 

The lateral load testing setup involved a unidirectional lateral actuator, with no applied 

axial load.  The 44.5 kN (10 k) capacity actuator was used to measure force at a centerline 

distance of 40.6 cm (16 in.) from the base of the column.  DCDTs (direct current displacement 

transducers) were used to monitor column deflection and base slip from a reference frame.  The 

specimens were bolted to the test frame by means of a 5.1 cm (2 in.) thick steel base plate and 

two 2.5 cm (1 in.) thick plates threaded to the base plate by four 12.7 mm (0.5 in.) diameter rods.  

This setup fixed the footing to the frame, preventing translation or rotation in any degree of 

freedom (Fig. 4.42).  

 The loading protocol involved applying a cyclic displacement pattern to the specimens.  

Incremental displacement levels were used with 3 cycles each.  The displacement levels were 

incremented in steps of 0.25*uy, or ductility increments of 0.25, until a ductility of 1, and in steps 

of 0.5*uy to the maximum desired displacement level.  Maximum ductility levels prescribed for 

the four specimens were 0 (virgin specimen), 1.5 (Specimen 1), 3.0 (Specimen 2) and 4.5 

(Specimen 3).  Approximate values of uy were determined prior to testing as approximately 0.61 

cm (0.24 in.).  Experimental results yielded an approximate yield displacement of 0.79 cm (0.31 

in.). 

 Lateral force-displacement results are shown in Figure 4.41.  All three specimens that 

were tested laterally exhibited an area of soft response at small displacement demands.  The full 

column lateral stiffness was engaged only at a displacement of approximately 0.25 cm (0.1 in.).  

The cause of this behavior was likely shear slip at the column-footing interface.  Visible damage 

to the specimens during lateral testing was limited except for the fourth.  The shear crack at the 

column-footing interface continued to develop with displacement demands in all specimens.   

Numerous insufficiencies were exposed with the lateral experimental tests.  The slipping 

behavior resulted primarily in a more ductile system than would have been expected based on the 

initial specimen details.  At displacement ductilities on the order of 1 to 2, the specimens 

exhibited recentering behavior and decreased energy dissipation.  At higher ductilities, the 

specimen behaved more like a shear critical column with force pinching of the hysteretic loops.  
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Another issue was the lack of symmetry of the forces.  This was due to lack of symmetry in the 

rebar placement during construction as well as electronic (instrument) drift during testing 

between amplitude cycles.  The net result was a relatively poor representation of the true 

hysteretic behavior.  Therefore, only the axial comparisons were emphasized in the analytical 

section.   
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Fig. 4.41  Experimental lateral force-displacement results 

 

After a zero load condition was achieved in the lateral load test setup, the specimens were 

removed from the test frame and moved to a uniaxial compression setup.  This 1330 kN (300 k) 

capacity compression machine with a spherical head was used to measure the force-displacement 

characteristics of the specimens in the axial direction.  Applied force measurements came from 

the actuator head (virgin specimen) and load cell (other specimens), while tip displacement was 

monitored using two separate DCDTs.  The DCDTs were attached to the footing and steel plate 
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at the tip, respectively.  During subsequent tests with the retrofitted specimen, the top steel plate 

was replaced by the grouted steel pipe.  

 

 

Fig. 4.42  Experimental lateral setup 

 

Fig. 4.43  Specimen 4 after axial crushing 

 

 An axial load was applied at a rate of 4.45 kN/sec (1 k/sec) until failure occurred.  Post-

peak force-displacement response was also measured to help determine loss of capacity.  Due to 

the lack of confinement in the plastic hinge zone, a compressive failure mode was expected to 

develop at the base of the column.  This was confirmed after crushing all the specimens.  For 

example, Specimen 3 is shown (Fig. 4.43) after being removed from the axial setup.  A 

comparison of the experimental axial force-displacement data obtained for the undamaged and 

three lateral specimens is shown in Figure 4.44.  Due to the small amounts of damage induced in 

the concrete during the first test on the virgin specimen, Specimen 1 actually obtained a higher 

axial strength.  However, the degradation of axial strength with increasing displacement demand 

is evident. 
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Fig. 4.44  Experimental axial force-displacement results 

 

Specimen 1 was loaded axially to its peak strength (s1a), then immediately unloaded and 

reloaded again (s1b) until failure.  The second loading shows decreased capacity due to damage 

during the first loading, as would be expected.  The value of 489 kN (110 k) from the first test on 

Specimen 2 was used as the axial capacity of the specimens in subsequent analysis.   

4.2.6.2 Analytical Approach 

While experimental results were too sparse to develop a well-defined relationship between 

maximum deformation levels and loss of axial load-carrying capacity, Figure 4.44 does show a 

quantifiable drop in axial load-carrying capacity after a structure is cycled.  This section 

describes more succinctly the analytical method of predicting this loss.  The analytical modeling 

was performed in large part to verify the use of analytical models in predicting the loss of 

vertical load-carrying capacity used at the bridge level in Section 4.2.  Analytical modeling was 

once again performed using OpenSees with the same basic set of material models mentioned in 

Section 2.1. 

 A finite element model of the column was developed using displacement-formulated, 

fiberized, beam-column elements in two dimensions.  Material models employed for the fibers 

included a strain-hardening steel model and a Kent-Scott-Park concrete model with no tensile 

strength.  The steel model has a yield strength of 483 MPa (70 ksi), a strain-hardening ratio of 
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1.5%, and a negative stiffness once an ultimate strength of 655 MPa (95 ksi) is reached at a strain 

of 0.09.  There were no discontinuities in the tangent stiffness of this model.  The concrete model 

included an unconfined stress-strain relation with zero strength after spalling at a strain of 0.006.  

Due to the amount of transverse reinforcement, the confined strength was only minimally higher 

than that of the unconfined, but the confined model was included for the upper portion of the 

column where transverse reinforcement was spaced at 2.5 cm (1 in.) on center. 

To simulate the area of low stiffness (shear slip) and approximate recentering behavior at 

small ductility demands, a prestressed tendon was added to the analytical model only.  The 

tendon was a tension only member with steel hysteretic properties and an area roughly equivalent 

to the longitudinal reinforcement in the original section.  A prestress of three quarters of the yield 

stress was applied.  The peak lateral strengths with this model overpredicted the experimental 

values, and were therefore normalized during analysis.  The initial slip area, initial stiffness, and 

ultimate force backbone are predicted accurately with the analytical model.  However, the 

pinching at higher ductility demands was not captured adequately.  As mentioned previously 

though, the focus was on determination of the subsequent axial strength, not matching the lateral 

hysteresis.   

The analytically modeled specimens were subjected to the same displacement history as 

the specimen in the test setup, except increments of 0.25*uy were used throughout.  They were 

then cycled at amplitude to reduce the equilibrium force to a specified tolerance.  In the absence 

of lateral loads, the analytical specimens were then crushed axially to mimic the axial load test.  

It was not the goal of this research to tweak the analytical model in order to match the 

experimental and analytical hystereses.  It was the goal, however, to validate the prediction of 

axial load loss due to the accumulation of damage.   

 The subsequent analytical axial load test results for a single case (µ = 3.0) are shown in 

Figure 4.48 (anyt. 3.0 in figure) along with the experimental axial results (expt. s3).  Also 

included in this figure are the analytical axial strength envelope of an undamaged specimen 

(virgin anyt.) and the corresponding experimental results (expt. s1a).  The ultimate strengths 

predicted by analysis were not exactly equal to the experimental values; however, this had as 

much to do with the uncertainty in the input parameters in the analytical model as the inaccuracy 

in the analytical procedure itself.  To eliminate the disparity, all results were normalized with 

respect to the maximum resistance.  As can be seen, there was good agreement between the 

experimental and analytical predictions of the damaged specimen axial capacity.  This was 
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especially important in light of the deterministic input values selected for the analytical model, 

the uncertainty in determination of both the analytical and experimental yield displacements (and 

ductilities), and the measurement errors associated with the lateral and axial tests. 
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Fig. 4.45  Comparison of analytical and experimental axial results for µ = 3.0 

 

With the analytical model, it was then possible to generate a complete axial degradation 

plot at different ductility demand levels.  Figure 4.46 shows the resulting curves, including both 

the analytical and experimental results.  The data points available from experimental results are 

plotted as squares in the figure.  Also included in the figure is the Total Capacity Model (TCM) 

prediction adapted from ACI 318 and Elwood (Elwood 2002).  The classical shear friction model 

was modified by Elwood to include information only about the transverse reinforcement.  This 

was then added to the expected strength obtained from the longitudinal reinforcement.  The 

relation was inverted (with θ = 65°) to predict the axial loss at a given displacement demand 

rather than its original casting as a displacement capacity at prescribed load level (Eq. 4.22). 
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Fig. 4.46  Degradation of axial load-carrying capacity 

 

The TCM method was modified to incorporate the shear slip effect seen in the lateral 

tests.  A constant term corresponding to the slip displacement (0.1 in.) was added, in relation to 

the expected yield displacement of a corresponding nonslipping system (0.08 in).  Therefore, the 

curve was shifted to the right by a ductility of 1.25.  This modified curve agrees more closely 

with both the experimental and analytical results.  A similar approach to the TCM using the truss 

analogy for residual axial capacity was employed by Tasai (2000).  However, this approach 

requires knowledge of the stresses in the truss mechanism at some deteriorated capacity, making 

the TCM prediction more attractive.  

While the findings and methods presented herein have been addressed before, the true 

value of the data is when cast in a performance-based earthquake engineering context.  The 

horizontal axis can be viewed as the demand, or EDP.  The vertical axis can be viewed as the 

damage induced in the structure, or DM.  A mathematical relationship (linear, piecewise-linear, 

or exponential) can be assigned to the EDP-DM relationship, together with a measure of 

uncertainty, thereby completely defining a PDM.  In the case of Figure 4.46, an exponential fit 

was made similar to the TCM. 

The exponential fit from Figure 4.46 was then integrated with pre-existing demand 

models from Section 3.4.  The result was a collection of bridge damage fragilities derived from 

global displacement demands.  These are conveniently displayed in a fragility surface, as in 

Figure 4.47, showing the variation of fragility with both intensity (IM) and different limit-state 
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values (DM).  As with previous fragility surfaces, families of traditional fragility curves are 

shown as black lines on the fragility surface.  The displacement-based PDM was an alternative 

method to using residual load-carrying capacity as the EDP.  As discussed in Section 4.2.3, 

producing more efficient damage fragilities through better interim models is necessary.   

The damage fragilities in Figure 4.47 are compared directly to those obtained using 

methods A and D (Section 4.2.3) in Figure 4.48.  However, caution should be used in such a 

comparison because the PDM in this section was derived for small-scale rectangular columns 

with poor confinement.  The use of dimensionless quantities on the abscissa of Figure 4.46 does 

not necessarily make the curves universally applicable.  Specifically, there may be scale effects 

for large diameter specimens, there may be differences between PDMs for circular and 

rectangular columns, and the decrease in axial strength is directly related to the ductility capacity 

of the column.   
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Fig. 4.47  Damage fragility surface derived from experimental damage model 

 

However, this section provided a further method for obtaining better future damage and 

loss fragilities through the combined use of analytical and experimental data.  By developing an 

experimentally verified two-step analytical process, it will be possible to better predict the loss of 

axial load-carrying capacity of more complex bridge structures in a highway network.  
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Fig. 4.48  Comparison of analytical and experimental damage fragilities 

4.3 UNCERTAINTY 

As with the demand chapter (Chapter 3), all of the damage models and resulting damage 

fragilities were constructed considering only the aleatory uncertainty.  It is therefore instructive 

to demonstrate the inclusion of epistemic uncertainty in any of the damage fragilities or damage 

hazard curves generated in this chapter.  Another item of interest stemming from the demand 

confidence intervals from Section 3.9 was the propagation of uncertainty due to the selection of 

the median.  Some examples of damage fragility confidence intervals are presented at the end of 

this section. 

Epistemic uncertainty was added to both the component- and bridge-level tracks 

established in this chapter.  Integrating the damage and demand models to obtain damage 

fragilities required inclusion of uncertainty from both of these sources, according to Equation 

4.23.  A dispersion value of σPDM = 0.20 was assumed for all of the damage models to represent 

the epistemic uncertainty.   
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The component-level damage state of bar buckling was selected from Figure 4.4.  The median 

curve considers only the aleatory uncertainty (y = 0).  The mean curve was obtained in the same 
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fashion; however, using the SRSS of the aleatory and epistemic uncertainty terms in Equation 

4.1.  The mean, median, and y = ±1 damage fragilities are shown together in Figure 4.49. 
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Fig. 4.49  Component damage fragility percentiles, base bridge longitudinal 

 

Due to the relatively low aleatory and epistemic dispersion values, the median and mean 

were closely related.  However, the effect of lack of knowledge on damage fragilities was 

evident when considering the 16th and 84th percentiles.  At a given earthquake intensity, 

confidence in the damage fragility probability value was dependent on the width of the standard 

deviation bands.  For example, for an earthquake with intensity of Sa(T1) = 600 cm/s2, the 

probability of bar buckling was an uncertain (lognormal) quantity with median value 0.5 and 

standard deviation 0.25.  Such uncertainty (50% possible range of probability values between 

standard deviation bands) is undesirable and should motivate better and more rigorous demand 

and damage models. 

A similar exercise was performed at the bridge level.  At the bridge level (Fig. 4.50), the 

aleatory uncertainty of the demand model dominated the damage fragility form because the 

dispersion was 0.96.  The net result was that the mean and median curves were approximately 

equal.  In the case of reliability-analysis-based damage models, a higher value of epistemic 

uncertainty would be justified.  The net effect would be slightly larger 16th and 84th percentile 

bands; however, the aleatory uncertainty would continue to dominate the final fragility form.   
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Finally, it is of interest to propagate the selection of the demand model median through to 

the damage fragility level.  Using the demand model confidence intervals from Figure 3.82, 

confidence intervals on the damage fragility medians were obtained (Fig. 4.51).  The damage 

fragility confidence intervals were not compounded by the confidence intervals inherent in the 

damage model alone.  The figure simply shows the result of propagating the demand uncertainty 

to the damage fragility level.  The 50% and 90% confidence intervals are nearly equivalent, 

indicating the extremely low level of confidence obtained in the selection of the median in 

Method A, the direct implication of the PEER integral described in Chapter 4.   
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Fig. 4.50  Bridge-level damage fragility percentiles 

 

Confidence can be increased using alternative methods developed in this chapter, 

specifically Method D.  A comparison of confidence levels between Method A and D is shown 

for loss fragilities in Section 5.3. 
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Fig. 4.51  Bridge-level damage fragility confidence intervals 

 



 

5 Highway Bridge Loss Model 

The introduction of the loss model attempts to address many of the questions posed by 

emergency managers, recovery planners, and structural engineers after an earthquake.  These 

questions include whether traffic can access certain areas of a transportation network, how 

quickly, how heavy a load can be transported, how much money will it take to repair any 

damage, and how long will those repairs take?  The answers are in the state of highway 

infrastructure in a region struck by an earthquake, of which bridges are an integral part.  Today, 

answers to these questions are more qualitative than quantitative, based on experience and 

engineering intuition rather than results of analyses and engineering evaluations.  Furthermore, 

after an earthquake decisions must be made quickly; there is often no time to perform extensive 

engineering investigations.  This chapter focuses on more rigorous decision-making alternatives 

based on the ability of a typical highway bridge to function, or its need for repair after an 

earthquake.  

The PEER framework defines a loss or decision-making measure as a decision variable 

(DV).  Loss is defined as decision making based on cost and loss of function.  As discussed in 

previous chapters, there are two types of DVs that can be applied to highway bridges.  First, a 

bridge functional DV describes the post-earthquake operational state of the bridge.  This implies 

a graded system of criteria involving lane closures, reduction in traffic volume, or complete 

bridge closure that are useful for traffic network modeling.  Second, a bridge repair DV is the 

time (cost) of bridge repair and restoration. This DV is triggered only if the bridge function DV 

crosses the repair threshold.  Therefore, the total cost due to a given earthquake scenario on a 

particular bridge is the sum of the indirect (or operational) costs from the loss of function, and 

the direct costs to restore previous functionality.  The two sources of costs (or losses) are 

particularly relevant in the case of a highway network system, as the indirect losses to an urban 

area would likely exceed the direct losses (Moore 2000). 
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DVs are applicable not only to the first-shock earthquake scenario, but also to 

aftershocks.  Further insight into post-earthquake decision making may be gained from the 

introduction of the probability of collapse during first-shocks and aftershocks.  Barring collapse, 

the subsequent decrease in performance in an aftershock as compared to the initial performance 

goals may also be of interest.  Aftershock residual capacity can be seen as another method of 

determining post-earthquake capacity such as the lateral load-carrying capacity described above. 

Collapse of a modern bridge is an unacceptable performance goal for any seismic region, 

especially California.  Therefore, it was necessary to define the collapse or collapse-prevention 

limit state in terms of global and local bridge performance.  An approach for defining collapse in 

terms of observed damage and decision limit states is presented in this chapter.  While it would 

be possible to arbitrarily assign a traffic volume (decision) loss limit state to the collapse-

prevention state, it is more logical to use a combination of damage limit states.  This combination 

involves both observable damage to bridge components and loss of overall bridge function. 

Limit states for highway bridges loss models are formulated at two levels: component 

and system.  The component level addresses the effect of damage to a specific structural 

component on the post-earthquake response strategy.  Components are assessed for damage, and 

corresponding repair costs or repair times are estimated.  For example, damage could be 

considered in piles, pile caps, columns, expansion joints, abutment wing walls, approach slab and 

embankment, and numerous other locations.  The limit state formulated at the bridge level 

addresses the overall performance of the bridge as a whole in a post-earthquake scenario.  For a 

highway overpass bridge, functionality is primarily measured in terms of the traffic load-carrying 

capacity, lane closures, allowed axle loads, and speed limits.  The total cost due to a single 

bridge in the highway network in a post-earthquake scenario is the summation of the component, 

or direct losses, and the loss of functionality, or indirect losses.   

As mentioned previously, empirical loss model data are sparse.  Loss model data can be 

obtained from professional surveys and opinion, reconnaissance data from previous earthquakes, 

repair data from experimental projects and post-earthquake reconstruction, or inferred from 

policy decisions.  Interestingly enough, such data exist but were not being systematically applied 

for the purpose of loss estimation.  As with damage models, it may not be possible to describe a 

continuous relationship between DMs and DVs.  Therefore, probabilistic loss models (PLMs) are 

often also in the form of probabilities of exceeding explicit discrete decision states given 

different DMs.   
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Individual PLMs are presented in this section.  As with the PDMs, no single procedure 

(such as PSDA for the PSDMs) applies to the generation of all loss models; therefore each model 

is developed individually in the following sections.  However, the main motivation for 

developing loss models is once again to convolve them with previous probabilistic models to 

yield fragility curves.  The decision fragility formulation is independent of individual loss model 

generation, as shown in Equation 1.3.  Conversely, it is also possible to build directly upon the 

damage fragilities presented in the previous chapter.  Probabilities associated with discrete or 

continuous loss models are compatible with the decision fragility formulation in Equation 5.1. 

 ( ) ( ) ( )∫==<
dm

IMDMLSDMDVLS ddmimdmdPdmdvPimIMdvDVP ||| ||  (5.1) 

 

The first term is the CDF obtained from whatever PLM is available.  The second term is 

the derivative of Equation 4.1 with respect to the DM variable.  Therefore, the damage fragility 

curves generated can be used directly in developing decision fragility curves.  It should be noted, 

however, that simply taking the derivative of a damage fragility curve (with respect to IM) 

stemming from a single damage limit state does not provide the information needed in the 

second term of Equation 5.1.  The derivative with respect to DM is required.   

5.1 COMPONENT LEVEL 

The process of deriving losses at the component level was limited by the selection of damage 

states used to generate damage models.  In Section 4.1, only three discrete damage states were 

calculated, specifically spalling, bar buckling, and failure for the single-column bent in the 

sample bridge.  Therefore, any discussion about repair costs or repair times related to damage to 

the roadway, embankments, or abutments was precluded.  Because of this, a single sample DV 

was selected to generate a loss model.  

5.1.1 Component Decision Variables 

The component-level damage suggests direct cost economic variables such as repair cost.  

Alternatively, repair time could be considered, as it may be more significant to important arteries 

in a transportation network than repair cost.  The loss model of this section considered a 



 178

relationship between repair cost, normalized by replacement cost, and damage.  The repair cost 

ratio (RCR) was therefore a continuous DV variable, but with discrete input points. 

5.1.2 Repair Cost 

From data compiled for the Northridge earthquake, the HAZUS document reported a modified 

repair cost ratio as a function of damage for typical bridges (HAZUS 1997).  The HAZUS 

damage states of slight damage, extensive damage, and complete damage were assumed to 

correspond to the DM values of spalling, bar buckling, and failure, respectively.  This 

assumption was made based on more detailed damage descriptions for each damage state (Basöz 

1999), even though the damage states were descriptive of bridge components not considered in 

this study.  The slight damage state included minor spalling at the column, as well as minor 

cracks and spalling at the abutment, expansion joints, and deck.  The extensive damage state 

included column degradation without collapse and large residual displacements.  Finally, 

complete failure included possible column and deck collapse.   

From the best mean RCR and range of RCRs reported (Basöz 1999), a mean and standard 

deviation were assumed for each damage state.  A least-squares regression was performed to 

obtain the approximate (but continuous) form of a loss model (according to Eq. 6.6).  A 

relationship between repair cost, normalized by replacement value, and damage is shown in 

Figure 5.1.  By assuming that the value of the DM variable was, in fact, the median drift ratio for 

each damage limit state, it was possible to provide a smooth closed-form function with numerical 

values on the ordinate.  A relatively large value of dispersion was adopted (0.50) based on the 

standard deviations reported.  The large uncertainty in the model stemmed not only from the 

bridge-to-bridge variation in repair costs, but also due to bridge data from all classes considered 

by HAZUS being lumped together.   

By using Equation 5.1, the repair cost loss model was integrated with the damage 

fragility curves from Figure 4.4.  The results for several decision limit states (RCR values) as a 

percent of the replacement cost are shown in Figure 5.2.  For example, for an earthquake with 

intensity of Sa(T1) = 1000 cm/s2, there is a 91% probability that the repair cost will exceed 25% 

of the replacement cost.  This probability drops to 65% for exceeding the entire replacement 

cost.  As would be expected, it is possible for the repair cost to exceed the replacement cost 

based on the model used (Fig. 5.1). 
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Fig. 5.1  Component repair cost loss model 

 

It should be noted that it may not be possible to obtain a complete decision variable 

distribution function if the given discrete damage states do not cover the full range required for 

the decision variable limit states.  For illustrative purposes, the DM was assumed continuous, as 

in Figure 5.1, to provide the complete fragility curves shown.  Alternatively, discrete points on 

the fragility curves can be predicted using the discrete form of the decision fragility formulation 

(Eq. 5.2). 
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Fig. 5.2  Component decision fragility curves 

 

The repair cost loss model was uncertain largely because it did not discriminate based on 

bridge class, nor on different configurations within each class.  Due to the large amount of 

uncertainty in the loss model and the lack of other DV choices or cost data on other bridge 

components, component-level loss model derivation for reinforced concrete highway bridges 

cannot be done without additional research focused on damage assessment and repair cost 

modeling.   

5.2 BRIDGE LEVEL 

In previous PEER and Caltrans meetings (Porter 2002), several bridge system level outcomes 

were discussed.  The bridge system variables all related to a graded system of bridge 

performance levels such those in ATC-49 (ATC 2001).  These are discrete tables with traditional 

language such as “immediately operational,” “emergency traffic only,” and “closed.”  The goal 

was to provide a rational criterion for selection of these performance levels.  On a more rational 

basis, loss in the vertical and lateral load-carrying capacity can better be used for separating 

bridges into different performance levels or decision criteria.  These need not only be “open” and 

“closed,” and can include a continuous distribution based on traffic load-carrying capacity 

relative to the initial or design value (e.g., Table 4.8).  The issue of structural safety also arises 

when considering subsequent shocks.  The decision to assign a damaged bridge to a certain 
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performance level may be more influenced by this safety factor, rather than its immediate load-

carrying capacity.  

5.2.1 Bridge Decision Variables 

By choosing overall bridge system behavior as the EDP and DM of interest, it was desirable to 

generate a DV fragility curve that would provide information about loss of bridge performance in 

terms of traffic load-carrying capacity, and therefore indirect losses.  The DV chosen in this 

section was the loss of traffic load-carrying capacity (in terms of traffic volume) as compared to 

the design traffic load.  The loss of traffic load-carrying capacity is distinctly different to the loss 

of vertical or lateral load-carrying capacity in this sense.  However, as with the component case, 

there is little information regarding loss models available for bridges today.   

The traffic function limit state presented in this paper addressed the bridge system as a 

whole to generate information about loss of its functionality.  Functionality was defined in terms 

of the lateral and vertical load-carrying capacity damage states of the bridge.  It then remains up 

to researchers, decision stakeholders, engineers, and highway authorities to determine the form 

of the loss model that relates the losses in capacity to changes in traffic loading and speed.  A 

sample loss model is presented in this section to facilitate application of the methodology and 

further discussion as to a more practical mathematical form. 

5.2.2 Traffic Load 

From PEER-Caltrans meeting minutes (Porter 2002), it has been suggested that a 10% loss in 

lateral capacity may constitute a life safety condition, but loss as high as 50% is a collapse-

prevention performance objective.  Therefore, a continuous model incorporating these data 

points was proposed that related the loss of lateral load-carrying capacity DM to the traffic load 

loss DV (Fig. 5.3).  The loss of lateral load-carrying capacity was determined solely from the 

longitudinal direction in this example; however, the transverse direction could also be considered 

if critical in any given earthquake scenario.   

For the case of the bridge vertical load-carrying capacity, a similar exercise can be 

performed to determine a relationship between the DM and a loss of traffic capacity.  Once 

again, a continuous form of the loss model in the vertical direction was assumed and is shown in 
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Figure 5.4.  The form of the loss model was once again guided by the proposed values in Table 

4.8. 
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Fig. 5.3  Bridge traffic load loss model 

longitudinal 
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Fig. 5.4  Bridge traffic load loss model 

vertical 

 

By using the decision fragility formulation of Equation 1.3 or 5.1, decision (or loss) 

fragilities can be derived for each of the bridge-level loss models presented.  Several subsequent 

decision fragility curves are shown in Figure 5.5 from convolving the damage fragility and loss 

models for the longitudinal direction.  The percentage in parenthesis (in the legend) refers to the 

loss in traffic volume associated with the proposed decision performance objectives.  Loss 

fragility curves in the vertical direction are presented in Section 5.2.4. 

The performance objectives shown on the plot are defined in terms of specific decision 

variable values (over a possible continuum of values), and they contain uncertainty information.  

In this manner, it was possible to construct a new set of bridge performance levels that are fully 

probabilistic and based on rational bridge performance criteria.  These could be used to 

supplement existing information obtained from reconnaissance information during post-

earthquake damage assessment.  Or they can be used to give preliminary information about the 

transportation network functionality in a planning or design scenario.   
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Fig. 5.5  Bridge decision fragility curves longitudinal 

 

For an example of utilizing the decision fragility curves (in the longitudinal direction 

from Fig. 5.5), a design earthquake with intensity Sa(T1) = 900 cm/s2 was selected.  The 

probability of weight restrictions (25% loss of traffic load capacity) is 0.9, the probability of lane 

closure is 0.7, but the probability of limited access (one lane open or emergency vehicles only) is 

only 0.1. 

It should be noted, however, that this bridge-level example considers only the 

longitudinal lateral load-carrying capacity of the bridge.  A complete set of decision-making 

tools would need to be more rigorous.  Using the same procedure, the data in this example 

already exist for the transverse lateral and vertical load-carrying capacity of the same bridge (not 

shown in this section).  This information can be used in conjunction with the longitudinal load-

carrying capacity to create decision criteria based on the intersection of two or more of these 

quantities.  For example, it was suggested (Porter 2002) that the loss of lateral load-carrying 

capacity could be acceptably large if the vertical capacity had not degraded significantly or if the 

bridge was shored.  

At the bridge-level, the forms of both the DMs and DVs are yet to be defined.  While 

existing documents focus on graded seismic performance objectives, the performance is not 

always rigorously defined.  As an alternative, a new system of performance objectives based on 

the bridge-level example in this study was proposed in Table 4.8.  Using decision fragility 

curves, the probability of exceeding any performance objectives can be determined at the seismic 
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level of interest.  The specific values in the table (Table 4.8) are provided for illustration only 

and are meant to be refined through future research and discussion. 

5.2.3 Collapse and Damage State Unions 

Bridges are a crucial part of the transportation network in a region struck by an earthquake.  The 

ability of a bridge to carry traffic load after an earthquake determines the weight of trucks that 

can cross it and the speed at which such traffic may move in the noncollapse scenario.  However, 

the bridge reaches a certain critical point at which it is no longer able to sustain the traffic 

capacity.  This point is defined as the collapse-prevention limit state, regardless of whether 

physical collapse has occurred.  In a network simulation, however, whether the bridge has 

collapsed determines if a road is passable.  Today, post-earthquake bridge evaluation is 

qualitative and empirical rather than quantitative.  Therefore, this section provides an 

engineering basis for quick and reliable evaluation of the ability of a typical highway overpass 

bridge to function after an earthquake.   

The collapse-prevention limit state used in this section was a combination of the loss of 

lateral and vertical load-capacity limit states shown in Table 4.8.  A bridge would be considered 

closed, i.e., in a collapse-prevention limit state, if the lateral load-carrying capacity had been 

reduced by 25% or the vertical load-carrying capacity had been reduced by 50%.  Thus, the 

remaining traffic volume crossing this bridge is zero.  These values were used as an example and 

will be changed once more data become available. The damage fragility surfaces lateral 

(longitudinal) and vertical directions are presented in Section 4.2.  For the purposes of this 

example, the direct method (Method A) was used to maintain consistency between the lateral and 

vertical directions.  Both of the limit states are plotted in Figure 5.6 along with the probability of 

closure, defined as the union of the two damage limit states. 

The probability of the union was approximated as a series system with the correlation 

coefficient computed using the response load-carrying data for the lateral and vertical directions. 

As would be expected, the correlation (ρ = 0.85) between vertical and lateral loss of load-

carrying capacity was high.  The probability was calculated using a two-dimensional multi-

normal CDF.  Only two damage limit states were chosen to allow closed-form integration of this 

CDF; however, it may be of further benefit to describe collapse in terms of both the loss of 

lateral and vertical load-carrying capacity and the residual displacement of the bridge piers. 
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Fig. 5.6  Bridge collapse-prevention limit-state fragility curves 

5.2.4 Improved Methods for Post-Earthquake Capacity 

Four methods for predicting post-earthquake damage fragilities from first-shock earthquakes, the 

corresponding interim models, and interim variables were detailed in Section 4.2.3 for damage 

fragilities.  Only a brief summary of each method and their comparison are provided here, 

followed by extensions from damage to decision fragilities.  The four methods were applied to 

the bridge vertical direction only; therefore only the vertical loss model is considered in this 

section.  However, the methods remain general for the lateral directions as well.  The loss model, 

which relates a vertical damage variable to the loss of the traffic capacity decision variable, 

proposed herein, is shown in Figure 5.4. 

5.2.4.1 Method A — Direct Method 

The direct method was an application of the PEER framework (Eq. 1.3) directly to bridge-level 

interim models.  Therefore, the approach was the same as the one use for component-level 

decisions: Equation 1.3 is evaluated numerically for a range of IM, EDP, DM, and DV values to 

produce the DV fragility surface of Figure 5.7.  The fragility surface is a convenient method of 

visualizing numerous decision limit states on the same plot.  Each black line on the surface is a 
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single DV fragility curve.  The major drawback of this method when applied to bridge-level 

decisions was a large model error.  This resulted in low confidence (large dispersion) in 

predicting the median relationship between engineering response and earthquake intensity.  This 

uncertainty was propagated through the subsequent models and resulted in a significant lack of 

confidence in the damage and decision fragilities. 

Another shortcoming was also apparent: there is a large jump in probabilities of 

exceedance of a DV for small IM values.  This was not realistic, as damage would start to 

accumulate only at higher earthquake intensities, not during the elastic response of the bridge.  

The result is an overprediction of the probability of traffic volume loss at lower earthquake 

intensities.  Nevertheless, as these bridge-level models were derived by direct application of the 

PEER framework, they are useful as benchmarks for comparing subsequent methods.   
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Fig. 5.7  Bridge loss fragility Method A vertical 

5.2.4.2 Method B— MDOF Residual Displacement Method 

This method introduced residual displacement ures as an intermediate response parameter to 

improve the PSDM relating bridge-level engineering response parameters and earthquake 

intensity (IM). Analytical simulations were then used to relate residual displacement of the 

bridge and its vertical and horizontal load-carrying capacity degradation due to a combination of 
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material and geometric nonlinearities.  The resulting DV fragility formulation is shown in 

Equation 5.3. 

 ( ) ( ) ( )
( ) ( ) ddmdedpduimudPuedpdP

edpdmdPdmdvPimIMdvDVP
resresIMUresUEDP

EDPDMLSDMDVLS

resres ⋅⋅
⋅==< ∫∫∫

||
|||

||
||  (5.3) 

Once again, it was assumed that the EDP could be conditioned solely on ures, without any 

additional IM information.  While there was lower uncertainty in the EDP|ures correlation, this 

method also suffered from large model error due to the large uncertainty in the residual 

displacement demand model.  However, it did provide a more realistic prediction of the onset of 

bridge-level damage.  The resulting fragility surface is shown in Figure 5.8.  A comparison 

between all four methods for DV limit states of 25% and 50% traffic volume loss are shown in 

Figures 5.12 and 5.13, respectively. 
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Fig. 5.8  Bridge loss fragility Method B vertical 

5.2.4.3 Method C— SDOF Residual Displacement Method 

This method was equivalent to Method B, except that the residual displacements were obtained 

from residual displacement spectra (Kawashima 1998) rather than analysis of actual bridge 

models.  This method was effected to reduce the uncertainty in the residual displacement demand 

model.  The single-degree-of-freedom (SDOF) oscillator properties were selected based on the 



 188

initial elastic period of the bridge and an R-factor obtained from demand model simulations.  

While the method did result in slightly reduced uncertainty, the median prediction was largely 

dependent on the selection of SDOF oscillator properties. 

5.2.4.4 Method D— EDP Conditioning Method 

In an attempt to further reduce the interim uncertainty (model error), maximum displacement 

umax was introduced and correlated with residual displacement ures. This was achieved by 

integrating over maximum displacement and residual displacement in the third term of Equation 

1.3.  The expanded third term is shown in Equation 5.4.  Application of Equation 5.4 requires the 

EDP to be conditioned on ures only (no umax information), and ures to be conditioned on umax only 

(no IM information).  This was verified by showing the dependence of the residuals on umax and 

IM in Figures 5.9 and 5.10, respectively, is small.  There was a trend between the EDP-ures 

model and umax, however, on average, the dependence was negligible, and the integration 

proposed by the PEER methodology was conducted without restrictions.   

 ( ) ( ) ( )
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Fig. 5.10  ures-umax, IM residual dependence 

 

An efficient demand model relating maximum displacement umax (or drift ratio) and 

Sa(T1) was used in the last term in Equation 5.4.  The middle term in Equation 5.4 was derived 

using simulation (Section 4.2.3.4).  The first term in Equation 5.4 was computed in Method B.  
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Combining all of the interim models numerically resulted in the loss fragility surface in Figure 

5.11.  
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Fig. 5.11  Bridge loss fragility Method D vertical 

 

By using DV limit states of 25% and 50% of traffic volume reduction, the four methods 

are compared in Figures 5.12 and 5.13, respectively.  The values of ζ, the lognormal parameter 

that describes the dispersion of the DV model given IM, of the four methods were 0.96, 0.80, 

0.73, and 0.46, respectively.  Therefore, while even Method D had fairly high uncertainty, its 

prediction of the median value was better than the direct application of Equation 1.3.   

The same trends evident in the damage fragility curves of Section 4.2.5 were also 

apparent in the figures above.  Method A provided an unrealistic, yet conservative, upper bound.  

Methods B and C yielded less dispersion; however, Method D remained the best alternative of 

the improved methods presented.  The bias in the median value of Method C was once again due 

to the use of the SDOF oscillator without a participation factor.  Aftershock analysis at the loss 

fragility level could also be carried out using the procedure outlined in Section 4.2.4.   
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Fig. 5.12  Bridge decision fragility first-shock method comparison, dvLS = 25% 

 

In summary, formulation of decision fragilities is hindered by lack of data at the loss 

model stage.  At the component-level stage, this will involve future research on repair costs and 

time that improve the performance of the loss models in the framework.  At the bridge-level, 

there is an even larger gap in the loss model, as the mathematical form of the loss model and the 

DVs of interest are yet to be agreed upon.  Not only this, but the determination of loss fragilities 

suffers from the same lack of confidence as the bridge-level damage fragilities.   
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Fig. 5.13  Bridge decision fragility first-shock method comparison, dvLS = 50% 
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5.3 UNCERTAINTY 

Epistemic uncertainty at the loss model level is introduced in this section.  As in Sections 3.9 and 

4.3, the dispersion term can be modified by SRSS to include the contribution of the aleatory and 

epistemic portions.  This total dispersion can then be used without modification in all of the loss 

fragility and loss hazard curves of this chapter.  The result of using the total uncertainty is the 

prediction of the mean fragility or hazard curve rather than the median curve.  Alternatively, the 

two sources of uncertainty can be separated and the percentiles due to the epistemic uncertainty 

plotted around the median curve.  This is illustrated for the loss fragility curve in Equation 5.5. 
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The Method A loss fragility curve is selected to illustrate the use of Equation 5.5.  The 

loss (Fig. 5.14) and damage fragilities (Fig. 4.50) were very similar in form and dispersion.  This 

is due to the dominance of the large aleatory uncertainty in the demand model for Method A.  

Hence, the mean and median curves were almost equivalent.  A relatively small epistemic 

uncertainty (0.05) was assumed for the loss model, as the relationship between DV and DM is 

relatively certain, once agreed on by the decision-making stakeholders. 
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Fig. 5.14  Bridge-level loss model fragility curve percentiles 
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Continuing the confidence interval propagation example from Section 4.3, the 50% 

confidence intervals are shown in Figure 5.15 for the 15% traffic volume loss fragility curve.  

Once again, the confidence intervals stemmed only from the uncertainty in selecting the median 

demand model, not confidence intervals at each of the damage and loss model levels.  To further 

illustrate the poor performance of Method A in predicting damage and loss fragilities, 50% 

intervals are shown for both methods A and D in Figure 5.15.  While the median of Method D 

did not fall within the Method A confidence intervals, the width of the intervals is largely 

indicative of the better choice of method.  The plot was simplified by removing the 90% 

confidence intervals.  The Method D 90% confidence intervals were wider than the 50% 

intervals, as would be expected from a median with higher certainty.   
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Fig. 5.15  Bridge-level loss model confidence intervals 

 

An engineering basis for quantitatively evaluating the ability of a typical highway bridge 

to function after an earthquake was presented in this chapter for three limit states: repair cost, 

traffic function, and collapse-prevention.  The PEER framework was utilized to cast these limit 

states in terms of damage and decision fragility curves.  For the repair cost limit state, 

component-level (column) damage and loss data were used in a direct application of the PEER 

integral.  However, for the bridge-level traffic function limit state, several methods of obtaining 

the decision fragilities were introduced, the best method using EDP conditioning (Method D). 
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Finally, an example of combining damage limit states to define the collapse-prevention 

limit state was presented.  The resulting fragility curves for all limit states can be used by 

engineers and decision makers to assess the performance of a typical highway bridge in a given 

earthquake scenario, and evaluate the changes in bridge performance under varying earthquake 

intensity scenarios.  Ongoing research is focused on refining the values of decision variables 

using feedback from bridge engineers and additional analytical studies.  

 



 

6 General PBEE Formulation 

This chapter provides a general formulation for the entire PBEE problem from the hazard (IM) to 

the decision variable (DV).  Rather than using abstract models, the same bridge-level interim 

models derived in previous chapters were used.  This general formulation includes closed-form 

solutions for intermediate hazard curves based on the power-law relationship, conditional 

lognormal distribution, and constant dispersion assumptions of the constituent variables.  

Specifically, the DVs were considered lognormally distributed when conditioned on DM.  The 

same assumption was made regarding DMs conditioned on EDPs and EDPs conditioned on IMs.  

The goal of this chapter is provide an explicit example of how to generate loss hazard 

information and to illustrate the simplicity of evaluating the framing equation (Eq. 1.2) when the 

successive interim variables are assumed to be conditionally lognormal.   

6.1 PSHA 

In this example, probabilistic hazard assessment was obtained from USGS mapping data (USGS) 

for a site near the Berkeley campus of the University of California.  While there may be 

numerous ways of obtaining these data, below is short description of the method used to obtain 

the median hazard curve.  Spectral acceleration was chosen as the IM of concern throughout this 

example.  As mentioned previously (Section 3.4.1), large amounts of previous research have 

shown Sa(T1) is an optimal choice among existing IMs to use during the integral evaluation. 

 The 2%-, 5%-, and 10%-exceedance in 50 years pseudo-acceleration equal hazard spectra 

are shown in Figure 6.1, along with each individual interpolated response spectra.  The two-part 

fit used a 1/T relationship between Sa(T) and T for periods greater than 0.5 sec and a capped 

spectral acceleration in the short-period range.  The continuous fit was merely a function fitted to 

the given data points.  The two-part fit was used for analysis.  An example analysis was 
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performed using the single-bent base-bridge configuration with a fundamental period of T1 = 

1.57 sec.  The values at the period of interest were used to determine the median hazard curve.   
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Fig. 6.1  USGS hazard curves for Berkeley, California 

 

 The hazard curve was assumed to have an exponential form with two unknown 

parameters (Eq. 3.4).  The two-parameter approximation tends to overpredict frequencies of 

exceedance for both IM extremes.  Therefore, care should be used when extrapolating any 

resultant hazard curves to extremely low (or high) frequencies of exceedance.  Using a least-

squares fit in log-log space (Eq. 3.5), the unknown parameters were determined to be k = 2.61 

and k0 = 1.7e4.  The resulting hazard curve is shown in Figure 6.2.  This hazard curve was used 

implicitly in Sections 3.8.2 and 4.1.2.  Alternatively, coefficient determination is often performed 

by solving the equations using only two of the hazard levels (Eqs. 6.1, 6.2). 
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Fig. 6.2  Median annual hazard curve for T1 = 1.57 sec in Berkeley, California 

 

The uncertainty in the hazard curve (not shown here) is taken care of by using the mean 

hazard curve in order to estimate the mean annual frequency of exceeding an EDP, DM, or DV 

limit state (see Cornell 2002).  The mean hazard curve must be derived from the hazard data, or 

estimated from the median hazard above based on a hazard uncertainty term.  The hazard curves 

in this report do not include this uncertainty, only the aleatory uncertainty from each of the 

demand, damage, and loss models.   

6.2 DEMAND MODEL 

The demand model was fully described in Chapter 3 and therefore is mentioned only briefly 

here.  The power-law form (Eq. 3.9) and conditional lognormal distribution of EDP given IM of 

the demand model was assumed to apply; therefore, the closed-form solution for the demand 

hazard curve (Eq. 3.34) was applicable.  Probabilistic demand analysis was required only to 

produce the coefficients a and b of the median fit in order to fully describe both the median 

demand fragilities (Eq. 3.29) and the hazard curves (Eq. 3.34).   
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Sample demand fragility curves using the assumption of a lognormal demand model are 

shown in Figure 3.76 for the drift ratio EDP.  The corresponding demand hazard curves are 

shown in Figure 3.80.  At the bridge level, an example of applying Equation 3.34 is shown in 

Figure 6.3.  The discrepancy between the numerical and closed-form solution arose due to the 

number and placement of numerical integration points.  The approximations of Equation 1.2 

should also be remembered, as it is equally applicable at the demand hazard curve level.  

Therefore, it should be expected that the hazard predicted at the lower EDPs is less accurate 

(especially for larger return periods). 

6.3 DAMAGE MODEL 

The median damage model developed for loss of vertical load-carrying capacity at the bridge-

level in Section 4.2.2 was also assumed to follow a power-law relationship.  The resulting 

general probabilistic damage model equations then become Equation 6.3 in linear space and 

Equation 6.4 in log space.  The models were fully defined after deriving the coefficients cdm and 

ddm.  

 D ˆ M = cdm EDP( )ddm  (6.3) 

 ln D ˆ M ( )= Cdm + Ddm ln EDP( ) (6.4) 

The damage model was simplified greatly because the coefficients ddm and cdm are simply 1 and -

ln(Pmax), respectively.   
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Fig. 6.3  Bridge-level demand hazard curves vertical 

 

It was also assumed that the conditional probability distribution of DM on EDP was 

lognormal.  In a similar manner to the demand model, it was possible to obtain a closed-form 

expression for the mean annual frequency of exceeding different DM values.  The structural 

damage hazard curve is described by Equation 6.5.   
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This closed-form expression was applied to the bridge-level damage hazard curve in Figure 4.19.  

The discrepancy arose from the numerical integration points, as described above, and was also 

compounded by the errors in the demand hazard curve.  The numerical solution is obtained 

simply by differentiating the demand hazard curve; therefore, any errors in this curve were 

propagated forward.   

6.4 LOSS MODEL 

Similarly, the proposed median loss model for loss of traffic load-carrying capacity at the bridge-

level in Section 5.2.2 was also assumed to follow a power-law relationship.  The resulting 

general probabilistic loss model equations then become Equation 6.6 in linear space and 
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Equation 6.7 in log space.  The models were fully defined after deriving the coefficients elm and 

flm.  

 D ˆ V = elm DM( )elm  (6.6) 

 ln D ˆ V ( )= Elm + Flm ln DM( ) (6.7) 

 

Continuing from the damage hazard curve, and assuming that the DV was lognormally 

distributed when conditioned on DM, it was also possible to obtain a closed-form expression for 

the mean annual frequency of exceeding different DV values.  The structural loss hazard curve is 

described by Equation 6.8.  A comparison of the numerical and closed-form loss hazard curves is 

shown in Figure 6.4.  The numerical solution was obtained from differentiation of the damage 

hazard curve in Figure 4.19.  
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Fig. 6.4  Bridge-level loss hazard curve vertical 

 



 

7 Conclusion 

The problem of highway overpass bridge decision making due to seismic hazard is a complex 

one.  For the reinforced concrete highway overpass bridges considered in this study, measures 

used to calculate loss included structural component repair costs and decrease in traffic volume 

compared to the pre-earthquake bridge state (the actual indirect costs due to lack of function 

were not calculated herein).  However, there is no clear direct relationship between these loss-

modeling measures and typical seismic hazard input parameters, such as earthquake magnitude, 

distance, and intensity.  In addition, evolving design methodologies no longer focus on solely 

deterministic estimates of such loss-modeling measures.  Rather, it is necessary to consistently 

describe loss in a probabilistic manner.  The result is a performance-based approach to bridge 

design and assessment in an earthquake scenario.   

To arrive at systematic and quantifiable measures that aid in decision-making or loss-

modeling contexts, it is necessary to rigorously define the various contributing components.  For 

fragility-based seismic decision making this includes expected response of the bridge structure to 

seismic excitation, subsequent damage and degradation of the structure, the loss of function after 

an earthquake event, and the need to restore the bridge to a predetermined level of functionality.  

To achieve the end goal, the probabilistic performance-based earthquake engineering framework 

of the Pacific Earthquake Engineering Research Center was adopted. 

7.1 BASIC PROCEDURE 

While previous bridge fragility studies have focused on demand-based limit states, subjective 

limit-state definitions, and compatibility with existing empirical fragilities, this study provides an 

analytical fragility formulation that is rigorous and probabilistically consistent.  Not only this, 

but the problem of defining earthquake fragilities is disaggregated into interim models that are 

succinctly defined, and have associated fragilities.  Therefore, it was possible to generate 
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demand, damage, and decision fragility curves.  These are distinctly different from any existing 

fragilities for numerous reasons.  First, the fragilities are in reference to exceeding specific 

rational values of EDP, DM, or DV variables in discrete or continuous fashion.  Second, they are 

conditioned on an arbitrary IM variable that can be chosen to best suit the structure and site of 

interest.  Finally, uncertainty in each model is propagated to each subsequent fragility curve.   

The PEER PBEE framework disaggregates the decision-making procedure into three 

discrete models, combined using the total probability theorem (Eq. 1.1).  The interim models can 

be treated separately if selected so as not to carry on conditional dependencies on previous 

models.  The three interim models are the probabilistic seismic demand model (PSDM), 

probabilistic damage model (PDM), and the probabilistic loss model (PLM).  The results of 

applying the PEER framework are either the annual frequencies of exceeding prescribed limit 

states (a hazard curve) or the probabilities of exceeding the same limit states, conditioned on 

earthquake intensity (a fragility curve).  The decision-making procedure was applied to 

individual realizations of reinforced concrete highway bridges that account for the largest 

number of highway bridges in the California bridge inventory.  The analytical finite element 

models used to represent this class of bridges were detailed in Chapter 2. 

PSDMs relate measures of earthquake intensity (IM) to measures of structural response 

(EDP).  The demand models (Chapter 3) can be formulated using either the cloud method 

(PSDA) or the incremental scaling method (IDA).  The PSDA procedure was utilized exclusively 

in this study to investigate the selection of optimal IMs and EDPs as well as trends due to the 

variation of bridge design parameters.  Of existing IMs, the first-mode spectral quantities (Sa, Sv, 

or Sd) were optimal.  Optimal was defined as being practical, effective, efficient, sufficient, and 

robust.  For more efficient IMs, the Class III IMs generated from using a bandpass filter were the 

most computationally efficient method of filtering ground motion records over a band of 

frequencies.  The efficiency increase was equivalent to using an average of spectral quantities 

over a period band; however, the computation time is drastically reduced.  Alternatively, first-

mode period modification factors can be used to obtain more efficient results using only a single 

spectral analysis.  However, these are structure specific and may not be applicable to a wide 

range of structures.   

Performance changes were generated by varying bridge design parameters during 

demand analysis.  Results were quantified in the PSDMs through the use of design equations 

(Eq. 3.17).  Alternatively, probabilities of exceeding demand limit states were investigated for 
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different design parameters using parameterized demand fragility surfaces (Eq. 3.30).  The 

drawback of comparing design parameters with highly optimal IMs is the period-dependence of 

the IMs.  Therefore, the design equations and fragility surfaces were all generated with the best 

period-independent IM.  For the bridges considered in this study, the best period-independent 

choice was CAD or PGV.  Optimal PSDMs and design parameter variations were explored for 

the one-bent, two-bent, and three-bent bridges in the class of bridges selected.  A complete 

treatment of uncertainty was made for each of the interim models.  Each probabilistic model was 

formulated considering only randomness, or aleatory, uncertainty.  At the end of each chapter, 

the inclusion of epistemic uncertainty was then introduced.  

Damage models (Chapter 4) were formulated at two levels corresponding to localized 

decision goals and functional decision goals.  The localized, or component-level damage models 

were generated using both an experimental and analytical approach.  The experimental approach 

incorporated thousands of test results from a database used to predict component-level damage to 

columns at different levels of response.  An analytical reliability-based approach was also 

employed to produce the same component damage models.  The experimental database is 

currently limited to columns only and requires interpolation between design parameters of 

interest.  The reliability approach is applicable to any component of interest but suffers from the 

inability to model complex natural phenomena using finite element models.  Therefore, both 

methods have potential uses in future studies.  Damage models were formulated only for the 

columns of the bridges considered; however for a complete damage assessment, damage models 

for other components would be required. 

The functional, or bridge-level, damage models were generated entirely using reliability 

methods due to the lack of experimental data.  Simulations were performed to predict the loss of 

lateral and vertical load-carrying capacity of the bridge in a post–first-shock or post-aftershock 

scenario.  Large uncertainties were present in the direct method of predicting these damage 

models, therefore several other methods were introduced to improve the level of confidence in 

the final models.  The most promising method (Method D) incorporated both the maximum and 

residual displacements (EDPs) on the bridge.  These were then used to predict the loss of load-

carrying capacity.  However, all methods were largely dependent on the final element modeling 

choices and can be improved in the future. 

Loss models (Chapter 5) continued the two-path approach (based on component- or 

bridge-level quantities) leading to direct and indirect earthquake losses.  At the component level 
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(and related strictly to columns due to the damage models), a repair cost loss model was 

developed using data collected from the Northridge and Loma Prieta earthquakes.  At the bridge 

level, the same improved methods used to generate bridge damage fragilities were used to 

predict loss fragilities in terms of traffic volume loss.  The bridge-level loss model was inferred 

from Caltrans expected bridge post-earthquake performance.  A possible mathematical form of 

the loss model and ordinates were presented as a motivation for further discussion between the 

engineers, owners, and authorities involved.  The loss of function was presented as a basis for 

pre- and post-earthquake decision making as well as a tool for calculating indirect costs to a 

network. 

As a further tool for relating loss of load-carrying capacity and such visible damage as 

residual displacements, a reconnaissance tool was presented that would supplement field 

decisions on the conditions of a bridge.  The concept of collapse prevention was also introduced 

as a union of (load) capacity losses and residual displacements, rather than the actual onset of 

structural collapse.  This is a more realistic definition of collapse (i.e., the loss of lateral and 

vertical load-carrying capacity) in terms quantifiable to both structural engineers and policy 

makers alike. 

7.2 APPLICABILITY TO REDARS AND HAZUS 

The methodology proposed in this report is rigorous and can be applied to any bridge (or 

structure) of interest.  However, the value of bridge-level loss modeling is greatly increased if it 

can be utilized to predict the performance of numerous bridges in a highway network setting.  

While it is impractical to perform such a meticulous loss modeling procedure for every single 

bridge in a regional inventory, the grouping of bridges into classes that share common 

characteristics and performance trends is achieved in this study. 

Using the most common class of bridges in California, the applicability of the fragilities 

derived in this study was made possible through the variation of bridge design parameters.  The 

FHWA already classifies bridges according to numerous criteria in the NBI (national bridge 

inventory), such as year built, material type, and structural type.  Basöz recommended improved 

parameters (Basöz 1996, 1999) that better categorized bridges into different performance classes, 

such as number of spans, skew, height.  The bridge design parameters used in this study correlate 
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well with both these HAZUS database categories, and with those often used to assess damage to 

structural element on a component level (PEER Capacity Catalog).   

With the general bridge classifications and damage and loss fragilities available from 

research, a future version of the NBI may feature a meta-database that includes entries for 

fragility curves parameterized by design parameter, as well as bridge specific data obtained from 

pre- and post-earthquake reconnaissance (recorded motion, documented damage, etc).  This 

database would become very powerful in large-scale simulations on transportation networks, 

such as REDARS and HAZUS.   

Not only would more comprehensive data be available for each bridge in the network, but 

also the fragilities generated in this study could be applied directly to calculation of network 

losses.  This includes the direct use of loss fragilities, such as the repair cost ratio, in determining 

network direct losses.  Alternatively, the repair cost data could be supplied in the network 

simulation and the damage fragilities used to predict probabilities of exceeding functional or 

structural component damage states.  Currently, both HAZUS and REDARS make use of 

damage fragilities to classify the post-earthquake state of bridges.  However, these fragilities are 

either empirically based, or based on simplified analytical tools applicable to a larger array of 

bridges.  The current limitation, however, on the fragilities and methodology in this study is the 

lack of time dependence of the results.  Therefore, the return to functionality due to repair and 

restoration is not addressed. 

7.3 ANALYTICAL SHORTCOMINGS AND FUTURE WORK 

A primarily analytical approach was assumed in generating most of the interim models of this 

study.  The only experimental data used was for column component damage models as well as 

small-scale axial load loss experiments.  The obvious caveat being that the resulting analytical 

models are only as good as the finite element models and the associated input.  While some of 

the component-level damage models were validated with the experimental database, the 

analytical approach was adopted largely due to the lack of available data for bridge-level 

response.   

However, experimental programs suffer from a variety of uncertainty sources, just as 

analytical programs do, albeit different sources.  At the analytical level, lack of knowledge and 

choice of modeling procedure are the primary sources of uncertainty.  Failure modes are required 
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a priori in order to predict them analytically.  Therefore, the primary focus of this research was 

not on collapse and high-intensity earthquake events.  Rather, reliability methods were 

introduced to address some sources of uncertainty in the analytical prediction of damage and 

loss.   

The principal shortcoming uncovered during this study was the prediction of the loss of 

load-carrying capacity at the bridge level.  While numerous attempts were made to improve 

confidence in the prediction through residual and maximum displacement, uncertainties in the 

final models were still large.  For use as a decision-making guideline, the losses of load 

capacities are very important.  Therefore, refinement of the methods and procedures used to 

predict these losses should be investigated in the future.  This is especially true when applied to 

aftershocks, as there has been little treatment on the cumulative effect of multiple shocks on the 

load-carrying capacity of a bridge.   

Numerous other improvements are also required to obtain a more complete picture of 

bridge-specific loss modeling.  At the component level, only the column was considered.  

Especially in short bridges, the abutment response and subsequent damage should outweigh that 

of the column.  There are also other components, such as the approach embankment, that 

determine post-earthquake functionality.  These components need to be considered in future 

studies even though the methodology applied in this report is general.  However, as more 

components are considered, not only are damage models required, but so are loss models (such 

as repair costs).  This is indicative of the interdisciplinary nature of earthquake engineering.   
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Appendix Ground Motions 

 

Specific information detailing all the ground motion records used in this study is contained in the 

tables of this appendix.  The tables are separated according to bin.  All of the records and record 

information were obtained from the PEER Strong Motion Catalog. Values of PGA, PGV, and 

PGD are shown for informational purposes only.  In reality, values were calculated when the 

acceleration record was integrated by the IM processing routines. 
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Table A.1  LMSR ground motion bin record details 

Record fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s)
ID Event Year M R (km) Station Soil Mechanism x y z x y z x y z x y z

AGW Loma Prieta 1989 6.9 28.2 Agnews State Hospital D reverse-oblique 0.20 0.20 0.20 30.0 30.0 42.0 0.159 0.172 0.093 17.6 26.0 8.3
CAP Loma Prieta 1989 6.9 14.5 Capitola D reverse-oblique 0.20 0.20 0.20 40.0 48.0 50.0 0.443 0.529 0.541 29.3 36.5 19.4
G03 Loma Prieta 1989 6.9 14.4 Gilroy Array #3 D reverse-oblique 0.10 0.10 0.10 40.0 33.0 50.0 0.367 0.555 0.338 44.7 35.7 15.5
G04 Loma Prieta 1989 6.9 16.1 Gilroy Array #4 D reverse-oblique 0.20 0.20 0.20 30.0 28.0 42.0 0.212 0.417 0.159 37.9 38.8 14.6
GMR Loma Prieta 1989 6.9 24.2 Gilroy Array #7 D reverse-oblique 0.20 0.20 0.20 35.0 40.0 48.0 0.323 0.226 0.115 16.6 16.4 5.6
HCH Loma Prieta 1989 6.9 28.2 Hollister City Hall D reverse-oblique 0.10 0.10 0.10 30.0 29.0 32.0 0.215 0.247 0.216 45.0 38.5 14.9
HDA Loma Prieta 1989 6.9 25.8 Hollister Differential Array D reverse-oblique 0.10 0.10 0.10 33.0 40.0 38.0 0.279 0.269 0.154 35.6 43.9 8.4
SVL Loma Prieta 1989 6.9 28.8 Sunnyvale - Colton Ave. D reverse-oblique 0.10 0.10 0.10 32.0 40.0 50.0 0.209 0.207 0.104 36.0 37.3 8.6
CNP Northridge 1994 6.7 15.8 Canoga Park - Topanga Can. D reverse-slip 0.10 0.05 0.05 30.0 30.0 30.0 0.420 0.356 0.489 60.8 32.1 14.2
FAR Northridge 1994 6.7 23.9 LA - N Faring Rd. D reverse-slip 0.13 0.13 0.20 30.0 30.0 30.0 0.242 0.273 0.191 29.8 15.8 8.9
FLE Northridge 1994 6.7 29.5 LA - Fletcher Dr. D reverse-slip 0.15 0.13 0.30 30.0 30.0 30.0 0.240 0.162 0.109 26.2 10.7 6.9
GLP Northridge 1994 6.7 25.4 Glendale - Las Palmas D reverse-slip 0.10 0.13 0.30 30.0 30.0 30.0 0.206 0.357 0.127 7.4 12.3 4.3
HOL Northridge 1994 6.7 25.5 LA - Holywood Stor FF D reverse-slip 0.20 0.20 0.20 23.0 23.0 23.0 0.358 0.231 0.139 27.5 18.3 9.2
NYA Northridge 1994 6.7 22.3 La Crescenta-New York D reverse-slip 0.10 0.30 0.13 30.0 30.0 30.0 0.159 0.178 0.106 11.3 12.5 3.9
LOS Northridge 1994 6.7 13.0 Canyon Country - W Lost Cany D reverse-slip 0.10 0.05 0.20 30.0 30.0 30.0 0.482 0.410 0.318 45.1 43.0 20.3
RO3 Northridge 1994 6.7 12.3 Sun Valley - Roscoe Blvd D reverse-slip 0.10 0.10 0.10 30.0 30.0 30.0 0.443 0.303 0.306 38.2 22.1 12.5
PEL San Fernando 1971 6.6 21.2 LA - Hollywood Stor Lot D reverse-slip 0.20 0.20 0.50 35.0 35.0 35.0 0.174 0.210 0.136 14.9 18.9 4.3
B-ICC Superstition Hills 1987 6.7 13.9 El Centro Imp. Co. Cent D strike-slip 0.10 0.10 0.10 38.0 40.0 47.0 0.258 0.358 0.128 40.9 46.4 8.4
B-IVW Superstition Hills 1987 6.7 24.4 Wildlife Liquef. Array D strike-slip 0.10 0.10 0.10 40.0 50.0 50.0 0.207 0.181 0.408 34.5 29.9 6.0
B-WSM Superstition Hills 1987 6.7 13.3 Westmorland Fire Station D strike-slip 0.10 0.10 0.10 40.0 35.0 50.0 0.211 0.172 0.249 31.0 23.5 8.7

Given R is closest to fault rupture
red indicates hypocentral distance  
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Table A.2  LMLR ground motion bin record details 

Record fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s)
ID Event Year M R (km) Station Soil Mechanism x y z x y z x y z x y z

A-ELC Borrego Mountain 1968 6.8 46.0 El Centro Array #9 D strike-slip 0.20 0.20 0.20 12.8 12.5 16.4 0.057 0.130 0.030 13.2 26.3 3.3
A2E Loma Prieta 1989 6.9 57.4 APEEL 2E Hayward Muir Sch. D reverse-oblique 0.20 0.20 0.20 25.0 30.0 40.0 0.139 0.171 0.095 11.5 13.7 3.8
FMS Loma Prieta 1989 6.9 43.4 Fremont - Emerson Court D reverse-oblique 0.10 0.10 0.10 32.0 31.0 38.0 0.141 0.192 0.067 12.9 12.7 8.6
HVR Loma Prieta 1989 6.9 31.6 Halls Valley D reverse-oblique 0.20 0.20 0.20 22.0 22.0 28.0 0.103 0.134 0.056 13.5 15.4 8.4
SJW Loma Prieta 1989 6.9 32.6 Salinas - John & Work D reverse-oblique 0.10 0.10 0.10 28.0 30.0 42.0 0.112 0.091 0.101 15.7 10.7 6.7
SLC Loma Prieta 1989 6.9 36.3 Palo Alto - SLAC Lab. D reverse-oblique 0.20 0.20 0.20 28.0 33.0 40.0 0.278 0.194 0.090 29.3 37.5 10.2
BAD Northridge 1994 6.7 56.1 Covina - W. Badillo D reverse-slip 0.20 0.20 0.30 30.0 30.0 30.0 0.079 0.100 0.043 7.0 5.8 2.9
CAS Northridge 1994 6.7 49.6 Compton - Castlegate St. D reverse-slip 0.20 0.10 0.40 30.0 30.0 30.0 0.136 0.088 0.046 7.1 6.8 2.6
CEN Northridge 1994 6.7 30.9 LA - Centinela St. D reverse-slip 0.20 0.13 0.13 30.0 30.0 30.0 0.322 0.465 0.109 22.9 19.3 10.6
DEL Northridge 1994 6.7 59.3 Lakewood - Del Amo Blvd. D reverse-slip 0.20 0.13 0.80 30.0 30.0 30.0 0.123 0.137 0.058 10.4 11.2 1.6
DWN Northridge 1994 6.7 47.6 Downey - Co. Maint. Bldg. D reverse-slip 0.20 0.20 0.20 23.0 23.0 23.0 0.230 0.158 0.146 11.3 13.8 3.9
JAB Northridge 1994 6.7 46.6 Bell Gardens - Jaboneria D reverse-slip 0.13 0.13 0.13 30.0 30.0 30.0 0.068 0.098 0.049 7.6 7.4 3.5
LH1 Northridge 1994 6.7 36.3 Lake Hughes #1 D reverse-slip 0.12 0.12 0.12 23.0 23.0 23.0 0.077 0.087 0.099 9.5 9.4 7.0
LOA Northridge 1994 6.7 42.4 Lawndale - Osage Ave. D reverse-slip 0.13 0.13 0.13 30.0 30.0 30.0 0.152 0.084 0.053 8.0 8.5 3.5
LV2 Northridge 1994 6.7 37.7 Leona Valley #2 D reverse-slip 0.20 0.20 0.20 23.0 23.0 23.0 0.063 0.091 0.058 7.2 7.5 7.1
PHP Northridge 1994 6.7 43.6 Palmdale - Hwy 14 & Palmdale D reverse-slip 0.20 0.20 0.20 46.0 46.0 46.0 0.067 0.061 0.040 16.9 14.8 8.0
PIC Northridge 1994 6.7 32.7 LA - Pico & Sentous D reverse-slip 0.20 0.20 0.20 46.0 46.0 46.0 0.186 0.103 0.065 14.3 12.2 5.3
SOR Northridge 1994 6.7 54.1 West Covina - S. Orange Ave. D reverse-slip 0.10 0.20 0.20 30.0 30.0 30.0 0.067 0.063 0.049 5.8 5.9 2.7
SSE Northridge 1994 6.7 60.0 Terminal Island - S. Seaside D reverse-slip 0.13 0.13 0.13 30.0 30.0 30.0 0.194 0.133 0.048 12.1 13.7 3.1
VER Northridge 1994 6.7 39.3 LA - E Vernon Ave. D reverse-slip 0.10 0.20 0.20 30.0 30.0 30.0 0.153 0.120 0.063 10.1 9.2 3.4

Given R is closest to fault rupture
red indicates hypocentral distance
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Table A.3  SMSR ground motion bin record details 

Record fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s)
ID Event Year M R (km) Station Soil Mechanism x y z x y z x y z x y z

H-CAL Imperial Valley 1979 6.5 23.8 Calipatria Fire Station D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.078 0.128 0.055 13.3 15.4 3.9
H-CHI Imperial Valley 1979 6.5 28.7 Chihuahua D strike-slip 0.05 0.05 0.05 - - - 0.254 0.270 0.218 30.1 24.9 5.1
H-E01 Imperial Valley 1979 6.5 15.5 El Centro Array #1 D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.134 0.139 0.056 10.7 16.0 3.8
H-E12 Imperial Valley 1979 6.5 18.2 El Centro Array #12 D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.116 0.143 0.066 21.8 17.6 6.7
H-E13 Imperial Valley 1979 6.5 21.9 El Centro Array #13 D strike-slip 0.20 0.20 0.20 40.0 40.0 40.0 0.139 0.117 0.046 13.0 14.7 3.2
H-WSM Imperial Valley 1979 6.5 15.1 Westmorland Fire Station D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.110 0.074 0.082 21.9 21.2 6.8
A-SRM Livermore 1980 5.8 21.7 San Ramon Fire Station D strike-slip 0.20 0.15 0.30 15.0 15.0 20.0 0.040 0.058 0.016 4.0 3.3 2.0
A-KOD Livermore 1980 5.8 17.6 San Ramon - Eastman Kodak D strike-slip 0.20 0.08 0.40 20.0 20.0 30.0 0.076 0.154 0.042 6.1 18.9 2.8
M-AGW Morgan Hill 1984 6.2 29.4 Agnews State Hospital D strike-slip 0.20 0.20 0.20 13.0 14.0 18.0 0.032 0.032 0.016 5.5 5.0 3.2
M-G02 Morgan Hill 1984 6.2 15.1 Gilroy Array #2 D strike-slip 0.10 0.20 0.20 37.0 31.0 37.0 0.212 0.162 0.578 12.6 5.1 10.8
M-G03 Morgan Hill 1984 6.2 14.6 Gilroy Array #3 D strike-slip 0.10 0.10 0.10 32.0 37.0 42.0 0.200 0.194 0.395 12.7 11.2 9.9
M-GMR Morgan Hill 1984 6.2 14.0 Gilroy Array #7 D strike-slip 0.10 0.10 0.10 30.0 31.0 40.0 0.113 0.190 0.428 6.0 7.4 5.4
PHN Point Mugu 1973 5.8 25.0 Port Hueneme D reverse-slip 0.15 0.20 0.20 30.0 25.0 30.0 0.083 0.112 0.047 4.6 14.8 2.2
BRA Westmorland 1981 5.8 22.0 5060 Brawley Airport D strike-slip 0.70 0.15 0.60 33.0 40.0 40.0 0.171 0.169 0.101 5.8 12.7 2.2
NIL Westmorland 1981 5.8 19.4 724 Niland Fire Station D strike-slip 0.25 0.30 0.30 40.0 33.0 33.0 0.176 0.105 0.126 6.6 5.6 2.9
A-CAS Whittier Narrows 1987 6.0 16.9 Compton - Castlegate St. D reverse 0.28 0.09 0.50 25.0 25.0 25.0 0.333 0.332 0.167 14.1 27.1 3.3
A-CAT Whittier Narrows 1987 6.0 28.1 Carson - Catskill Ave. D reverse 0.55 0.18 0.50 25.0 25.0 25.0 0.059 0.042 0.037 2.4 3.8 1.3
A-DWN Whittier Narrows 1987 6.0 18.3 14368 Downey - Co Maint Bldg D reverse 0.25 0.20 1.00 30.0 30.0 40.0 0.141 0.221 0.177 13.4 28.8 3.3
A-W70 Whittier Narrows 1987 6.0 16.3 LA - W 70th St. D reverse 0.20 0.30 0.30 25.0 25.0 25.0 0.151 0.198 0.077 8.7 19.5 2.8
A-WAT Whittier Narrows 1987 6.0 24.5 Carson - Water St. D reverse 0.30 0.20 0.50 25.0 25.0 25.0 0.133 0.104 0.046 11.3 9.0 2.0

Given R is closest to fault rupture
red indicates hypocentral distance
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Table A.4  SMLR ground motion bin record details 

Record fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s)
ID Event Year M R (km) Station Soil Mechanism x y z x y z x y z x y z

B-ELC Borrego 1942 6.5 49.0 El Centro Array #9 D unknown 0.10 0.10 0.10 15.0 15.0 20.0 0.044 0.068 0.033 4.0 3.9 1.1
H-C05 Coalinga 1983 6.4 47.3 Parkfield - Cholame 5W D reverse-oblique 0.20 0.20 0.50 22.0 22.0 30.0 0.131 0.147 0.034 10.0 10.8 2.3
H-C08 Coalinga 1983 6.4 50.7 Parkfield - Cholame 8W D reverse-oblique 0.50 0.20 0.20 21.0 23.0 27.0 0.100 0.098 0.024 8.0 8.6 3.3
H-CC4 Imperial Valley 1979 6.5 49.3 Coachella Canal #4 D strike-slip 0.20 0.20 0.20 40.0 40.0 40.0 0.128 0.115 0.038 15.6 12.5 3.6
H-CMP Imperial Valley 1979 6.5 32.6 Compuertas D strike-slip 0.20 0.20 0.20 - - - 0.147 0.186 0.075 9.5 13.9 2.9
H-DLT Imperial Valley 1979 6.5 43.6 Delta D strike-slip 0.05 0.05 0.05 - - - 0.351 0.238 0.145 33.0 26.0 14.8
H-NIL Imperial Valley 1979 6.5 35.9 Niland Fire Station D strike-slip 0.10 0.10 0.10 40.0 30.0 40.0 0.069 0.109 0.034 8.3 11.9 3.8
H-PLS Imperial Valley 1979 6.5 31.7 Plaster City D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.057 0.042 0.026 5.4 3.2 2.4
H-VCT Imperial Valley 1979 6.5 54.1 Victoria D strike-slip 0.20 0.05 0.05 - - - 0.167 0.122 0.059 8.3 6.4 1.6
A-STP Livermore 1980 5.8 37.3 Tracy - Sewage Treatment Plant D strike-slip 0.08 0.15 0.20 15.0 20.0 20.0 0.073 0.050 0.021 7.6 7.5 3.1
M-CAP Morgan Hill 1984 6.2 38.1 Capitola D strike-slip 0.20 0.20 0.20 28.0 30.0 35.0 0.142 0.099 0.045 8.1 4.9 2.1
M-HCH Morgan Hill 1984 6.2 32.5 Hollister City Hall D strike-slip 0.20 0.20 0.20 24.0 19.0 25.0 0.071 0.071 0.118 9.0 7.4 3.9
M-SJB Morgan Hill 1984 6.2 30.3 San Juan Bautista C strike-slip 0.10 0.10 0.10 21.0 21.0 21.0 0.036 0.044 0.052 4.4 4.3 2.7
H06 N. Palm Springs 1986 6.0 39.6 San Jacinto Valley Cemetery D strike-slip 0.20 0.20 0.50 31.0 38.0 40.0 0.063 0.069 0.053 4.4 3.1 1.8
INO N. Palm Springs 1986 6.0 39.6 Indio D strike-slip 0.10 0.10 0.10 35.0 35.0 40.0 0.117 0.064 0.087 12.3 6.6 3.1
A-BIR Whittier Narrows 1987 6.0 56.8 Downey - Birchdale D reverse 0.15 0.28 0.60 25.0 25.0 25.0 0.299 0.243 0.230 37.8 13.7 4.1
A-CTS Whittier Narrows 1987 6.0 31.3 LA - Century City CC South D reverse 0.30 0.20 0.40 25.0 25.0 30.0 0.063 0.051 0.021 5.4 3.5 1.7
A-HAR Whittier Narrows 1987 6.0 34.2 LB - Harbor Admin FF D reverse 0.25 0.60 0.20 25.0 30.0 25.0 0.071 0.058 0.028 7.3 4.1 1.6
A-SSE Whittier Narrows 1987 6.0 35.7 Terminal Island - S. Seaside D reverse 0.28 0.20 0.28 25.0 25.0 25.0 0.041 0.042 0.021 3.1 3.9 1.2
A-STC Whittier Narrows 1987 6.0 39.8 Northridge - Saticoy St. D reverse 0.20 0.23 0.25 25.0 25.0 25.0 0.118 0.161 0.084 5.1 8.4 2.4

Given R is closest to fault rupture
red indicates hypocentral distance
Borrego magnitude not from Silva database
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Table A.5  Near (field) ground motion bin record details 

Record fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s)
ID Event Year M R (km) Station Soil Mechanism x y z x y z x y z x y z

I-ELC Imperial Valley 1940 7.0 8.3 El Centro Array #9 D strike-slip 0.20 0.20 0.20 15.0 15.0 15.0 0.215 0.313 0.205 30.2 29.8 10.7
C08 Parkfield 1966 6.1 5.3 Cholame #8 D strike-slip 0.20 0.20 0.20 20.0 20.0 24.0 0.273 0.246 0.116 11.3 10.2 4.3
H-AEP Imperial Valley 1979 6.5 8.5 Aeropuerto Mexicali D strike-slip 0.20 0.20 0.20 - - - 0.260 0.327 0.142 24.9 42.8 5.6
H-BCR Imperial Valley 1979 6.5 2.5 Bonds Corner D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.775 0.588 0.425 45.9 45.2 12.2
H-CXO Imperial Valley 1979 6.5 10.6 Calexico Fire Station D strike-slip 0.20 0.10 0.10 40.0 40.0 40.0 0.202 0.275 0.187 16.0 21.2 6.7
H-ECC Imperial Valley 1979 6.5 7.6 EC County Center FF D strike-slip 0.10 0.10 0.10 35.0 40.0 50.0 0.235 0.213 0.246 68.8 37.5 18.1
H-E05 Imperial Valley 1979 6.5 1.0 El Centro Array #5 D strike-slip 0.10 0.10 0.10 40.0 40.0 40.0 0.379 0.519 0.537 90.5 46.9 38.5
H-SHP Imperial Valley 1979 6.5 11.1 SAHOP Casa Flores D strike-slip 0.20 0.20 0.20 - - - 0.506 0.287 0.379 30.9 19.6 9.2
H-PVP Coalinga 1983 6.4 8.5 Pleasant Valley P.P. - bldg D reverse-oblique 0.20 0.20 0.20 22.0 20.0 30.0 0.285 0.380 0.206 19.1 32.4 12.3
M-HVR Morgan Hill 1984 6.2 3.4 Halls Valley D strike-slip 0.20 0.20 0.20 30.0 26.0 28.0 0.312 0.156 0.110 39.4 12.5 12.2
A-JAB Whittier Narrows 1987 6.0 9.8 Bell Gardens - Jaboneria D reverse-slip 0.10 0.25 0.40 25.0 25.0 25.0 0.212 0.219 0.095 21.8 18.9 2.7
A-SOR Whittier Narrows 1987 6.0 10.5 West Covina - S. Orange Ave. D reverse-slip 0.23 0.23 0.50 25.0 25.0 25.0 0.179 0.137 0.131 7.0 10.6 3.7
GOF Loma Prieta 1989 6.9 12.7 Gilroy - Historic Bldg. D reverse-oblique 0.20 0.20 0.20 40.0 38.0 52.0 0.241 0.284 0.149 24.0 42.0 11.1
G02 Loma Prieta 1989 6.9 12.7 Gilroy Array #2 D reverse-oblique 0.20 0.20 0.20 31.0 40.0 40.0 0.322 0.367 0.294 39.1 32.9 14.6
JEN Northridge 1994 6.7 6.2 Jensen Filter Plant D reverse-slip 0.20 0.08 0.30 - - - 0.593 0.424 0.400 99.3 106.2 34.1
NWH Northridge 1994 6.7 7.1 Newhall - Fire Station D reverse-slip 0.12 0.12 0.12 23.0 23.0 23.0 0.590 0.583 0.548 97.2 75.5 31.5
RRS Northridge 1994 6.7 7.1 Rinaldi Receiving Station D reverse-slip - - - - - - 0.472 0.838 0.852 73.0 166.1 50.7
SPV Northridge 1994 6.7 8.9 Sepulveda VA D reverse-slip 0.00 0.10 0.10 - - - 0.939 0.753 0.467 76.6 84.8 33.2
SCS Northridge 1994 6.7 6.2 Sylmar - Converter Station D reverse-slip - - - - - - 0.897 0.612 0.586 102.8 117.4 34.6
SYL Northridge 1994 6.7 6.4 Sylmar - Olive View Med FF D reverse-slip 0.12 0.12 0.12 23.0 23.0 23.0 0.843 0.604 0.535 129.6 78.2 19.1

Given R is closest to fault rupture
red indicates hypocentral distance
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Table A.6  PEER aftershock ground motion bin record details 

Record fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s)
ID Event Year M R (km) Station Soil Mechanism x y z x y z x y z x y z

A-BPL Chalfant Valley 1986 6.2 23.0 Bishop - Paradise Lodge A strike-slip 0.10 0.20 0.10 40.0 30.0 50.0 0.161 0.165 0.127 12.4 4.9 5.9
A-LAD Chalfant Valley 1986 6.2 9.2 Bishop - LADWP South St D strike-slip 0.10 0.10 0.10 30.0 40.0 40.0 0.175 0.248 0.140 19.4 19.2 6.7
A-ZAK Chalfant Valley 1986 6.2 18.7 Zack Brothers Ranch D strike-slip 0.10 0.10 0.20 33.0 33.0 50.0 0.400 0.447 0.321 44.5 36.9 12.5
C-LAD Chalfant Valley 1986 5.6 14.0 Bishop - LADWP South St D strike-slip 0.30 0.23 0.40 20.0 25.0 40.0 0.070 0.106 0.057 6.5 4.9 2.2
F-CHP Coalinga 1983 5.2 12.7 46T04 CHP D reverse normal 0.10 0.30 0.30 40.0 40.0 40.0 0.733 0.431 0.332 37.6 18.7 8.4
F-CSU Coalinga 1983 5.2 14.7 Sulphur Baths A reverse normal 0.30 0.30 0.40 25.0 30.0 30.0 0.230 0.152 0.139 10.9 8.5 6.5
A-BCR Imperial Valley 1979 5.2 15.6 Bonds Corner D strike-slip 0.30 0.80 3.00 30.0 30.0 35.0 0.100 0.084 0.052 8.2 3.6 0.9
A-E04 Imperial Valley 1979 5.2 14.4 El Centro Array #4 D strike-slip 0.45 0.50 0.60 35.0 40.0 40.0 0.157 0.262 0.097 35.0 40.0 40.0
A-E05 Imperial Valley 1979 5.2 13.8 El Centro Array #5 D strike-slip 0.60 0.70 0.50 35.0 35.0 50.0 0.239 0.238 0.079 13.3 10.7 0.1
A-E06 Imperial Valley 1979 5.2 13.1 El Centro Array #6 D strike-slip 0.35 0.60 0.40 30.0 30.0 50.0 0.366 0.189 0.080 20.8 12.1 1.7
A-HVP Imperial Valley 1979 5.2 12.2 Holtville Post Office D strike-slip 0.50 0.60 0.80 30.0 30.0 40.0 0.211 0.127 0.044 15.4 7.3 1.0
B-LFA Livermore 1980 5.4 3.6 Fagundas Ranch D strike-slip 0.30 0.30 0.30 20.0 25.0 30.0 0.233 0.258 0.098 11.4 9.6 2.5
B-LMO Livermore 1980 5.4 8.0 Livermore - Morgan Terr Park C strike-slip 0.40 0.25 0.40 30.0 30.0 30.0 0.252 0.198 0.078 9.8 11.7 4.1
J-CVK Mammoth Lakes 1980 5.7 16.3 Convict Creek D strike-slip 0.50 0.50 0.50 35.0 35.0 47.0 0.178 0.160 0.129 12.2 11.3 9.0
J-MLS Mammoth Lakes 1980 5.7 14.2 Mammoth Lakes H.S. D strike-slip 0.10 0.50 0.10 52.0 50.0 60.0 0.390 0.442 0.264 23.9 22.5 9.0
B-CVK Mammoth Lakes 1980 5.7 3.0 Convict Creek D strike-slip 0.20 0.20 0.20 35.0 35.0 40.0 0.432 0.380 0.345 21.0 13.3 6.2
C-FIS Mammoth Lakes 1980 4.9 5.5 Fish & Game D strike-slip 0.11 0.20 0.20 40.0 50.0 50.0 0.098 0.103 0.038 5.2 4.2 1.7
C-XGR Mammoth Lakes 1980 4.9 4.7 3 Green Church D strike-slip 0.30 0.25 0.80 30.0 25.0 30.0 0.170 0.167 0.079 12.1 10.7 2.2
G-CVK Mammoth Lakes 1983 5.4 10.8 Convict Creek D strike-slip 0.20 0.40 0.30 30.0 30.0 40.0 0.101 0.150 0.073 7.1 8.4 5.7
D-DWR Oroville 1975 4.7 6.5 DWR Garage A Normal 3.00 1.50 5.00 40.0 50.0 40.0 0.209 0.141 0.106 1.8 1.1 0.7

Given R is closest to fault rupture
red indicates hypocentral distance
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