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ABSTRACT  

Understanding the nonlinear behavior of shallow building foundations under large-amplitude 

loading is an important aspect of performance-based earthquake engineering (PBEE).  Soil 

yielding beneath foundations can be an effective energy-dissipation mechanism; however, this 

yielding may lead to excessive permanent deformations. The objective of this report is to 

develop and test procedures to account for foundation nonlinearity and uplift in PBEE.  

In order to accurately represent PBEE in current design, a Winkler-type finite element 

mesh generator is written to simulate a shallow strip footing, and nonlinear springs are used to 

capture permanent displacements.  The beam-on-nonlinear-Winkler foundation (BNWF) is 

chosen due to the familiarity of current engineering practice with the simplified Winkler 

approach.  The model parameters, including material models and varying pressure and stiffness 

distributions, are calibrated against a suite of model centrifuge and one-g tests with a broad range 

of design vertical safety factors and by considering both clay and sand soil mediums.  Numerical 

results show that a reasonable comparison between the nonlinear Winkler-based approach and 

the experimental data (moment, settlement, lateral displacement) can be obtained, given 

appropriate selection of soil properties. 

Simulations using the Winkler model are extended to current code simplified design 

methods.  Current methods account for increased displacement of an equivalent SDOF system 

relative to the reduced design strength, but not explicitly for the case of foundation uplift.  

Suggestions are made to account for foundation uplift in simplified design, as well as for 

incorporating Housner’s rocking block model and empirical test data to estimate settlement. 
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1 Introduction and Background 

1.1 BACKGROUND AND MOTIVATION 

The nonlinear load-displacement behavior of soil provides an opportunity for energy to dissipate 

from a structural system at the soil-structure interface.  This has been recognized for some time; 

for example, Housner (1963) assumed that a structure (block) allowed to rock would be an 

effective means of dissipating energy, and presented fundamental equations describing the loss 

of kinetic energy per impact as the system radiates energy.  In addition, using these relations, one 

can determine the peak displacement as a function of the number of impacts.  A scale effect was 

found that defined why taller structures might not topple where a more squat structure would.  

This study is applicable to the case of stiff structures such as shear walls, which are commonly 

used in earthquake-prone regions. 

The consequences of allowing a shallow foundation to rock (or in some cases accurately 

representing an existing structure which may rock), which include permanent settlement and 

rotation, must be reasonably estimated and accounted for.  This balance of benefit and 

consequence is the basis for performance-based earthquake engineering (PBEE), such that the 

desired structure (e.g., building or bridge) has a specific performance for a defined hazard level.  

The benefits of a rocking shallow foundation (energy dissipation) are well documented, though 

there is much uncertainty in modeling these systems.  Therefore, this report investigates the 

applicability of a beam-on-nonlinear-Winkler-foundation (BNWF) model to reasonably predict 

the benefits and consequences of PBEE for shallow foundations. 

Generally, one may anticipate that a more rigorous model representing any real system 

with a detailed representation of all observed physical mechanisms would lead to better results of 

the system response. However, the uncertainty in determining the input parameters of the more 

rigorous model is often contrary to such anticipation. Therefore, the intent of using subgrade type 

models (springs, gap elements and dashpots) has always been to strike a balance between 
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theoretically more rigorous solutions and practicality and ease of use in routine geotechnical 

engineering practice. By now there are numerous publications discussing BNWF approaches 

applied to pile or pile group foundations, correlating parameter selection assumptions in the 

model development (spring constitutive relations, modeling of gap or drag resistance, solution 

algorithms, etc.). For shallow foundations, however, largely due to the limited experimental data, 

there are fewer Winkler-based numerical studies.  This study will answer some important 

parameters specific to the Winkler-based model. 

PBEE measures important to quantifying the performance or suitability of a design 

specific to shallow foundations are the moment absorbed into the soil-structure interface versus 

rotation of the foundation, the settlement of the foundation and (if allowed) the horizontal sliding 

of the foundation.  Any of the degrees of freedom of the foundation (rotation, settlement, or 

horizontal sliding) are generally represented as a function of stiffness.  It follows that these 

degrees of freedom if accurately represented are all possible modes of energy dissipation 

(benefit), but are therefore susceptible to permanent displacements (consequence).   

A nonlinear Winkler-based model can be used to study PBEE implications for shallow 

foundations, as both the benefits and consequences of allowing the structure to rock can be 

reasonably represented.  However, important parameters specific to the shallow foundation 

problem must first be addressed, including representative foundation stiffness and capacity, 

spacing of the Winkler springs and distribution of the spring strengths.  ATC-40 (1996) presents 

an example of this case where a shear wall is connected to a flexible frame, as shown in Figure 

1.1.  Since the shear wall is sensitive to loads and the frame is sensitive to displacement, 

selection of the foundation stiffness is important to determine which structural component is the 

“weakest-link” in the load path.  

 

Fig. 1.1  Comparison between response of a structural system, considering stiff/strong or 

flexible/weak foundation (after ATC-40, 1996) 
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Present codes, such as ATC-40 (1996) and FEMA 356 (2000) recommend using a 

Winkler-based model to represent the stiffness of the soil-structure interface and the nonlinearity 

associated with foundation uplift, in conjunction with a range of soil stiffness and capacity to 

capture the uncertainty of the soil properties and to provide a best estimate of the most sensitive 

structural elements.  With the popularity in design of the Winkler-based model, regularly used to 

model the capacity and stiffness of the soil-structure interface, further research is warranted to 

also provide recommendations for estimating settlement and rotation of the rocking shallow 

foundation. 

1.2 COLLABORATIVE RESEARCH PROJECT 

The work presented in this report was coordinated as part of a multidisciplinary, multi-university 

collaboration between the University of California at Davis (UCD), the University of California 

at Irvine (UCI), and the University of Southern California (USC), through funding by the Pacific 

Earthquake Engineering Research Center (PEER).  Professor Geoff Martin (USC) initiated the 

project in 2000 with a background study defining the significance of nonlinear load-deformation 

behavior and the scope of needed research, and has provided oversight throughout.  Model 

testing of shallow foundations followed at the UC Davis Center for Geotechnical Modeling 

centrifuge with studies by Rosebrook and Kutter (2001a, b, c), and further model tests by Gajan 

et al. (2003a,b) (also described in Phalen 2003) in parallel with the Winkler-based analytical 

modeling presented in this report.  In addition, UC Davis is currently investigating the 

application of a macro-element to represent the nonlinear response of a rocking shallow 

foundation, integrating the concepts of Nova and Montrasio (1991), Cremer et al. (2001) and 

Houlsby and Cassidy (2002).  For more information on this collaborative research project, see 

Kutter et al. (2003).   
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1.3 WINKLER-BASED MODELING 

Perhaps the most popular method used in design practice when modeling soil-foundation-

interaction (SFSI), is the BNWF approach. The BNWF generalization originates from Winkler’s 

(1867) early representation of the physical soil medium, which assumes a system of discrete, 

closely spaced independent linear elastic springs as shown in Figure 1.2 Such an approach 

assumes that a lateral reaction in the soil q per unit length at a given distance along the 

foundation is related only to the foundation deflection δ at that distance. Based on this 

assumption, displacements of the foundation are confined to only the loaded regions of the 

footing. Heyenti (1946) provided an important extension to this by considering the deformation 

of the beam element by accounting for its flexibility. This general approach has become popular 

in the analysis of pile and pile group systems, whereby individual spring elements are simply 

placed horizontally (rather than vertically) and used to represent the lateral resistance of the soil 

and the soil-pile interaction forces. In each case (the shallow or deep foundation), the discretely 

placed springs result in a lack of coupling between individually placed spring elements; however, 

the continuum effect provided by the soil may be implicitly included if the resistance curves are 

back-calculated from monotonic or cyclic loading experiments. 

 

Fig. 1.2  Winkler foundation concepts (after Broms 2003) 
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1.4 PREVIOUS WORK USING WINKLER-BASED MODELS 

Several publications in the literature describe various Winkler-based approaches used for 

modeling the rocking response of shallow foundations resting on either an elastic or inelastic soil 

medium, and which consider the inelastic actions through the effect of uplifting of the 

foundation. Upon uplifting of the foundation, however, the equations of motion describing the 

system response become highly nonlinear.  Therefore, various researchers have also considered 

simple symmetric two-spring models to allow for linearization of the system of equations. Such 

an approach is generally more applicable for rigid structural systems. Descriptions of some of 

these previous works are provided in this section. 

Weissing (1979) used elastic-plastic springs coupled with Coulomb slider elements and 

subdivided the foundation into finite strips. This work considered two-dimensions of loading 

(moment and vertical loading with horizontal movement restrained), modeled after his 

experimental studies. Elastic-plastic springs were considered to only have compression capacity, 

while Coulomb slider elements captured the uplifting of the foundation. Results from this 

numerical study provided good comparison with experimental studies for the range of soil-

foundations considered [also conducted by Weissing (1979)].  Four out of five tests considered 

the strong direction of loading, with vertical factors of safety, FSV, ranging from two to ten.  A 

small plate footing was used, 0.5 m by 0.25 m, and the loading protocol was generally five 

cycles each for three sets 0.001, 0.005, and 0.02 radians. 

Prior to Weissing’s work, Bartlett (1976) completed similar tests on a clay soil, with the 

same size footings and range of factors of safety.  Analytical work was also performed, using a 

Winkler-based model with elastic perfectly-plastic springs allowed to uplift.  Three out of four 

tests considered the weak direction of loading, and FSv ranged from 1.5 to 8.  A small plate 

footing was used, 0.5 m by 0.25 m, and the loading protocol was generally five cycles each for 

three sets 0.005, 0.01, and 0.02 radians.  Good qualitative comparisons were made between the 

analytical and experimental results, with the following key observations: (1) general degradation 

of the soil modulus occurs with increasing loading amplitude, (2) the majority of the permanent 

deformation occurs in the first large cycle of a set of similar amplitude cycles, and (3) increasing 

energy dissipation occurs with increasing rotation.  

Psycharis (1982) considered two types of soil modeling using base springs: (1) the two-

spring model and (2) the distributed Winkler (system) of springs. Nonlinearity at the foundation 
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interface was considered through three mechanisms: (1) viscous dampers, (2) elastic-perfectly- 

plastic nonlinear springs, and (3) an impact mechanism allowing dissipation of energy at impact. 

Comparison of the solutions from theoretical equations developed on the basis of the two spring 

and distributed spring system were provided using response results from the Milliken Library 

building and a ground motion recording from the 1971 San Fernando earthquake. The primary 

conclusion from this numerical study was that a two-spring model was much simpler and 

provided reasonable enough response results for practical design. In a later publication by 

Psycharis (1983), a simplified two-spring system is used for studying the response of a multi-

story building system.  

Two separate but similar studies by Chopra and Yim (1985) and Yim and Chopra (1985) 

evaluated the rocking response of single-degree-of-freedom (SDOF) and multi-degree-of-

freedom (MDOF) systems.  In follow-up work (Yim and Chopra 1985), the model was extended 

to an MDOF system supported on a two-spring dashpot system. The selected system of base 

supports is shown in Figure 1.3.  In each of these studies, the individual spring elements were 

considered linear elastic. Resulting moment-rotation envelope response with the different base 

idealizations are shown in Figure 1.4. A primary conclusion from this work was that foundation 

flexibility and uplift has little affect on higher modes of vibration and for a multi-story building 

structure, these effects can be incorporated only by inclusion in the fundamental mode of 

response. In the SDOF study, the authors develop simplified expressions for determining the 

base shear resistance of flexible structures allowed to uplift.  

 

Fig. 1.3  Idealized foundation system by Chopra and Yim (1985): (a) rigid foundation, (b) 

two-element (spring-dashpot) system, and (c) distributed Winkler (spring-dashpot) 

system 
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Fig. 1.4  Moment-rotation envelope assuming different idealized foundations (after Chopra 

and Yim 1985) 

In an application specific to the system considered in this report, Nakaki and Hart (1987) 

used discretely placed vertical elastic springs with viscous dampers at the base of a shear wall 

structure to illustrate the benefits of uplifting of the foundation supporting shear wall systems 

during earthquake loading. The Winkler springs had zero tension capacity and provided only 

elastic compressive resistance. The inelastic shear wall structure was modeled using a nonlinear 

stiffness-degrading hysteretic model. Figure 1.5 shows the schematic of the base spring 

configuration and the structural model considered. Nonlinear time history analyses were 

performed on this system considering two different ground motions: (1) a long-duration motion 

from the 1940 El Centro earthquake and (2) a short, impulsive type motion measured at Pacoima 

Dam. Important findings from this study included the illustration, through the numerical results, 

that uplifting of the foundation results in a significant reduction in structural ductility demands as 

shown in Figure 1.6.  This is primarily because the rocking system has a longer period than that 

of the fixed-base system. It was also observed that the frequency content of the ground motion 

has a significant effect on the system ductility demand. In select cases, allowing uplift of the 

foundation caused greater ductility demands on the structure. 



 8

 
Fig. 1.5  Winkler-foundation system below a model inelastic shear wall (after Nakaki and 

Hart 1987) 

 
Fig. 1.6  Ductility demand vs. period relation for structures allowing and preventing uplift 

(results from analyses using the El Centro earthquake) (after Nakaki and Hart 

1987) 
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Although these and other studies were able to reasonably capture the dissipation of 

energy through numerical Winkler-based foundation modeling, few previous works have focused 

on capturing the ramifications of this dissipation of energy. The associated accrued settlement 

through the cumulative strain development within the soil near to the foundation is an important 

part of the overall performance-based design of the structure with consideration of the soil-

structure system. 

Fenves (1998) models uplift of pile caps using a composite element of multiple elastic 

perfectly-plastic elements (bilinear) in the computer code DRAIN-3DX.  The compression and 

tension sides of the load-displacement curves are nonsymmetrical to model the reduced capacity 

under uplift, and gapping elements are used that have the ability to capture permanent settlement.  

The vertical factor of safety was found to significantly influence the moment capacity and the 

vertical settlement.  Accordingly, the vertical factor of safety influences the amount of moment-

rotation energy which may be dissipated, as a larger factor of safety will have a moment capacity 

which may not be reached and therefore exhibit more pinched hysteresis.  

Nova and Montrasio (1991), Houlsby and Cassidy (2002) and Cremer et al. (2001) have 

provided theoretical work and numerical simulations to capture shallow-foundation soil-structure 

interaction using a macro-element through empirical, yield surface, hardening law and plastic 

potential models.  The envisioned macro-element would be implemented into a model through a 

single element at the base of a structural system.  Sivapalan at UC Davis is currently working to 

implement a similar, but expanded approach in OpenSees.  For more information see Kutter et al. 

(2003). 

1.4.1 Case Studies 

Several interesting case studies have used Winkler-based modeling to compare with field 

measured structural response, as obtained during earthquake events. For example, Rutenberg et 

al. (1982) presents an analytical study of the response of the Veterans Administration Hospital 

Building subjected to the 1971 San Fernando earthquake. Foundation modeling was incorporated 

using a distributed nonlinear Winkler spring system. The primary conclusion from this analysis 

was that the structure performed well in part due to the unanticipated benefits of the nonlinear 

soil-structure interaction.  
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Similarly, Wallace et al. (1990) present a case study comparing the numerical and 

measured response of two shear wall type buildings, one subjected to the 1984 Morgan Hill 

earthquake and the other to the 1987 Whittier earthquake. These structures were instrumented as 

part of the California Strong Motion Instrumentation Program (CSMIP). Foundation compliance 

was modeled using ATC 3-06 elastic spring concepts. Poor correlations between measured 

response and computed response were observed when soil flexibility was ignored in the 

modeling.  

1.4.2 Summary of Observations and Scope of Report 

From the previous literature review, it appears there are a number of opportunities and 

challenges in providing a suitable base foundation model to capture shallow foundation rocking 

behavior. With respect to the Winkler-based approach, issues of model discretization, material 

model selection, the geometric and loading details, and perhaps the numerical solution scheme, 

to name a few, become very important. The level of rigor applied and the evaluation of the 

overall robustness of the numerical model require proper balance in estimation of the important 

performance measures of the rocking shallow foundation, such as the monotonic and cyclic 

moment capacity, rotational demand at the base, and the cyclic and permanent settlement of the 

foundation. Each of these parameters is evaluated in the context of the Winkler-based numerical 

modeling approach in this report. 

 



2 Experimental Data 

A suite of model tests have been performed that can be used to develop numerical models, study 

parameters, and provide recommendations for Winkler-based approaches.  These experiments 

were collected from the literature review and are briefly described here.  They have been 

classified into either model centrifuge experiments or one-gravity (“one-g”) experiments.  The 

experimental data described in this chapter will be modeled and the results presented in Chapters 

3 and 4. 

2.1 CENTRIFUGE EXPERIMENTS 

Scale centrifuge testing provides a unique opportunity to test scaled, model specimens while 

retaining the proper prototype soil stresses.  Centrifuge scaling laws are discussed in Kutter 

(1997); however, based on similitude between model and prototype stresses for a model tested at 

an N-g level, the prototype length may be obtained by multiplying the model length by N.  

Similarly, prototype mass may be obtained by multiplying model mass by N3.  The 9-meter 

radius geotechnical centrifuge at UC Davis provided this opportunity for this joint research 

project.  Two series of experiments were performed at UC Davis as part of this project, and will 

be discussed in the following section.  Table 2.1 describes the primary variables of these tests.  

Table 2.1  Summary of test series at UC Davis (after Phalen 2003) 
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2.1.1 Rosebrook and Kutter Experiments (KRR Series) 

Centrifuge experiments by Rosebrook and Kutter (2001a, b, c) (also summarized in Rosebrook 

2001) incorporate a range of footing sizes, static vertical factors of safety (from FSv = 1.6-8) and 

both clay and sand soil types. In these experiments, series KRR01 consider sandy soils of 

relative density 60% and 80%, while KRR02 considers sandy (dry) soils of relative density 60%.  

Series KRR03 considers systems resting on stiff saturated clay.  Estimation of the undrained 

shear strength of the model clay ranged from 63–107 kPa for the KRR03 experiments, based on 

review of Torvane measurements, sample compression tests, and bearing experiments (Phalen 

2003).  An average value of 103 kPa was determined by back-calculation from compression 

tests.  The KRR series centrifuge model experiments were all conducted at 20 g’s; each series 

was subjected to pure compression, lateral cyclic (moment) loading and base excitation. 

For the KRR01 series, the friction angle φ′ of the sand ranged from 39–40 degrees.  This 

range was determined by back-calculating from the ultimate load of the vertical compression 

tests using conventional bearing capacity theory.  For the KRR02 series, the friction angle φ′ 

ranged from 41–44 degrees.  All model tests were surface footings, with the exception of 

KRR01, which had embedments of ½B and 1B (where B = width of footing).  The sand medium 

used throughout the test series was Nevada sand.  Strip footings were used with three different 

sizes (length x width) selected: 2.54 m by 0.38m (small), 2.67 m by 0.69 m (medium), and 3.94 

m by 1.08 m (large).  

The general displacement history applied to the KRR01, KRR02 and KRR03 series 

experiments consisted of between three and six cycles of symmetric reversed cyclic loading each 

to a target constant displacement followed by increasing (typically by 50% or 100%) of the 

previous step displacement amplitude and application of another series of reversed cycles of 

constant amplitude.  This loading protocol was termed “slow cyclic” and this terminology will be 

followed in this thesis.  In addition, dynamic base excitation of step waves and tapered cosine 

waves were used with frequencies of 1.25–2 Hz.  This loading protocol was termed “dynamic 

cyclic” and will be adopted in this report. 

Figure 2.1(a) shows the general construction of the KRR models for a slow cyclic test.  

Model structures consisted of double shearwall systems connected by a rigid floor.  
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(a) (b) 
Fig. 2.1  Double-wall test configuration for KRR series; (a) schematic (after Rosebrook and 

Kutter 2001b), (b) photograph (Rosebrook 2001).  (All units in model scale, mm). 

2.1.2 Gajan et al. Experiments (SSG Series) 

Recent centrifuge experiments by Gajan et al. (2003a, b) (also summarized in Phalen 2003), 

performed at UC Davis, also incorporate a range of footing sizes and design vertical factors of 

safety (from FSv = 1.3 to 11.5).  The primary difference in the SSG series were the inclusion of 

more tests with embedment and a lower horizontal push height to allow study of the horizontal 

displacement–shear relationship.  Embedments of one B were considered (where B = footing 

width). Tests were performed on only 80% relative density (dry) sand. 

The general displacement history applied to the SSG02 and SSG03 series experiments 

consists of various sets of three cycle step sinewaves, with increasing amplitudes (typically 

double the previous amplitude).  Dynamic tests included time histories of various amplitudes of a 

tapered cosine wave.  In addition, vertical cyclic loading (rather than monotonic as applied in the 

KRR series) was applied. 

The SSG02 and SSG03 series implement a single shear wall system, as shown in Figure 

2.2.  Stability in the out-of-plane loading direction was provided by Teflon supports to minimize 

friction. 
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Fig. 2.2  Single-wall configuration for SSG series (a) schematic (all units in model scale, 

mm), (b) photograph (after Phalen 2003) 

Both the SSG and KRR series experiments were heavily instrumented with displacement 

potentiometers, accelerometers and force transducers.  Typically, at least 15–20 sensors were 

used for a given experiment.  Figure 2.3 shows a plan view of the centrifuge box for the SSG 

series 2.  A single series, e.g., KRR01, SSG02, etc., will have multiple footing experiments, 

typically named with the series, station letter (A, B, e.g.) and test number. 
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Fig. 2.3  Centrifuge station plan view (after Phalen 2003) 
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2.2 ONE-g EXPERIMENTS 

Test data are also available from experiments performed at one-g, where model and prototype 

are one and the same. 

2.2.1 TRISEE Laboratory Experiments 

One-g experiments were recently completed at the ELSA (European Laboratory for Structural 

Assessment) in Italy. Results from these experiments are reported in Negro et al. (1998) and 

Faccioli et al. (2001). The system considered consisted of a one meter square foundation, placed 

on a saturated Ticino sand base, subjected to static vertical, slow cyclic, and dynamic cyclic 

events.  Saturation was achieved by flushing water from the base of a large concrete caisson in 

which the foundation and soil were placed for testing.  Two relative densities were considered in 

these experiments, Dr = 85% (high density, denoted “HD”) and 45% (low density, denoted 

“LD”).  A constant vertical load is sustained by an air cushion system throughout the test, at 300 

kN for the HD test and 100 kN for the LD test.  The experimental setup is shown in Figure 2.4. 

The friction angle is recommended as the peak shear resistance of Ticino sand (after 

Bolton 1986), corresponding to values of 42 and 38 degrees, respectively, for the HD and LD 

cases.  Using the surcharge loading around the footing, the calculated friction angles and 

conventional bearing capacity theory (with bearing capacity factors after De Beer (1970), 

Hansen (1970), and Hanna and Meyerhoff (1981)), the approximate design vertical factors of 

safety are found to be 12.5 and 20.7 for the HD and LD cases, respectively.  Rotation was 

applied to the foundation through a hydraulic actuator placed 0.9 m above the foundation.  The 

loading protocol consisted of single reversed (symmetric) cycles of increasing amplitude.   
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Fig. 2.4  ELSA test series experimental setup (after Negro et al. 1998) 

2.2.2 New Zealand Experiments 

Model footing experiments were conducted at the University of New Zealand [described in 

Taylor et al. (1981), Weissing (1979), and Bartlett (1976)]. The focus of these experiments was 

to investigate the nonlinearity developed in the soil and the uplift at the interface of the soil and 

footing upon large-amplitude moment loading.  Studies by Weissing (1979) considered the 

rocking response of foundations resting on dry sand, while studies by Bartlett (1976) considered 

foundations resting on clay. In these experiments, horizontal movement of the footing was 

restrained through the use of a steel tie-rod system. Each experiment consisted of five loading 

cycles to each of three increasing amplitude levels. Only the first, second, and fifth loading 

cycles from these experiments were reported; therefore only these could be simulated due to 

limited available data.  The test configuration for the tests on sand by Weissing (1979) are shown 

in Figure 2.5.  The setup for experiments by Bartlett (1976) were similar. 

For Weissing’s experiments, four out of five tests considered the strong direction of 

loading, with vertical factors of safety, FSV, ranging from two to ten.  A small plate footing was 

used, 0.5 m by 0.25 m, resting on dry clean quartz sand.  The friction angle was estimated from 

triaxial test data, shear box tests, and plate bearing tests to be 43 degrees.  Bartlett’s experiments 
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consisted of three out of four tests conducted in the weak direction of loading.  A similar sized 

footing was used. 

 
Fig. 2.5  Test setup for New Zealand experiments (after Weissing 1979) 

2.3 ANALYSIS OF EXPERIMENTAL DATA 

Prior to analytical modeling of a rocking system, some simple analyses of the moment-rotation 

and settlement-rotation data collected from the experimental literature were performed.  The 

objective was to study the rocking foundation as an energy-dissipating mechanism.  Although the 

moment-rotation response of the rocking system is capable of dissipating much energy, the 

consequence of permanent structural deformations should be observed. 

2.3.1 Energy Dissipation and Equivalent Viscous Damping 

Soil-foundation interaction is highly nonlinear. The moment-rotation hysteresis curves from the 

previously described experimental results display excellent ductility and good potential to 

dissipate energy that may otherwise damage the superstructure. A side effect of this nonlinearity 

is the permanent settlement of the footing.  As expected, the amount of settlement depends on the 



 18

magnitude of the axial load and the cyclic rotation. Data available from experiments that isolate 

the nonlinear contributions of the foundation of a soil-structure system provide the opportunity to 

determine the energy that has been dissipated and the associate consequences of such energy 

dissipation. Such information will be valuable to the assessment of systems using nonlinear static 

procedures (NSPs), since many of these methods have their basis in the substitute structure 

approach.  

The substitute structure approach (Chopra and Goel 1999), diagramed in Figure 2.6, 

relies on idealizing the behavior of an inelastic system with that of an equivalent linear system 

using secant stiffness and equivalent viscous damping properties representative of the global 

behavior of the structure at an anticipated peak (or design) displacement level.  Early works by 

Hudson (1965) and Jennings (1968) have provided the general approach. Subsequent 

modifications by Gulkan and Sozen (1974) describe the method applied to reinforced concrete 

frame structures. Kowalsky et al. (1995) describe a displacement-based design procedure for 

reinforced concrete bridge columns, which is based on the substitute structure method. Recent 

code procedures, for example ACT-40 (1996), adopt the approach in combination with the 

capacity spectrum approach (Freeman 1978) to provide an alternative design procedure for 

retrofit of reinforced concrete buildings. 

Fig. 2.6  Equivalent linear system approach: (a) inelastic system bilinear response and (b) 

determination of equivalent viscous damping due to hysteretic energy dissipation 

(after Chopra and Goel 1999) 
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To use the method in the context of the systems studied herein, the effective damping 

ratio versus demand relation needs to be determined for the rocking foundation system. The 

effective damping ratio ξeff is equivalent to the sum of the hysteretic damping of the system 

represented as an equivalent viscous damping term ξeq and a viscous damping component ξv, i.e., 

eqveff ξξξ +=  (2.1)
The equivalent viscous damping may be determined by equating the energy dissipated in 

a vibrational cycle (of the inelastic system) with that of the equivalent linear system (Chopra 

1995): 

s

D
eq E

E⋅=
π

ξ
4
1  (2.2)

 
where ED = the hysteretic energy dissipated by the shallow foundation system during one cycle 

of loading and Es = the elastic strain energy associated with that cycle of motion, at a peak 

displacement. The hysteretic energy ED for this system is a combination of the cyclic lateral and 

vertical translation and rocking energy, i.e., 

 ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ⋅+⋅+⋅=++= tdstVtdutHtdtMEEEE s
D

u
DDD θθ  (2.3)

where ED
θ = energy associated with moment-rotational rocking (defined as the integral of 

moment M with respect to rotation θ), ED
u = energy associated with horizontal translation 

(defined as the integral of horizontal load H with respect to horizontal displacement u), and ED
s = 

energy associated with vertical vibration (defined as the integral of vertical load V with respect to 

vertical displacement s). For this exercise, it is assumed that the rocking contribution to system 

energy dissipation dominates the calculation of ED. The elastic strain energy (from Fig. 2.7) may 

be determined as: 

2
maxmax θ⋅= MES  (2.4)

 
where Mmax = the average (of positive and negative) maximum moment of the system and θmax = 

the associated (average) maximum rotation. ED and ES may be determined, for example by using 

the M-θ data shown in Figure 2.7, averaged over three cycles of uniform loading to the same 

target displacement level. 
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Fig. 2.7  Example of estimation of equivalent damping using experimental M-θ data 

For the static cyclic experimental test data sets, Figure 2.8 shows the equivalent viscous 

damping versus distortion (average settlement normalized by the foundation length) per cycle, 

where (a) shows data from sand experiments and (b) shows data from clay experiments. These 

data are shown for all experiments available with reversed slow-cyclic loading (KRR series data, 

SSG series, TRISEE data, and Bartlett and Weissing data). Suggested distortion levels for 

various types of common structural systems are also shown (by Duncan and Buchignon 1987). 

The results indicate that high levels of equivalent viscous damping are obtained within tolerable 

distortion levels (maximum values indicate approximately up to ξeq ~ 30% for tolerable 

distortions for load-bearing walls). For a lower factor of safety it appears that a larger amount of 

damping is mobilized.  This makes intuitive sense, as a lower factor of safety will allow 

additional densification and softening, and higher energy dissipation. 
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Fig. 2.8  Equivalent viscous damping vs. maximum footing distortion (settlement 

normalized by footing length) per cycle for slow cyclic tests: (a) sand data and (b) 

clay data 

For the dynamic test data, shown in Figure 2.9, very large values of equivalent viscous 

damping are obtained.  There is a large scatter in the data, particularly at low distortion levels 

(Note that the y-axis scale in Fig. 2.9 is different than in Fig. 2.8).  In the case of sand, it appears 

that the trend is fairly similar for low and higher factors of safety.  For tests on clay, initially 

large values of damping are found for relatively small values of distortion, with little data to 

interpret a trend.  However, large equivalent viscous damping levels are attained within tolerable 

distortion levels.  This plot includes only KRR series, SSG series, and ELSA series data, as 

Weissing and Bartlett did not perform dynamic tests.  For the dynamic data, 65% of the data 

points shown in Figure 2.9(a) “Sand” below a distortion per cycle (s/L/cycle) of 0.003 have ξeq 
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between 10 – 30%; in Figure 2.9(b) “Clay,” this value is 74%.  For the static data, 30% of the 

data points shown in Figure 2.8(a) “Sand” below a distortion per cycle (s/L/cycle) of 0.003 have 

ξeq between 10 – 30%; in Figure 2.8(b) “Clay,” this value is 19%. 
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Fig. 2.9  Equivalent viscous damping vs. maximum footing distortion (settlement 

normalized by footing length) per cycle for dynamic cyclic tests: (a) sand data 

and (b) clay data 
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The relation between rotation and equivalent viscous damping is also investigated, since 

this is an equally important damage measure in terms of footing performance.  For static test 

data, Figure 2.10 plots equivalent viscous damping versus the half amplitude of rotation (the 

maximum value of rotation) per cycle, where (a) shows data from sand experiments and (b) data 

from clay experiments. These data are shown for all experiments available with reversed slow-

cyclic loading (KRR series data, SSG series, ELSA data, and Bartlett and Weissing data).  High 

levels of equivalent viscous damping are obtained for even the smallest amounts of rotation, 

starting at approximately ξeq ~ 10% and mobilizing up to 20% – 30% for large rotations.  The 

results show that for the lower FSV (< 3.0) a larger amount of damping is mobilized, and in 

general a greater amount for larger rotations.  This follows the conclusion from the investigation 

of ξeq versus distortion.   
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Figure 2.10  Equivalent viscous damping vs. rotation for slow cyclic tests: (a) sand data and 

(b) clay data 
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For dynamic test data, Figure 2.11 plots equivalent viscous damping versus the half 

amplitude of rotation, where (a) shows data from sand experiments and (b) shows data from clay 

experiments.  Similar to the ξeq versus distortion plots for dynamic data, very large values of 

equivalent viscous damping are obtained, in addition to a large scatter in the data at low rotation 

levels.  Additionally, for both sand and clay, the trend is fairly similar for low and higher factors 

of safety.  This plot includes only KRR series, SSG series and ELSA series data, as Weissing and 

Bartlett did not perform dynamic tests. 
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Figure 2.11  Equivalent viscous damping vs. rotation for dynamic cyclic tests:  

(a) sand data and (b) clay data 



3 Beam-on-Nonlinear-Winkler-Foundation 
(BNWF) Modeling 

A BNWF mesh generator was developed to model the various experimental systems described in 

Chapter 2 and to study the sensitivity of parameter selection.  Prior to discussing this, it is helpful 

to establish common notation for use throughout modeling and presentation of results. 

3.1 NOMENCLATURE 

The notation for forces and displacements throughout the report are clearly defined.  The 

following notation will be used as shown in Figure 3.1. 

 
Vertical Displacement (settlement): s 

Lateral Displacement: u 

Rotation: θ 

Vertical Load: V 

Horizontal Load: H  

Moment M 
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s

u
θ

M

V

H

 

Fig. 3.1  Force and displacement notation for a displaced footing (after Phalen 2003) 

Normalized parameters are also defined, such that one could compare any displacement 

or force measurement against a similar system with different aspect ratios and/or capacities: 

Normalized Vertical Displacement (settlement):  UV = s / L 
Normalized Horizontal Displacement: UH = u / L 
Normalized Rotation: UM = θ 
Normalized Vertical Load: FV = V / VMAX 
Normalized Horizontal Load: FH = H / VMAX 
Normalized Moment: FM = M / VMAXL 
Vertical Factor of Safety: FSV = VMAX / V 
where L = footing length and VMAX = ultimate bearing capacity 

3.2 OPENSEES IMPLEMENTATION 

The application of a Winkler-model for studying the nonlinear cyclic response of shallow 

foundations has been implemented into the OpenSees1 platform. OpenSees is an open source 

numerical modeling platform being developed by the Pacific Earthquake Engineering Research 

(PEER) Center. There are a number of technical documents describing the OpenSees framework, 

commands, and examples; e.g., Mazzoni et al. (2003).  OpenSees has been developed in C++ with 

a scripting language wrapper, Tk/Tcl, for model input (for more information, see Welch 2000).  

There are a variety of elements and material libraries available as well as a number of solution 

_________________ 

1 (Open System for Earthquake Engineering Simulation http://opensees.berkeley.edu/) 
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algorithms implemented for programmers, developers and users. The approach adopted herein is 

to study the applicability of using the materials and element models readily available in 

OpenSees. First, suitable material models were considered and subsequently various 

representative numerical models are constructed of the various physical models described in 

Chapter 2. A best approximation of the measured response is attempted.  Both static and 

dynamic analyses were performed using OpenSees and the parameters discussed herein. 

Static analyses were run with a linear algorithm of ten load steps per load increment 

using a load control integrator; a single point (sp) constraint to force the correct (target) 

displacement of the shear wall was used. The solution algorithm used a reverse Cuthill McKee 

(RCM) numberer, banded symmetric positive definite system of equations (BandGeneral), plain 

constraints, and a normal displacement increment test (test NormDispIncr) with a convergence 

tolerance of 1.0E–12 over a maximum of 100 iterations. 

Transient analyses were run with a Newton algorithm, reverse Cuthill McKee (RCM) 

numberer, a general sparse system (UmfPack) of equations, a Newmark integrator with 

parameters of γ = 0.5 and β = 0.25, and a normal displacement increment test (test 

NormDispIncr) with a convergence tolerance of 1.0E–12 over a maximum of 100 interactions.  

A uniform excitation pattern was used to input the accelerations to the structure. 

3.3 ONE-DIMENSIONAL MATERIAL RESPONSE AND CONSTITUTIVE LAWS 

A variety of uniaxial material models currently available in OpenSees were evaluated for their 

applicability to model the shallow foundation-soil-structure interaction, including the effects of 

uplift. Elastic-perfectly-plastic materials combined with gap elements, general hysteretic 

materials and a QzSimple1 material developed by Boulanger et al. (1999) were studied. Three 

observed physical aspects are particularly important to capturing the overall response of the 

rocking shallow foundation and must be represented in the Winkler mesh: (1) the footing may 

uplift on the opposing loading side; (2) soil beneath the footing may yield; and (3) upon 

continued reversal of loading, settlement may accrue below the foundation. These properties 

should be represented in the individual material element response. 
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3.3.1 ElasticPPGap Material 

The elastic-perfectly-plastic (EPP) material linearly follows an elastic tangent defined by 

Young’s Modulus E. At a specified yield strain the material enters the plastic state, where further 

deformations are sustained without an increase in stress. The unloading stiffness is identical to 

the original loading stiffness. Different yield strains may be assumed in tension and compression. 

However, the material does not retain permanent deformations, thus may not capture accrued 

settlements below a rocking foundation. The elastic-perfectly-plastic-gap material follows the 

same behavior as the elastic-perfectly-plastic material, with the exception of a defined gap 

placed in parallel with the EPP response. The gap offsets the starting point of the material 

behavior beginning with a certain amount of material strain; thus this would be suitable for 

capturing uplifting on the load reversal side of the foundation. However, this material also does 

not have strain growth features, which is important for accrued settlement. 

3.3.2 General Hysteretic Material 

A general hysteretic material is available, whereby the user specifies two to three points on the 

compression and tension backbones in order to define bilinear or trilinear compression and 

tension backbone curves, respectively. Options are available to define pinching of the hysteresis 

in load or displacement directions, damage due to ductility, damage due to energy dissipation, 

and degraded unloading stiffness based on ductility. The generalized form of this material is 

shown in Figure 3.2. Combining multiple materials in parallel as shown in Figure 3.3 is useful 

for capturing any generalized backbone response using multiple bilinear materials. The algorithm 

presented in this figure was implemented in FLAC by Martin et al. (1997) to model bridge 

abutment soil-structure interaction, and could be reproduced in most finite element programs.  

The generality of the hysteretic material allows one to capture gap growth features as well.  
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Fig. 3.2  Hysteretic material backbone curve (after Mazzoni et al. 2003) 

 
Fig. 3.3  Creation of backbone response by adding materials in parallel (after Martin et al. 

1997) 
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3.3.3 QzSimple1 Material 

The QzSimple1 material was recently implemented into OpenSees based on the formulation 

described in Boulanger et al. (1999). Although this material was intended to model the behavior 

of a pile tip under cyclic loading, the mechanisms of local response below the shallow 

foundation are quite similar.  

Of the materials reviewed, the Q-z material is most applicable to the shallow foundation 

problem because it has a non-symmetric backbone defined by an ultimate load on the 

compression side and a reduced strength in tension as the soil separates from the footing (in 

tension).  Uplift (geometric nonlinearities) are provided by adding an additional gapping 

component in series with the elastic and plastic components. 

In addition, under cyclic loading, the material does not attain full stiffness until the strain 

reaches the previous cycle’s unloading strain. In this sense, the material has a gap that grows 

with each cycle, such that settlement is cumulative. The element utilizes an elastic, plastic, and 

gap component in series as generally shown in Figure 3.4. Radiation damping may be modeled 

through a dashpot added in parallel to the elastic component of the material.  Wang et al. (1998) 

showed that providing rate-dependent damping in parallel with plastic (hysteretic) elements 

overestimates damping forces; therefore placing dashpots in parallel with elastic components is 

preferred.  The behavior modeled either follows Reese and O’Neill’s (1987) relation for drilled 

shafts in clay or Vijayvergiya’s (1977) relation for piles in sand. The material is used with one-

dimensional zero length elements. The inputs to this material are the type of material, clay (1) or 

sand (2), the ultimate load capacity qult, the displacement, z50, at which 50% of the ultimate load 

is mobilized, the amount of suction (tension capacity) suction, and viscous damping, c.  
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Fig. 3.4  Example series of Winkler springs below a rigid foundation represented by one-

dimensional finite elements 

The QzSimple1 material, however, may not be readily found in other platforms, although 

one may easily reproduce the characteristic curve by placing several general hysteretic materials 

in parallel. The advantage of the hysteretic material is its ease of implementation within readily 

available analysis platforms (e.g., DRAIN-3DX (2002), RAM Perform-3D (2003)). The material 

behavior of both the parallel hysteretic material and the QzSimple1 material applied to a single 

zero-length one-dimensional element and subjected to ramped sinusoidal displacement are 

shown in Figure 3.5 with a tension capacity of 10% qult. 
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Fig. 3.5  Comparison of QzSimple1 and hysteretic materials placed in parallel 
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Perhaps the most visible difference between the two materials is the unloading from the 

compression region, i.e., approaching zero load (into tension zone).  At this interface, the parallel 

hysteretic material unloads only to approximately zero strength, while the QzSimple1 material 

unloads until mobilization of nominal tension capacity. The former would imply a material with 

zero resistance through a range of strain accumulation. The later is more representative of the 

backside suctioning that may occur upon compression unloading due to the any adhesion of the 

soil to the foundation element.  Given their similar nature, the QzSimple1 material is used 

throughout these analyses. 

In OpenSees, two other materials are available for modeling the soil-foundation interface 

using one-D elements; the P-y and T-z materials.  Originally intended to simulate the horizontal 

(P-y) and skin resistance (T-z) components against a pile, these materials are useful to the study 

of broader soil-structure interaction problems because they have been evaluated using a range of 

pile-test data and they are formed using basic mechanisms anticipated at the interface.  All three 

materials are similar in nature, in that they consist of an elastic and plastic material in series.  The 

elastic material captures the “far-field” behavior, while the plastic component captures the “near-

field” permanent displacements, as illustrated in Figure 3.4. 

The OpenSees implementation of the P-y, T-z and Q-z materials are described in 

Boulanger (2000b) and are based on earlier work by Boulanger et al. (1999).  For the Q-z 

material, the plastic component is initially very rigid in the range of ultrultr qCqqC ⋅<<⋅− , 

where rC is the ratio of ultqq / when plastic yielding first occurs in virgin loading.  After this 

initially rigid range, which grows with plastic yielding, the plastic response is described by:   

 

( )
n

p
o

poultult zzcz
cz

qqqq
⎥
⎥
⎦

⎤

⎢
⎢
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⎡

−+
⋅−−=

50

50  (3.5)

 
where 
q  = load on the plastic component 

ultq  = ultimate resistance of the q-z material in compression 

oq  = q  at the start of the current plastic loading cycle  

50z  = the displacement at which 50% of ultq  is mobilized during monotonic 
loading 

p
oz  = pz at the start of the current loading cycle 

c , n  = constants that control the shape of the pzq − curve 
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The plastic region of the uplift, or tension, side of the response is controlled by:  
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where 

dq  = drag force on the closure component 

ultq  = ultimate resistance of the q-z material in compression 
d
oq  = dq at the start of the current loading cycle  

50z  = the displacement at which 50% of ultq  is mobilized during monotonic 
loading 

g
oz  = gz at the start of the current loading cycle 

dC  = Ratio of the maximum drag (suction) force to the ultimate resistance of 
the q-z material 

 
The constants c, n and rC  are recommended in Boulanger (2000b).  For a clay material, c 

= 0.35, n = 1.2, and rC = 0.2 in order to follow Reese and O’Neill’s (1987) recommended 

backbone for drilled shafts in clay.  For a sand material, c = 12.3, n = 5.5, and rC = 0.3 in order 

to follow Vijayvergiya’s (1977) recommended backbone for piles in sand.  In the current 

OpenSees implementation of the Q-z material (named “QzSimple1”), the constants c, n, and rC  

are pre-programmed such that the user only specifies the material type, either sand or clay and 

follows the backbone curve prescribed.  The user also specifies the values of ultq , 50z , and dC .  

The recommended value of 50z for piles in sand is given as critz125.0  by Vijayvergiya (1977), 

where zcrit = displacement at which ultq  is fully mobilized.   

The initially rigid portion of the QzSimple1 material can be set to any stiffness Kel by 

inputting the z50 value as: 

el

ult

K
q

z
39.1

50 =  for sand, and 
el

ult

K
q

z
525.0

50 =  for clay (3.7)

 
where the coefficients 1.39 and 0.525 were found from an investigation of the OpenSees source 

code.  These values are based on an approximation of the recommended backbones described.  
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3.3.4 PySimple1 Material 

Similar to the QzSimple1 material, the PzSimple1 material was originally intended to model 

horizontal soil resistance against piles.  This material may also be useful for embedded shallow 

foundations, for example, to capture horizontal passive earth pressure and stiffness that develops 

as the foundation slides, densifies, and possibly creates gaps.  Under cyclic loading, the material 

does not reload until the strain reaches the previous cycle’s unloading strain, thus a gap develops 

that grows with each cycle. 

For the P-y material the plastic component is initially very rigid in the range of 

ultrultr pCqpC <<− , where rC is the ratio of p/pult when plastic yielding first occurs in virgin 

loading.  After this initially rigid range, which grows with plastic yielding, the plastic response is 

described by (Boulanger et al. 1999):   
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where 
p  = load on the plastic component 

ultp  = ultimate resistance of the q-z material in compression 

op  = p  at the start of the current plastic loading cycle  

50y  = the displacement at which 50% of ultp  is mobilized during monotonic 
loading 

p
oy  = py at the start of the current loading cycle 

c , n  = constants that control the shape of the pyp − curve 
 

The closure spring, gyp −  is described by:  
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where 
cp  = drag force on the closure component 

−+ ,
oy  = memory terms for the positive and negative side of the gaps  

 
 
The nonlinear drag spring is described by:  
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The constants c, n, and rC  are recommended in Boulanger (2000a) as c = 10, n = 5, and 

rC = 0.35 in order to follow Matlock’s (1970) recommended backbone for soft clay and c = 0.5, 

n = 2, and rC = 0.2 to approximate API’s (1993) backbone for drained sand.  P-y springs are 

generally placed in multiple locations along the length of a pile to account for varying soil 

properties with depth.  However, for the shallow foundation modeling discussed here, it is 

assumed that the soil properties are not changing from the top of the footing to the base; thus all 

properties are lumped at a single spring.  Additionally, it is assumed that the shape of the footing 

(rectangular) does not affect the load-displacement response of the soil, since the elevation cross 

sections of a footing of base B and a pile of diameter B, both of the same embedment, would 

have the same effective area against the soil.  However, it is arguable that the zone of disturbance 

may be different between a square and circular cross section.  In the current OpenSees 

implementation of the P-y material (named “PySimple1”), the constants c, n, and rC  are pre-

programmed such that the user only specifies the material type, either sand or clay.  The user 

also specifies the values of pult, y50, and Cd.  The response of the PySimple1 material is shown in 

Figure 3.6. 
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Fig. 3.6  PySimple1 material normalized load-displacement behavior 
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The initially rigid portion of the PySimple1 material can be set to any stiffness Kel by 

inputting the y50 value as: 

el

ult

K
p

y
542.0

50 =  for sand, and 
el

ult

K
p

y
0.8

50 =  for clay (3.11)

 
where the coefficients 0.542 and 8.0 were found from an investigation of the OpenSees source 

code.  These values are based on an approximation of the recommended backbones described. 

3.3.5 TzSimple1 Material 

The TzSimple1 material was intended to capture the frictional component of load and 

displacement as axial displacement develops along the pile length.  Although this material was 

implemented to model the behavior of a pile moving vertically, the mechanisms of a surface 

sliding over a frictional material are quite similar. The element uses an elastic and plastic 

component in series. 

The behavior and equations controlling the T-z material are described in Boulanger 

(2000c), and generally follow the P-y material discussed by Boulanger et al. (1999).  For the T-z 

material the plastic component is described by:   
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where 

t = load on the plastic component 
tult = ultimate resistance of the t-z material in the current loading direction 

p
ot  = pt  at the start of the current plastic loading cycle  

50z  = the displacement at which 50% of ultq  is mobilized during monotonic 
loading 

p
oz  = pz at the start of the current loading cycle 

c , n  = constants that control the shape of the t-zp curve 
 
The elastic component is defined by: 

 eult
e

e z
z
t

Ct ⋅=
50

 (3.13)

where 
Ce = Constant that defines the normalized elastic stiffness 
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The constants c, n, and Ce are recommended in Boulanger (2000c), c = 0.5, n = 1.5, and 

Ce = 0.708 for drilled shafts following Reese and O’Neil’s (1987) backbone, and to follow 

Mosher’s (1984) recommendation for axially loaded piles in sand, c = 0.6, n = 0.85 and Ce = 

2.05.  In the current OpenSees implementation of the T-z material (named “TzSimple1”), the 

constants c, n, and Ce are pre-programmed such that the user specifies only the material type, 

either sand or clay.  The user also specifies the values of tult, and z50.  The response of the 

TzSimple1 material is shown in Figure 3.7. 
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Fig. 3.7  TzSimple1 material normalized load-displacement behavior 

The elastic stiffness of the TzSimple1 material can be set to any stiffness Kel by inputting 

the z50 value as: 

el

ult
e K

t
Cz =50  (3.14)

3.4 ELASTIC STIFFNESS COMPARISON 

Gazetas (1991) elastic stiffness recommendations are widely adopted in several recent design 

documents [e.g., ATC-40 (1996) and FEMA 356 (2000)].  These equations will be used for 

preliminary stiffness estimation and compared with experimentally observed values of vertical, 

sliding, and rotational stiffness. 
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For a footing with the dimensions as shown in Figure 3.8, Gazetas (1991) presents the 

global stiffness (or uncoupled total embedded stiffness) of a foundation iK  as a product of the 

stiffness of a footing resting on the surface iK ′  and an embedment factor ie : 

iii eKK ′=  (3.15)
where 

Ki = Uncoupled Total Surface Stiffness for a rigid plate on a semi-infinite 
homogeneous elastic half-space 

ei = Stiffness Embedment Factor for a rigid plate on a semi-infinite homogeneous 
elastic half-space 

 
 
 
 

 
Fig. 3.8  Foundation dimensions for use with Gazetas' elastic stiffness equations, as 

presented in ATC-40 (1996). Table 3.1 presents the generalized stiffness equations 

for horizontal and vertical translation and rocking about both planar axes. 
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Table 3.1  Gazetas’ equations for shallow footing stiffness [after Gazetas (1991), as 

summarized in ATC-40 (1996)] 
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For the comparison with experimental shallow foundation systems, Gazetas stiffnesses 

will be calculated using relations from the EPRI manual (1990) of shear modulus and Poisson’s 

ratio according to soil type.  The specifics of these estimates are described in Chapter 3.8.1. 

3.5 SELECTION OF WINKLER SPRING PROPERTIES 

In the selection of properties for the BNWF mesh generator, there exist two types of parameters 

that could benefit from investigation; inherent properties such as strength and stiffness and 

modeling parameters.  Inherent soil properties are well investigated but have a great amount of 

uncertainty associated with them.  Soil properties generally vary quite a bit, so an attempt is 

made to justify a range of values.  Model parameters are those which are specific to the type of 

model (e.g., Winkler, continuum).  In this study these parameters include the type of bearing 

pressure distribution to use and an end region length to better capture densification and rounding 

of the soil medium at the edge of the foundation.   

3.5.1 Vertical Stiffness 

Stiffness of the Winkler springs is an important characteristic of the material model that must be 

specified to a reasonable degree of accuracy. In this case, both the vertical and rotational 

stiffness of the shallow foundation system are investigated using experimental data and equations 

available in the literature.  In the Winkler framework, summing the individual spring 

contributions provides the vertical stiffness of the system, whereas contributions to rotational 

stiffness are accounted for by the springs along the length of the foundation and through varying 

the vertical spring element properties.   

The appropriate stiffness to use in modeling any foundation system is widely open to 

debate, based on the typically wide range found for soil properties, as well as the wide variety of 

simulation methods and their assumptions.  Based on the uncertainty of soil properties alone, 

ATC-40 states that unless detailed geotechnical data are available, a factor of two should be 

applied to the component capacity and stiffness in order to capture the effects of soil-structure 

interaction on the superstructure.  If the soil is stronger than the design assumption, larger loads 



 42

may potentially be transmitted to the superstructure, while if the soil is weaker than the design 

assumption, larger displacements may occur.  The safest design would anticipate both cases. 

Vertical push-test data of model shallow-foundation footings are available for the 

experimental data of Rosebrook and Kutter (2001a, b, c), Negro et al. (1998), and Gajan et al. 

(2003a, b).  From these tests, linear stiffnesses can be determined at different loading locations. 

Allotey and Naggar (2003) recently compared theoretical moment rotation curves with 

experimental results from the TRISEE test series.  Initial, unloading, and secant stiffnesses were 

obtained from the vertical push test data, and moment-rotation envelopes were constructed.  A 

good comparison with the experimental envelope was found when the unloading stiffness was 

used in the analytical model.  A similar approach was attempted here, where an initial stiffness 

Kint was fit to the straight line portion of the curve, and an unloading stiffness Kunl was extracted 

if unloading was performed.  For vertical push test KRR02 S12, the variation of unloading 

stiffness with settlement was investigated.  Figure 3.9(a) shows the unloading stiffness at various 

points along the compression vertical push test, and Figure 3.9(b) shows the variation of the 

unloading stiffness from the mean of the sample unloading stiffnesses as a function of the values 

available.  Of the data shown in Figure 3.9(b), 81% fall within + 1σ of the mean of the data 

analyzed.  
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Fig. 3.9  (a) Unloading stiffness shown graphically on a vertical load vs. settlement plot and 

(b) variation of unloading stiffness with settlement (KRR02-S12, Rosebrook and 

Kutter 2001b) 

An example M-θ envelope using the initial and unloading stiffness is shown in Figure 

3.10.  The vertical unloading stiffness appears to provide a reasonable estimate of the initial 

rotational stiffness. 
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Fig. 3.10  Normalized backbones for comparison of unloading to initial stiffness (test K2S21 

AE) 

By setting the initially elastic portion of the Qzsimple1 model (as defined in Chapter 

3.3.3) to the unloading stiffness, the comparison between vertical push tests and the QzSimple1 

behavior generally agrees well, as shown in Figures 3.11–3.12. In some cases the unloading 

stiffness is much larger than the initial stiffness due to the densification that may occur upon 

cycling, and the Q-z relation based on Kunl input does not give reasonable comparison.  This is 

true particularly for softer specimens, such as KRR02-S54 (medium dense sand, medium size 

footing), and the specimen is loaded with repeated vertical cycles at early settlement levels. 
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Fig. 3.11  Vertical push test data from centrifuge testing on sand 
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Fig. 3.12  Vertical push test data on clay (KRR03) and sand (TRISEE) testing  

3.5.2 Horizontal Load Capacity and Stiffness 

Horizontal strength and stiffness is provided to the shallow foundation through sliding at the base 

(and sides if the foundation is embedded) and passive earth pressure at the front of the 

foundation (if embedded). 
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3.5.2.1 Horizontal Frictional Sliding 

Similar to the manner in which the vertical load-displacement relationship was evaluated from 

vertical load capacity tests, the horizontal load-displacement sliding capacity relationship is 

evaluated using tests where horizontal loading was isolated (or a primary contributor) from 

moment loading.  For these analyses, it is reasonable to assume the largest contribution of 

horizontal resistance is transmitted through interface (base) friction, (since footings are either 

lightly embedded or resting on the surface).  Therefore, springs are placed horizontally in the 

BNWF model, parallel to the level ground surface, to account for sliding resistance.  Three test 

series on sand provide such data, including two tests in a series conducted by Gadre and Dobry 

(1998) at the 100-g RPI geotechnical centrifuge, and one test each for two test series SSG02 and 

SSG03 on the UC Davis Geotechnical centrifuge by Gajan et al. (2003 a,b).  Tests by Gadre and 

Dobry are performed on a rigid square foundation of length 1.14 m, on a dry sand of relative 

density 75%.  Figure 3.13(a) shows the prototype structure test setup and (b) the configuration of 

two tests B and BL, where sliding is isolated by separation from the confining soil walls.  Test 

BL has an additional weight added to the structure.  Figures 3.13(c)–(d) show the horizontal load 

versus sliding displacement for tests B and BL, respectively. 

An inspection of the experimental plots shows that for both tests B and BL, the load 

gradually increases toward a maximum value.  The maximum horizontal loads for tests B and BL 

are the peak values of 44 and 88 kN, respectively.   
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(a) (b) 

 
Sliding Displacement (mm) 

 
Sliding Displacement (mm) 

(c) (d) 
Fig. 3.13  Tests B and BL by Gadre and Dobry (1998), (a) prototype structure test setup, 

(b) sliding-isolated tests B and BL, horizontal load vs. sliding displacement for (c) 

test B and (d) BL 

The horizontal load tests by Gajan et al. (2003a, b) are performed on 80% relative density 

sand, on a footing 2.84 m by 0.69 m resting on the ground surface.  Figure 3.14(a) shows results 

for test SSG02 6a (station H), and Figure 3.14(c) shows test SSG03 1a (station A).  In test 

SSG02 6a, both load and displacement are unsymmetrical (i.e., significantly larger forces and 

displacements are observed in the positive direction than in the negative direction).  For test 

SSG03 1a, the maximum load and displacement is more symmetric but continues to increase 

with cycling, which may be attributed to accumulation of passive earth pressure as the footing 

settles.  For both tests, permanent rotations develop as the footing settles more to one side.  

However, at small amplitude cycles, these permanent settlements and rotations are very small, so 

any contribution to the horizontal resistance from passive earth pressure is very small.  For these 

two tests, the maximum load corresponding to the base frictional resistance is taken at the point 

where sliding resistance is first broken; it is assumed as the largest load on the negative axis (first 
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loading cycle) of 115 kN for test SSG02 6a (Fig. 3.14(b), and the first constant of 187 kN for test 

SSG03 1a (Figs. 3.14(b)–(d) show the low amplitude, early cycles of these tests with the 

backbone overlain for each. 
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Fig. 3.14  Horizontal load vs. sliding displacement, (a) complete horizontal load vs. 

displacement of SSG02 Test 6a, (b) early cycles of (a), (c) complete horizontal 

load vs. displacement of SSG03 Test 1a, (d) early cycles of (c) 

In conventional design practice, the frictional resistance of an interface shearing a 

cohesionless material is estimated as tan(kφ’) times overburden, where k varies from 1/3 to 2/3.  

Alternatively, one may assume the critical state friction angle is attained upon full shearing, since 

this represents the final strength of the system when it has either degraded past the peak value or 

increased to a maximum, depending on its density, at large strains.  EPRI (1990) provides an 

empirical relation of the critical state friction angle after Bolton (1986):  
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( )[ ]( )1ln103 −−−′= aucs pqDrφφ   (3.16)
 
where φ′  is the friction angle calculated by triaxial compression, Dr  is the relative density, uq  

is the mean principal effective stress at failure, and ap  is atmospheric pressure.  For the tests by 

Gadre and Dobry (1998), the reported friction angle was determined from the inverse tangent of 

the friction coefficient at failure, so this is in fact the critical state friction angle.  The proposed 

expression for the critical state friction angle slightly overestimates the coefficient of friction for 

the SSG test series, as shown in Table 3.2.  

Table 3.2  Comparison of static coefficient of friction for horizontal sliding tests 

Ref test Dr φ  csφ  L B H expμ  csμ  
  (%) (deg) (deg) (m) (m) (kN) - - 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
G&D “B” 75 39 39 1.14 1.14 44 0.82 NA 
G&D “BL” 75 39 39 1.14 1.14 88 0.82 NA 

SSG02 6a 80 43.2 27.7 2.84 0.69 115 0.41 0.52 
SSG03 1a 80 37.9 22.2 2.84 0.69 188 0.32 0.41 

 
Column Notes: 
(1) G&D refers to tests by Gadre and Dobry (1998); SSG refers to tests by Gajan et al. (2003 a,b). 
(2) For tests by Gadre and Dobry, “B” denotes Base shear, “L” denotes additional vertical load at 

base. 
(4) Friction angle for Gadre and Dobry (1998) calculated by laboratory triaxial tests from Arulmoli 

et al. (1992). Friction angle for SSG back-calculated from vertical load test data. 
(6), (7) Length parameters for foundation are presented at prototype scale. 
(8) H = Horizontal load at observed sliding initiation 
(9) 

expμ = Friction coefficient from experiment, calculated by dividing the vertical load by the 
maximum horizontal load (as reported in Gadre and Dobry (1998)) 

(10) 
csμ = Critical state friction coefficient, calculated by ( )csφtan  

 

Using the T-z material discussed in Section 3.3.3 shows good agreement with the 

backbone of the sliding tests available, as shown in Figure 3.15.  The backbone of the T-z 

material is empirically calculated based on pile tests, but the load-displacement mechanisms of 

the friction force developed by a foundation structure sliding over a cohesionless base appear to 

give reasonable results.  For the tests by Gajan et al. (2003a, b) the critical state friction 

coefficient is approximately 1.27 times the experimentally observed value.  

In summary, using csφ  to estimate sliding capacity gives a reasonable approximation, 

calculating a friction coefficient within 20% compared with experimental data.  Additionally, the 
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T-z style horizontal spring has a reasonably shaped nonlinear response for use with the BNWF 

simulations for representing the sliding resistance. 
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Fig. 3.15  Normalized load-displacement backbone; comparison between experimental tests 

and the T-z material formulation 

3.5.2.2 Lateral Earth Pressure Capacity and Stiffness 

The lateral earth pressure resistance for embedded footings is an important aspect in the 

modeling of shallow foundations.  Generally, a foundation should be designed such that the 

passive earth pressure prevents sliding from becoming a significant consideration.  However, 

passive pressure will develop at very low horizontal movements (on the order of 0.01–0.04 times 

the depth of embedment).  

Referring to tests by Gadre and Dobry (1998), Test P of this test series isolated the effect 

of passive earth pressure, as shown in Figure 3.16. 
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(a) (b) 

Fig. 3.16 Tests by Gadre and Dobry (1998): (a) prototype structure test setup, (b) Test P 

load vs. displacement 

For this case, a passive earth pressure coefficient of pK = 11.1 was found using the 

experimental maximum horizontal load observed.  It was assumed that active earth pressure (on 

the back face of the footing) did not contribute to this value.  Gadre and Dobry compare this 

value to an estimated value of 14.1 for a soil friction angle of 39 and an identical wall-soil 

interface angle, using the trial wedge method with curved boundaries as presented by Terzaghi 

(1943), Terzaghi and Peck (1967) and Caquot and Kérisel (1949) (Fig. 3.17).  Note that a 

calculation of passive earth pressure by the Rankine method would give a passive earth pressure 

coefficient of 4.4, and a value of 10.6 by the Coulomb method. 

Comparing the backbone of the model Test P by Gadre and Dobry (1998) to the 

PySimple1 material shows a good comparison, as shown in Figure 3.18.  The fit shown is for 

PySimple1 type 2 (API recommendation for drained sand), and a y50 taken from the backbone of 

Test P, which is approximately 0.015B.  All simulations where the model footing is embedded 

will use a PySimple1 material with capacity estimated using the figure of Caquot and Kérisel 

(1949). 
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Fig. 3.17  Calculation of passive earth pressure coefficient vs. friction angle from Caquot 

and Kerisel (1949) (after Das 1999) 
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Fig. 3.18  Backbone comparison of model test by Gadre and Dobry (1998), with the 

PySimple1 material 

3.5.2.3 Horizontal Sliding — Separation of Frictional Sliding and Passive Earth Pressure 
Stiffness 

The model tests performed by Gadre and Dobry (1998) systematically separated the capacity and 

stiffness effects of sliding and embedment.  They found that the stiffness embedment factors 

presented by Gazetas and Tassoulas (1987) for a square embedded footing give good prediction 
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for the effect of embedment on a square foundation.  The prediction was within 21% maximum.  

These embedment factors are the same as presented by Gazetas (1991) and ATC-40 (1996).  

Therefore, for each BNWF simulation, if the foundation is embedded the stiffness of the 

frictional sliding component Kfr and the stiffness of the passive earth pressure component KPEP 

can be separated from the observed experimental global horizontal stiffness Kexp by: 

x
fr e

K
K exp=  (3.17)

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

x
PEP e

KK 11exp  (3.18)

 
Additionally, in order to validate the comparison of Gazetas’ stiffness equations to 

observed model stiffnesses, reference is again made to the tests by Gadre and Dobry (1998).  

Gadre and Dobry compared the horizontal stiffness to the analytical stiffness of a square 

foundation as given by Pais and Kausel (1988): 

ν−
=

2
2.9 BGK sur  (3.19)

 
The shear modulus was back-calculated for tests B and BL where surface sliding was the 

only component of load transfer.  Then, computed stiffnesses for tests where side friction and 

passive earth pressure were allowed were compared to observed values of initial horizontal 

secant stiffness, and the superposition of these effects showed that the analytical stiffness was 

within 5%.  Recall that the horizontal stiffness using Gazetas’ stiffness equations collapses to: 

ν−
=

2
9BGK sur  (3.20)

 
Therefore, using the equations of Gazetas for nonsquare foundations should be a 

reasonable estimate of the elastic stiffness (associated with friction and passive earth pressure).  

3.5.3 Bearing Pressure Distribution and End Tip Resistance 

A realistic distribution of pressure beneath a shallow foundation is desirable to capture the 

nonlinear (reversed) cyclic loading behavior.  This is particularly important when estimating 

settlement, since during repeated cyclic moment loading the selected distribution of ultimate 

pressure will dictate the magnitude of cumulative settlement that occurs.  Using the Winkler 
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approach, individual springs are provided with an ultimate pressure qult and the distribution is 

naturally defined by value at each spring (distributed horizontally below the footing) 

3.5.3.1 Review of the Literature on Bearing Capacity 

Terzaghi (1943) formulated the contact pressure distribution below the base of a continuous 

footing by superimposing the separate contributions of cohesion, surcharge and unit weight.  To 

determine the bearing capacity factors, three cases are considered: (1) a surface footing with φ ′  

= 0 and γ  = 0 to compute cN , (2) a surface footing with c = 0 and γ  = 0 to compute qN , and 

(3) c = 0 and overburden = 0 to compute γN .  Considering the equilibrium of forces about one-

half the elastic soil wedge beneath the foundation, shown in Figures 3.19(a)–(b), the passive 

earth pressure acting against the soil wedge provides the bearing capacity.  Since cN  and qN  are 

computed by assuming the unit weight is zero, the passive earth pressure is constant with depth.  

Therefore, the bearing stress must be uniform for the contribution of these two factors.  

Since γN is calculated with a nonzero unit weight, the passive earth pressure must increase 

linearly with depth.  Therefore, the contact pressure distribution must also increase from zero at 

the tip of the footing to some maximum value at the center of the footing.  Terzaghi showed that, 

for the γN  contribution the force on the soil wedge increases linearly with depth.  Therefore, the 

contact pressure distribution must also increase linearly from zero to some maximum value. 

 

Fig. 3.19  Bearing pressure distribution under vertical loading proposed by Terzaghi (1943) 
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Meyerhoff (1951) continued Terzaghi’s bearing capacity equations, but with the 

assumption that the failure surface extends to the free surface.  He also discusses the 

contributions considered in resisting pressure, similar to Terzaghi’s, as shown in Figure 3.20. 

 
Fig. 3.20  Superposition of contact stresses due to the contributions of cohesion, unit 

weight, and overburden (after Meyerhoff 1951) 

Schultz (1961) combines Boussinesq’s elastic method with plastic flow along the edges 

defined by the methods of Terzaghi and Meyerhoff to determine a triangular ultimate pressure 

distribution.  For loads less than ultimate, a saddle-shaped contact pressure distribution is 

observed, while at ultimate load a full plastic envelope results.  Schultz gives the following 

equation for the contact pressure on a rigid footing assuming the soil behaves elastically: 

( )
( )221

12

BxB
q

xq ave
e

−
⋅=

π
 (3.21)

where =aveq  average contact pressure, and x is the distance horizontally from the center of the 

footing. 

From this equation, it can be seen that at the edges of the footing an infinite stress 

develops for the elastic case.  Using the previously described method of superimposing the 

contributions of cohesion, surcharge, and unit weight for a soil at shear failure, the following 

equation describes the contact stresses for a soil behaving plastically (corrected from Schultz 

(1961), who finds a coefficient of 4 before x): 
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21γγγ  (3.22)

Schultz combines these two equations to solve for the state of contact stress, given the 

factor of safety of the foundation system, as shown in Figures 3.21(a)–(c).  Figure 3.21(b) shows 

the contact stress distribution for a cohesionless soil on the left side and a cohesive soil with a 



 57

small friction angle on the right, with a less than ultimate load in both cases.  The fully plastic 

case is shown in Figure 3.21(c). 

 
(a) elastic (b) elastic and plastic 

FSV > 1 
(c) fully plastic 

FSV = 1 

Fig. 3.21  Combination of elastic and plastic contact stress distribution (after Schultz 1961) 

Schultz compared his theoretical approach with eleven case histories of actual 

foundations which, in general, qualitatively showed good agreement under working loads for the 

theoretical contact pressure distribution presented. 

Lazebnik and Smirnov (1965) performed tests on a 60 cm surface footing on sand and 

loess-like loam.  As shown in Figure 3.22, the saddle shaped distribution was observed for 

varying load levels in the case of sand with nonzero end tip pressures.  The footings were not 

tested to failure, but vertical load test data were provided such that an ultimate bearing pressure 

could be estimated.  The friction angle of the sand tested was 32 degrees, with a field unit weight 

of approximately 1.70 ton/m3 and 1.8% water content.  The dry unit weight is then 1.67 ton/m3 

for the sand.  From conventional bearing capacity theory, the ultimate bearing pressure for the 

sand case is 150 kPa. 

 

 

Fig. 3.22  Contact pressure distribution for sand (after Lazebnik and Smirnov 1965) 
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Merzenko (1965) observed the saddle shaped distribution of pressure on a dense sand and 

for repeated axial loadings to increasing levels of pressure, as shown in Figure 3.23.  

Additionally, the peaks moved closer together for larger magnitude loads, toward a parabolic 

shape.  It should be noted that the pressure meters are not placed exactly at the foundation edge, 

so an edge pressure of zero cannot be inferred from the graph. 

 

 
Fig. 3.23  Saddle-shaped contact pressure distribution observed by Murzenko (1965) (after 

Kerr 1989) 

Smoltczyk (1967) presents an analytical solution that defines the foundation contact 

pressure as a function of depth and in the six tensorial components, computing stresses on a 

statistical pattern.  For a simplified two-dimensional case, the contact pressure distribution in 

Figure 3.24 is plotted for varying levels of load intensity.  It is interesting to note that for 

relatively lower load levels the distribution is “saddle-shaped,” while at the highest load level the 

distribution becomes parabolic.  In addition, for all load levels the end tip bearing pressure is 

zero. 
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Increasing Magnitude 
of Axial Loading

 

Fig. 3.24  Varying pressure distribution with increasing load (after Smoltczyk 1967) 

Ho and Lopes (1969) performed experiments on a rigid circular foundation resting on a 

dry uniform Ottawa sand ( °=′ 41φ ).  Figure 3.25 shows the measured contact pressure 

distribution from these experiments for various depths of embedment.  The top of the figure is 

for a footing on the surface, while the last figure has the greatest embedment of two times the 

footing diameter.  The saddle-shaped distribution is evident for the surface footing, with an 

increasingly uniform distribution as the embedment increases.  The effect of vertical load-

cycling was observed to flatten the distribution of bearing pressure after the first two cycles of 

loading.  However, it is not clear how the edge contact pressure is determined, as presented in the 

figure, since pressure sensors were not placed near the edge of the footing.  Therefore, the 

conclusion of zero edge pressure for the footings cannot be inferred from the figure. 
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Increasing 
Embedment

 

Fig. 3.25  Contact bearing pressure distribution for increasing levels of embedment (after 

Ho and Lopes 1969) 

Bauer et al. (1979) observed the parabolic shape for increasing load intensities in two test 

cases on sand with varying relative densities under a 30.5 cm by 61 cm surface footing, as shown 

in Figure 3.26.  The footing “Test 1” is on a 90% relative density sand, with °=′ 45φ  and 

=γ 15.7 kN/m3.  The ultimate bearing capacity of this footing is taken from load settlement 

curves as 391 kN, or an ultimate bearing pressure of 2102 kPa.  “Test 4” is on a 55% relative 

density sand, with °=′ 38φ  and =γ 14.2 kN/m3.  The ultimate capacity is reported as 24kN, or 

an ultimate bearing pressure of 129 kPa.  For Test 1, it appears that all lines are approximated as 

zero at the ends, while Test 4 shows nonzero edge stresses.   However, simply interpolating the 

trend between the nearest two data points at each edge of the foundation gives better agreement 

with Test 4 for nonzero edge stresses.  These results are tabulated in Table 3.3, for use in 

approximating the edge stresses for the Winkler modeling.  The measurement error was reported 

to be within 20%. 
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Fig. 3.26  Stress distribution in sand (after Bauer et al. 1979) 

Weissing (1979) performed experimental tests of a small rectangular footing in addition 

to an analytical model.  Weissing assumed, after Meyerhoff (1951), that for a surface footing on 

a cohesionless soil the distribution of contact pressure at failure can be assumed to be triangular 

based on the passive earth pressure acting on the elastic wedge beneath the footing.  Based on the 

weight of the structure, if the system is at a load less than failure, the distribution is trapezoidal 

as shown in Figure 3.27, such that the soil is behaving plastically along the edges of the 

trapezoidal distribution and elastically along the horizontal portion of the distribution.  

Therefore, the pressure distribution is entirely based on the vertical factor of safety, FSV. 



 62

 

 
Fig. 3.27  Plastic end region by Weissing (1979) 

Selvadurai and Rabbaa (1983) performed experiments to explore the effects of adjacent 

footing interaction.  Spacing (S) ratios of S/B = 1, 2, 3, and 4 were conducted on an apparatus 

which tested small footings (378 mm square) on a long strip of sand ( °=′ 41φ , %90≈rD ) in 

order to create a plane strain condition.  The footings are loaded to 1/3 of the computed 

maximum bearing capacity, estimated by conventional theory.  Figure 3.28 shows the varying 

pressure distribution as the distance between the two footings is increased.  In all cases the 

distribution is parabolic, as opposed to a saddle or uniform, and changes as a function of the 

relative distance between footings.  Of practical interest to this study is the case of S/B = 1, 

where the two footings are directly touching.  The following equation is used to define the 

maximum and minimum contact pressure as a function of the spacing between footings: 
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2
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where 1q = contact pressure beneath the confined edge, 2q = contact pressure beneath the free 

edge, and aq = average applied pressure on a single footing.  Therefore, for S/B = 1, the pressure 

beneath the footing varies parabolically from aq45.1  at the center to aq55.0  at the edge.  
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Fig. 3.28  Observed relation between contact bearing pressure distribution and footing 

spacing ratio (after Selvadurai and Rabbaa 1983).  The dark line shows the 

measured contact pressure distribution normalized by the average contact 

pressure (dashed line). 

Kerr (1989) presents a method to model the saddle-shaped distribution using a Winkler 

approach, where the springs are in series with an additional spring layer and displacements are 

forced at the edges of the foundation.  This approach captures the saddle-shaped distribution of 

pressure for large footings at low load levels as well as the full parabolic shape observed for 

small footings.  Kerr observes from review of the literature that early work on contact bearing 

pressure distribution using small plate samples on a sand base found the contact pressure 

distribution to be parabolic.  However, later results of full-scale footings on sand documented the 

saddle-shaped distribution, potentially because only working load levels were applied. 

Muller (1996) captures the contact pressure distribution under a foundation through 

experiments with a photoelastic material on sand.  The contact pressure distribution was found to 

be roughly parabolic with zero pressure at the ends of the foundation for relatively small loads 

and with larger nonzero pressures at the corners of the foundation for higher loads.  Figure 3.29 

depicts the observed contact pressure under the foundation.   
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Fig. 3.29  Bearing contact pressure distribution on cohesionless sand, captured by a 

photoelastic material (after Muller 1996) 

3.5.3.2 Summary Remarks from Literature Review 

From these and other research on footings loaded under pure compression, it is observed that 

small model footings generally have a parabolic distribution of contact pressure, while large 

footings have a parabolic distribution at ultimate load and a saddle-shaped distribution for lower 

working loads.  Several suggested functions were provided to describe these two shapes, each 

generally assuming that the soil is behaving either perfectly elastic or perfectly plastic.  Since the 

soil springs will define the maximum stress after which plastic deformations occur, it is 

reasonable to model the ultimate load state of the system.  Therefore, the parabolic contact 

pressure distribution is appropriate, since it captures the shape observed for shallow foundations 

at the ultimate bearing capacity. 

Assuming a parabolic distribution, the bearing pressure at the ends of the footing needs to 

be determined.  The theoretical presentations of the bearing pressure distribution fail to predict 

the nonzero edge stresses observed by Selvadurai and Rabbaa (1983) and Muller (1996) unless 

some overburden or cohesion exists.  The models proposed by Terzaghi (1943), Meyerhoff 

(1951), and Schultz (1961) capture the observed pressure distribution well as discussed by 

Schultz, and provide the conventional bearing capacity used in practice today.  These models, as 

described earlier, superimpose the contributions of cohesion, overburden, and unit weight, and 

predict a linear distribution of contact stress due to the counterpart of unit weight.   
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In this study, the ultimate bearing pressure will be defined as a parabola using the 

observations from the literature review for the contribution of soil weight, and a uniform 

distribution for the parts of cohesion and overburden.  This distribution of ultimate pressures 

does not change throughout the analysis, although working load contact pressures will obviously 

constantly redistribute as the footing rocks and the resistance provided by the individual springs 

varies. 

The trapezoidal shape ( γN  component) as defined by Schultz can easily be converted to a 

parabolic shape in order to approximate the observed pressure distribution by equating the areas 

of the triangular distribution to the parabolic distribution, 
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γ
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The drawback to this approach is that for a cohesionless soil with no overburden, the contact 

stress at failure is zero at the edges of the foundation, which is contradictory to experimental 

observations.   

To provide a more realistic approximation for the edge bearing pressure, experimental 

data are investigated.  Table 3.3 lists the experimental data on the distribution of contact stresses 

for which the edge stresses were measured and not assumed to be zero. 

In Table 3.3, columns 2 and 3 list the friction angle and vertical safety factor of each test.  

Columns 4 and 5 list the average and end tip contact pressures, while column 6 lists the ratio of 

these two values to facilitate comparison among different sized footings.  Column 7 lists a 

calculated end tip ratio based on equation 3.29 (normalized by an average bearing pressure aveq ), 

the development of which is discussed below. 
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Table 3.3  Estimation of foundation pressure at edge for surface footings on sand 

Reference φ′  
(deg) 

VFS  aveq (kPa) exp−iq (kPa)

ave

i

q
q exp−  

ave

calci

q
q −  

(1) (2) (3) (4) (5) (6) (7) 
32 1.5 98 56 0.57 0.44 
32 0.8 196 78 0.40 0.68 

L and S 
(1965) 

32 0.5 294 98 0.33 1.00 
45 109.5 19 0 0.00 0.30 
45 27.1 78 17 0.22 0.32 
45 14.2 148 68 0.46 0.34 
45 10.3 204 99 0.48 0.35 
45 8.4 250 121 0.48 0.36 
38 1.8 72 48 0.67 0.41 
38 1.3 96 56 0.58 0.51 
38 1.1 120 68 0.57 0.58 
38 0.8 156 90 0.58 0.74 
38 0.7 174 108 0.62 0.81 

Bauer et al. 
(1979) 
  
  
  
  
  
  
  
  
  
  38 0.6 215 107 0.50 0.96 
S and R 
(1983) 41 3.0  NR NR  0.55 0.36 

Muller 
(1996) 34 15.4  NR NR  0 0.09 

34 5.0  NR NR  0.8 0.15 Muller 
(1996) 34 11.8  NR NR  0.37 0.10 

Column notes: 
(1) “L” and “S” (1965) refer to tests by Lazebnick and Smirnov (1965), “S” and “R” (1983) refer to 

tests by Salvadurai and Rabaa (1983).  
(3) Design vertical factor of safety, FSV, defined as the bearing failure over the load.  Note: in some 

cases the footings were loaded past this design value. 
(4) 

aveq = average bearing pressure 
(5) 

exp−iq  = end tip pressure measured from experiment 
(6) 

ave

i

q
q exp− = ratio of the measured end tip pressure to the average bearing pressure 

(7) 

ave

calci

q
q − = ratio of the calculated end tip pressure (Equation 3.29) to the average bearing pressure 

  
From the data in Table 3.3, where mostly nonzero end tip contact pressure was found for 

surface footings on sand, comparison of the value of edge tip resistance reveals there may be 

some relation to the shear strength of the soil and the safety factor of the foundation.  This makes 

sense intuitively because the shear strength would control the dispersion of stresses at the 
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discontinuity at the foundation edge, and the safety factor is a measure of stress intensity given 

the weight of the structure and the bearing capacity of the soil.   

Considering a linear failure surface, and the Mohr-Coulomb failure criteria 

( φσ ′′+′= tancs ), a simple approximation for the edge tip resistance at failure for a c′=0 

material may be taken as: 

( )φ
σ

tan=
′

== s
q
q

F
ave

i
qi  (3.25)

 
where Fqi = edge tip resistance ratio, iq  = edge tip resistance, and aveq  = average bearing 

pressure. 

This assumes the edge pressure is due to the discontinuity of the footing edge, thus only a 

function of the normal pressure on the soil failure surface.  Physically, this expression defines the 

edge contact pressure as a ratio of the shear stress to the normal force. 

From Table 3.3 data, it is observed that at higher vertical factors of safety FSV, the 

distribution becomes more uniform.  For the extreme cases, at an infinite FSV, the pressure at the 

edge is zero, and at FSV unity the edge pressure is equal to the average pressure.  Therefore it 

seems a plausible that Vqi FSF 1∝ . 

Averaging the proposed functions of shear strength and safety factor gives a fairly good 

fit to the data, such that the following equation for the edge tip resistance results: 
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⎞
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V
qi FS

F 1tan5.0 φ  (3.26)

It appears that the friction angle and vertical footing safety factor alone provide a fairly 

reasonable estimate of the end tip resistance.  For a FSv of one, the proposed equation is higher 

than observed; however, this is acceptable considering the good fit for higher FSv, which are 

appropriate for design levels. Figure 3.30 plots the measured edge contact pressure data in Table 

3.3, overlain with Equation 3.29. 
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Fig. 3.30  Measured contact pressure data and proposed function of contact pressure given 

the friction angle and safety factor 

The following revision to Equation 3.24 is suggested, such that the contribution of unit 

weight to the overall bearing pressure distribution is also a function of the end tip resistance iq : 
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Finally, the ultimate bearing capacity distribution is given by superimposing all terms: 

( ) ( )xqDNcNxq qc γγ ++=  
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3.5.4 End Length Ratio 

Experimental observation of shallow rocking footings has shown rounding of the soil medium 

below the edges of the foundation.  Foundation profiles computed from plaster casts of the 

KRR02 tests series are shown in Figure 3.31. These figures show that significant permanent 

rounding along the base has occurred after slow cyclic tests.  This rounding occurs because the 

edges are more heavily loaded as the opposite end lifts up and high compressive stiffness 
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develops on one end to maintain stability.  This leads to densification and plastic development 

first on the ends.  Since soil at the edge of the footing compresses more than in the center during 

rotation, the stiffness in the end region may increase due to densification. 
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Fig. 3.31  Permanent displacement profiles taken from post-test plaster casts of shallow 

rocking strip footings (after Rosebrook and Kutter 2001b) 

To capture this behavior using the Winkler model, the degree of rounding can be 

associated with the degree of coupling between the vertical and rotational stiffness.  To account 

for a larger degree of coupling, ATC-40 (1996) presents a simplified approach, first converting 
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global vertical ( ZK ) and global rotational ( xKθ or yKθ ) stiffnesses into vertical stiffness 

intensities:  

x

x
x I

Kk θ
θ = , 

y

y
y I

K
k θ

θ =  and 
LB
Kk z

z =  (3.29)

where xI = moment of inertia about the weak axis and yI = moment of inertia about the strong 

axis. 

If the difference between the stiffness intensities ( xz kk θ−  or yz kk θ− ) is small, then the 

larger calculated stiffness intensity is used.  Alternatively, if the difference is large and the 

stiffness intensities are highly coupled, a modified vertical stiffness distribution is suggested 

where the model footing is divided into two regions: an end region to capture the effect of 

rotational stiffness and a middle region to capture the vertical stiffness.  The middle region 

stiffness intensity is taken as that for an infinitely long strip footing (i.e. ∞→BL ).  The end 

region vertical stiffness intensity is based on the vertical stiffness of an isolated plate with an 

area of 6BB ⋅ .  The resulting stiffness intensities, using Gazetas’ equations are: 

( )Bv
Gkmid −

=
1

73.0  and ( )Bv
Gkend −

=
1

8.6  (3.30)

The rotational stiffness may be implicitly provided by either varying the load-deflection 

characteristics of the individual springs along the length or providing variations in the vertical 

stiffness of the laterally placed springs. ATC-40 suggests varying the magnitude of stiffness and 

distribution of the individual spring elements, as shown in Figure 3.32.  In this case, the end 

stiffness is approximately nine times that of the middle region stiffness. This approach was 

adopted in these numerical simulations, using suggested middle and end stiffness values and 

tighter spring spacing in the end region in which stiffness is increased, since the systems studied 

are highly dominated by the rotational degree of freedom.  
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Fig. 3.32  ATC-40 recommendation when vertical and rotational stiffnesses are highly 

coupled (after ATC-40, 1996) 

A more refined estimation of kz and kθ (accounting for their coupling) may be derived by 

equating the vertical to the vertical rotational stiffness intensities.  Assuming the end region 

length (over which kend occurs) eL  is an unknown variable, then setting the vertical stiffness 

intensity of a B x eL  plate equal to the rotational stiffness intensity of a footing with plan 

dimensions B x L: 

yz kk θ=  (3.31)
 



 72

y

yz

I
K

BL
K θ=  (3.32)

 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

150
25.0

750

3
1

54.173.0
1

.

Y

.

e B
LI

v
G

L
B

Bv
G  (3.33)

 

solving for 
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where 3

12
1 BLI y =  for a rectangular foundation with full contact.  If B = L, this function is equal 

to 0.216, a BLe ratio of approximately 1/5.  A ratio of 1/6 (as suggested by ATC-40) therefore 

seems reasonable so that the end length is not overestimated.  

It is reasonable to assume that eL  and the resulting degree of rotational and vertical 

stiffness coupling is sensitive to not only B, but the ratio of B/L.  ATC-40 gives a 

recommendation for eL  only as a function of B, and Weissing does not account for rotational 

stiffness.  An improvement is suggested whereby the length and base of the footing are 

incorporated as well as the degree of coupling between vertical and rotational stiffness.  Similar 

to the approach suggested in ATC-40, the known or calculated global stiffnesses are converted to 

stiffness intensities, and it is assumed that there is some relationship between the vertical 

stiffness intensity and the vertical rotational stiffness intensity: 

BL
K

I
K z

y

y ∝θ  (3.35)

 
In order to determine this relationship, a parameter is defined which indicates the degree 

of coupling between vertical and rotational stiffness, which is represented as a ratio of the 

difference in rotational stiffness capacities.  This assumes that the difference in global rotational 

stiffness and the rotational stiffness due to the vertical stiffness intensity will control the 

magnitude of the end length region.  The rotational stiffness deficit ratio, K
VRC − , is defined as the 

ratio of the rotational stiffness capacity difference to the rotational stiffness: 
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If K

VRC −  is greater than zero, then a larger stiffness is required at the end region to 

compensate for the difference in vertical and rotational stiffness and the coupling between them.   

In order to define an end length ratio for a footing simply in terms of the length, base and 

uncoupled global vertical and rotational stiffnesses, the problem can be simplified by lumping 

the coupling of stiffness into geometry.  Applying the newly defined rotational stiffness deficit 

ratio, the moment of inertia of the end length region is equal to K
VRC −  times the moment of inertia 

of the entire footing ( y
K

VRy ICI −=* ).  This is reasonable if one assumes that the rotational and 

vertical stiffnesses can be transformed to vertical stiffness intensities to assist in defining 

stiffnesses of the Winkler model springs.  The moment of inertia of the end region, *
yI , is given 

by:  
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Setting *

yI  as a function of the rotational stiffness deficit ratio and the moment of inertia of the 

footing: 
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collecting terms: 
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After Spanier and Oldham (1987), the characteristic cubic equation 

023 =+++ cbxaxx  (3.41)
 
has the discriminate D defined by:  

32 PQD −= , where 
2726

3acabQ −−=  and 
39

2 baP −=  (3.42)
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If D is greater than zero, there is one real root:  
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If D is less than zero, there are three real roots: 
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If D is equal to zero, there are two real roots: 
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For Equation 3.40: 
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Since D is always greater than zero for this system, there is always one real solution given by: 
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For a rectangular footing, this equation can be simplified to: 
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In comparison to the recommendation by ATC-40, Figure 3.33 plots the end length 

normalized by both the foundation width (B) and length (L) versus the aspect ratio LB , for a 

foundation with uncoupled vertical and rotational stiffnesses defined by Gazetas’ equations.  The 

trend is independent of any physical length or shear moduli (the variables in Gazetas’ (1991) 

equations).  For a B/L ratio of 1, Equation 3.48 reasonably converges with ATC-40 

recommendations.  Notice that for an infinite length, LB = 0, the required end length drops 
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below zero as expected, such that an end length of higher stiffness is not required.  ATC-40 

presents the end length region as a function of the foundation width, and Equation 3.48 is also 

very sensitive to this parameter. 
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Fig. 3.33  Normalized end length region for system defined by Gazetas’ stiffnesses 

Once the end length region is defined, the vertical stiffness intensities of the middle and 

end regions of the Winkler model can be recomputed so that the global vertical and rotational 

stiffnesses are matched. 

The stiffness intensity of the middle region midk  is simply set to the uncoupled vertical 

stiffness intensity: 

BL
K

k z
mid =  (3.49)

 
The stiffness intensity of the end region that defined the end region length is simply the 

addition of the middle zone stiffness intensity and any required rotational stiffness not provided 

by the vertical stiffness of the system, or  
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(3.50)

 
The ratio of the end to middle region stiffness intensities versus the footing aspect ratio 

B/L is plotted in Figure 3.34.  The value reaches unity as B/L approaches zero, in which case the 
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middle and end regions would have the same stiffness.  Note that for a footing with B/L = 1, the 

ratio of the end to middle region stiffness intensities is approximately five, much lower than the 

ATC-40 recommendation of approximately nine.  Recall that the ATC-40 recommendation 

assumes a middle region stiffness intensity based on an infinite footing, and an end region 

stiffness intensity of a B x B/6 plate.  These two assumptions will no doubt have a large spread; 

the proposed method takes into account footing geometry and defines an end region, if required, 

to account for degree of coupling between the vertical and rotational global stiffnesses. 
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Fig. 3.34  Ratio of stiffness intensity, kend/kmid, vs. footing aspect ratio B/L 

3.5.5 Radiation Damping 

Gazetas (1991) provides convenient graphs and equations to estimate radiation damping due to 

vertical oscillation of an surface footing resting on an elastic half-space.  This set of equations is 

generally accepted in common practice and will be used in the analysis of dynamically loaded 

shallow foundations (for the dynamic dashpot coefficients).   

The dashpot coefficient for vertical vibrations is given by zbLaz cAVC ~ρ= , where ρ is the 

unit density, VLa is Lysmer’s analog wave velocity equal to 3.4 Vs /(π(1-ν)), Ab is the area of the 

foundation base, and zc~ is given in Gazetas (1991), also shown in Figure 3.35. 
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Fig. 3.35  Gazetas’ (1991) vertical dashpot coefficient 

Radiation damping through horizontal sliding oscillation is assumed to be negligible with 

respect to the Winkler elements. Damping due to the rotational mode is assumed to be 

incorporated through the vertical Winkler springs, since rotation stiffness is captured in the same 

manner. 

3.6 BNWFSHALLOW MESH GENERATOR 

A mesh generator BNWFShallow is used to study the sensitivity of the Winkler model 

parameters for capturing the salient features of the rocking strip foundation. Currently, 

BNWFShallow is implemented in the TCL scripting language, which wraps the OpenSees 

platform. BNWFShallow allows the user to consider different (1) lateral spring distributions, (2) 

bearing pressure distributions, and (3) variable material models and model parameters.  

Appendix A contains the text files BNWFShallow.txt and BNWF_MAT.txt, which build 

the BNWF mesh for the static and dynamic simulations.  The user would source the 

BNWFShallow file into the tcl script, and then input the variables through the procedure called 
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“BNWFShallow.” These files could easily be implemented to act within an existing tcl script 

describing a much larger structural system. 

 
(1) Lateral Spring Distribution — Base spring lateral distributions of interest include both the 

number of springs (as a function of the footing length), the type of spacing of the springs, and the 

stiffness of the different springs. A nonuniform lateral distribution is suggested in ATC-40 

(1996) and uses closer spacing at the ends to compensate for the heavily loaded edges of the 

footing, which may cause more densification at the edges. In BNWFShallow, the user can specify 

either uniformly distributed spring spacing or variable spring spacing along the length of the 

foundation, as shown in Figure 3.36.  

 

 
 

(a) Uniform lateral spring spacing (b) Variable lateral spring spacing 

Fig. 3.36  Lateral spring distributions in BNWFShallow mesh generator 

For the variable spring spacing, a distribution symmetric about the centerline of the 

footing element is assumed. By this option, the user specifies the end region length percentage 

(Lend) as a percentage of the entire footing length (L). End and middle spring spacing and 

stiffness can then be independently specified using the variables (2) and (3) following:  

 
(2) Middle Length Ratio, (ratiom) — This value specifies the length ratio in the middle region of 

the foundation, defined as the value of the length between nodes divided by the length of the 

middle region (Lmid*L). 

 
(3) End Length Ratio, (ratioe) — This value specifies the length ratio in the end region of the 

foundation, defined as the value of the length between nodes divided by the length of one end of 

the foundation outside of the middle region ([(1- Lmid)*L]/2). 
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(4) End Stiffness, (Kze) — This stiffness is a global vertical stiffness of the foundation, which will 

be applied to the individual springs at the ends of the footing through a tributary area calculation. 

  
(5) Middle Stiffness, (Kzm) — This stiffness is a global vertical stiffness of the foundation, which 

will be applied to the individual springs in the middle region of the footing through a tributary 

area calculation. 

 
(6) Bearing Pressure Distribution — Applying the Winkler-based approach, perhaps the most 

important parameter for accurately modeling the system is the contact pressure distribution. This 

variation will depend upon the flexibility of the foundation and the nature of the soil below the 

foundation. Therefore, in the mesh generator, the user can specify different bearing pressure 

distributions to represent the ultimate soil capacity approximated by the Winkler spring system. 

The different distributions, uniform, triangular, trapezoidal, and parabolic are termed “Type I” 

through “Type–IV,” respectively (Fig. 3.37).  

  
(a) Uniform pressure distribution (b) Triangular pressure distribution 

  
(c) Trapezoidal pressure distribution (d) Parabolic pressure distribution 

Fig. 3.37  Bearing capacity distributions available in BNWFShallow mesh generator 

Other variables available for input into BNWFShallow include the end tip resistance of 

the spring system, qi, the suction (suction or TP), and the initial pre-compression (id). The tip 

resistance qi  defines the amount of soil pressure to be placed at the ends (last springs) of the 

bearing pressure distribution shown in Figure 3.37. for a nonuniform distribution.  The mesh 

generator then calculates the curve of the distribution such that the system still retains the global 

bearing capacity similar to the uniform distribution. The suction (variable TP) defines the 

amount of ultimate tension capacity of the individual springs.  Initial pre-compression “id” is the 

value of settlement accrued prior to cyclic loading.  For comparison with centrifuge experimental 

data this includes the settlement accrued during spin up (from one to 20 g’s for example) and any 
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tests not modeled in the sequence up to the current test. However, during spin up the value of 

settlement is lost because of the sensitivity and calibration of the linear potentiometers.  

Therefore, the best estimate of this settlement can be taken from the weight of the configuration 

modeled and the corresponding initial stiffness from the vertical push test data.  

3.7 BNWF PARAMETER SENSITIVITY 

This section aims to investigate the sensitivity of the proposed BNWF parameters on the system 

response, for a range of vertical factors of safety from two to ten, in increments of ΔFSV = 1.  

The parameters previously discussed were varied while keeping all others constant to study the 

isolated effect of each.  The constant variables used are listed in Table 3.4.  A representative 

surface footing is modeled with an aspect ratio B/L = 3.9, a vertical stiffness of Kz = 325 MN/m 

(representative of dense sand for the tests considered), and a loading protocol of two cycles each 

of one, two, and four degrees of rotation, as shown in Figure 3.38.  

Table 3.4  Constant factors for sensitivity study 

Variable Value 
Bearing Capacity Uncertainty, FQ 1 
Vertical Stiffness Factor, FK 1 
End Tip Resistance Ratio, Fqi 1 
Ultimate Bearing Capacity distribution uniform 
End Length, Le/L 0% 
Tension Capacity, TP 0% 
ratio 0.01 
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Fig. 3.38  Loading protocol for sensitivity study 
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The results are shown graphically in normalized format, such that a researcher or 

designer could easily interpret the effects of these parameters for a BNWF mesh to a particular 

study. 

Figure 3.39 shows the result for varying the bearing capacity by the factor FQ; as the 

ultimate bearing capacity is reduced from 100% to 75%, the magnitude of moment capacity 

reduces by approximately 25% for the lowest factor of safety.  Settlement magnitude intuitively 

decreases with increasing FSV, though the reduction in bearing capacity does not seem to 

significantly affect the overall settlement.  For a larger reduction of bearing capacity and a lower 

value of FSV, it appears that the magnitude of horizontal sliding is decreased, as more energy is 

dissipated into the nonlinear soil springs.   
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Fig. 3.39  Influence of bearing capacity reduction factor on BNWF simulation response (a) 

normalized moment, (b) normalized settlement and (c) normalized horizontal 

displacement vs. vertical factor of safety 

Figure 3.40 shows that increasing or decreasing the vertical stiffness by a factor of two 

has an intuitive effect consistent with the findings of Allotey and Naggar (2003); a larger 

stiffness value gives a larger moment capacity.  Also, a plateau is evident in the range of 

relatively large FSV, whereby no additional moment capacity can be mobilized.  The difference 

in normalized moment between different values of FQ is also larger for higher FSV.  

Additionally, a softer stiffness gives a slightly increased value of settlement.  A stiffer subgrade 

appears to transfer more energy into sliding, as evident in the larger sliding displacement. 

Overall, the factor most affected by variation in subgrade stiffness is the moment capacity. 
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Fig. 3.40  Influence of variable stiffness on BNWF simulation response (a) normalized 

moment, (b) normalized settlement and (c) normalized horizontal displacement 

vs. vertical factor of safety 

Figure 3.41 shows the result for the effect of varied end tip resistance on moment 

capacity.  As the end tip resistance is decreased, the moment capacity is decreased; however, 

settlement is consistently less for a lower end tip resistance.  Base sliding appears to be generally 

greater for a larger end tip resistance. 
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Fig. 3.41  Influence of variable end tip resistance on BNWF simulation response  

(a) normalized moment, (b) normalized settlement, and (c) normalized 

horizontal displacement vs. vertical factor of safety 
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Figure 3.42 shows that the difference between a triangular and parabolic (Fqi = 0) 

distribution is small, but the affect of a uniform to either a triangular or parabolic distribution is 

large.  For moment, settlement, and horizontal displacement, the uniform distribution is 

consistently larger for all factors of safety. 

Figure 3.43 shows that increasing the end length ratio increases the moment capacity for 

all FSV , and significantly increases the horizontal displacement for increasing FSV.  This makes 

sense, since with higher Le, Kθ is larger, and with higher FSV, the rocking mode contribution is 

larger.  Settlement was less affected for FSV  smaller than four, but increasing FSV  after this 

point shows more settlement for a smaller end region. For the simulation studying the end length 

ratio only, the ratio of stiffness between the end and middle region was taken as the 

recommendations in ATC-40 (1996). 
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Fig. 3.42  Influence of ultimate bearing capacity distribution on BNWF simulation response 

(a) normalized moment, (b) normalized settlement and (c) normalized horizontal 

displacement vs. vertical factor of safety 

 



 84

2 4 6 8 10
Vertical Factor of Safety, FSv

0.08

0.12

0.16

0.2

0.24

N
or

m
al

iz
ed

 M
om

en
t, 

F M

2 4 6 8 10
Vertical Factor of Safety, FSv

0

0.1

0.2

0.3

N
or

m
al

iz
ed

 S
et

tle
m

en
t, 

U
S

Numerical Simulation: Le/L = 0%
Numerical Simulation: Le/L = 10%
Numerical Simulation: Le/L = 20%

2 4 6 8 10
Vertical Factor of Safety, FSv

0.0008

0.0012

0.0016

0.002

0.0024

N
or

m
al

iz
ed

 L
at

er
al

 
D

is
pl

ac
em

en
t, 

U
H

(a) (c)(b)

 
Fig. 3.43  Influence of variable end length ratio on BNWF simulation response  

(a) normalized moment, (b) normalized settlement and (c) normalized 

horizontal displacement vs. vertical factor of safety 

A larger tension capacity as shown in Figure 3.44 appears to increase the moment 

capacity for all FSV. Settlement is slightly increased for the smaller tension capacity, though this 

is the least affected parameter. Horizontal displacement increases with tension percent and FSV, 

since the moment is larger with higher tension percent and more load will be absorbed by the 

system. 
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Fig. 3.44  Influence of variable tension capacity on BNWF simulation response  

(a) normalized moment, (b) normalized settlement, and (c) normalized 

horizontal displacement vs. vertical factor of safety 
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In general, it appears that the least sensitive parameter is the spring spacing ratio, evident 

in the small difference in sensitivity between results for simulations of 10 and 100 nodes, as 

illustrated in Figure 3.45; however, a significant difference can be seen for simulations with only 

4 nodes.  This difference is due to “lumping” the soil properties at relatively large steps along the 

footing.  Overall, the global parameters may be not be significantly affected by the spring 

spacing ratio, but as the simulations will later show, a “stepped” effect occurs for a coarser 

spring spacing due to a redistribution of forces, and thus the overall energy dissipation will be 

affected.  
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Fig. 3.45  Influence of spring spacing ration on BNWF simulation response (a) normalized 

moment, (b) normalized settlement, and (c) normalized horizontal displacement 

vs. vertical factor of safety 

From this qualitative analysis, it appears that all of the studied variables have a direct and 

significant impact on the response of the BNWF model, and should not be neglected.  However, 

one exception to this statement should be made in the case of tension capacity.  No data were 

found by the author to suggest that any tension capacity should be warranted in the Winkler 

springs, so this value component will be neglected in the model. 

3.8  SUMMARY AND SELECTION OF PROPERTIES 

The following sections detail the known, assumed, and calculated geotechnical data for the suite 

of vertical, slow cyclic, and dynamic test data modeled from those experiments described in 

Chapter 2. 
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3.8.1 Vertical Test Data 

Table 3.5 lists all the known and calculated parameters used for the simulations of experiments 

analyzed where vertical compression experiments were performed and BNWF models generated.  

Both centrifuge and one-g tests are modeled and all data in these sections are presented at 

prototype scale.  There are seven broad categories of data and information in Table 3.5.  The first 

is “Soil Data,” the most basic parameters that describe the soil, either recommended by the 

authors or calculated through derived relations.  The next category of data is “Footing 

Geometry” and is presented in prototype units. “Derived Properties” are those that were required 

for particular calculations and were estimated using engineering judgment and the basic soil 

parameters in “Soil Data.” “Gazetas Stiffness” presents the stiffness calculated using the 

equations presented in Gazetas (1991) and ATC-40 (1996) (reproduced in Table 3.1).  The 

calculated “Gazetas” stiffness values are based on recommendations in the EPRI manual (1990).  

Specifically, an elastic modulus is estimated from EPRI Table 5.2 for clays and EPRI Table 5.5 

for sands.  These tables present a range of values given the description of the soil (i.e., loose 

sand, medium sand, stiff clay, etc.), so the basic strength characteristics of relative density and 

cohesion are used to interpolate a specific value for sands and clays, respectively.  The shear 

modulus is then calculated based on the Poisson ratio of the soil, as given in EPRI Table 5.1, and 

the estimated elastic modulus (see Notes B, C, and D to Table 3.5). “Winkler Model Input” lists 

the values of capacity and stiffness that were obtained from the vertical test data.  Finally, 

“Notes” corresponds to a detailed list of comments following the table that clarify specific and 

general calculations and assumptions. 
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Table 3.5  Soil properties for modeling of experimental test data 
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COMMON NOTES
A. For sands, dry unit weight calculated as a function of minimum and maximum dry unit wieght and the relative density.

For clays, dry unit weight assumed from Das (Table 1.5)
B. Poisson's Ratio for sands determined by range of values from EPRI Manual (Table 5-1), where Dr used to classify soil as loose or dense.
C. Elastic Modulus determined from EPRI manual (Table 5-2 for clays and Table 5-5 by Poulos for sands)

For sands, Dr used to classify soil as loose, medium, etc.  For clays, su used to classify soil as stiff, medium, etc.
D. G calculated from Elastic modulus and poisson's ratio: G = E / 2*(1+v)
E. Kv and Kr calculated from Gazetas' equations reported in Foundation Engineering Handbook (comparable to ATC-40)
F. Soil Descriptions based on relative density range reported in DAS for sand Table 1.6 pg 12, and Table 3.8 pg 89 in Coduto for clay

SPECIFIC NOTES
1 Friction Angle "Back-Calculated" from vertical load test
2 Friction Angle equal to the peak shear resistance of Ticino Sand (Bolton, 1986) Recommended Eo and Go (Lo Presti, et al.)

Recommended: HD = 41.8, LD = 38.47 Eo, HD = 392 MN/m2, LD = 166 MN/m2
Back-Calculated: HD = 41, LD = 20 Go, HD = 140 MN/m2, LD = 67 MN/m3

3 Weissing reports friction angle versus relative density, based on a composite of shear box test, triaxial test, and plate bearing tests.  Those values are used in this table.
4 Bearing Capacity calculated by conventional bearing capacity theory, bearing capacity factors used are those defined by De Beer (1970), Hansen (1970) and Hanna and Meyerhoff (1981)
5 Cohesion back-calcualted from vertical load tests, as recommended in Kutter, et al.
6 Cohesion as recommended in Bartlett (1976) from unconfined compression tests
7 Bartlett observes a soil modulus ks of 340 MPa/m, where ks = Kr/Io.  Kv = 340 Mpa/m *0.5m*0.25m = 43MN/m (see pages 89-93)
8 Weissing reports an observed subgrade modulus of 2300 MN/m3 (page 72)

10 Unit Weight of clay for KRR03 test series referenced from DAS Table 1.5 page 11 and Liping Yan (1998) uses 18 kN/m3 for Bartlett test data. 
11 For TRISEE tests, thickness of footing is estimated from report drawings (required for Gazetas stiffness values)
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3.8.2 Static Lateral Test Data 

The properties obtained, assumed and calculated from the vertical test data are applied to the 

static lateral tests.  Only the pertinent information required as input for the simulation is 

presented in the following tables. 

In order to present as much useful information for the vertical load test data available, 

and in as concise a manner as possible, Table 3.6 lists all the known and calculated parameters 

used for the simulation of experiments analyzed.  The presentation of information is similar to 

that in Table 3.5.  “Test Data” indicates information taken directly from the model test data files.  

The abbreviations used in the table are as follows,  

Abbreviation Definition 
  
FQ Bearing capacity reduction factor 
  
FS2 Reduced FSV (for reference), FS2 = FQ* FSV 
  
μ Coefficient of friction 
  
Qs Frictional sliding capacity 
  
ex Gazetas (1991) embedment factor, used to separate the contributions 

of friction and passive earth pressure on sliding stiffness 
  
Kfr Sliding stiffness due to base friction 
  
Kp Passive earth pressure coefficient 
  
Pp Passive earth pressure capacity 
  
KPEP Sliding stiffness due to embedment . 
  
id Initial displacement prior to start of model test 
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Table 3.6  Static lateral test data 

 

 

COMMON NOTES 
A. All references in “REF” column correspond to the references in Table 3.5. 
B. “STA-V” indicates corresponding vertical load test from Table 3.5 from which the footing geometry and Winkler Model Inputs are taken. 
C. All ultimate bearing capacities are from a vertical push test, unless otherwise indicated. 
D. Initial displacement determined from weight and initial stiffness, unless otherwise indicated. 
 
SPECIFIC NOTES 
1. Ultimate bearing capacity calculated from a back-calculated friction angle. 
2. Ultimate bearing capacity calculated from a “researcher-specific” recommended friction angle. 
3. Ultimate bearing capacity calculated from a “researcher-specific” recommended value of cohesion. 
4. Initial displacement determined from weight and initial stiffness plus the previous test history data file. 
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3.8.3 Dynamic Lateral Test Data 

The properties obtained, assumed, and calculated from the vertical test data are applied to the 

dynamic lateral tests.  Only the pertinent information required as input for the simulation is 

presented in the following tables. 

In order to present as much useful information for the vertical load test data available, 

and in as concise a manner as possible, Table 3.7 lists all the known and calculated parameters 

used for the simulation of experiments analyzed.  The presentation of information is similar to 

that in Table 3.5.  “Test Data” indicates information taken directly from the model test data files.   
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Table 3.7  Dynamic lateral test data 

 

 

COMMON NOTES 
A. All references in “REF” column correspond to the references in Table 3.5. 
B. “STA-V” indicates corresponding vertical load test from Table 3.5 from which the footing geometry and Winkler modelinputs are taken. 
C. All ultimate bearing capacities are from a vertical push test, unless otherwise indicated. 
D. Initial displacement determined from weight and initial stiffness, unless otherwise indicated. 
 
SPECIFIC NOTES 
1. Ultimate bearing capacity calculated from a back-calculated friction angle. 
2. Ultimate bearing capacity calculated from a “researcher-specific” recommended friction angle. 
3. Ultimate bearing capacity calculated from a “researcher-specific” recommended value of cohesion. 
4. Initial displacement determined from weight and initial stiffness plus the previous test history data file. 
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3.9 STRENGTH AND STIFFNESS UNCERTAINTY 

Strength and stiffness of the soil media are highly uncertain.  To estimate the uncertainty of 

strength characteristics, specifically the ultimate bearing capacity qult, reference is made to a 

literature review.  To estimate the uncertainty in stiffness, the model test data are investigated.  

All simulations of the model tests will include additional runs to incorporate the uncertainties of 

strength and stiffness discussed. 

3.9.1 Variation in Strength 

Strength properties of soil are highly uncertain; work by Jones et al. (2001) addresses the 

potential range of strength which may be anticipated, given the testing method and soil property 

under consideration.  Coefficient of variation (COV) values are provided to represent the 

uncertainty characteristics of density, plasticity, strength, consolidation and permeability, 

stiffness and damping. Each of these are broken down into either in-situ or laboratory 

measurements.  

For the sand tests considered in this report, ultimate strength is known from either a direct 

vertical bearing push test or calculated from the friction angle, which is recommended from 

triaxial test data in the corresponding test’s literature.  Therefore, the primary strength 

characteristic is the friction angle, since for tests where a vertical push test was performed, the 

friction angle can be back-calculated.  For clay tests, the undrained shear strength is either back-

calculated from a vertical push test or inferred from triaxial test data.  Therefore, the undrained 

shear strength is the primary strength characteristic.  Additionally, the COV given by Jones et al. 

(2001) for field-determined strength characteristics apply to tests such as the SPT and CPT.  

Therefore, since a vertical push test is most similar to a triaxial test, only COV’s associated with 

laboratory uncertainty will be considered.  Table 3.8 lists the most applicable uncertainty values 

associated with the strength characteristics corresponding to the type of soil considered. 
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Table 3.8  Uncertainty in strength characteristics (a) 

  Property 
Value 

Property 
Value COV COV 

Strength 
Characteristic Soil Type Range Mean Range (%) Mean (%) 

φ′  (deg) Sand 35–41 37.6 5–11 9 
uc  (kPa)(b) Clay, silt 15–363 276 11–49 22 

Notes: 
(a) Reference: Jones et al. (2001).  Data after Phoon and Kulhawy (1999). 
(b) Uncertainty based on data for unconsolidated undrained triaxial compression test. 
 

Using these COV values to calculate bearing capacity, applied to the φ′ and cu values, the 

final capacity varies by about a factor of two. This generally coincides with the recommendation 

in ATC-40 (1996), which states that a best estimate is first performed and subsequently this 

estimate is multiplied and divided by a factor of two to envelope a possible range of uncertainty.  

For example, using the soil properties and foundation measurements of KRR02-S21AE, gives qu 

= 989 kPa (FSV = 5.1).  Assuming + 11% on φ′, gives qu ranging from qu = 460 kPa (FSV = 2.4) 

to qu = 2260 kPa (FSV=11.7), which is about a factor of 2 from the first estimate. 

3.9.2 Variation in Stiffness 

3.9.2.1 Vertical Stiffness 

To study the range of potential vertical stiffness values for input into the BNWF mesh, a 

normalized parameter is calculated.  The normalized parameter is taken as the initial stiffness Kint 

determined based on appropriate compression test results presented in Figures 3.11–3.12, divided 

by an estimate of elastic stiffness KGAZ-EPRI as presented in Table 3.5.  Recall that this value is 

defined as the elastic stiffness after Gazetas (1991), using a shear modulus estimated from the 

EPRI manual (1990).  Since the vertical load tests do not have a factor of safety (each is tested to 

failure, FSV = 1), the stiffness ratio is plotted against the ultimate load normalized by an initial 

shear modulus, Gint, times the foundation base area. Here the initial shear modulus is back 

calculated using Gazetas’ equations from the known initial stiffness.  As shown in Figure 3.46 

the trend is well fit by a power regression (natural logarithm), and the actual stiffness appears to 

vary with the ultimate load, shear modulus, and dimensions of the footing.  For practical design, 
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if the ultimate load and shear modulus for a shallow foundation are known and the Gazetas 

stiffness is calculated, a more representative vertical stiffness could easily be interpreted from the 

graph.  It appears that the initial stiffness Kint varies from approximately 0.2–2 times the 

estimated elastic stiffness values KGAZ-EPRI. 
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Fig. 3.46  Comparison of observed initial stiffness to elastic half space stiffness 

Similarly plotted in Figure 3.47 is the normalized unloading stiffness versus the 

normalized ultimate load, again with values from the vertical load tests as presented in Table 3.5.  

Here, Gunl is the shear modulus back-calculated using the unloading stiffness and Gazetas’ 

equations.  A lognormal regression is applied and the regression equation presented in the 

legend.  It is interesting to note that when the capacity of the system is relatively large compared 

to the stiffness of the soil medium, the stiffness ratio nears unity.  This makes intuitive sense, 

since the recommendations by Gazetas (1991) are for an elastic system, and a system with a 

large reserve of capacity is more likely to behave elastically than a system close to failure.  It 

appears that the unloading stiffness varies across a larger range than the initial stiffness, from 

approximately 1–12 times the estimated elastic stiffness values.  However, in general a range of 

0.9–2.2 times the elastic stiffness captures 58% of the foundation capacities, with larger 

deviations for relatively smaller foundation capacities.  
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Fig. 3.47  Comparison of observed unloading stiffness divided by elastic stiffness vs. 

ultimate strength divided by the unloading shear modulus times the footing area 

3.9.2.2 Rotational Stiffness 

Unlike the vertical push test data, as shown previously in Figures 3.11–3.12, the rotational 

unloading stiffness tends to degrade with larger and larger magnitudes of rotation, as described 

in Phalen (2003).  Therefore, it makes sense to use an initial stiffness, as shown in Figure 3.48 

for both static and dynamic cases, from the moment-rotation response of the model.  The 

rotational stiffness is taken as the average of the stiffnesses (determined from experimental M-θ  

curves) in each direction for the initial cycles of rotation. 
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Fig. 3.48  Initial rotational stiffness: KRR02-S38, Station CE 

The rotational stiffness from the experimental results Kθ is compared to the analytical 

rotational stiffness suggested by Gazetas (1991), KGAZ-EPRI, in Figure 3.49.  In this case, the 

rotational stiffness ratio is plotted against the vertical factor of safety FSV. 
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Fig. 3.49  Rotational stiffness ratio vs. vertical factor of safety 
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The rotational stiffness determined from the M-θ plots is between 0.5–6 times that 

determined using Gazetas’ equations.  For lower FSV, the variation is larger.  However, for FSV  

> 4.0 the range of the rotational stiffness ratio is much less, varying between approximately 0.5–

1.5.  Overall, 57% of the cases can be bounded by 0.5–2.0 times Gazetas’ estimate. 

3.9.2.3 Horizontal Stiffness 

The normalized horizontal stiffness KX / KGAZ-EPRI of the system is shown versus the vertical 

factor of safety in Figure 3.50.  Similar to the rotational stiffness, the horizontal stiffness is taken 

as the average stiffness from initial cycles of loading. In this case, both the dynamic and static 

test data are included and the difference in stiffness between them is significant.  The dynamic 

stiffness is generally four times greater than the static stiffness for all factors of safety.  The static 

stiffness compares reasonably well with the recommendations of Gazetas (1991), being within a 

factor of two, and generally increasing for larger factors of safety.  The fact that the horizontal 

stiffness ratio KX / KGAZ-EPRI increases with increasing FSV  is interesting (all other trends 

opposite).  This points to the fact that systems with higher FSV  transfer load into the rotational 

degree of freedom, rather than into translation. 
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Fig. 3.50  Comparison of observed horizontal stiffness to continuum-based elastic stiffness 
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3.9.2.4 Summary of Stiffness Uncertainty 

From an investigation of the model test data, it was found that in general the uncertainty of 

stiffness is within a factor of two for vertical, horizontal, and rotational stiffness.  This compares 

with suggestions in ATC-40 (1996), which recommends a factor of 0.5–2.0 times to account  

for uncertainty in the soil medium.  However, larger deviations were observed in static vertical 

unloading stiffness for stiffer systems and dynamic sliding stiffness for higher FSV  

systems.  Additionally, all data sets had values beyond a factor of two.  



4 Simulation Results 

Using the recommendations of the previous chapters for BNWF parameters, simulations are 

performed with these considerations and compared to the experimental data.  Select figures 

which graphically compare the model response to the simulation response with respect to 

capacity, settlement, and horizontal sliding are presented in this chapter, and the remaining test 

simulations are presented in Appendix B for static tests and Appendix C for dynamic tests.  The 

quantitative comparisons are further discussed in this chapter. 

4.1 DECISION VARIABLES 

In order to quantify the results of the simulations, with respect to the large number of tests 

considered and the simulations using uncertainty in soil properties, four decision variables are 

considered that capture and compare the salient features of the model data to the simulation data.  

These values of interest are the maximum absolute positive |+Mmax| and maximum absolute 

negative moment |-Msim|, maximum settlement smax, and maximum absolute sliding displacement 

umax.  In order to compare the observed value to the simulation value for any of these four 

quantities, a decision variable is defined as the absolute value of the simulation divided by the 

observed experiment value, or |Xsim/Xexp| where X is the quantity of interest and the subscript 

indicates from simulation or experiment (e.g., |(+Mmax)sim/(+Mmax)exp| constitutes one decision 

variable). 

4.2 STATIC TESTS 

Example simulation results for experiments KRR02-S38 Station C East and SSG03 test 2, 

Station D are shown in Figure 4.1 and Figure 4.2, respectively.  These figures show (a) moment 

versus rotation, (b) settlement versus rotation, and (c) lateral base displacement versus pseudo 

time.  These comparisons show that the Winkler model does a reasonable job capturing the 
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results for these hysteretic features.  The shape, peaks, unloading, and reloading are reasonably 

captured for both of these example simulations.  Figure 4.1 does show some difficulty in 

following the full sliding displacement, e.g. at pseudo-time ~8000 seconds, the simulation begins 

to drift, whereas this was not observed in the experimental results.  Figure 4.2 shows a better 

comparison of overall sliding history; however, with a compromise in capturing peak moment 

(capacity) in the positive moment direction (+Mmax = 443 kN-m for the experiment and +Mmax = 

383 kN-m for the simulation).  However, the simulation is able to capture the pinched M-θ  

hysteresis in Figure 4.2(a) and the “U”-shaped settlement in Figure 4.2(b), even modeling the 

lifting above the ground surface (as positive s is observed).  
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Fig. 4.1  Comparison of simulation to slow cyclic experiment for (a) moment vs. rotation, 

(b) settlement vs. rotation, and (c) lateral base displacement vs. pseudo-time: test 

KRR02-S38 
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Fig. 4.2  Comparison of simulation to slow cyclic experiment for (a) moment vs. 

rotation, (b) settlement vs. rotation, and (c) lateral base displacement vs. 

pseudo-time: SSG03 test 2, Station D 

Additional static test simulations are presented in Appendix B, and decision variables of 

interest are plotted in Figure 4.3. In some cases, it was necessary to apply a factor to the input 

bearing capacity (FQ), vertical stiffness (FK), and/or sliding coefficient (Fu), as listed in Table 

3.6, in order to find good comparison with the experimental data.  It was determined that the 

most important feature to capture in the BNWF simulation was the moment capacity of the 

model experiment.  The second most important feature to capture was the maximum settlement.  

Once the moment and settlement were reasonably estimated in the BNWF model by applying 

factors to the capacity and stiffness input parameters, the sliding displacement was observed.  

The factors used are presented, thoroughly investigated, and interpreted in following sections.  

Once the BNWF simulations provided a reasonable comparison with model test data (best 
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estimate of input parameters), the values were adjusted to account for uncertainty in strength and 

stiffness in order to observe the possible range in decision variables.  Therefore in Figure 4.3, 

“System Capacity & Stiffness + 1σ” indicates the best estimate of input parameters for the 

BNWF model, with the affect of uncertainty creating a “stiff-strong” foundation case.  

Alternatively, System Capacity & Stiffness - 1σ” indicates the best estimate of input parameters 

for the BNWF model, with the affect of uncertainty creating the “flexible-weak” foundation 

case. 

Figure 4.3 shows good comparison of the baseline decision variables in general, and a 

conservative envelope when uncertainty in the predicted spring strength and stiffness is included 

through additional simulation runs.  This envelope appears to encompass both the (a) maximum 

positive and (b) maximum negative, though the baseline (using the measured values presented in 

Table 3.6) seems to slightly underestimate these values, varying from 0.8–1.2 times for +M and 

�M across the broad range of FSV considered.  

Maximum settlement is matched quite well in general, and including a lower bound of 

strength and stiffness can overestimate this value by approximately two to six times. 

Sliding displacement is generally underestimated, with a few large overestimations; 

approximately 5 times overestimated in select cases.  Approximately 45% of cases predict 

sliding displacement within one-half to two times the experimental value. 

Some special test cases that should be noted are the Weissing (1979) and Bartlett (1976) 

test series.  These model tests were fixed against horizontal movement, thus the model footing 

was allowed only to rotate and settle.  These simulations compare in general very well with the 

model tests.  

Additionally, an elastic horizontal spring was used for simulation of TRISEE Test 25, as 

inspection of the experimental results showed there are no permanent horizontal displacements 

accrued.  In this case, modeling the sliding component with an elastic spring gave a much better 

comparison of the simulation to the model test.   
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Fig. 4.3  Comparison variables vs. vertical factor of safety for static simulations 

4.3 DYNAMIC TESTS 

Example simulation results for experiments KRR01-D36 Station B West and KRR02-D5, 9-12 

test 2, Station B West are shown in Figures 4.4.and 4.5, respectively.  These figures show (a) 

moment versus rotation, (b) settlement versus rotation, and (c) lateral base displacement versus 

time.  These comparisons show that the Winkler model does a reasonable job capturing the 
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results for these hysteretic features.  The shape, peaks, unloading, and reloading are reasonably 

captured for both of these example simulations.  Again, the full sliding displacement is difficult 

to capture, as evident in Figure 4.4, where after approximately 22 seconds the model test begins 

to accrue permanent displacements while the simulation does not.  This trend is also observed in 

Figure 4.5.  However, both simulations indicate that permanent rotations are accrued, and in 

comparable magnitudes to the model tests.  Again, moment capacity is slightly underestimated, a 

seemingly computational expense of capturing realistic settlement in the Winkler framework. 
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Fig. 4.4  Comparison of simulation to dynamic cyclic experiment for (a) moment vs. 

rotation, (b) settlement vs. rotation, and (c) lateral base displacement vs. time: 

test KRR01-D36 
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Fig. 4.5  Comparison of simulation to dynamic cyclic experiment for (a) moment vs. 

rotation, (b) settlement vs. rotation, and (c) lateral base displacement vs. time: 

test KRR02-D5 

The procedure of additional modeling of uncertainty in the soil input parameters, as 

discussed in the cases of static simulations, is similarly followed for the dynamic simulations 

once the best model estimate is made.  Figure 4.6 shows good comparison of the baseline 

decision variables in general, and a conservative envelope when uncertainty in the predicted 

spring strength and stiffness is included.  

For vertical factors of safety less than ten, both the (a) maximum positive and (b) 

maximum negative moment are captured within the results produced by the envelope of 

uncertainty associated with strength and stiffness.  An increase or decrease in strength and 

stiffness for footings with vertical factor of safety greater than ten (exclusively the TRISEE test 
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data by Negro et al. 1998) has little effect on the simulation results and underestimates the 

observed values by approximately a factor of two. 

Maximum settlement is matched fairly well in general, and including a lower bound of 

strength and stiffness can overestimate this value by approximately two times. 

Sliding displacement is generally underestimated, with approximately 55 % of the cases 

between 0.25–1 times the experimental value. 
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Fig. 4.6  Decision variables vs. vertical factor of safety for dynamic simulations 
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4.4 DISCUSSION OF RESULTS 

Running a BNWF simulation with the recommended Winkler parameters can provide reasonable 

estimates of moment, settlement, and sliding if the uncertainty in soil properties is included to 

bound the estimate.  The Winkler parameters for horizontal and vertical springs discussed 

previously and recommended are listed in Table 4.1. 

Table 4.1  Recommended BNWF parameters 

BNWF parameter Section value 
Elastic vertical stiffness, Kz: 
Elastic Unloading Stiffness is 
suggested, Kunl (Normalized by 
Gazetas, 1991 with properties 
from EPRI, 1990) 
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Figure 4.7 shows a graphical representation of the BNWF model and the parameters 

investigated corresponding to Table 4.1.   

Vertical
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Fig. 4.7  Graphical representation BNWF model and associated study parameters 

With regard to the moment capacity of the shallow foundation systems investigated, the 

BNWF model estimates, when the soil uncertainty in soil properties is considered, a comparable 

maximum absolute positive moment and maximum absolute negative moment for both static and 

dynamic cases; however, these targets are underestimated for FSv greater than 12 in the dynamic 

case.  The baseline (using the average value) seems to slightly underestimate the system moment 

capacity.  Yan and Martin (1999) found similar results modeling the tests by Bartlett (1976), but 

using a hypoplasticity model in the framework of a half-space continuum on the FLAC platform. 

Settlement is bound by approximately one-half to three times.  Again, Martin (1999) also 

found that settlement was overestimated by approximately 1.3 to 5 times, using a hypoplasticity 

model and 2-D elements.  Since the quantitative results compare reasonably well, an engineer 

could use these recommendations and find a solution which agrees fairly well with a more 

rigorous approach. 

Maximum horizontal displacement is generally predicted within 0.1 (or smaller) to 1 

times the model test observation, though considering the uncertainty of the soil properties 

produced values at approximately 1.6 times in some static cases and up to approximately 5 times 

in some dynamic cases. 
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The energy-dissipation capabilities of the BNWF simulations are apparent in the 

permanent settlements accrued, the permanent horizontal displacements, and in the nonlinear 

behavior of the moment-rotation plots.  These three characteristics are important in design, with 

respect to the (reduced) loads transmitted to a superstructure and at a specific magnitude of 

permanent displacement.  This global behavior is introduced into the system by the individual 

Winkler spring components, which have nonlinear, hysteretic properties.  

4.4.1 Comparison of Bearing Capacity Reduction to Seismic Bearing Capacity 

The mechanism controlling the bearing capacity of a shallow foundation resting on a frictional 

and cohesive material is generally accepted as some form of a failure surface that transfers 

frictional, cohesive, and normal forces to the adjacent soil.  One possible reduction in the bearing 

capacity of the footing, in terms of this failure surface, is due to eccentricity of the loading.  

Given some rotation and uplift to the footing, the bearing area is reduced and therefore the 

failure surface is reduced, such that the ultimate bearing capacity is reduced for that specific 

amount of uplift.  The BNWF model should capture this behavior naturally, as load is 

redistributed away from springs which have “gapped” in uplift and therefore provide no reaction.   

Recent analytical solutions propose various methods that account for a footing’s reduced 

vertical bearing capacity due to seismic vertical and lateral accelerations.  From a mechanistic 

viewpoint, horizontal and vertical accelerations place additional demands on the failure plane 

below the footing, thereby reducing the capacity reserved for purely vertical loads, as shown in 

Figure 4.8.  Recall that for both the static and dynamic BNWF simulations, in some cases it was 

necessary to introduce a bearing capacity factor, FQ, in order to allow a better agreement with 

the experimental results with respect to maximum moment and settlement.  In cases with large 

vertical factors of safety, the bearing capacity from vertical push tests was too large for the 

model to behave plastically.   

Because the Winkler model represents the vertical bearing capacity calculated by failure 

plane theory (i.e., Terzaghi 1943), it is plausible to make a comparison between the bearing 

factor FQ used in this study to “best fit” some cases to the seismic bearing capacity presented in 

resent papers.  Two methods to estimate seismic bearing capacity are investigated; the methods 

of Paolucci and Pecker (1997) and Richards et al. (1993), briefly discussed herein. 
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4.4.1.1 Seismic Bearing Capacity (Richards, Elms, Budhu) 

Richards, Elms, and Budhu (1993) propose a model based on Coulomb passive and active earth 

pressures.  Prandtl first proposed the failure surface, shown in Figure 4.8, described by an active 

and passive soil region at the extreme sides of the foundation and a transition zone in between.  

An approximation to this surface is made using two smaller wedges which meet at a transition 

line.  Using a Coulomb failure mechanism, which transfers shear force between the two wedges, 

seismic bearing capacity factors can be determined in terms of an earth pressure coefficient.   

 

 
Fig. 4.8  Prandtl failure surface, with proposed simplification using Coulomb failure 

mechanism (after Richards et al. 1997) 
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The seismic bearing capacity is given by the following: 

Seismic Bearing Capacity EqEcEE BNdNcNq γγγ
2
1++=  (4.51)

Seismic Bearing Capacity 
Factor pEqE KeeN φπφπ φπ ′′ =

′
+= tan2tan )

24
(tan  (4.52)

 φ′−= cot)1( qEcE NN  (4.53)
 φγ ′+= tan)1(2 qEE NN  (4.54)
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where δ is taken as φ’/2, ( )( )vh kk −= − 1tan 1θ , and hk  and vk  are the horizontal and vertical 

acceleration coefficients, respectively.  For all analyses, vk  is assumed to be zero. 

For the simulation data available, the ultimate bearing capacity is known, so the seismic 

bearing capacity is taken as the known bearing capacity times the ratio of the seismic bearing 

capacity for the given horizontal acceleration coefficient to the seismic bearing capacity for zero 

horizontal acceleration (maximum). 

exp
)(

V
V

V
V

MAXcalc

calc
seismic =  (4.56)

4.4.1.2 Seismic Bearing Capacity (Paolucci and Pecker) 

Paolucci and Pecker (1997) propose a kinematic approach to reduce the known vertical bearing 

capacity based on a horizontal load applied, the horizontal load inclination and the load 

eccentricity.  This is also based on the Prandtl type failure of a soil wedge beneath the 

foundation; useful formula are determined which match the kinematic approach.  

Total Bearing Capacity Reduction eih vvvv =  (4.57)
Bearing Capacity Reduction due to Horizontal Load 3)

85.0
1( h

h
k

v −=  
(4.58)

Bearing Capacity Reduction due to Load Inclination   
for frictional soils: 35.0)

tan
1(

φ
h

i
k

v −=  
(4.59)

or, for cohesive soils (Pecker, 1997):

u
hi c

Bkv γ=    
(4.60)

Bearing Capacity Reduction due to Load Eccentricity 8.1)
2

1(
B
lk

v h
e −=  

(4.61)
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where =hk pseudo-static seismic coefficient   
 

Paolucci and Pecker (1997) find that good results are obtained if the effect of load 

eccentricity is neglected ( 1=ev ), so only the effects of horizontal load and load inclination will 

be used in the simulations. 

Figure 4.9 presents the comparison of the bearing capacity factor FQ used to best-fit 

static and dynamic model simulations to the seismic reductions after Richards et al. (1993) and 

Paolucci and Pecker (1997).  The bearing reduction is taken as Vcalc / Vcalc(MAX) for the method of 

Richards et al. (1993), and v for the method of Paolucci and Pecker (1997).  The horizontal 

acceleration coefficient for these tests is calculated using the maximum horizontal force from the 

experimental test data. 

From Figure 4.9, it is evident that the seismic bearing reduction after Richards et al. 

(1993) is an upper bound, and that the seismic bearing reduction after Paolucci and Pecker 

(1997) is a lower bound.  For static tests in general, it appears that the bearing capacity reduction 

required in the simulations compares with the seismic bearing capacity reduction as follows: (a) 

for vertical factors of safety less than four, no reduction is required; (b) for 4<FSV <12 an 

average of the upper and lower bounds compares well; and (c) for 12<FSV  the lower bound 

compares best.  The tests that required no bearing capacity reduction were KRR01 FE S18, 

KRR03 CE S18, SSG03 E test 4, Bartlett test 3.4–12 and Weissing test 5.11.  A general 

observation for modeling of static tests using a BNWF model is that a greater reduction in 

bearing capacity is required with larger factors of safety; generally an average of the upper and 

lower bounds of seismic bearing capacity reduction for FSv less than 12, and an increasingly 

lower bound for higher factors of safety.    
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Fig. 4.9  Comparison of bearing capacity reduction FQ to seismic reduction for (a) static 

simulations and (b) dynamic simulations 

 
For dynamic tests in general, it appears that the bearing capacity reduction required in the 

simulations compares with the seismic bearing capacity reduction as follows: (a) for vertical 

factors of safety less than four, no reduction is required; (b) for 4<FSV <6 an average of the upper 

and lower bounds compares well; and (c) for 6<FSV  the lower bound compares best.  Therefore, 

a general observation for modeling of dynamic tests using a BNWF model is that a greater 

reduction in bearing capacity is required with larger factors of safety; generally an average of the 

upper and lower bound of seismic bearing capacity for FSv less than six, and an increasingly 

lower bound for higher factors of safety.    



 116

The required seismic bearing capacity reductions, which were found to give the best 

results, appeared to vary with the vertical factor of safety, and are summarized in Tables 4.2–4.3. 

Table 4.2  Bearing capacity reduction for static simulations 

FSv range Bearing Capacity 
Reduction1 

FSv < 4 none (FQ ~ 1) 
4 < FSv < 12 average (FQ ~ 0.4 to 0.6) 
12 < FSv maximum (FQ ~ 0.1 to 0.4) 

 

Table 4.3  Bearing capacity reduction for dynamic simulations 

FSv range Bearing Capacity 
Reduction1 

FSv < 4 none (FQ ~ 1) 
4 < FSv < 6 average (FQ ~ 0.4 to 0.7) 
6 < FSv  maximum (FQ ~ 0.1 to 0.4) 

 
Note (1): indicates average, minimum, or maximum bearing capacity reduction according 

to the methods of Richards et al. (1993) and Paolucci and Pecker (1997). 

4.4.2 Comparison of Stiffness and Sliding Factors 

In order to get a best-fit solution for the model tests investigated, a factor FK in some cases was 

applied to the vertical subgrade stiffnesses km and ke, and / or a factor Fu was applied to the 

horizontal sliding coefficient μ.  The values of these two factors are presented in Tables 3.6–3.7, 

for static and dynamic tests, respectively, and below in Figures 4.10 (a) and (b) versus vertical 

factor of safety.  It can be seen that the required stiffness factor varied in general between a value 

of 2–0.25 for static and dynamic cases.  The simulation was more sensitive to smaller changes in 

the sliding coefficient, which varied between 0.2–1.0 for static cases, and 0.75–1.4 for dynamic 

cases. 
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Fig. 4.10  Comparison of (a) stiffness factor FK and (b) sliding coefficient factor Fu vs. 

vertical factor of safety, required for best-fit solution 



5 Investigation into the Effects of Uplift on 
Simplified Seismic Design Procedures   

5.1 INTRODUCTION 

It is well established that soil yielding beneath foundations can be an effective energy dissipation 

mechanism; however, this benefit may come with the expected costs of excessive transient and 

permanent deformations.  To realistically account for the systems’ performance, these 

consequences of permanent settlement and rotation must be reasonably estimated and accounted 

for.  A practical example, where the propagation of the effects of a rocking foundation-

superstructure becomes prominent is shown in Figure 5.1. The shearwall is typically stiffer than 

the frame and hence tends to attract load if the subgrade is stiff, while the more flexible frame 

may be damaged by large displacements due to a more compliant subgrade. Thus, selection of 

the foundation strength and stiffness is important to determine which structural component is the 

“weakest-link” in the load-path. Incorporating a bed of Winkler foundation springs below each 

of these footings and modeling the system, as a whole, would provide a reasonable account for 

the demands into both the frame and the shearwall. In recognition of this, present design 

guidelines such as ATC-40 (1996) and FEMA 356 (2000) recommend using such a Winkler-

based model to represent the stiffness of the soil-structure interface, and provide methods to 

estimate stiffness of the individual vertical springs. Moreover, a nonlinear Winkler-based model 

can be used to more accurately conduct a performance-based design (PBD), through 

incorporation of the shallow foundation, as both the benefits and consequences of allowing the 

structure to rock can be reasonably represented. However, in design practice, more simplified 

procedures are often desired, without fully modeling some aspects of the system (such as the 

foundation). 
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(a) (b) 
Fig. 5.1  Example components of a combined structural system, where compliance at the 

foundation level is allowed for (a) a stiff and strong foundation and (b) a soft and 

flexible foundation, below the rocking superstructure (Courtesy of ATC-40, 1996) 

To evaluate the accuracy of simplified design procedures, in this report, simulation 

results considering foundation rotation and possible uplift are compared with current design 

methods used to account for the increase in displacement of an equivalent single-degree-of-

freedom (SDOF) system when reduced design strength is provided. The basis for the approach is 

the estimation of a displacement amplification factor C1, for a system with a prescribed design 

strength ratio R (C1-R estimations).  

5.2 SEISMIC DISPLACEMENT DEMAND ESTIMATION METHODS 

There are a variety of approaches suggested in design codes for estimating seismic displacement 

demands.  Design documents such as FEMA 356 (2000), ATC-40 (1996), and UBC-97 (ICBO 

1997) suggest procedures ranging from simple elastic static analyses to nonlinear dynamic 

analyses.  Four analysis methods suggested in current codes for the design or rehabilitation of a 

building include the linear static procedure (LSP), the capacity spectrum approach (CSA), the 

nonlinear static procedure (NSP), and the nonlinear dynamic procedure (NDP) (after FEMA 356, 

2000).  Linear refers to a linear elastic system, and nonlinear refers to systems, which behave 

nonlinearly or exhibit inelastic response.  A static procedure considers response (loads and 

displacements) from an applied set of monotonic loads or a target floor displacement.  A 
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dynamic procedure may be either linear or nonlinear and includes a full time-history analysis of 

a representative analytical model considering earthquake motion input.   

To apply the nonlinear static procedure, a target displacement at each floor, δt, may be 

calculated: 

 g
T

SACCCC e
t 2

2

3210 4π
δ =  (5.1) 

where:  

0C  = Modification factor to relate spectral displacement of an equivalent SDOF system 
to the roof displacement of the building MDOF system 

1C  = Modification factor to relate expected maximum inelastic displacements to 
displacements calculated for linear elastic response 

 = 1.0 for Se TT ≥  
 = ( ) RTTR eS /]/10.1[ −+  for Se TT <  
 = 1.5 maximum 

eT  = Effective fundamental period of the building 

ST  = Characteristic period of the response spectrum 
R  = Ratio of elastic strength demand to calculated yield strength 

2C  = Modification factor to represent the effects of pinched hysteresis shape, stiffness 
degradation, and strength deterioration on maximum displacement response (equal 
to 1 for linear procedure) 

3C  = Modification factor to represent increased displacements due to dynamic Δ−P  
effects 

SA = Response Spectrum acceleration at the fundamental period and damping ratio of 
the building 

 

The target displacement at each floor is then used to calculate the resulting forces in the 

component members, and acceptance or rejection of the design or retrofit results based on the 

acceptance criteria of the component as a function of the designated target building performance 

level. 

5.2.1 Previous Investigations into Code Prescriptions 

There have been a number of investigations evaluating the applicability of simplified-spectral-

based design procedures, specifically force reduction-displacement ductility (R-μΔ) relation 

methods. Such works have involved considering the response of systems to pulse-type 

excitations [Veletsos and Newmark (1960); Veletsos and Newmark (1964); and Cuesta and 

Aschheim (2000, 2001a–c)], elasto-plastic systems [Newmark and Hall (1973, 1982); Veletsos et 
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al. (1965); Veletsos (1969); Veletsos and Vann (1971); and Lai and Biggs (1980)], degrading 

systems [Riddell and Newmark (1979); Al-Sulaimani and Roessett (1984); Riddell et al. (1989); 

and Vidic et al. (1994)], and softening systems (Hidalgo and Arias 1990), and other important 

structural behavioral facets deemed to potentially affect the accuracy of these estimations. These 

studies have improved upon such factors, providing semi-empirically derived values to support 

increased accuracy [Elghadamsi and Mohraz (1987); Peng et al. (1988); Takada et al. (1988); 

Nassar and Krawinkler (1991); Miranda (1993); Riddel (1995); Ordaz and Perez-Rocha (1998) 

and Chopra and Goel (1999)].  To refine the accuracy of the analysis, the force reduction may be 

presented as a function of ductility, damping, stiffness characteristics, natural and characteristic 

period and/or site soil-profile type. Miranda and Bertero (1994) provide a review of the evolution 

of the strength reduction factor R from Newmark and Hall (1973) to the publication date. More 

recent studies include work by Cuesta et al. (2003), who investigate the relationship between R 

as a function of μΔ and the ratio T/TS, where μΔ is the displacement ductility demand of the 

system, T is the natural period of the system and TS is the characteristic ground motion period.  

Cuesta et al. (2003) found that both the FEMA and ATC methods were appropriate for models 

with significant stiffness degradation. Fajfar (2000) describes the N2-method, where expected 

inelastic displacements of an equivalent SDOF system are calculated using inelastic spectra as a 

function of ductility.  The method presented in this study is fundamentally different than the N2 

capacity spectrum method as described in Fajfar (2000) in that elastic spectra are used to 

estimate inelastic displacements as a function of both R and the relative periods of the SDOF and 

the demand spectrum, similar to current code recommendations, and additionally attempt to 

include the effect of soil-structure interaction.   

Relative to rocking-spectrum analyses, Makris and Konstantinidis (2002) find that 

rocking structures should not be replaced with SDOF simplifications because of the nonlinear 

response of the soil-structure interaction and its sensitivity to the input demand.  However, the 

study presented in this report attempts to incorporate the sensitivity of the Winkler model to the 

characteristics of the input ground motion through (a) the relative magnitude of the soil-structure 

systems’ natural period to the ground motion characteristic period and (b) the relative magnitude 

of the spectral acceleration of the elastic rocking system to the elastic rocking system with uplift 

allowed. Therefore, the coupling of demand and response observed by Makris and Konstantinidis 

(2002), which is lacking in current simplified design approaches and the basis of the argument to 

abandon simplified methods, is accounted for here. 
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5.3 SCOPE OF THIS STUDY 

The approach in current design codes allows one to compromise between strength and ductility 

while still attempting to control performance targets, through a displacement-based design 

procedure. An accurate assessment of these strength and displacement values when evaluating a 

building for rehabilitation becomes increasingly important due to cost-performance trade-offs.  

Often the advantage of allowing energy dissipation through the foundation system is of great 

interest in these situations.  However, if a simplified analysis procedure is to be performed, an 

evaluation of the accuracy of these procedures is warranted.  Therefore, in this report a suite of 

nonlinear dynamic analyses are performed using a Winkler model with a simple lumped mass 

attached, considering two foundation conditions: (1) elastic springs (rocking system) and (2) 

elastic springs allowed to uplift (rocking-uplifting system).  Nonlinearity in the analysis is 

introduced through possible uplift for case two.  Results from these analyses are compared with 

design code relations for the strength (R) factors and displacement (C1) factors to be used in a 

simplified analysis method.  All analyses are performed in the OpenSees (Open System for 

Earthquake Engineering Simulation) platform, developed by the Pacific Earthquake Engineering 

Research Center (PEER) at the University of California, Berkeley. 

5.3.1 Consistent Definitions C1-R 

Consistent definitions for the quantities C1 and R must be adopted in the context of the rocking 

structural system to allow proper comparison with design approaches. In its most basic 

definition, the R factor is the ratio of elastic demand to the specified yield force in the nonlinear 

system: 

 
yH

SAmgR =  (5.2) 

where: 

SA = Response spectrum acceleration at the fundamental period and damping 
ratio of the building 

m = Seismic mass 
g  = Acceleration due to gravity 
Hy = Lateral yield strength 
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In this work, the yield force for the analysis of structures supported on rocking-uplift 

foundations (case 2) is defined as the force applied at the top of the superstructure, which just 

causes separation of the soil-foundation interface, or uplift. The conventional definition of Hy is 

the intersection between the pre-yield and post-yield stiffness of the pushover analysis, 

commonly calculated by an equivalent-area bilinear response.  This definition can be applied in 

the current analysis, where the pre-yield and post-yield stiffnesses are defined at the onset of 

uplift.  

For this study, a range of R factors is prescribed and, considering the elastic state of 

stress, a corresponding vertical factor of safety FSq against bearing capacity mobilization can be 

calculated (e.g., Allotey and Naggar 2003).  This will define the limits of validity for the current 

study, such that the soil structure interaction will behave elastically even while uplift may occur.  

Consider the vertical factor of safety FSv, under a purely vertical load.  As a footing rotates, the 

bearing capacity at an extreme end will increase.  A variable FSq can be defined as the ultimate 

bearing capacity divided by the maximum bearing pressure beneath the footing (at an extreme 

end).  Note that under a purely vertical load, FSq is equal to FSV, but FSq decreases as lateral load 

is delivered to a system and the footing rotates.  This relationship is described graphically in 

Figure 5.2, and defines the limits of validity of the current study.  For a lateral force “R” times 

the yield force Hy (force required to cause incipient uplift), the subgrade will remain elastic for 

footings with a sufficient FSV such that the curve does not fall below FSq=1.0. Note that typical 

“R” values fall in the range of FSV found in conventional design practice, which is approximately 

FSV = 3-4. 
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Fig. 5.2  Parameter range for an assumption of a foundation remaining in the elastic range 
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The second quantity under investigation is 1C , the ratio of displacement demand on an 

elastic system to the displacement demand on the nonlinear system.  1C  is commonly defined as 

a function of the natural period of the structure.  The analysis presented is an attempt to verify 

the current code C1-R functions for a range of periods.   

From a numerical standpoint, a robust approach to the problem is to define structures that 

have an exact R  over a range of periods, which are subject to a large collection of earthquakes.  

The structures defined for this task will be simple in nature; a lumped mass supported by an 

elastic column and connected to an elastic foundation on an elastic Winkler subgrade.  The 

definition of R over a range of periods and for this simple system must be consistently defined.   

Settlement of an elastic foundation of length L, superstructure weight W, and global soil 

vertical stiffness KZ may be determined as: 

 
ZK

Ws =  (5.3) 

Since in this study the yield point of the system is defined as the point of uplift, this state 

must be well defined.  Psycharis (1981, 1983) gives the critical rotation at incipient uplift, shown 

in Figure 5.3: 

 ( )
L
s

cr
2tan =θ  (5.4) 

This assumes the structure above is stable with respect to overturning. Thus, the soil 

springs are stiff enough to prevent instability due to overturning. 

 

Fig. 5.3  Notation to define critical rotation for an elastic subgrade modulus 

The critical moment applied to the base that would just cause uplift, Mcr, is found by 

summing the moments about the center of the footing.  The (uniform) vertical displacement at 
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any point is s, and the additional contribution to this value due to rotation is labeled sθ(x).  Since 

force is a function of displacement via the vertical stiffness of the system, the critical moment is 

found by integrating the displacements as a function of distance from the center of the footing, 

multiplied by stiffness per unit length of footing.    

 ( )( )∫− += 2

2

L

L
Z

cr xdx
L

KxssM θ  (5.5) 

The critical moment can then be simplified to the “kern” assumption: 

 ( )
6

tan
12

2 WLLKM cr
Z

cr == θ  (5.6) 

For these analyses, the beam-column stiffness is taken as sufficiently large, as envisioned 

for a stiff shear wall. It is therefore reasonable to neglect any contribution of the shear wall to the 

horizontal displacement of the system, since the variable of interest is foundation rocking and 

uplift.  The assumption of a rigid beam (foundation) and column (shearwall) in the following 

derivations is accurate to within approximately 0.1% error for even the highest bound of soil 

stiffnesses given a concrete shear wall as the dominant superstructure element.  However, to 

avoid any contribution of superstructure flexibility to the flexibility of the entire system in 

general applications, the “beam” element should be sufficiently stiff such that  Eb*Ib/(Es*Is) > 

50 and the “column” element should be sufficiently stiff such that  Ec*Ic/(Es*Is) > 100, where E 

and I are elastic modulus and moment of inertia for the beam (subscript “b”), column (subscript 

“c”), and subgrade (subscript “s”). 

Continuing with the rigid beam-column assumption, knowing Mcr and θcr at uplift, the 

two final factors needed to solve for a set of lumped mass models with identical subgrade 

reactions, which will give a constant line of R for a range of periods, is the magnitude of the 

lumped mass and the distance “a” from the foundation to the lumped mass (i.e., the lever arm).  

Solving for Hy from Equation 5.2 and substituting Mcr gives the moment arm or effective height 

“h” to the center of mass at the top of the structure: 

 
SA

RLh
6

=  (5.7) 

Given the range of periods through which the line of constant R will sweep, and the range 

of h’s previously defined, a range of lumped masses can be calculated. The elastic period of the 

structure can be defined using the horizontal stiffness of the system: 
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Substituting (a) the lateral stiffness and (b) the displacement of the top of the structure as 

a function of rotation into (c) the definition of the natural period a structure and solving for mass 

gives: 
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Since the natural period is a function of mass and stiffness, and the R-value is a function 

of SA and the effective height “h”; then for a given R-value with a fixed subgrade modulus and 

foundation aspect ratio, but over a range of natural periods and further a group of earthquakes, 

each point on a graph of 1C  versus T will have a different mass and “h.” 

The rocking foundation has several components of displacement that contribute to the 

overall horizontal displacement of the center of mass.  The total horizontal displacement of the 

system is the sum of foundation rotation and column flexibility.   

5.3.2 Ground Motions Selected 

A suite of ground motions was chosen to represent a wide range of earthquake characteristics for 

use as input to the model.  In this work, the simulations use the longitudinal components of the 

19 unscaled time histories described by Somerville and Collins (2002).  Table 5.1 lists the 

characteristics of interest for the longitudinal directions of the ground motions. These ground 

motions represent a broad range of peak ground accelerations (PGA), peak ground velocities 

(PGV) and peak ground displacements (PGD) levels.  PGA levels range from 0.13 to 0.75 g’s, 

PGV ranges from 9.1 to 84.8 cm/s, and PGD ranges from 1.2 to 18.7 cm. 

The characteristic period TS in this work is defined as the intersection of the constant 

acceleration and constant velocity region of the time history (Newmark and Hall 1987). To 

calculate TS for each motion, a mean fit through the values of pseudo-acceleration, pseudo-

velocity and pseudo-displacement was performed.  The range of characteristic periods for these 

motions is TS = 0.26 to 0.88 seconds. 

Figure 5.4 (a) and (b) shows the mean (μ) and mean ± standard deviation (σ) for all 19 

ground motions (longitudinal component) of the spectral acceleration and spectral displacement 
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versus period, respectively. As evident in the μ ± σ plots, the suite of motions selected have 

broad spectral characteristics. Figures 5.4 (c) and (d) shows the mean (μ) and mean ± standard 

deviation, normalized by the mean, for all 19 ground motions (longitudinal component) of the 

spectral acceleration and spectral displacement versus period, respectively.   These plots further 

substantiate the broad spectral characteristics of the motions selected. 

Table 5.1  Ground motions used in this study (longitudinal component) 

EQ Station Name Dist5 PGA PGV PGD TS 
Note   (km) (g) (cm/s) (cm) (sec) 
1 Palm Springs Airport NPS_plma 9.6 0.204 12.1 2.4 0.26 
2 Canoga Park, Topanga Canyon Blvd NR_cnpk 17.7 0.331 31.6 12.6 0.35 
2 Encino, Ventura Blvd #1 NR_env1 17.7 0.503 56.6 16.0 0.45 
2 Encino, Ventura Blvd #9 NR_env9 17.9 0.247 31.3 8.1 0.48 
2 North Hollywood, Lankershim Blvd #1 NR_nhl2 18.4 0.185 27.6 5.5 0.49 
2 Arleta, Nordhoff Fire Station NR_nord 9.4 0.344 40.6 14.6 0.64 
2 Northridge, Roscoe #1 NR_nrr1 13.7 0.390 37.4 15.8 0.56 
2 Sun Valley, 13248 Roscoe Blvd NR_rosc 10.8 0.444 38.2 10.0 0.88 
2 Sepulveda VA Hospital NR_spva 9.2 0.753 84.8 18.7 0.58 
2 Van Nuys, Sherman Way #1 NR_vns1 12.8 0.375 37.7 9.2 0.68 
2 Van Nuys, Sherman Circle #1 NR_vnsc 12.8 0.474 31.4 7.6 0.52 
2 Van Nuys -- 7-story hotel NR_vnuy 11.3 0.469 54.4 11.3 0.42 
2 Woodland Hills, Oxnard Street #4 NR_whox 20 0.318 41.8 12.3 0.39 
3 Los Angeles, 14724 Ventura Blvd SF_253 16.3 0.203 21.5 12.3 0.34 
3 Los Angeles, 15910 Ventura Blvd SF_461 16.2 0.151 17.2 8.4 0.76 
3 Los Angeles, 15250 Ventura Blvd SF_466 16.4 0.164 24.1 11.5 0.48 
3 Glendale, Muni Bldg, 633 E Broadway SF_glen 18.8 0.227 32.0 10.0 0.83 
3 Van Nuys -- 7-story hotel SF_vnuy 9.5 0.134 23.3 14.9 0.87 
4 Caltech, Braun Athletic Building WH_athl 16.6 0.149 9.1 1.2 0.41 

 

Notes: 

(1) Earthquake Location and Date 1: North Palm Springs, July 8, 1986 
(2) Earthquake Location and Date 2: Northridge, January 17, 1994 
(3) Earthquake Location and Date 3: San Fernando, February 9, 1971 
(4) Earthquake Location and Date 4: Whittier Narrows, October 1, 1987 
(5) Distance is defined as the closest surface distance from the fault rupture to the 

ground motion recording station. 
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Fig. 5.4  Mean (μ) + standard deviation (σ) of (a) spectral acceleration (SA) vs. period and 

(b) spectral displacement (SD) vs. period for the longitudinal component of the 

ground motions considered in this study.  Also shown are the mean (μ) + standard 

deviation (σ) normalized by the mean for (c) spectral acceleration (SA) vs. period 

and (d) spectral displacement (SD) vs. period for the longitudinal component of 

the ground motions considered in this study. 

5.4 ANALYSIS RESULTS AND DISCUSSION 

Numerical models were constructed considering a range of natural periods (T = 0.1 to 2.0 

seconds, at increments of ΔT = 0.2 s) and a range of design R-values (R = 1.5, 2.0, 4.0 and 8.0).  

Each of these models was subjected to the ground motions listed in Table 5.1.  Simulation results 

for these cases are presented in Figure 5.5, for the condition of R = 4.0.  Figure 5.5 shows C1 

values versus normalized period T/TS, where Ts is the characteristic period noted in Table 5.1.  

The displacement ratio C1 in this study is defined as: 

 
elastic

nonlinearC
Δ

Δ
=1  (5.10) 
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where Δnonlinear is that calculated for the system allowed to uplift, while Δelastic results 

from the system where uplift is not allowed.  For comparison, the FEMA 356 recommended 

value for C1, as well as a mean fit to the data is shown.  ATC-40 suggests a limit of C1 = 2.0  at 

T < 0.1 seconds, whereas FEMA 356 suggests a limit of C1 = 1.5 with the intersection of the 

curve defined in Equation 5.1.  The nonlinear regression to the data is taken as the mean (C1-ave) 

for T/TS < 0.5, and where STT > 0.5: 

 
)5.0(
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=
ST

TB
Ae

C  (5.11) 

In order to best fit the data and meet the average value at T/TS = 0.5, 11

1

−=
−aveC

A  and B 

is varied such that the correlation coefficient between the fit curve and the data points is a 

maximum. 
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Fig. 5.5  C1 vs. normalized period for R equal to 4.0 (six data points above C1 = 20) 

Figure 5.5 illustrates a large range for the calculated values of C1 for R = 4.0, though a 

discernible trend is evident.  At small period ratios, approximately less than 1.0, C1 is very large.  

At larger values, C1 converges to unity as recognized in design codes.  This is consistent with the 

long period equal displacement principle. Results for other simulations indicate that at smaller R-

values (R = 1.5), current code recommendations result in a conservative estimate of C1 for most 

short period cases (T/TS < 1.0).  However, as R is increased (R = 2.0, 4.0 or 8.0), the 

recommendations suggested in current code documentation tend to be highly unconservative, 
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indicating rocking induced transient displacement contributions may be very large.  Overall, the 

results indicate that the current displacement coefficient method (based on recommendations for 

C1-R relations) may be unreasonable for estimating rocking induced displacements.  An 

inspection of the data may help assist in alternative forms of C1-R relations for estimating these 

inelastic displacement contributions.   

Although binning the data by basic ground motion characteristics such as PGA or PGV 

does not reveal any consistent trends between varying values of R, the data appear to be sensitive 

to the ratio of the spectral accelerations determined at the periods of the nonlinear and elastic 

systems, termed SAnonlinear and SAelastic, respectively.  The term “nonlinear” is used to differentiate 

the elastic foundation allowed to uplift from the elastic system not allowed to uplift.  From the 

viewpoint of a “pushover” analysis, the load versus displacement curve of the elastic system not 

allowed to uplift is a straight line, while the elastic system allowed to uplift is linear until uplift is 

reached, after which the stiffness degrades (note that no hysteresis will be observed with 

repeated loading since the Winkler springs are elastic).   The spectral acceleration for each 

“elastic” and “nonlinear” system with a defined period T is defined as the peak horizontal 

acceleration from an input ground motion. A normalizing parameter is defined as a function of 

these two variables; elasticnonlinearSA SASA=ψ .  The data are binned into three groups of equal 

number of samples, where the first group all have values of  SAψ  < X1, the second group X1 < 

SAψ  < X2, and the third group SAψ  > X2.  The values of X1 and X2, as well as the maximum and 

minimum values of SAψ , for all R cases are listed in Table 5.2.  

 

Table 5.2  Binning results 

R X1 X2 Max SAψ  Min SAψ  
1.5 0.947 1.000 1.651 0.854 
2.0 0.881 0.995 1.556 0.619 
4.0 0.679 0.874 1.171 0.417 
8.0 0.518 0.760 1.150 0.275 

 

Table 5.3 lists the calculated parameters A and B resulting in the highest correlation 

coefficient for Equation 5.11, for each value of R and each bin of SAψ . 
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Table 5.3  Regression coefficients for Equation 5.11 

R Group A B 
1.5 I, SAψ  < X1 -0.013 0.01 
1.5 II, X1 < SAψ  < X2 -0.087 3.89 
1.5 III, SAψ  > X2 -0.479 0.52 
2.0 I, SAψ  < X1 0.051 0.45 
2.0 II, X1 < SAψ  < X2 -0.259 3.05 
2.0 III, SAψ  > X2 -0.888 0.56 
4.0 I, SAψ  < X1 -0.503 0.01 
4.0 II, X1 < SAψ  < X2 -0.881 0.12 
4.0 III, SAψ  > X2 -0.967 0.07 
8.0 I, SAψ  < X1 -0.930 0.07 
8.0 II, X1 < SAψ  < X2 -0.984 0.02 
8.0 III, SAψ  > X2 -0.971 0.10 

 

Figure 5.6 shows the results of C1 versus normalized period in binned form with 

simulation data points for R = 4.0. The recommended curve, as discussed in this report is 

overlain on the data, as well as a logistic curve similar to the recommended curve but with a 

regressed function of the form ( )cxbeay −+= 1 , where a, b and c are regressed coefficients.  The 

former applies a limit on C1, termed “regression through data (per Equation 5.11).”  The later 

applies no limit in the short period ratio range, termed “Regression Through Data.”  The 

recommended curve is typically conservative with respect to the logistic curve for longer period 

structures.  However, the recommended curve provides a more realistic design displacement for 

shorter period structures (T/TS < 0.5) since only the mean value of C1 is considered in this range, 

where the logistic data fit would prescribe an excessively conservative design.   

Using the regression analysis presented in Equation 5.11 in conjunction with Tables 5.2 

and 5.3 allows one to estimate the lateral design displacement of a rocking-dominated system 

using a design spectrum approach. Consider for example, a system with a natural period equal to 

2.0 seconds and a design ground motion with a characteristic period of 0.4 seconds.  First, from 

the intersection of the model pushover and the design spectrum, say the SA of a nonlinear system 

is estimated as 0.5 g (for example).  Using either a similar analytical model not allowed to uplift, 

or with a lateral stiffness defined by one rotational spring in place of the Winkler model (an 
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alternative approach suggested in code), an intersection with the design spectrum gives 0.6 g.  

Therefore, elasticnonlinearSA SASA=ψ = 0.5/0.6 = 0.83.  Given a target design R value of 4.0, X1 = 

0.68 and X2 = 0.87 from Table 5.2.  From Table 5.3, the system falls into group II under R = 4.0 

because X1 < SAψ  < X2, therefore A = -0.881 and B = 0.12.  Finally, from Equation 5.11, 

1C =1/[1-0.881e-0.12*((2/0.4)-0.5)] = 2.06.  

In summary, for the range of R values studied it appears that at low period ratios and for 

large values of SAψ , where the spectral acceleration of the nonlinear system is greater than the 

spectral acceleration of the linear system, large displacement ratios can result.  FEMA 356 uses a 

limit of C1 = 1.5 and ATC-40 gives a limit of C1 = 2.0; much larger displacements are found in 

this study for the uplifting system for R values greater than 1.5, suggesting the current codes may 

be unconservative for the case of a shallow foundation allowed to uplift. 

5.5 ILLUSTRATIVE DESIGN EXAMPLE 

An illustrative design example using recommended simplified design procedures is explored, 

using the suggestions from the calculated C1-R relations for a rocking shallow foundation 

allowed to uplift.  Additionally, rocking induced lateral displacements and the level of damping 

are used to estimate accrued settlements based on empirical damping versus distortion 

comparisons. 

The design example foundation structure is modeled as a beam-on-nonlinear-Winkler-

foundation, using nonlinear q-z springs based on the formulation presented in Boulanger et al. 

(1999). Salient Winkler spring system parameters are based on the conclusions stated in Chapter 

4 of this report, and graphically shown in Figure 4.7. Recommendations for Winkler spring 

system modeling were based on evaluation against results from centrifuge testing at UC Davis 

[Gajan et al. (2004a,b) and Rosebrook and Kutter (2003a,b,c)] and other 1-g test data [Bartlett 

(1976); Negro et al. (1998); and Weissing (1979)]. The Winkler elements degrade in stiffness 

prior to reaching ultimate capacity.  A parabolic shaped bearing capacity beneath the foundation 

is recommended to account for the experimentally observed stress distribution. Finally, the study 

recommends a specific region at the ends of the foundation receive a larger stiffness to account 

for observed stiffening due to densification of the soil medium associated with rotation of the 

foundation. Such an approach is similar to procedures outlined in ATC-40 (1996). 
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Fig. 5.6  Binned data - C1 vs. normalized period for R equal to 4.0. Note, 6 data points (6% 

of binned subset) of outliers with C1 greater than 20 not shown for (c).  The curve 

“regression through data (per Equation 5.11)” is recommended and defined in 

conjunction with Tables 5.2 and 5.3. 
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For this design example, structure aspect ratios of foundation length L to width B of 3.2 

(=L/B) and shear wall height H to wall length Lw of 3.0 (= H/Lw) are selected. The geometric 

configuration shown in Figure 5.7 is selected to result in these aspect ratios, where a 5-story 

shear wall of dimensions 5 m long by 15 m high is supported on a strip foundation of 8 m by 2.5 

m.  The design vertical factor of safety, FSV, for this footing is selected as 4.0.  A BNWF model 

is created to model this elastic shear wall resting on a nonlinear soil, such that only the influence 

of soil compliance (both uplift and soil nonlinearity) is considered.   

 

Fig. 5.7  Dimensions of 5-story shear wall – shallow foundation system selected for design 

example  

The soil medium is assumed to be sand at 90% relative compaction, which corresponds to 

a relative density of 75% (after Lee and Singh, 1971) and φ’ = 33o.  The soil properties, structural 

dimensions and loading used for input into the model are provided in Table 5.4.  Assuming the 

shear wall supports a tributary area of approximately 50 m2, with a distributed dead and live load 

of 100 kN (DL = LL = 50 kN) per floor (total DL + LL = 5*100kN = 500 kN), in addition to the 

self weight of the wall and footing equal to 900 kN, the total vertical load is equal to 1400 kN, or 

approximately 3% of the compressive strength of the concrete wall. 
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Table 5.4  BNWF parameters used for design example 

SSI property Value Reference 
Effective Shear Modulus Ratio G/Go = 0.478 FEMA 356 (2000) 
Shear wave velocity νs = 150 m/s Das (1993) 
Initial Shear Modulus Go = 18100 kPa FEMA 356 (2000) 
Global Vertical Stiffness Kz = 300 MN/m Gazetas (1991) 
Global Rotational Stiffness Kθ = 3200 MN-m Gazetas (1991) 
End Length Ratio Le/L = 25% Harden et al. (2004) 
Middle Region subgrade reaction kmid = 15 MN/m Harden et al. (2004) 
End Region subgrade reaction kend = 85 MN/m Harden et al. (2004) 
End Tip Resistance qi = 70% Harden et al. (2004) 
Allowable Bearing qa = 275 kPA FEMA 356 (2000) 

 

Five simplified design methods are used to evaluate the displacement demand of the 

system; the Capacity Spectrum Approach (termed “Analysis Type 1”), a method which 

incorporates rocking based on Housner’s (1963) approach (“Analysis Type 2”),  the Nonlinear 

Static Procedure with conventional C1 values (“Analysis Type 3”), the Nonlinear Static 

Procedure with C1 values modified per this study (“Analysis Type 4”) and the Time History 

method (“Analysis Type 5”).  Comparison of these design methods for estimating the maximum 

displacment demand is conducted. Each method is evaluated for the cases of an inelastic 

subgrade allowed to uplift, an elastic subgrade allowed to uplift and an elastic subgrade fixed 

against uplift, as well as the fully fixed-base case (i.e., no consideration for soil structure 

interaction).  Note that the case of an elastic subgrade fixed against uplift is identical to a model 

with a single elastic rotational and vertical spring; this type of analysis is recommended in 

several design codes and is termed “method 1”, after FEMA 356 (2000).  For the four analytical 

models used to evaluate the five simplified analysis methods, Table 5.5 lists the natural period of 

each model from initial stiffness of the various pushover curves.  The pushover curves were 

developed from the model as shown in Figures 4.7 and 5.7, incorporating the parameters as listed 

in Table 5.4 and the soil structure interaction constraints as mentioned above (i.e. elastic or 

nonlinear, fixed or allowed to uplift, etc).  Note that the system becomes more flexible when 

elastic soil springs are added, and even more flexible when nonlinear behavior is introduced into 

the springs.  This softening effect can also be seen in the normalized pushover curves of the 

various models of Figure 5.8.  Note that the elastic model and the elastic model with uplift 

allowed are identical until uplift occurs.  
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Table 5.5  Natural period of model for simplified analysis methods 

 SSI Included (uplift may occur) SSI Not Included 
 Nonlinear Soil Springs Elastic Soil Springs  Fixed Base 
Natural 
Period, T 0.56 0.42 0.03 

 

The fixed modification factors (Equation 5.1) for the structure described, for use with the 

analysis are selected as 0C = 1.4, 2C =1.0, and 3C =1.0. Justification for these values is as 

follows.  The modification factor to relate spectral displacement of an equivalent SDOF system 

to the roof displacement of the building MDOF system is defined in FEMA 356 (2000) equal to 

1.4 for a building of five stories with any load pattern.  The BNWF model reasonably displays 

the hysteresis and strength degredation observed in model test data through emprically calibrated 

nonlinear foundation elements briefly described above; therefore the value of 2C  which 

ordinarily would account for these effects in a linear model is set to one.  Additionally, the value 

of 3C  is taken as one because Δ−P  effects are directly accounted for in this design example.  

The site-specific demand response spectrum for a site in Southern California is created after 

FEMA 356 (Section 1.6.1.5), based on a 10% probability of exceedance in 50 years.  The 

characteristic period TS of this spectrum is 0.37 sec.  Finally, an effective mass factor Cm, to 

account for higher mode participation, is required when calculating base shear per Equation 3-10 

of FEMA 356 (2000). The effective mass factor Cm is taken as 0.8, as defined in FEMA 356 

(2000) for a concrete shear wall system with 3 or more stories. 
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Fig. 5.8  Normalized base shear vs. normalized top displacement for the various models 

used to evaluate the simplified analysis methods 

The five analysis types are described in the following section, with values explicitly 

described for the beam on a nonlinear Winkler foundation (BNWF) as applicable. 

5.5.1 Capacity Spectrum Approach (CSA) — Analysis Type 1 

In general, a pushover curve is developed using the BNWF model with the values discussed, and 

is converted to an SDOF capacity curve, using a modal mass coefficient mC  and the participation 

factor 0C .  The subsitute structure Capacity Spectrum is therefore defined by 

g
CW

H
SA

m

PO
sub

1= and 
0

1
Ctopsub Δ=Δ , where HPO is the base shear.  Because the design 

response spectrum is not reduced for system nonlinearities, the peak displacement is given by the 

intersection of the design capacity spectrum and the substitute structure capacity spectrum, as 

shown in Figure 5.9, considering a system with nonlinear and uplifting soil behavior.  This is 

found to be mmsub 200≅Δ  for the model with nonlinear soil springs.  The design displacement is 

then converted to the actual structure displacement by 0Csubtop Δ=Δ , which in this case is 280 

mm for the BNWF substitute structure. 
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Fig. 5.9  Peak displacement of substitute structure, using capacity spectrum approach and 

the nonlinear soil model. Analysis Type I. 

For this analysis exercise, the estimate of Δtop is not based on iterating the percent of 

critical damping ξ (Tsecant) as suggested in other documents.  FEMA 356 does not provide critical 

damping curves, accounting for a rocking foundation in the capacity spectrum approach.  For this 

analysis the percent of critical damping is assumed to be 5%. 

5.5.2 Housner Rocking Block Approach — Analysis Type 2 

An alternative simplified method to estimate the peak displacement of a rocking shallow 

foundation is based on the application of Housner’s (1963) approach, with slight modifications.  

For a rocking block as shown in Figure 5.10, the effective viscous damping is a function of the 

block dimensions, the seismic mass, and the mass moment of inertia.  In addition, the rocking 

will be sensitive to the vertical factor of safety, since this affects the point of rotation through 

which the block rocks, based on an assumed contact area. 
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Fig. 5.10  Housner's (1963) rocking block (after FEMA 356 (2000)) 

Considering the demand displacement of a substitute structure Δsub, the rocking period of 

the structure may be calculated as: 
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Additionally, R and α are functions of the block geometry shown in Figure 5.10, θ is the 

block rotation and IO is the mass moment of inertia about one corner. The design displacement 

may be found through iteration of an assumed displacement or, perhaps the more straightforward 

approach, at the intersection of a pushover type curve and the design spectrum. 

The effective viscous damping (in %) of the rocking block may be calculated as: 

 ( )reff −= 140ξ  (5.13) 

where r is calculated as: 

 ( )( )
22

2cos11 ⎥
⎦

⎤
⎢
⎣

⎡
−−= α

OI
mRr  (5.14) 

For the shear wall considered, the effective viscous damping is calculated to be 10%, 

therefore mmsub 147≅Δ .  The design displacement is then converted to the actual structure 

displacement by 0Csubtop Δ=Δ , which for the BNWF model is 206 mm. 
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5.5.3 Nonlinear Static Procedure (NSP) — Analysis Type 3 

The nonlinear static procedure is investigated, which estimates the demand displacement using 

Equation 5.1.  From Equation 5.2, the demand spectral acceleration of the elastic system is 0.9g 

(at the initial period), and the yield force from a bilinear approximation of the pushover curve for 

the system allowed to uplift is 197 kN.  Using these variables, the strength ratio R was found to 

be 4.0 for the BNWF model; R = 0.9g*1400kN/(197kN*0.8) = 4.0.  The effective period, 0.56 

sec is then calculated through the elastic perfectly-plastic transition of a bilinear approximation 

to the pushover curve, similar to that described in FEMA 356 (2000) Figure 3-1 with a zero post-

yield stiffness.  With R and the effective period determined, the design displacement is 

calculated for the conventional definition of C1.  For this case, C1 defined by FEMA 356 (2000) 

is equal to one (Equation 5.1).  The design displacement is then calculated directly from 

Equation 5.1 as mmtop 91≅Δ . 

5.5.4 Nonlinear Static Procedure (NSP) with Modified C1 Values — Analysis Type 4 

The nonlinear static procedure is further explored with the modified value of C1 calculated by the 

procedure presented in this report.  As discussed above, the strength ratio R was found to be 4.0 

for the BNWF model, and an effective period of 0.56 sec.  The demand spectrum in this example 

has a characteristic period of 0.37 seconds.  The ratio of the elastic period to the characteristic 

period is 0.56/0.37=1.5, used in the final calculation of C1.  Estimating the force demand from 

the intersection of the demand spectrum with both the elastic and nonlinear models, the spectral 

acceleration ratio is calculated as elasticnonlinearSA SASA=ψ = 0.81.  Given that R is equal to 4.0, 

X1 = 0.68 and X2 = 0.87 from Tables 5.2.  From Table 5.3, the system falls into group II under 

R = 4.0 because X1 < SAψ  < X2, therefore A = -0.881 and B = 0.12.  Finally, C1 defined by an 

elastic shallow foundation allowed to uplift is calculated from Equation 5.11, 1C =1/[1-0.881e-

0.12x(1.5-0.5)] = 4.6; approximately five times what would be recommended in conventional design 

codes.  The design displacement from Analysis type 3 was calculated to be mmtop 91≅Δ .  

Incorporating  the modified C1 value in place of the original C1 value gives a design 

displacement of ( ) ( ) mmmmCCmm FEMAtop 4140.16.49191 11 ≅=≅Δ − . 
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5.5.5 Time History (TH) Method — Analysis Type 5 

Conducting a nonlinear time history analysis should provide for the most realistic estimation of 

the seismic demands. Using recorded ground motions to assess structural demands, here, three 

ground motions are selected from the suite of 19 ground motions used to investigate the relation 

between C1 and R (See Table 5.1). The longitudinal components of two ground motions from the 

1994 Northridge earthquake (Woodland Hills and Van Nuys, Sherman Circle denoted “NR-

whox” and “NR-vnsc”, respectively) and the longitudinal component of one ground motion from 

the 1971 San Fernando earthquake (Glendale, Muni Building, denoted “SF-glen”) are selected.  

The longitudinal components of the selected ground motions are assumed parallel to the wall in 

this design example.  The characteristics of these motions best represent the design spectrum for 

three binned groups of short, medium and long characteristic periods.  Figure 5.11 (a) shows the 

elastic acceleration response spectra for these motions along with the design spectrum.  It is 

recommended to use at least three representative time histories with accelerations scaled such 

that the average spectral acceleration is at least 1.4 times the design spectrum.  Accelerations 

within the range of 0.2 to 1.5 times the natural period are used to calculate the average spectral 

acceleration.  Figure 5.11(b) shows the three spectra scaled using the aforementioned criteria 

along with the design spectrum.  Figure 5.12 shows the top displacement and settlement time 

history for the largest PGA ground motion, “NR-vnsc.”  This ground motion’s characteristic 

period of 0.52 seconds is closest to the BNWF structure period of 0.56 seconds.  Top 

displacements of 385 mm and 102 mm are calculated using these scaled time histories and the 

Winkler model for the cases of nonlinear and elastic soil, respectively. 
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Fig. 5.11  (a) Demand and unscaled ground 

motion acceleration spectrum at 5% 

damping (b) demand and scaled 

design ground motion acceleration 

spectrum at 5% damping  

Fig. 5.12  (a) Story drift and (b) settlement 

time history for nonlinear soil 

springs 

5.5.6 Design Example Results and Discussion 

Displacement demands predicted for the three model types and four analysis methods are 

summarized in Table 5.6.  For all analysis methods; the CSA, Housner’s model, and NSP with 

C1 conventional definition are less conservative than either the time history method or the NSP 

with modified C1 values.  The NSP with C1 based on an uplifting elastic foundation finds a result 

which is conservative with respect to the time history method.  This is positive in the sense that 

using the C1 values from this study allows a design engineer to include the effects of foundation 

uplift with current code simplified design methods without performing an overly-rigorous 

analysis, while still resulting in a conservative demand estimate. 

With respect to base shear demand, the NSP with C1 conventional definition, NSP with 

modified C1 values and time history method for a nonlinear subgrade resulted in the least 

conservative design base shear (Table 5.7).  This result is to be expected given the larger 

displacements observed for these cases, and is a significant benefit of allowing permanent (where 



 144

nonlinear springs are used) and transient displacements of the foundation.  The fixed-base (No 

soil springs) analysis provides a valuable contrast to the analyses incorporating some form of soil 

structure interaction.  The design shear is significantly larger than those cases where uplift is 

allowed, and the target displacements are much smaller — both prohibitive to economic design. 

Table 5.6  Design displacement values for the various analysis methods 

 Soil Structure Interaction (SSI) 
 Included Not Included
 Uplift Allowed -- Fixed Base 

 Nonlinear 
Soil Springs 

Elastic Soil 
Springs Method 1  

Analysis Method Type utop (mm) utop (mm) utop (mm) utop (mm) 
TYPE 1 – CSA 280 178 38 0.14 
TYPE 2 – Housner 206 202 202 NA 
TYPE 3 – NSP (conventional C1) 91 57 57 0.27 
TYPE 4 – NSP (modified C1) 414 308 62 0.27 
TYPE 5 - TH 385 102 237 0.0003 

 

Table 5.7  Design base shear demand for the various analysis methods 

 Soil Structure Interaction (SSI) 
 Included Not Included
 Uplift Allowed -- Fixed Base 

 Nonlinear 
Soil Springs 

Elastic Soil 
Springs Method 1  

Analysis Method Type V (kN) V (kN) V (kN) V (kN) 
TYPE 1 – CSA 211 331 1181 728 
TYPE 2 – Housner 284 291 291 NA 
TYPE 3 – NSP (conventional C1) 162 240 1024 793 
TYPE 4 – NSP (modified C1) 170 265 1108 793 
TYPE 5 - TH 169 251 4245 1341 

 
Another useful comparison can be made to the Uniform Building Code (UBC), 1997 

edition, which allows for a direct calculation of the base shear and maximum displacement, 

independent of soil structure interaction.  Note that a similar comparison can be made with the 

International Building Code (IBC), 2000 edition, though the UBC is generally more 

conservative.  Assuming worst-case conditions (a fault proximity of less than 2 km and soil type 

“D”) in a Zone 4 location, the UBC static force procedure (Chapter 16) gives a base shear of 514 
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kN.  This is approximately twice the value found when using the simplified analysis methods and 

with elastic soil springs (recall that the UBC is generally understood as a conservative design 

document).  Based on the height of the building and lateral-force-resisting system, the maximum 

elastic deflection at the top of the building is calculated as 119 mm, while the maximum inelastic 

deflection is calculated as 375 mm.  Note that for both elastic and nonlinear spring models, all of 

the analysis methods except the NSP with C1 conventional definition allow for similar or greater 

displacements than the UBC allows (a conservative baseline).  This highlights to a greater extent 

the need to account for soil structure interaction in the nonlinear static procedure. 

5.5.7 Design Example Settlement Estimation 

The displacement of the system evaluated by any of the simplified methods allows one to 

estimate the settlement using empirical energy dissipation data and the calculated number of 

cycles from an initial displacement using Housner’s (1963) model. 

Housner (1963) gives the angle of rotation of a foundation after the nth impact, due to an 

initial rotation, oθ , as 

 ( )( )21111 o
n

n r θθ −−−−=  (5.15) 

The initial rotation θo is estimated from the results for each of the simplified design 

methods using the top lateral design displacement demand (Table 5.6) or using the direct values 

from the time history analysis (for Method 5), and where r was previously defined in Equation 

5.14. 

Using a suite of experimental data, Harden et al. (2004) synthesize results in terms of 

equivalent viscous damping and distortion level. A sample of these results, for statically 

moment-loaded footings is shown in Figure 5.13. Distortion here is defined as the settlement 

normalized by the foundation length per cycle.  These data fall both below and above typical 

foundation design distortion values, as suggested by Duncan and Buchignon (1987), for steel 

frame and load bearing wall structures.  Note however that a dependency on the static factor of 

safety FSV is observed, which is not provided in design recommendations.  Figure 5.14 shows the 

magnitude of equivalent viscous damping versus the half amplitude of rotation (i.e., not averaged 

over cycles of loading) of a footing per cycle.  This information will be used to estimate the 
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amount of equivalent viscous damping mobilized during foundation settlement due to the 

demand lateral displacement estimated from the simplified design methods. 

Nonlinear regression through the data shown in Figure 5.13 results in equivalent viscous 

damping versus distortion per cycle, for FSV > 3 as: 

 
( )

248.0
451.4ln −

=
ξ

es  (5.16) 

Similarly, incorporating the results of shallow foundation model tests shown in Figure 

5.14, the relationship for equivalent viscous damping versus half-amplitude of rotation is found 

through regression for FSV > 3 as: 

 ( ) 137.3ln336.0 += θξ eeq  (5.17) 
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Fig. 5.13  Equivalent viscous damping vs. maximum footing distortion (settlement 

normalized by footing length per cycle for slow cyclic tests: (a) sand data and (b) 

clay data. Experimental data sets courtesy of Bartlett (1976), Gajan et al. (2003a, 

b), Negro et al. (1998), Rosebrook and Kutter (2001a, b, c), and Weissing (1979). 
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Fig. 5.14  Equivalent viscous damping vs. half amplitude of rotation for slow cyclic tests: (a) 

sand data and (b) clay data. Experimental data sets courtesy of Bartlett (1976), 

Gajan et al. (2003a, b), Negro et al. (1998), Rosebrook and Kutter (2001a, b, c), 

and Weissing (1979). 
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Using Equations 15 through 17, an iterative approach can be applied until the number of 

cycles (with two impacts per cycle) forces the rotation amplitude to zero (at rest).  The procedure 

begins with the initial displacement demand calculated by any of the simplified methods 

previously discussed.  The last step of the procedure is to sum the settlements calculated for all 

cycles. The accumulated settlement values are listed in Table 5.8, calculated using the maximum 

estimated top displacement values from the simplified procedures. 

Table 5.8  Calculated accumulated permanent settlement values 

Analysis Method Type utop (mm) (nonlinear 
soil spring case) s (mm) Total Distortion 

(s/L) (%) 
TYPE 11 – CSA 280 56 0.7 
TYPE 21 – Housner 206 38 0.5 
TYPE 31 – NSP (conventional C1) 91 12 0.2 
TYPE 41 – NSP (modified C1) 414 96 1.2 
TYPE 52 - TH 385 86 1.1 

Note 1: Estimated based on empirical simplified settlement analysis method. 
Note 2: Accrued settlement from BNWF model (time history analysis) with nonlinear soil springs. 

 
The accumulated settlement values are sensitive to the starting value of top displacement.  

Larger initial horizontal displacements accrue larger settlements.  This is an intuitive result; as a 

higher level of performance is demanded of the system, a larger cost is accrued in settlement.  

Similarly, using the nonlinear static procedure with values of C1 calculated from this study gives 

a conservative result with respect to the CSA, the Housner model and the traditional NSP, 

though much more comparable to the time history method.  Recall from Figure 5.12(b) the 

maximum settlement from the largest PGA ground motion of the three considered using the time 

history method was 80 mm.  Most notably, the NSP method, using conventional C1 values 

grossly under predicts the accumulated settlement when compared to the time history method, 

which is approximately seven times the Type 3 method.  The simplified settlement analysis using 

the initial displacement from the modified NSP gives a value close to the settlement estimated 

using the initial displacement from the time history method, within 20% on the conservative side.  

These reasonably close values add credibility to the proposed empirical method of estimating 

settlement, combined with Housner’s rocking block approach, and using the experimentally-

regressed ξeq–distortion curves.   
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5.6 CONCLUSIONS 

The relationship between the strength ratio R and the displacement ratio C1 was investigated in 

this report, for shallow foundations allowed to uplift.  Compared to current design codes, the 

displacement ratio was found to be significantly larger in the acceleration sensitive range of the 

response spectrum (T/TS < 0.5), indicating that rocking shallow foundations may be a case where 

special attention is required when using simplified design procedures. Suggestions for improved 

C1-R relations are provided, based on regression through the nonlinear time history data collected 

in this study. 

To illustrate the approach for using the improved C1-R relation, a design example was 

presented considering five different methods of analysis.  Using the C1 value from the uplift 

study provided for a relatively close estimate of peak displacement demand when compared to 

the time history method.  Both methods are conservative with respect to the displacements 

calculated from the LSP, rocking block analogy and CSA procedures commonly used in design 

codes.  A procedure to estimate settlement based on empirical rocking foundation data was 

presented and used for each of the simplified design methods.  The simplified settlement 

estimate using an initial displacement from the modified NSP procedure compared well with the 

accrued settlement calculated from time history analysis using a Winkler foundation with 

nonlinear soil springs allowed to permanently deform.   

 



6 Conclusions 

6.1 SUMMARY REMARKS AND CONCLUSIONS 

The scope of this report was to contribute to practical numerical procedures for reasonably 

capturing the nonlinear response of shallow foundations subjected to combined moment, axial 

and shear cyclic loading.  A simplified beam-on-nonlinear-Winkler-foundation (BNWF) 

approach is used to model the shallow foundation response.  Particular focus is given to 

capturing the expected consequences (permanent settlement, horizontal displacement) due to the 

benefits of mobilizing energy dissipation (through M, H, V) within the soil.  The numerical 

model is used to study input parameters specific to the Winkler approach, and the results are 

compared against a suite of shallow foundation experimental data sets available in the literature.  

Analysis of the suite of experimental data, including scale footings resting on sand and 

clay tested at one-g as well as centrifuge (20-g) tests on sand and clay, revealed that a good deal 

of energy dissipation can be developed from the shallow foundation system.  This dissipation of 

energy can be represented as equivalent viscous damping, ξeq, and compared against demands of 

settlement, s, or rotation, θ.  In Chapter 2, ξeq vs. s and ξeq versus θ  curves are generated from 

the experimental data for use in practical design.  

Winkler modeling of the diverse set of data was accomplished using a mesh generator 

“BNWFshallow.txt” written for the OpenSees platform.  To provide comparison with the model 

test data, ideas were introduced to capture the observed failure mechanisms at the soil-structure 

interface.   These parameters include variable stiffness and pressure distribution along the base of 

the foundation to capture the more heavily loaded (and potentially densified) ends of the footing.  

Stiffness selection was investigated using the experimental data and published formulae, and it 

was found that vertical unloading stiffness provides the best result in terms of capturing the 

combined rotational and vertical stiffness (via a laterally distributed set of springs).  To capture 

the densification observed at the ends of the footing due to rotation, two parameters were 



 152

studied; the end length ratio and the end length stiffness.  The distribution of bearing capacity of 

the system was studied and the most suitable distribution (again from comparison with 

experimental data) was observed to be parabolic.  The selection of BNWF model parameters was 

based on capturing observed global features from the suite of shallow foundation test data, 

including absolute maximum (positive and negative) moment M, absolute maximum rotation θ, 

settlement s and horizontal displacement u.  Insight into the sensitivity of selection of these 

parameters was also provided in Chapter 3, and results presented in a normalized fashion as a 

function of a decision variable for footings with a broad range of vertical factors of safety FSV.  

A summary of the numerical modeling results is presented in Chapter 4, as well as a summary of 

the normalized parameters. 

To synthesize the practical aspects of the work, current simplified design methods are 

investigated in Chapter 5.  Using a range of representative values of the strength reduction factor 

R (R = 1.5, 2.0, 4.0, and 8.0 are studied), numerical models of a stiff shear wall resting on an 

elastic Winkler foundation both allowed and restrained from uplift were developed across a 

broad range of natural periods.  These models were subjected to 19 earthquake time histories.  

Results from these nonlinear dynamic analyses are presented in terms of a normalized 

displacement demand parameter, elasticinelasticC ΔΔ≡1 , where Δinelastic is obtained from the 

uplifting foundation.  The C1 values are shown to be much larger than current practice and 

regression through the analysis presented suggest modified C1-T relations to account from 

uplifting.  The empirical relation of ξeq with settlement found from the suite of shallow 

foundation model test data (Chapter 2) was combined with the revised C1-T relation (accounting 

for the modification required for a system allowed to uplift), and a design example illustrated.  

6.2 SUGGESTIONS FOR FUTURE WORK 

Although the results illustrated that with suitable parameter selection, the BNWF analysis 

method is a valuable tool for studying the shallow foundation rocking problem, additional work 

is needed to further its validity and advance its development as a performance-based design 

procedure.  The following addresses directions for future research.  

• The scope of this report included a 2-D BNWF representation of the collection of 

experimental data sets.  Such a 2-D representation effectively lumps stiffness and 

strength of a volume of soil at a spring.  Comparison of these (2-D) modeling approaches 



 153

with 3-D (solid) models using the same set of experimental data would provide valuable 

insight into the validity of this simplification.  Similar recommendations such as those 

made in this report could be made for the 3-D BNWF models to accurately represent 

capacity and displacement demands.   

• An in-depth study including the nonlinearity of the structural elements (shear walls) in 

the model combined with the BNWF system would provide insight into the combined 

system response.  This will be particularly useful to understand the reduction in structural 

demands, given the yielding and capacity mobilization at the foundation.  Care should be 

taken to develop study cases which differentiate when the soil subgrade yields 

exclusively, when the structure yields exclusively, and when both the soil and structure 

yield together.   

• Centrifuge experiments where specific structural “hinges” are incorporated would 

provide much needed experimental data to validate the above numerical models.  Again, 

care should be taken to select a range of appropriate safety factors and yielding 

capacities. 

• Systems considered in this report comprised structures resting on either sand (cu = 0) or 

clay (φ′ = 0).  Numerical models considering the soil medium composed of mixed (c-φ) 

materials would provide insight into a broader range of realistic soil-structure systems.  

However, physical data sets have yet to be conducted to validate such models; centrifuge 

experiments could provide important data to this respect.    

• It is well known that liquefaction below the foundation results in reduced bearing 

capacity, and this should be studied in the context of the rocking shallow foundation. 

• This report investigated one aspect of current simplified design approaches using the 

shallow foundation model allowed to uplift on an elastic subgrade.  The nonlinearity of 

both the soil and structure should be incorporated into the simplified methods study.  

Inclusion of the nonlinear soil could help predict, as a function of strength reduction 

factor R, the amount of anticipated settlement, as well as the peak structural 

displacement, which will be different than the elastic model predicted.   

Recommendations for expected vertical (settlement) and lateral (drift) displacements 

presented in terms of safety factors, normalized foundation aspect ratios and normalized 

yield capacities of the subgrade would be valuable to practice.  Inclusion of nonlinear 
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structure in the generation of C1-T curves will account for redistribution of forces (and 

thus will be reflected in assessment of demand). 

• Finally, 3-D analytical and physical modeling of a whole building structure would be 

important to investigate the redistribution of loading during a seismic event.  Two types 

of models could be studied; a combined flexible frame and shear wall in addition to a 

flexible frame combined with an out-of-plane structural system.  These combined types 

of structural systems are very sensitive to the capacity and stiffness of the soil, and thus 

recommendations from this study would be valuable to practice. 
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Appendix A BNWF Mesh Generator Files: 
BNWFShallow.txt and 
BNWF_MAT.txt 

Notes: BNWFShallow.txt is a mesh generator which creates a specified number of nodes, beam 

elements and zero-length elements to model the soil-structure interaction of a shallow 

foundation, as shown in the figure below.  The structural foundation is also created through this 

process, as the zero-length elements are directly connected.  After BNWFShallow has been run 

to create the foundation and soil-structure-interaction elements, a superstructure can be created, 

with a connection to the foundation at the central node of the foundation.  The number of this 

node is globally created from the BNWFShallow and named “sn” for “starting node.”  

BNWF_MAT.txt is called by BNWFShallow.txt throughout the creation process in order to 

create the proper subgrade finite element materials. 

BEAM ELEMENTNODE

ZERO-LENGTH ELEMENT
 

 



 167

# BNWFShallow.txt 
 
 

############################################################################# 
# FOR MORE INFORMATION ON BNWFShallow, please see the text:  
# Harden, C. (2003).  Numerical modeling of the nonlinear cyclic response of shallow foundations.  C. Harden, T. 
Hutchinson, G. R. Martin, and B. L. Kutter. PEER report 2005/04. Berkeley, Calif.: Pacific Earthquake Engineering 
Research Center, University of California. 
# PROPER REFERENCE TO THE ABOVE TEXT SHALL BE GIVEN IF THESE FILES  
# ARE USED FOR ANY RESEARCH OR DESIGN PUBLICATION 
############################################################################## 
# ARGUMENTS -  
## VERTICAL WINKLER MESH ARGUMENTS  
# qult -- Ultimate Bearing Capacity of the foundation, in units of Force per Unit Area (F/L2) 
# Kzm -- Vertical Global Stiffness of the foundation for a unit subgrade reaction of the middle region, in units of 
Force per unit Length (F/L) 
# Kze -- Vertical Global Stiffness of the foundation for a unit subgrade reaction of the end region, in units of Force 
per unit Length (F/L) 
# L -- Total Length of foundation, in units of Length (L) 
# B -- Total Width of foundation, in units of Length (L) 
# type -- Type of Ultimate Bearing Capacity Contact Pressure Distribution 
#         -- 1 = Uniform, 2 = Triangular, 3 = Trapezoidal, 4 = Parabolic 
# qip -- End Tip Resistance Ratio, which controls the shape of the Ultimate Bearing Capacity Contact Pressure 
Distribution 
#    --  entered as a decimal ratio  
# Lep -- End Length Percentage, entered as a decimal ratio 
# TP -- percent tension capacity, entered as a decimal ratio of Qult 
# ratiom -- spacing ratio for the middle region, entered as a decimal 
# ratioe -- spacing ratio for the end region, entered as a decimal 
# FEmat -- Material Type: 8 = ENT, 9 = Elastic, 10 = Qz Material, 11 = Parallel Hysteretic Material, 12 = 
ElasticPPGap material 
# z50 -- displacement at which 50% of the load is mobilized 
# soiltype -- indicates either sand or clay.  1 = clay, 2 = sand 
## SLIDING CONSTANTS 
# Cr -- Percent of Ultimate load at which the material changes from elastic to plastic behavior  
# sn -- VALUE OF STARTING NODE FOR MESH GENERATOR.  SHOULD BE LARGER THAN ALL 
OTHER NODES IN THE MODEL 
# FSECTION -- Previously Created Foundation Section Number (enter 0 for elastic, extremely rigid section 
# Kf -- Sliding Stiffness due to friction (put 0 to omit), in units of Force per unit Length (F/L) 
# Qf -- Sliding Capacity due to friction (put 0 to omit), in units of Force (F) 
# KPEP -- Sliding Stiffness due to Passive Earth Pressure (put 0 to omit), in units of Force per unit Length (F/L) 
# QPEP -- Sliding Capacity due to Passive Earth Pressure (put 0 to omit), in units of Force (F) 
# crad -- value of radiation damping 
 
proc BNWFShallow {qult Kzm Kze L B type qip Lep TP ratiom ratioe FEmat soiltype z50 Cr sn FSECTION Kf Qf 
KPEP QPEP crad cradx } { 
      
     set depth 0 
     global eletext 
     global nodetext 
 
     # CALCULATIONS FOR SPRING SPACING 
     ####################################### 
     set Lmp [expr 1-2*$Lep] 
     set nodesm [expr int(pow($ratiom,-1))+1] 
     set Lmid [expr $Lmp*$L] 
     set Aratiom [expr $ratiom*$Lmid*pow($L,-1)] ;# changed 03-0131 [expr $Lmid*pow($L*($nodesm-1),-1)]  
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     set nodese [expr int(pow($ratioe,-1))] 
     set Lend [expr ($L-$Lmid)*0.5] 
     set Aratioe [expr $ratioe*$Lend*pow($L,-1)] ;# [expr $Lend*pow($L*$nodese,-1)]  
     set nodes [expr $nodesm+2*$nodese] 
     set Aratio $Aratiom 
     puts "middle nodes = $nodesm, end nodes = $nodese" 
     puts "L = $L, Lmid = $Lmid, Lend = $Lend" 
     if {$Lmp == 1} { 
          puts "Zero end region" 
          set nodes $nodesm 
     } 
     set remtest [expr $nodesm*0.5-int($nodesm*0.5)] 
     if {$remtest == 0} { ;# even nodes 
          puts "even nodes, rem = $remtest" 
          set nodetest  [expr 0.5*$nodes] 
          set nodetestm [expr 0.5*$nodesm] 
     } elseif {$remtest == 0.5} { ;# odd nodes 
          puts "odd nodes, rem = $remtest" 
          set nodetest [expr 0.5*($nodes-1)] 
          set nodetestm [expr 0.5*($nodesm-1)] 
     }  
     # FOUNDATION SECTION 
     if {$FSECTION == 0} {  
          # section Elastic $E $A $Iz 
          set Efoundation [expr (1E10)] 
          section Elastic 100 $Efoundation [expr pow($L,2)] [expr pow($L,3)]  
          set FSECTION 100 
     } 
     # CREATE NODES AND ELEMENTS FROM CENTER OF FOOTING OUT 
     ######################################### 
     # INITIALIZE FOR MIDDLE REGION 
     set Qtotal 0 
     set ktotal 0 
     # set z50i $z50globalZ 
     set Ki $Kzm 
     set i 0 
     set node1 [expr $sn+1+10]     
     set node2 [expr $sn+10]     
     set flength [expr $ratiom*$Lmid] 
     ###### START - BNWF_MAT : CALL FOR INDIVIDUAL SPRING STRENGTH AND STIFFNESS 
############### 
     set x 0 
     set mcount 0 
     source BNWF_MAT.txt 
     ###### END - BNWF_MAT ################# 
     set testeven 1 
     node $sn    [expr 0.5*$L]  [expr $depth] 
     set eletext " " 
     set nodetext " " 
     set lengthtext " " 
     ########################################################## 
     if {$remtest == 0.5} {      
          #For ODD number of MIDDLE nodes this IF statement works   
          set nodemn [expr $sn-7] 
          node $nodemn    [expr 0.5*$L]  $depth 
          fix $nodemn 1 1 1  
          element zeroLength [expr 2*$i+$sn-2] $nodemn $sn -mat $mati -dir 2 
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          set eletext [expr 2*$i+$sn-2]  
          set nodetext $sn 
          set lengthtext 0 
          set Qtotal $Qultx 
          set ktotal $kzi 
          puts "Qi = $Qultx, Qtotal = $Qtotal, ki = $kzi, ktotal = $ktotal" 
          set MC 0  ;# MOMENT CALCULATION ############# 
          puts "created central element" 
     } 
     #################### 
     set mcount 1 
     set lastnoderight $sn 
     set lastnodeleft $sn 
 
     while {$i < $nodetest} { 
          set x [expr $flength+$x] 
          if {$i == 0} { 
               if {$remtest == 0.5} { 
                    set x $flength 
                    puts "odd nodes" 
               } elseif {$remtest == 0.0} { 
                    set x [expr 0.5*$flength] 
                    puts "even nodes" 
               } 
          } 
          ############ START - BNWF_MAT ############## 
          set mcount [expr $mcount+1] 
          if {$i == [expr ($nodetest-1)]} {  
               set Aratio [expr 0.5*$Aratioe] 
          } 
          if {$i == [expr ($nodetestm-1)]} {  
               set Aratio [expr 0.5*$Aratiom+0.5*$Aratioe] 
          } 
 
          source BNWF_MAT.txt 
          set Qtotal [expr $Qtotal+2*$Qultx] 
          set ktotal [expr $ktotal+2*$kzi] 
          # puts "Qi = $Qultx, Qtotal = $Qtotal, 2*ki = [expr 2*$kzi], ktotal = $ktotal" 
          ############ END - BNWF_MAT ############## 
          node [expr 2*$i+$node1]  [expr 0.5*$L+$x] $depth  
          node [expr 2*$i+$node2]  [expr 0.5*$L+$x] $depth 
          fix [expr 2*$i+$node1] 1 1 1 
 
          element zeroLength [expr 2*$i+$sn] [expr 2*$i+$node1]  [expr 2*$i+$node2] -mat $mati -dir 2 
          node [expr 2*$i+$node1+$nodes]  [expr 0.5*$L-$x] $depth 
          node [expr 2*$i+$node2+$nodes]  [expr 0.5*$L-$x] $depth 
          fix [expr 2*$i+$node1+$nodes] 1 1 1 
          element zeroLength [expr 2*$i+$sn+$nodes] [expr 2*$i+$node1+$nodes]  [expr 2*$i+$node2+$nodes] -mat 
$mati -dir 2 
 
          set eletext "[expr 2*$i+$sn+$nodes] $eletext [expr 2*$i+$sn]" 
          set nodetext "[expr 2*$i+$node2+$nodes]  $nodetext [expr 2*$i+$node2]" 
          set lengthtext "-$x $lengthtext $x" 
 
global ASF 
global ES 
global If 
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          element elasticBeamColumn  [expr 2*$i+$sn-1] [expr 2*$i+$node2] $lastnoderight $ASF $ES $If 1 
          element elasticBeamColumn  [expr 2*$i+$sn+$nodes-1] [expr 2*$i+$node2+$nodes] $lastnodeleft $ASF $ES 
$If 1  
  
          set lastnoderight [expr 2*$i+$node2] 
          set lastnodeleft [expr 2*$i+$node2+$nodes] 
 
          incr i 
          if {$i >= $nodetestm} { ;# changed 03-0121 $nodetestm-1 
               puts "End region generation started" 
               set flength [expr $ratioe*$Lend] 
               set Aratio $Aratioe 
               set Ki $Kze ;# added 03-0125 
          } 
     } 
 
     puts "Last two nodes created for [expr $nodes] node set, node [expr 2*($i-1)+$sn] (right) and node [expr 2*($i-
1)+$sn+$nodes] (left)." 
     puts "2*x = [expr 2*$x], L = [expr $L]" 
 
     ######## ADD ELEMENT(S) FOR SLIDING ##################### 
     if {($Qf == 0 & $QPEP == 0) || ($Kf == 0 & $KPEP == 0)} { 
          fix $sn  1 0 0 ;#FREE FOR ZEROLENGTH ELEMENTS WITH LATERAL CAPACITY 
          puts "base fixed against lateral movement" 
     } else { 
          global nodebs 
          global eleBS 
          global eleKP 
          set nodebs [expr $sn-10]  
          set eleBS $nodebs 
          set eleKP [expr $sn-9] 
          node $nodebs  [expr 0.5*$L]  [expr $depth] 
          fix $nodebs 1 1 1 
          # element for sliding 
          if {$Qf != 0} {  
               element zeroLength $eleBS $sn $nodebs -mat 5 -dir 1 
               puts "sliding element created" 
           } 
          # element for earth pressure 
          if {$QPEP != 0} {  
               element zeroLength $eleKP $sn $nodebs -mat 6 -dir 1  
               puts "passive earth pressure element created" 
          } 
     } 
 
     puts "Qult = [expr $qult*$L*$B], sum of elements Qsum = $Qtotal" 
     puts "KZ = [expr $Kzm], sum of elements Ktotal = $ktotal" 
     puts "elements: $eletext" 
     puts "nodes: $nodetext" 
} 
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# BNWF_MAT.txt 
 
# THIS FILE IS CALLED FROM BNWFShallow.txt, in order to create the  
# material models at each iteration of the mesh generator 
 
############################################################################# 
# FOR MORE INFORMATION ON BNWF_MAT, PLEASE SEE THE TEXT:  
# Numerical modeling of the nonlinear cyclic response of shallow foundations.  C. Harden, T. Hutchinson, G. R. 
Martin, and B. L. Kutter. PEER report 2005/04. Berkeley, Calif.: Pacific Earthquake Engineering Research Center, 
University of California. 
# PROPER REFERENCE TO THE ABOVE TEXT SHALL BE GIVEN IF THESE FILES  
# ARE USED FOR ANY RESEARCH OR DESIGN PUBLICATION 
############################################################################## 
 
set qi [expr $qip*$qult] 
 
if {$type == 1} {  ; #UNIFORM DISTRIBUTION 
set qx $qult 
} 
if {$type == 2} {  ; #TRIANGULAR DISTRIBUTION 
set a [expr -4*($qult-$qi)*pow($L,-1)] 
set h [expr 2*$qult-$qi] 
set qx [expr $h+$a*$x] 
}  
if {$type == 3} {  ; #TRAPEZOIDAL DISTRIBUTION 
set TLm [expr $TLmp*$L] 
set a [expr -4*$L*($qult-$qi)*pow((pow($L,2)-pow($TLm,2)),-1)] 
set h [expr 2*$L*($qult-$qi)*pow(($L+$TLm),-1)] 
set b [expr $qi+2*pow($L,2)*($qult-$qi)*pow((pow($L,2)-pow($TLm,2)),-1)] 
     set xtest [expr $TLm*0.5*$L] ;#added *$L 052302 
     if {$x <= $xtest} { 
     set qx [expr $qi+$h] 
     }  
     if {$x > $xtest} { 
     set qx [expr $a*$x+$b] 
     } 
}  
if {$type == 4} { ; #PARABOLIC DISTRIBUTION 
set a [expr -6*($qult-$qi)*pow(pow($L,2),-1)] 
set h [expr 1.5*($qult-$qi)] 
set qx [expr $qi+$h+$a*pow($x,2)] 
 
}  
if {$type == 5} {  ; #INVERSE PARABOLIC DISTRIBUTION 
set a [expr 12*($qult-$qi)*pow(pow($L,2),-1)] 
set qx [expr $qi+$a*pow($x,2)] 
} 
 
if {$qx == 0} { 
set qx 0.0001 
puts "qx zero, set to 0.0001-- x = [expr $x], type [expr $type], mat [expr $FEmat], nodes [expr $nodes]" 
} 
if {$qx < 0} { 
set qx 0.0001 
puts "qx negative, set to 0.0001-- x = [expr $x], type [expr $type], mat [expr $FEmat], nodes [expr $nodes]" 
} 
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set Qultx [expr $L*$B*$Aratio*$qx] 
 
##################################################################### 
##################################################################### 
# CONSTANT MATERIALS (STEEL, FRICTION, LATERAL EARTH PRESSURE) Kf Qf KPEP QPEP 
if {$x == 0} { 
      if {$Qf != 0 & $Kf != 0} { 
          if { $soiltype == 1 } { set zt50 [expr 0.708*$Qf*pow($Kf,-1)] } 
          if { $soiltype == 2 } { set zt50 [expr 2.05*$Qf*pow($Kf,-1)] } 
          uniaxialMaterial TzSimple1 5 $soiltype $Qf $zt50 $cradx 
     } 
     if {$QPEP != 0 & $KPEP != 0 } { 
          if { $soiltype == 1 } { set y50 [expr 8*$QPEP*pow($KPEP,-1)] } 
          if { $soiltype == 2 } { set y50 [expr 0.542*$QPEP*pow($KPEP,-1)] } 
          uniaxialMaterial PySimple1 6 2 $QPEP $y50 0 
     } 
} 
 
##################################################################### 
# SFSI MATERIALS 
 
set kzi [expr $Ki*$Aratio] 
 
if { $FEmat == 8} { 
     uniaxialMaterial ENT [expr 1000+$mcount] $kzi 
     set mati [expr 1000+$mcount] 
} 
if {$FEmat == 9} { 
     uniaxialMaterial Elastic [expr 1000+$mcount] $kzi 
     set mati [expr 1000+$mcount] 
} 
 
########################################### 
# Q-Z MATERIAL CONSTANTS 
if {$soiltype == 1} {  
     # clay soil 
     set c 0.35 
     set n 1.2 
     set Kfar 0.525 
} elseif { $soiltype == 2 } { 
     # sand soil 
     set c 12.3 
     set n 5.5 
     set Kfar 1.39 
} 
########################################### 
 
####################################### 
# QZ MATERIAL 
####################################### 
if {$FEmat == 10} { 
     set QultQZ [expr $Qultx] 
     set z50i [expr $Kfar*$Qultx*pow($kzi,-1)] 
 
     uniaxialMaterial QzSimple1 [expr 1000+$mcount] $soiltype $QultQZ $z50i $TP $crad 
 
     set mati [expr 1000+$mcount] 
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} 
 
####################################### 
# PARALLEL HYSTERETIC MATERIAL  
####################################### 
if { $FEmat == 11} { 
     set c 0.952 
     set n 0.851 
     set Cr 0.1 
     set count 1 
     set qti 0 
     set qzi 0 
     set qtotal 0 
 
     set BETA 0 
     set C 0.99 
     set 1ofn [expr -1*pow($n,-1)] 
     set zo [expr $Cr*$z50] 
     set zqo [expr $c*$z50*(-1+pow(1-$Cr,$1ofn))] 
     set pinchx 1 ;# 1 
     set pinchy 0 ;# 0.1 
 
     set Cpr 1 
     set zmax 10001 
     set zlast 10000 
     set zlastT $zlast 
     set ksum 0 
     set ksumT 0 
 
# CALCULATE CUTOFF VALUE 
###################################################### 
set Cpr 0.8 
set Cpri 0.7 
set zmax [expr $z50*pow(0.037,-1)]  
set countX 0 
while {$Cpr != $Cpri && $countX < 1000} { 
     set Cpri $Cpr 
     set initialz [expr $Cr*$Qultx*pow(2*$kzi,-1)] 
     set qz [expr $Cpr*$Qultx] 
     set qratio [expr (1-$qz*pow($Qultx,-1))*pow(1-$Cr,-1)] 
     set zatq [expr $initialz+$c*$z50*(-1+pow($qratio,$1ofn))] 
     if { $zatq > $zmax } { set Cpr [expr $Cpr*(1-0.01*($zatq-$zmax)*pow($zmax,-1))] } 
     if { $zatq < $zmax } { set Cpr [expr $Cpr*(1+0.01*($zmax-$zatq)*pow($zmax,-1))] } 
if {$Cpr >= 1 || $Cpr < 0 } {set Cpr [expr 1.01*$Cr] } 
incr countX 
} 
puts "count = $countX" 
puts "Cpr = $Cpr" 
set zmax 10000 
set CrMax [expr 0.99*$Cpr] 
###################### 
 
     set mp1 [expr $Cr+($CrMax-$Cr)*0.999] 
     set mp2 [expr $Cr+($CrMax-$Cr)*0.99] 
     set mp3 [expr $Cr+($CrMax-$Cr)*0.98] 
     set mp4 [expr $Cr+($CrMax-$Cr)*0.975] 
     set mp5 [expr $Cr+($CrMax-$Cr)*0.95] 
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     set mp6 [expr $Cr+($CrMax-$Cr)*0.925] 
     set mp7 [expr $Cr+($CrMax-$Cr)*0.9] 
     set mp8 [expr $Cr+($CrMax-$Cr)*0.8] 
     set mp9 [expr $Cr+($CrMax-$Cr)*0.7] 
     set mp10 [expr $Cr+($CrMax-$Cr)*0.6] 
     set mp11 [expr $Cr+($CrMax-$Cr)*0.4] 
     set mp12 [expr $Cr+($CrMax-$Cr)*0.2] 
     set mp13 [expr 2*$Cr*pow(3,-1)] 
     set mp14 [expr 1*$Cr*pow(3,-1)] 
set mpall "$mp1 $mp2 $mp3 $mp4 $mp5 $mp6 $mp7 $mp8 $mp9 $mp10 $mp11 $mp12 $Cr 0" 
     foreach {C} { $mp1 $mp2 $mp3 $mp4 $mp5 $mp6 $mp7 $mp8 $mp9 $mp10 $mp11 $mp12 $Cr 0 } { 
 
          # CYCLE 1: FIRST PASS - CALCULATE STIFFNESS 
          #################################### 
          # DEFINE POINTS ALONG CURVE 
          ######################### 
 
          set initialz [expr $Cr*$Qultx*pow(2*$kzi,-1)] 
          set qz [expr $C*$Qultx] 
          set qzi [expr $Cpr*$Qultx-$qz] 
          set qzT [expr $TP*$qz] 
          set qziT [expr $TP*$qzi] 
 
          if {[expr $C] > $Cr} { 
               set qratio [expr (1-$qz*pow($Qultx,-1))*pow(1-$Cr,-1)] 
               set zatq [expr $initialz+$c*$z50*(-1+pow($qratio,$1ofn))] 
          } 
 
 
          if {[expr $C] == $Cr} { set zatq $initialz } 
          if {[expr $C] == 0} { set zatq 0 } 
 
          set zatqT [expr -1*$z50*0.5*(1+($TP*$Qultx)*pow($qzT-$TP*$Qultx,-1))] 
 
          # CALCULATE STIFFNESS TO MATCH CURVE 
          ################################################ 
 
          set kmatch [expr ($qzi)*pow(($zlast-$zatq),-1)] 
          set kC [expr $kmatch-$ksum]  
          set qnew [expr $kC*$zlast] 
          set kmatchT [expr ($qziT)*pow(($zlastT-$zatqT),-1)] 
          set kCT [expr $kmatchT-$ksumT]  
          set qnewT [expr $kCT*$zlastT] 
          uniaxialMaterial ElasticPPGap [expr 1000*(1+$mcount)+$count] $kC -$qnew 0 
          set ksum [expr $ksum+$kC] 
          set ksumT [expr $ksumT+$kCT] 
          set zlast $zatq 
          set zlastT $zatqT 
          set Cpr $C 
          if {$count == 1} { set matTEXT [expr 1000*(1+$mcount)+$count]} 
          if {$count > 1} { set matTEXT "$matTEXT [expr 1000*(1+$mcount)+$count]"} 
 
          set count [expr $count+1] 
          set qtotal [expr $qtotal+$qzi] 
     } 
     uniaxialMaterial Parallel [expr 200+$mcount] [expr 1000*(1+$mcount)+1] [expr 1000*(1+$mcount)+2] [expr 
1000*(1+$mcount)+3] [expr 1000*(1+$mcount)+4] [expr 1000*(1+$mcount)+5] [expr 1000*(1+$mcount)+6] [expr 
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1000*(1+$mcount)+7] [expr 1000*(1+$mcount)+8] [expr 1000*(1+$mcount)+9] [expr 1000*(1+$mcount)+10] 
[expr 1000*(1+$mcount)+11] [expr 1000*(1+$mcount)+12] [expr 1000*(1+$mcount)+13] [expr 
1000*(1+$mcount)+14] ;# [expr 1000*(1+$mcount)+15] [expr 1000*(1+$mcount)+16] ;#  
     uniaxialMaterial Elastic  [expr 400+$mcount] [expr 2*$kzi] 
     uniaxialMaterial Series [expr 600+$mcount] [expr 200+$mcount] [expr 400+$mcount] 
     set mati [expr 600+$mcount] 
     # puts "Qx = $Qultx, Qsumi = $qtotal" 
} 
 
if {$FEmat == 12} { 
     uniaxialMaterial ElasticPPGap [expr 1000+$mcount] $kzi -$Qultx 0 
     set mati [expr 1000+$mcount] 
} 
 
puts "mcount = $mcount" 
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Appendix B Static Simulation Comparisons 
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Appendix C Dynamic Simulation Comparisons 
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Appendix D Ground Motion Characteristics for 
Code Parameters Study 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) Fourier 

spectrum.  Time histories for (e) acceleration, (f) velocity, and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) Fourier 

spectrum.  Time histories for (e) acceleration, (f) velocity, and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) Fourier 

spectrum.  Time histories for (e) acceleration, (f) velocity, and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) Fourier 

spectrum.  Time histories for (e) acceleration, (f) velocity, and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) Fourier 

spectrum.  Time histories for (e) acceleration, (f) velocity, and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) Fourier 

spectrum.  Time histories for (e) acceleration, (f) velocity, and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement, (d) 

Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement,  

(d) Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement,  

(d) Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement,  

(d) Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement,  

(d) Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 
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ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement,  

(d) Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 



 217

0.01 0.1 1 10
Period (sec)

0

0.4

0.8

1.2

1.6
SA

 (g
)

0 10 20 30 40 50 60 70 80 90
-0.4
-0.2
0.0
0.2
0.4

Ac
ce

le
ra

tio
n 

(g
)

0 10 20 30 40 50 60 70 80 90
-40
-20

0
20
40
60

Ve
lo

ci
ty

 (c
m

/s
)

(e)

0 10 20 30 40 50 60 70 80 90
Time (sec)

-16

-8

0

8

D
is

pl
ac

em
en

t (
cm

)

(f)

0.01 0.1 1 10
Period (sec)

0

40

80

120

160

SV
 (c

m
/s

ec
)

0.01 0.1 1 10
Period (sec)

0

10

20

30

40

50

SD
 (c

m
)

0.01 0.1 1 10
Frequency (Hz)

0

40

80

120

F
ou

rie
r A

m
pl

itu
de

 (c
m

/s
ec

)

(g)

(a) (b)

(c) (d)

NR-whox-lng

 

ζ = 5% response spectrum for (a) acceleration, (b) velocity and (c) displacement,  

(d) Fourier spectrum.  Time histories for (e) acceleration, (f) velocity and (g) displacement. 
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