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ABSTRACT 

Global collapse in earthquake engineering refers to the inability of a structural system to sustain 

gravity loads when subjected to seismic excitation. The research described in this report proposes 

a methodology for evaluating global incremental (side-sway) collapse based on a relative 

intensity measure instead of an engineering demand parameter (EDP). The relative intensity is 

the ratio of ground motion intensity to a structural strength parameter, which is increased until 

the response of the system becomes unstable. At this stage the relative intensity – EDP curve 

becomes flat (zero slope). The largest relative intensity is referred to as “collapse capacity.”  

In order to implement the methodology, deteriorating hysteretic models are developed to 

represent the monotonic and cyclic behavior of structural components. Parameter studies that 

utilize these deteriorating models are performed to obtain collapse capacities and quantify the 

effects of system parameters that most influence collapse for SDOF and MDOF systems. The 

dispersion of the collapse capacity due to record to record variability and uncertainty in the 

system parameters is evaluated. The latter source of dispersion is quantified by means of the 

first-order second-moment method. The studies reveal that softening of the post-yield stiffness in 

the backbone curve (post-capping stiffness) and the displacement at which this softening 

commences (defined by the ductility capacity) are the two system parameters that most influence 

the collapse capacity of a system. Cyclic deterioration is an important but not dominant issue for 

collapse evaluation. P-delta effects greatly accelerate the collapse of deteriorating systems and 

may be the primary source of collapse for flexible but very ductile structural systems. 

The report presents applications of the proposed collapse methodology to the 

development of collapse fragility curves and the evaluation of the mean annual frequency of 

collapse. 

An important contribution is the development of a transparent methodology for the 

evaluation of incremental collapse in which the assessment of collapse is closely related to the 

physical phenomena that lead to this limit state. The methodology addresses the fact that collapse 

is caused by deterioration in complex assemblies of structural components that should be 

modeled explicitly.  
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1 Introduction 

1.1 1.1 MOTIVATION FOR THIS STUDY 

Protection against collapse has always been a major objective of seismic design. In earthquake 

engineering, collapse refers to a structural system’s loss of capacity to resist gravity loads when 

subjected to seismic excitation. Global collapse may imply dynamic instability in a side-sway 

mode, usually triggered by large story drifts, which are amplified by P-∆ effects and 

deterioration in strength and stiffness of the components of the system. 

Assessment of collapse safety necessitates the capability to predict the dynamic response 

of deteriorating systems, particularly for existing older construction in which deterioration 

commences at relatively small deformations. Because of the lack of hysteretic models capable of 

simulating deteriorating behavior, global collapse is usually assumed to be associated with an 

“acceptable” story drift or the attainment of a limit value of deformation in individual 

components of the structure. This approach does not permit a “redistribution” of damage and 

does not account for the capacity of the system before collapse to sustain deformations that are 

significantly larger than those associated with loss in the resistance of individual elements. 

Thus, a systematic approach to integrate all the sources of global collapse needs to be 

developed. The approach should include the effect of backbone strength deterioration, cyclic 

deterioration, (CD),  and P-∆ effects on the global collapse of structural systems.  In the context 

of this report, global collapse implies incremental “side-sway” collapse of at least one story of 

the structure. 

1.2 1.2 OBJECTIVE 

The main objective of the study is to develop a methodology for evaluating global (side-sway) 

collapse for deteriorating structural systems. The evaluation of collapse is based on a measure 

called the “relative intensity,” which is defined as the ratio of the ground motion intensity to a 
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structural strength parameter. The relative intensity at collapse is called “collapse capacity.”  The 

components of this methodology are: 

• Development of hysteresis models that incorporate all important phenomena contributing 

to global collapse; 

• Computation of the collapse capacity for representative sets of frame structures and 

ground motions; 

• Evaluation of statistical measures of the collapse capacity, and of the effect of 

uncertainties in ground motions and in structural parameters on these statistical measures; 

• Development of collapse fragility curves; and  

• Evaluation of the mean annual frequency of collapse. 

1.3 1.3 OUTLINE 

The general methodology for assessing side-sway collapse is described in Chapter 2, where the 

main concepts used in this investigation are introduced and advantages and limitations of the 

procedure are illustrated. A literature review of the most salient findings in the evaluation of 

structural collapse is also included. 

Chapter 3 focuses on the development of deteriorating component hysteretic models, 

including strength deterioration of the backbone curve and cyclic deterioration of strength and 

stiffness. The calibration of the hysteretic models with experimental results is illustrated. The 

models are implemented in an in-house single-degree-of-freedom (SDOF) program that carries 

out dynamic and quasi-static inelastic analysis, and in a dynamic nonlinear analysis program for 

multi-degree-of-freedom (MDOF) systems.  

Collapse evaluation of SDOF systems is the topic of Chapter 4. A parametric study is 

carried out to determine the main parameters that influence collapse, such as type of hysteretic 

model, ductility capacity, and post-capping stiffness. Statistics for collapse capacity are 

computed considering record-to-record (RTR) variability. 

Chapter 5 deals with global collapse of generic frames whose inelastic behavior is 

modeled by springs at the ends of structural members. Initially, collapse capacity is obtained for 

strong column–weak beam frames, considering columns with infinite strength. Later, the “strong 

column–weak beam” concept is tested by adjusting the strength of the columns to specific strong 
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column factors. A procedure for obtaining equivalent SDOF systems for deteriorating MDOF 

systems including P-∆ effects is also presented.  

In Chapter 6 the sensitivity of collapse capacity to uncertainty in the system parameters is 

investigated by using the first-order second-moment method (FOSM). Different alternatives for 

applying the FOSM method to the evaluation of collapse capacity are investigated. Monte Carlo 

simulation is used for verifying the accuracy of FOSM results. The additional variance of 

collapse capacity due to uncertainty in the system parameters is computed for representative 

SDOF systems and a baseline MDOF generic frame. 

Collapse fragility curves are presented in Chapter 7, and are based on collapse capacity 

information of SDOF and MDOF systems. These fragility curves are combined with hazard 

curves for a specific site to show how the collapse methodology may be employed to obtain the 

mean annual frequency of collapse for a given system. 

The main conclusions, as well as future research directions, are presented in Chapter 8. 

Four appendices are included. Appendix A presents the methods used for computing statistical 

values. Appendix B describes the main characteristics of the generic frames used in the study. 

Appendix C demonstrates quantitatively that a lognormal distribution can be fitted to the 

distribution of collapse capacity due to RTR variability. Appendix D presents a comparison of 

computations of additional variance of collapse capacity in the linear and log domain of the data. 



2 Collapse Methodology 

1.1 2.1 INTRODUCTION 

In earthquake engineering, “collapse” refers to the incapacity of a structural system, or a part of 

it, to maintain gravity load-carrying capacity under seismic excitation. Collapse may be local or 

global; the former may occur, for instance, if a vertical load-carrying component fails in 

compression or if shear transfer is lost between horizontal and vertical components (e.g., shear 

failure between a flat slab and a column). Global collapse may have several causes. The spread 

of an initial local failure from element to element may result in cascading or progressive collapse 

(Liu et al., 2003; Kaewkulchai and Willamson, 2003). Incremental collapse occurs if the 

displacement of an individual story is very large, and second-order (P-∆) effects fully offset the 

first-order story shear resistance. In either case, replication of collapse necessitates modeling of 

deterioration characteristics of structural components subjected to cyclic loading, and the 

inclusion of P-∆ effects.  

In this study a global collapse assessment approach is proposed considering deteriorating 

hysteretic models. This approach permits a redistribution of damage and takes into account the 

ability of the system to maintain stability until structure P-∆ effects overcome the deteriorated 

story shear resistance.  

1.2 2.2 PREVIOUS RESEARCH ON GLOBAL COLLAPSE  

Improvements on collapse assessment approaches have been developed on several fronts. 

Researchers have worked independently in understanding and quantifying P-∆ effects and in 

developing deteriorating nonlinear component models that can reproduce experimental results. In 

addition, some efforts have been carried out to integrate all the factors that influence collapse in 

a unified methodology. The following is a summary of salient studies. 
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P-∆ Effects. The study of global collapse started by including P-∆ effects in seismic response. 

Even though hysteretic models considered a positive post-yielding stiffness, the structure tangent 

stiffness became negative under large P-∆ effects, eventually leading to collapse of the system. 

For instance, Jennings and Husid (1968) utilized a one-story frame with springs at the ends of the 

columns utilizing bilinear hysteretic models. They concluded that the most important parameters 

in collapse are the height of the structure, the ratio of the earthquake intensity to the yield level 

of the structure, and the second slope of the bilinear hysteretic model. They stated that the 

intensity of motion needed for collapse depends strongly on the duration of ground motion. This 

conclusion was drawn without consideration of cyclic deterioration behavior, and simply because 

the likelihood of collapse increases when the loading path stays for a longer time on a backbone 

curve with a negative slope. 

Sun et al. (1973) studied the gravity effect on the dynamic behavior of an SDOF system 

and its effect on the change of the period of the system. They showed that the maximum 

displacement that a system may undergo without collapse is directly related to the stability 

coefficient and the yield displacement of the system. In 1986, Bernal studied this coefficient in 

depth and proposed amplification factors based on the ratio of spectral acceleration generated 

with and without P-∆ effects. He considered elastic-plastic SDOF systems and used the same 

stability coefficient for all the period range of interest. Under these assumptions, no significant 

correlation between amplification factors and natural period was found. McRae (1994) extended 

the results of Bernal’s study to address structures with more complex hysteretic response while 

considering the P-∆ effect. 

Bernal (1992, 1998) analyzed two-dimensional moment-resisting frames, concluding that 

the minimum strength (base shear capacity) needed to withstand a given ground motion without 

collapse is strongly dependent on the shape of the controlling mechanism. Dynamic instability 

was evaluated from an equivalent elastic-plastic SDOF system that included P-∆ effects. A 

salient feature of his model is the applicability to buildings that may have different failure 

mechanisms. The importance of the failure mode had been recognized elsewhere (Takizawa, 

1980), but prior studies had been limited to single-story structures or had been restricted to 

buildings with global failure mechanisms.  

Degrading Hysteretic Models. Bilinear elastic-plastic hysteresis models were the first to 

be used because of their simplicity, and the first model with softening of the reloading stiffness 

was proposed by Clough and Johnston (1965). In this model, the degradation of the reloading 



 7

stiffness is based on the maximum displacement that has taken place in the direction of the 

loading path. Because of this characteristic, this model is often referred to as the peak-oriented 

model. The original version was slightly modified by Mahin and Bertero in 1975 (see Section 

3.3.2). In 1970, Takeda (Takeda, 1970) developed a model with a trilinear backbone that 

degrades the unloading stiffness based on the maximum displacement of the system. His model 

is designed for reinforced concrete (RC) components, and the envelope is trilinear because it 

includes a segment for uncracked concrete. In addition to models with piecewise linear behavior, 

smooth hysteretic models have been developed that include a continuous change of stiffness due 

to yielding and sharp changes due to unloading, i.e., the Wen-Bouc model (Wen, 1976). 

Experimental studies have shown that the hysteretic behavior is dependent upon 

numerous structural parameters that greatly affect the deformation and energy-dissipation 

characteristics. This has led to the development of more versatile models, such as the smooth 

hysteretic degrading model developed by Sivaselvan and Reinhorn (2000), which includes rules 

for stiffness and strength deterioration, as well as pinching. However, the model does not include 

a negative stiffness. The model of Song and Pincheira (2000) is also capable of representing 

cyclic strength and stiffness deterioration based on dissipated hysteretic energy. The model is 

essentially a peak-oriented one that considers pinching based on deterioration parameters. The 

backbone curve includes a post-capping negative stiffness and a residual strength branch. 

Because the original backbone curve does not deteriorate, unloading and accelerated cyclic 

deterioration are the only modes included, and prior to reaching the peak strength, the model is 

incapable of reproducing strength deterioration.  

In this investigation, deteriorating models are developed for basic bilinear, peak-oriented, 

and pinched hysteretic models. These models include a backbone curve with negative post-

capping branch and a branch of residual strength, which is optional. Deterioration is based on 

energy dissipation according to the rules proposed by Rahnama and Krawinkler (1993) (see 

Chapter 3). Relevant works by others regarding the effect of deteriorating hysteretic models on 

the response are presented in Chapters 4 and 5. 

Analytical Collapse Investigations. Takizawa and Jennings (1980) examined the 

ultimate capacity of an RC frame under seismic excitations. The structural model employed was 

an equivalent SDOF system characterized by degrading trilinear and quadrilinear (strength-

degrading) hysteretic curves. This is one of the first attempts to consider P-∆ effects and material 

deterioration in the evaluation of collapse. More recently Aschheim and Black (1999) carried out 
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a systematic study to assess the effects of prior earthquake damage on the peak displacement 

response of SDOF systems. Prior damage was modeled as a reduction in initial stiffness under 

the assumption that residual displacements are negligible. They used modified Takeda models to 

show that SDOF systems with negative post-yield stiffness were prone to collapse, whether or 

not they had experienced prior damage.  

Mehanny and Deierlein (2000) investigated collapse for composite structures consisting 

of RC columns and steel or composite beams. For a given structure and intensity of the ground 

motion (GM) record, they carried out a second-order inelastic time history analysis (THA) of the 

undamaged structure and calculated cumulative damage indices, which were used to degrade 

stiffness and strength of the damaged sections. The damaged structure was reanalyzed through a 

second-order inelastic static analysis considering residual displacements and including only 

gravity loads. Global collapse was assumed to occur when the maximum vertical load the 

damaged structure could sustain was less than the applied gravity loads (λu < 1). If collapse did 

not take place the record was subsequently scaled up to determine the ground motion intensity at 

which collapse occurs.  

Lee and Foutch (2001) evaluated the performance of new steel moment-resisting frames 

as a part of the FEMA/SAC project. Their analytical models included a fracturing element 

implemented by Shi (1997) in the Drain-2DX program. For evaluating the global drift capacity 

of the SAC buildings, they utilized the “IDA” approach (Vamvatsikos and Cornell, 2002). The 

onset of global dynamic instability was defined as the point where the local slope of the IDA 

curve decreased to less than 20% of the initial slope of the IDA curve in the elastic region. The 

frames were subjected to sets of 20 SAC GMs. Jalayer (2003) also employed the IDA concept 

for estimating the global dynamic instability capacity of a regular RC structure. She included 

strength deterioration caused by shear failure of the columns based on the model developed by 

Pincheira et al. (1999).  

Williamson (2003) studied the response of SDOF systems subjected to several ground 

motion records including P-∆ effects and material deterioration based on a modified Park and 

Ang damage model. He detected large sensitivity to both the properties of the structure and the 

characterization of the ground motion.  

Miranda and Akkar (2003) evaluated the lateral strengths required to avoid collapse in 

bilinear SDOF systems with negative post-yield stiffness. They detected a significant influence 

of the period of vibration for short-period systems with small negative post-yield stiffness. They 
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reported that the dispersion of the aforementioned lateral strengths increases as the negative post-

yield stiffness decreases and as the period of vibration increases. 

Adam and Krawinkler (2003) investigated the difference in the response of highly 

nonlinear systems under different analytical formulations. They concluded that large 

displacements formulation produces about the same responses as conventional (small 

displacement) formulations, even in cases where collapse is close. 

Experimental Collapse Investigations. A large number of experiments have been 

carried out to relate collapse with shear failure and ultimately with axial failure in columns. For 

instance, Yoshimura and Yamanaka (2000) tested several reinforced concrete columns subjected 

to low axial load. They detected that lateral and axial deformation, as well as input energy at 

collapse vary depending on the loading protocol imposed on each specimen. On the other hand, 

the ratio of vertical deformation increment to lateral deformation increment at collapse does not 

vary with the loading path. They concluded that collapse occurs when lateral load decreases to 

about 10% of the maximum load. Nakamura and Yoshimura (2002) evaluated columns 

experiencing shear failure prior to flexural yielding and others failing in shear after flexural 

yielding. They concluded that axial failure occurs when the shear capacity is reduced to 

approximately zero.  

Sezen (2002) tested full-scale shear-critical reinforced concrete building columns under 

cyclic lateral loads until the column could no longer sustain the applied axial load. The tests 

demonstrated that the loss of axial load not necessarily follows immediately after loss of lateral 

load capacity. Elwood and Moehle (2002) concluded that shear failure in columns does not 

necessarily lead to collapse of the system. Shear failure usually is accompanied by a reduction of 

axial capacity that depends on several factors. They found that in columns having lower axial 

loads, axial load failure occurs at relatively large drifts, regardless of whether shear failure had 

just occurred or whether shear failure had occurred at much smaller drift ratios. For columns 

with larger axial loads, axial load failure tends to occur at smaller drift ratios, and might occur 

almost immediately after loss of lateral load capacity. They also collected data for developing an 

empirical model to estimate shear strength deterioration. 

Vian and Bruneau (2001) carried out a series of shake table tests of a SDOF steel frame 

system subjected to earthquakes of progressively increasing intensity up to collapse due to 

geometric nonlinearities (P-∆ effect). They concluded that the stability coefficient has the most 

significant effect on the behavior of the structure. As this coefficient increases, there is a 
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decrease in the maximum sustainable drift and spectral acceleration that can be resisted before 

collapse. Kanvinde (2003) extended the work of Vian and Bruneau by testing additional SDOF 

systems. He detected that current methods of nonlinear dynamic analysis such as the OpenSees 

platform (OpenSees, 2002) are very accurate for predicting collapse for systems in which the P-∆ 

effect dominates the onset of collapse. 

In conclusion, despite the large number of research studies on the topic, the response of 

structural systems under the combination of geometric nonlinearities and material deterioration 

has not been investigated in detail. Thus, a need exists for carrying out systematic research on 

global collapse considering all the sources that lead to this limit state. 

1.3 2.3 DESCRIPTION OF GLOBAL COLLAPSE ASSESSMENT APPROACH 

In this investigation, global collapse refers to the inability of a system to support gravity loads 

because of excessive lateral displacement, which significantly reduces the story shear resistance 

and produces instability in the system. Traditionally, the collapse potential has been estimated by 

using non-deteriorating systems to predict engineering demand parameters2 (EDPs) and 

assigning judgmental limits to these parameters. In recent years, deteriorating systems have been 

used to estimate collapse but still based on pre-established EDPs limits. However, EDPs become 

very sensitive when the system is close to collapse, and small perturbations in the input produce 

large variations in the response (Fig. 2.1). For this reason, in the proposed methodology global 

collapse is described by a relative intensity measure instead of an EDP. The relative intensity 

measure is the ratio of ground motion intensity to a structural strength parameter. In this study, 

the ground motion intensity measure is the spectral acceleration at the fundamental period of the 

structure normalized by the acceleration of gravity (g), and the strength parameter is the yield 

strength of the structure normalized by its seismic weight (see Section 2.3.4). For a given 

structure and ground motion, collapse evaluation consists of a series of dynamic analysis starting 

with a relative intensity that produces an elastic response of the system. Then the relative 

intensity is increased until collapse takes place. The relative intensity at collapse is called the 

“collapse capacity” (see Section 2.3.4).  

 

                                                 
2 EDPs are the output of response prediction; some of the most relevant ones are story drift, ductility, hysteretic 
energy, etc. 
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This process requires analytical replication of collapse and necessitates modeling of 

deterioration characteristics of structural components. The use of deteriorating models permits a 

redistribution of damage and takes into account the ability of the system to sustain significantly 

larger deformations than those associated with reaching the ductility “capacity” in one 

component. In this study deteriorating hysteretic models have been developed that are relatively 

simple but sufficiently versatile to model all basic deterioration modes in components of 

different materials (Chapter 3). 

Dynamic analysis requires the specification of system properties and input ground 

motions, but variations in these quantities may produce large dispersion in the resulting response. 

Therefore, collapse needs to be evaluated in a probabilistic framework that includes uncertainties 

in the frequency content of the ground motions (Chapter 4 for SDOF systems and Chapter 5 for 

MDOF structures) and in the input parameters of the system (Chapter 6). A final product of 

collapse assessment could be the mean annual frequency of collapse, which is obtained by 

combining fragility curves with the hazard information at a given site (Chapter 7). Fragility 

curves are developed directly from the collapse capacities of the system. 

The following is a description of the steps involved in the methodology proposed to 

assess global collapse.  

2.3.1 Selection of Ground Motions 

The global collapse approach is based on time history analysis. Thus, a set of ground motions 

must be carefully selected according to specific objectives. The set must be sufficiently large to 

provide reliable statistical results. In this study, the intensity measure (IM) of GMs is the 5% 

linear elastic spectral acceleration at the fundamental period of vibration of the structural system, 

Sa(T1). Section 4.2.4 describes a set of 40 “ordinary” GMs, LMSR-N, which is extensively used 

in this investigation. Additional sets for near-fault and long-duration GMs are also included in 

Chapter 4. 

2.3.2 Deterioration Models 

Collapse evaluation is based on hysteretic models that account for history-dependent strength 

and stiffness deterioration. Deteriorating models have been developed for bilinear, peak-oriented, 

and pinching hysteretic models (described in Chapter 3). The monotonic backbone curve of these 
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systems consists of an elastic branch, a strain-hardening branch, a negative tangent stiffness 

branch, and in some cases a residual strength branch of zero slope (Fig. 3.2). In addition, cyclic 

deterioration is accounted for by using energy dissipation as a deterioration criterion. The 

following four modes of deterioration are included: basic strength, post-capping strength, 

unloading stiffness, and accelerated reloading stiffness deterioration. Figure 2.2 shows the 

response of an SDOF system represented by a peak-oriented model with rapid cyclic 

deterioration. Basic strength and post-capping deterioration move the strain-hardening and post-

capping branches toward the origin, respectively. Unloading stiffness deterioration flattens the 

unloading stiffness after each reversal, whereas accelerated reloading stiffness deterioration 

increases the target maximum displacement. 

In this research the term “deteriorating models” is used for hysteretic models that possess 

a post-capping stiffness branch in the backbone curve and/or are subjected to cyclic 

deterioration. The term “non-deteriorating” or “happy” is used for models without a post-capping 

branch (infinite ductility capacity) that are not subjected to cyclic deterioration, although 

geometric nonlinearities (P-∆ effects) could be present. 

2.3.3 Structural Systems 

In general, the collapse assessment methodology is the same for SDOF and MDOF systems. A 

large variety of SDOF systems are used in Chapter 4 to determine the parameters that most affect 

global collapse. The information synthesized from SDOF systems is used to narrow the number 

of parameters to be studied in MDOF structures. The MDOF structures to be studied are generic 

frames that include nonlinear behavior by means of concentrated plasticity (Chapter 5). The 

generic frames are single-bay frames of 3, 6, 9, 12, 15, and 18 stories, with a flexible and stiff 

version for each number of stories. 

2.3.4 Collapse Capacity 

To obtain the collapse capacity associated with a particular ground motion, the structural system 

is analyzed under increasing relative intensity values, expressed as (Sa/g)/η  for SDOF systems. 

The intensity of the ground motion (Sa) is the 5% damped spectral acceleration at the elastic 

period of the SDOF system (without P-∆ effects), whereas η = Fy/W is the base shear strength of 
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the SDOF system normalized by its seismic weight. The relative intensity can be plotted against 

the EDP of interest, resulting in (Sa/g)/η - EDP curves. 

For MDOF structures, the relative intensity is expressed as [Sa(T1)/g]/γ, where Sa(T1)/g is 

the normalized spectral acceleration at the fundamental period of the structure without P-∆ 

effects, and the parameter γ is the base shear coefficient Vy/W, which is equivalent to η.  These 

relative intensity definitions permit a dual interpretation: 

(1) If the ground motion intensity is increased and the strength of the system is kept constant, 

the resulting (Sa/g)/η - EDP (or [Sa(T1)/g]/γ – EDP) curves represent incremental dynamic 

analyses (IDAs) (Vamvatsikos and Cornell, 2002). 

(2) If the ground motion intensity is kept constant (given hazard) and the strength of the 

system is decreased, the resulting (Sa/g)/η  – EDP or ([Sa(T1)/g]/γ – EDP) curves 

represent EDP demands for various strength levels and are referred to as “strength 

variation curves.” In this case, (Sa/g)/η is equivalent to the conventional strength 

reduction factor, R, for structures without overstrength. Note that when the strength is 

decreased the entire backbone curve scales down (Fig. 2.3). This is a simplification of 

real behavior that must be cautiously interpreted because in many common structures, a 

reduction in the strength parameter is not necessarily accompanied by a similar reduction 

in the deformation capacity of the structure. An investigation developed in parallel with 

this work (Krawinkler et al., 2003) recognizes that structural systems have a bracketed 

range of deformation characteristics and that the strength of the system can be modified 

without significantly altering the deformation characteristics.  

For SDOF systems both interpretations provide the same normalized EDPs, whereas for 

MDOF structures the normalized EDPs should be very similar (see Section 5.2). 

An illustration of typical relative intensity–normalized displacement curves [(Sa/g)/η –

EDP] 3 is shown in Figure 2.4. Most of the figures of this report contain information in the 

heading that defines the ground motions and the properties of the structural system used to derive 

the results.  The following information is contained in the heading of Figure 2.4: 

• Type of basic hysteresis model: peak-oriented model (see Section 3.2) 

• Set of ground motions: LMSR-N (see Section 4.2.3) 

                                                 
3  The nomenclature and representative results discussed in the rest of this chapter correspond to SDOF systems. 
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• Percentage of critical damping of the system: ξ = 5% 

• P-∆ effect considered: P-∆ = “0.1N,” (see Section 4.3.6) 

• Strain-hardening ratio: αs = 0.03 (Section 3.2.1 and Fig. 3.2)  

• Post-capping stiffness coefficient: αc = -0.10 (Section 3.2.1 and Fig. 3.2). This parameter 

defines the slope of the branch of the backbone curve after the peak strength is reached  

• Ductility capacity: δc/δy = 4 (Section 3.2.1 and Fig. 3.2). It refers to the ratio of the 

displacement at which peak strength is attained (δc) over the yield displacement (δy) 

• Cyclic deterioration parameters: γs,c,k,a = 100 (Section 3.3).  

The most common EDPs in this investigation are the maximum displacement normalized 

by the spectral displacement, δmax/Sd, and the maximum displacement normalized by the yield 

displacement, δmax/δy. Occasionally, the normalized hysteretic energy, NHE, is also utilized. 

In the particular case of Figure 2.4, the EDPs correspond to normalized displacements 

and the curves represent [(Sa/g)/η –δmax/Sd] for an intermediate ductile SDOF system and a set of 

40 ground motions The deteriorating characteristics of the system cause the individual curves to 

eventually approach a zero slope as (Sa/g)/η increases, implying the proximity of collapse 

because the relative intensity can no longer be increased. The last point of each individual curve 

represents the relative intensity value at which the system collapses for a particular ground 

motion. This point is denoted as “collapse capacity” or (Sa,c/g)/η 4 and is equivalent to the R-

factor at collapse. To obtain (Sa,c/g)/η for a given record, the relative intensity is increased in 

small steps until numerical instability is detected; then the algorithm utilizes the bisection 

method to determine the collapse capacity within a specified tolerance. Occasionally numerical 

instability occurs at several relative intensity levels, i.e., the system experiences global collapse 

at some relative intensity level only to reappear as a non-collapsed system at a higher relative 

intensity level. Vamvatsikos and Cornell (2002) refer to this phenomenon as “structural 

resurrection.” However, this behavior has a marginal effect on statistical results because it occurs 

in very rare occasions. Therefore, in this work only the first collapse is taken into account, at 

least the first one to be detected by the proposed algorithm. 

                                                 
4 Collapse capacity is expressed in this form for the sake of simplicity. Rigorously, its nomenclature should be 
[(Sa/g)/η]c for SDOF systems and {[Sa(T1)/g)/γ]}c for MDOF systems. Collapse is produced by an increment of the 
ground motion intensity, then the collapse capacity is represented as Sa,c/g for a given η. On the other hand, if 
collapse is due to a decrease in the strength of the system, collapse capacity should be expressed as 1/ηc for a given 
Sa/g. 



 15

The dynamic analyses for different relative intensities can be carried out for a number of 

ground motions sufficiently large to perform statistical evaluation of the results. As illustrated in 

Figure 2.4, the median collapse capacity is obtained by carrying out “vertical statistics” on the 

individual collapse capacities (see Section 2.3.8). Note that the median (Sa/g)/η curve is based on 

“horizontal statistics” of the EDP at different intensity levels and terminates when 50% of the 

records have led to collapse of the system. Therefore, the last point of the median curve does not 

represent exactly the median collapse capacity, which must be obtained from “vertical” statistics. 

The terms “horizontal” and “vertical” are relative; hence, the use of these terms presupposes that 

EDPs are plotted on the horizontal axis and the relative intensity on the vertical axis. 

An example of the dependence of (Sa,c/g)/η on ground motions and the system period is 

shown in Figure 2.5, which presents collapse capacities for individual records as well as median 

and 16th percentile values. The results are obtained by performing collapse analysis for structural 

systems whose period is varied in closely spaced intervals. For instance, the individual collapse 

points of Figure 2.4 are used in Figure 2.5 to obtain collapse statistics at T = 0.5 s. For this case, 

the statistical values for the collapse capacity are almost constant with period, except in the 

short-period range. The (Sa,c/g)/η - T curves are called “collapse capacity spectra” and are 

extensively used in the rest of this work to evaluate collapse capacity, to determine the influence 

of various parameters on collapse, and to generate fragility curves.  

This example also illustrates the large dispersion in collapse capacity that can be obtained 

due to differences in the frequency content of the ground motions. This points toward the need to 

find more effective IMs in order to reduce the variability in the structural demands. 

2.3.5 Effect of Deterioration Prior to Collapse  

Although this investigation focuses on collapse evaluation, useful information has been 

generated on the response prior to collapse.  Relative intensity versus EDP curves for 

deteriorating systems permit an assessment of the effect of deterioration when compared to 

equivalent curves for non-deteriorating systems. For instance, Figure 2.6 presents median 

(Sa/g)/η - δmax/δy curves for identical systems, except for the ductility capacity parameter (δc/δy). 

The uppermost curve is for a non-deteriorating (infinitely ductile) system (δc/δy = infinite), in 

which case collapse will never occur unless the P-∆ effect is large.  The other three curves are for 

systems with specific ductility capacities. Due to cyclic deterioration effects, the median curve 
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for the system with δc/δy = 6 starts to deviate from that of the infinitely ductile system at a 

ductility (δmax/δy) smaller than the ductility capacity of the system. Section 4.3.1 presents salient 

findings of the response of deteriorating systems prior to collapse.  

2.3.6 Effects of Uncertainty in System Parameters 

In the first part of the study, collapse capacity is evaluated considering record to record 

variability (RTR) as the only uncertainty in the computation of collapse capacity. However, as 

illustrated in Figure 2.7, system parameters like ductility capacity and post-capping stiffness can 

also be considered in a probabilistic framework, even though experimental information that can 

be used to define statistical properties of the parameters of the hysteresis model is rather limited.  

In Chapter 6, the first-order second-moment (FOSM) method is used to compute the 

additional variance of collapse capacity due to uncertainty in the system parameters, whereas 

Monte Carlo simulation is used to verify some results. The FOSM method approximates the 

collapse capacity variance based on a Taylor’s series expansion of a performance function (g) 

about the expected values of the random variables. One of the main advantages of the method is 

that the first and second moments are estimated without knowing the distribution of the function 

“g.” For instance, Figure 2.8 presents the contributions to the variance of collapse capacity from 

several sources, including RTR variability, uncertainty in post-capping stiffness, ductility 

capacity, and cyclic deterioration, assuming a standard deviation of the log of the data of 0.60. 

The example does not include correlation among the different parameters. Depending on the 

characteristics of the system, the contributions of uncertainty in the system parameters to the 

total variance may be small or comparable to the contribution due to RTR variability. 

2.3.7 Collapse Fragility Curves and Mean Annual Frequency of Collapse 

A direct application of collapse capacity evaluation is the computation of the mean annual 

frequency of collapse, which is obtained by integrating the collapse fragility curve for a given η 

value over a Sa hazard curve pertaining to a specific site.  

Fragility curves can be developed from collapse capacities for a set of ground motions as 

those shown in Figure 2.4. The collapse capacity distribution is assumed to be lognormal (see 

Appendix C) and the first and second moments are computed from individual collapse points. 
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This information is used to generate the cumulative distribution function (CDF), which 

corresponds to a fragility curve and describes the probability of collapse given the value of 

(Sa/g)/η. Typical results are presented in Figure 2.9 for several of the studied SDOF systems with 

the same period but with variations in system parameters. As observed, the probability of 

collapse may be very sensitive to the hysteretic properties of the system. For computing the mean 

annual frequency of exceedance, these fragility curves need to be de-normalized by a specific η 

value that defines the strength of the structural system. 

Once a fragility curve is computed and hazard information for the site is available, the 

mean annual frequency of collapse can be computed as follows (Medina, 2002; Jalayer, 2002):  

                            ∫
∞

=
0

, |)(|)(
,

xdxF
aca SSCc λλ                                              (2.1) 
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,, xF
caSC  represents the probability of Sa capacity, Sa,c, exceeding x, and λSa(x) is the mean 

annual frequency of Sa exceeding x (ground motion hazard). )(xF
SaC  corresponds to the fragility 

curve obtained from individual collapse capacities. The process of integrating Equation (2.1) is 

illustrated in Figure 2.10. In this context, the structural strength parameter (γ or η) is kept 

constant and the individual curves of 2.10 represent IDAs.   

Mean annual frequencies of collapse for a specific site and ductile SDOF systems are 

shown in Figure 2.11 for selected η values. As observed, the mean annual frequency of collapse 

strongly depends on the lateral strength and period of the system (see Chapter 7). These results 

are obtained by numerical integration of collapse fragility curves with hazard curves for selected 

periods pertaining to the specific site. The hazard curves used in this case were generated from 

the equal-hazard response spectra values calculated for a Van Nuys, California, site (Somerville 

and Collins, 2002) (see Chapter 7). 

2.3.8 Statistical Considerations 

The central value and a measure of dispersion can be evaluated by means of “computed” or 

“counted” statistics (Appendix A). Both methods have pros and cons; thus, their use is dictated 

by the types of analyzed data. For instance, for given (Sa/g)/η values, EDP data can be evaluated 

by using counted statistics, in which the median and percentiles of interest are directly obtained 

from the sorted data. Counted statistics are used because increments in (Sa/g)/η eventually lead 
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to collapse of a deteriorating system under one or more ground motions. Once the first collapse 

takes place, the data for higher relative intensity levels are incomplete and the counted process 

appears to be the most appropriate5. 

On the other hand, the first and second moments of collapse capacities are obtained from 

computed statistics of the individual (Sa,c/g)/η values. This procedure can be used because 

deteriorating systems always collapse if the relative intensity is large enough. Computed 

statistics are preferred because they permit the formulation of closed-form solutions to calculate 

the mean annual frequency of collapse, and because the ratio of computed medians is the median 

of the ratios (see Appendix A). The latter feature adds flexibility to the parametric study because 

median collapse capacities of two systems can be compared without having to compute the 

individual collapse capacity ratios among them. Counted statistics are still needed for systems in 

which collapse does not occur for all the ground motions or occurs at very large relative 

intensities. 

2.3.9 Normalization 

In this study most of the data are presented in a normalized format to provide flexibility; see the 

(Sa/g)/η - δmax/Sd curves of Figure 2.4. This information can be de-normalized to fulfill specific 

needs, e.g., the generation of IDAs used to compute mean annual frequencies of collapse. In 

Figure 2.4, the horizontal axis shows δmax/Sd, which corresponds to the maximum displacement 

normalized by the spectral displacement, Sd,: 

ad STS 2

2
1

4π
≈           (2.2)  

Equation 2.2 is an identity only when Sa corresponds to the pseudo-spectral acceleration. 

In the case of the vertical axis, the (Sa/g)/η parameter can be de-normalized to produce IDAs or 

strength-variation curves. For instance, if η is given, curves of Figure 2.4 become IDAs, as the 

ones shown in Figure 2.12. This graph indicates that for a given  η = 0.1, the median collapse 

capacity for this SDOF system is associated with a ground motion intensity of about Sa = 0.5g. 

On the other hand, if Sa/g is kept constant, strength-variation curves are produced. As an 

                                                 
5  A regression analysis of binary data is proposed by Shome and Cornell (1999) to carry out statistics on  
EDPs when some of the systems have collapsed. 
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example, Figure 2.13 presents 1/η – δmax curves when the curves of Figure 2.4 are de-normalized 

for Sa = 0.5g. According to this graph, the median 1/η at collapse is about 10, i.e., ηc ≈  0.1. 

In the case of collapse capacity spectra [(Sa,c/g)/η − T curves], a meaningful de-

normalization can be achieved by considering different spectral accelerations for each period 

according to available seismic hazard information. For instance, the median collapse capacity 

spectrum of Figure 2.5 can be de-normalized by using the design spectrum of Figure 2.14, which 

corresponds to a Los Angeles soil type D site for a probability of exceedance of 10% in 50 years. 

If the median collapse capacities of Figure 2.5 are modified at each period according to the 

corresponding spectral acceleration of this spectrum, the median strength associated with 

collapse for different periods shown in Figure 2.15 is obtained. As can be seen, the median 

strength the system needs to avoid collapse decreases rapidly with an increase in period (except 

for very short periods). 

This investigation deals almost exclusively with normalized data because of the 

generality provided by this format. However, it is important to keep in mind that this information 

may provide a different perspective in other formats. For instance, the normalized collapse 

capacities of Figure 2.5 remain essentially constant for periods longer than 0.6 s. However, the 

median strength associated with collapse of Figure 2.15 decreases continuously with an increase 

in period. 
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Fig. 2.1  Relative intensity–EDP curve 
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Fig. 2.2  SDOF response of a peak oriented model with rapid cyclic deterioration 
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Fig. 2.3  Backbone curves for different η values (constant Sa/g) 
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Fig. 2.4   (Sa/g)/η - δmax/Sd curves  
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(Sa/g)/η at COLLAPSE vs PERIOD
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=100
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Fig. 2.5  Variation of collapse capacity with period 
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Fig. 2.6  Median (Sa/g)/η - δmax/δy curves, different δc/δy values 
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Fig. 2.7  Representation of uncertainty in system parameters 
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Fig. 2.8  Contribution of uncertainty in system parameters to variance of (Sa,c/g)/η 
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(Sa)/η vs PROBABILITY OF COLLAPSE, T=0.5 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'
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Fig. 2.9  Examples of fragility curves for SDOF systems with T = 0.5 s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.10  Assessment of mean annual frequency of collapse 
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MEAN ANNUAL FREQ. OF COLLAPSE, Van Nuys, CA.
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'
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Fig. 2.11  Period and strength dependence of mean annual frequency of collapse 

for ductile SDOF systems (Van Nuys location) 
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Sa/g vs DISPLACEMENT, η=0.1, T=0.5 sec.
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=100
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Fig. 2.12  IDA curves for an intermediate ductile SDOF system, η = 0.1 

 

1/η vs DISPLACEMENT, Sa/g=0.5, T=0.5 sec.
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=100

0

5

10

15

20

25

30

35

0 5 10 15
Displacement, δmax (in)

1/
η

Median 1/ηc

 
 
Fig. 2.13  Strength variation curves for an intermediate ductile SDOF system, Sa/g = 0.5 
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NEHRP, Response Spectrum, LA 10/50
Soil Type D 
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Fig. 2.14  NEHRP design spectrum for soil type D, L.A. site 

 

η at COLLAPSE vs PERIOD
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=100
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Fig. 2.15  Median strength associated with collapse for an intermediate ductile system, 

Sa(T)/g according to NEHRP design spectrum 
 

 



3 Hysteretic Models 

3.1 INTRODUCTION  

Collapse assessment requires hysteretic models capable of representing all the important modes 

of deterioration that are observed in experimental studies. Figure 3.1 illustrates a monotonic 

load-displacement response and a superimposed quasi-static cyclic response of “identical” 

plywood shear wall panels (Gatto and Uang, 2002). The monotonic test result shows that 

strength is “capped” and is followed by a negative tangent stiffness. The cyclic hysteretic 

response indicates that the strength in large cycles deteriorates with the number and amplitude of 

cycles, even if the displacement associated with the strength cap has not been reached (1). It also 

indicates that strength deterioration occurs in the post-capping range (2), and that the unloading 

stiffness may also deteriorate (3). Furthermore, it is observed that the reloading stiffness may 

deteriorate at an accelerated rate (4). 

Several hysteretic models have been developed to represent the behavior of components 

that exhibit characteristics of the type illustrated in Figure 3.1 (Kunnath et al., 1991, Sivaselvan 

and Reinhorn, 2000; Song and Pincheira, 2000). However, few models integrate all the important 

deterioration sources such as strength deterioration in the backbone curve (post-capping stiffness 

branch) and cyclic deterioration of strength and stiffness. For this reason, deteriorating models 

were developed in this study for bilinear, peak-oriented, and pinched hysteretic systems. The 

models are implemented in an in-house computer program called SNAP that carries out dynamic 

and quasi-static inelastic analysis for SDOF systems6. The component deterioration models are 

also implemented in a computer program for MDOF systems that carries out dynamic nonlinear 

analyses, DRAIN-2DX (1993). The models incorporate a backbone curve that represents the 

monotonic response. Under cyclic behavior, several system parameters may deteriorate after 

                                                 

6  SNAP is based on the program NLDYNA developed by Rahnama (Rahnama and Krawinkler, 1993). 
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each excursion. The sources of cyclic deterioration are basic strength, post-capping strength, 

unloading stiffness, and accelerated reloading stiffness deterioration.  

1.1 3.2 BASIC HYSTERETIC MODELS 

The following is a description of the three hysteretic models used in this study and the 

modifications introduced when post-capping strength deterioration is included in the backbone 

curve. 

3.2.1 Description of Backbone Curve 

The backbone curve defines the monotonic response and is the same for all hysteretic models 

(Fig. 3.2). This also defines the boundaries for the load-displacement relationship. The backbone 

curve is defined by the following parameters: 

Initial Stiffness (Ke). It defines the elastic branch of the curve and is located between the 

origin (0, 0) and the yielding point (δy, Fy).  

Hardening Stiffness (Ks). This stiffness is defined by connecting the yield point to the 

peak point (δc, Fc). The hardening stiffness is defined as a fraction of the initial stiffness:  

ess KK α=        (3.1) 

The cap displacement (δc) is the point where the post-capping branch begins. If δc is 

normalized by the yielding displacement, the ratio is called ductility capacity, δc/δy. The peak 

strength (Fc) is attained at the end of the hardening branch:  

)( ycsyc KFF δδ −+=                                           (3.2) 

Post-Capping Stiffness (Kc). This stiffness is defined by connecting the peak point to the 

beginning of the residual strength branch (δr, Fr). The post-capping stiffness is also defined as a 

fraction of the initial stiffness: 

ecc KK α=              (3.3) 

Residual Strength Branch. The residual strength is a fraction of the initial yield 

strength: 

yr FF λ=                  (3.4) 
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Residual strength is not modified when cyclic deterioration shrinks the backbone curve. 

The displacement at which the residual strength branch starts, δr, is calculated as: 

crccr KFF /)( −+= δδ     (3.5) 

The parameters sα , yc δδ / , cα  and λ are obtained from calibration of the hysteretic 

models with load-deformation data obtained from experiments (see Section 3.5). 

3.2.2 Bilinear Model 

This model is based on the standard bilinear hysteretic rules with kinematic strain hardening. 

These basic rules are preserved once post-capping and residual strength branches are included. 

However, it is necessary to introduce the “strength limit” shown in Figure 3.3 when the 

backbone curve includes a branch with negative slope. The limit for strength corresponds to the 

smallest strength reported on the post-capping branch in previous excursions. In Figure 3.3, the 

loading curve starting at 5 should continue up to intersect 6′, according to kinematic rules. 

However, this loading segment ends when it intersects the “strength limit” at point 6. The limit 

corresponds to the strength of point 3, which is the smallest strength in the nonlinear range of the 

backbone curve in earlier cycles. If this condition were not established, the strength in the 

loading path could increase in later stages of deterioration. 

3.2.3 Peak-Oriented Model 

This model keeps the basic hysteretic rules proposed by Clough and Johnston in 1965, but the 

backbone curve is modified to include strength capping and residual strength. The presence of a 

negative post-capping stiffness does not modify any basic rules of the model. Figure 3.4a shows 

the deterioration of the reloading stiffness for a peak-oriented model once the horizontal axis is 

reached (points 3 and 7). The reloading path targets the previous maximum displacement. 

Mahin and Bertero (1975) proposed that the reloading path be directed to the maximum 

displacement of the last cycle instead of the maximum displacement of all former cycles if the 

former path results in a larger reloading stiffness. This is exemplified in Figure 3.4b, where the 

reloading from point 10 is directed to point 7 (maximum displacement of last cycle) instead of 

point 2 (maximum displacement of all earlier cycles), as in the original peak-oriented model. 

Once point 7 is reached, the path is redirected to point 2. 
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3.2.4 Pinching Model 

The pinching model is similar to the peak-oriented one, except that reloading consists of two 

parts. Initially the reloading path is directed toward a point denoted as “break point,” which is a 

function of the maximum permanent deformation and the maximum load experienced in the 

direction of loading. The break point is defined by the parameter κf, which modifies the 

maximum “pinched” strength (points 4 and 8 of Fig. 3.5a), and κd, which defines the 

displacement of the break point (points 4′ and 8′). The first part of the reloading branch is 

defined by Krel,a and once the break point is reached (points 4′ and 8′), the reloading path is 

directed toward the maximum deformation of earlier cycles in the direction of loading (Krel,b) 

Reloading without Krel,a. If the absolute deformation at reloading  (point 13, Fig. 3.5b) is 

larger than the absolute value of perd δκ )1( − , the reloading path consists of a single branch that 

is directed toward the previous maximum deformation in the direction of loading. 

1.2 3.3 CYCLIC DETERIORATION  

3.3.1 Deterioration Based on Hysteretic Energy Dissipation 

Four cyclic deterioration modes may be activated once the yielding point is surpassed in at least 

one direction: basic strength, post-capping strength, unloading stiffness, and reloading stiffness 

deterioration. The basic cyclic deterioration rules are the same for all the hysteretic models with 

the exception of the accelerated stiffness deterioration, which does not exist in the bilinear 

model. The peak-oriented model will be used to illustrate the effect of cyclic deterioration. 

The cyclic deterioration rates are controlled by the rule developed by Rahnama and 

Krawinkler (1993), which is based on the hysteretic energy dissipated when the component is 

subjected to cyclic loading. It is assumed that the hysteretic energy-dissipation capacity is a 

known quantity that is independent of the loading history. 

The cyclic deterioration in excursion i is defined by the parameter βi, which is given by 

the following expression: 
C
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where  

iE    = hysteretic energy dissipated in excursion i 

Σ jE = hysteretic energy dissipated in all previous excursions (both positive and 

negative) 

tE    = hysteretic energy-dissipation capacity, yyt FE δγ=          

γ expresses the hysteretic energy-dissipation capacity as a function of twice the 

elastic strain energy at yielding (Fyδy). It is calibrated from experimental 

results and can be different for each deterioration parameter.  

c      = exponent defining the rate of deterioration of the evaluated hysteretic 

parameter (strength or stiffness). Rahnama and Krawinkler (1983) suggested 

that a reasonable range for c is between 1.0 and 2.0. If the displacement history 

consists of constant amplitude cycles, a unit value for c implies an almost 

constant rate of deterioration of the hysteretic parameter. For the same 

displacement history, a value c = 2 slows down the rate of deterioration in 

early cycles and accelerates the rate of deterioration in later cycles. 

 

Throughout the time history analysis, βi must be within the limits 10 ≤< iβ . If this 

inequality does not hold ( 0≤iβ  or 1>iβ ), the hysteretic energy capacity is exhausted and 

collapse takes place. Mathematically:  

i

i

j
jyy EEF <−∑

=1
δγ           (3.7) 

3.3.2 Basic Strength Deterioration 

It is defined by translating the strain-hardening branch toward the origin by an amount equivalent 

to reducing the yield strength to:  
+
−

+ −= 1, )1( iisi FF β  and    −
−

− −= 1, )1( iisi FF β      (3.8) 

in which 
−+ /

i
F = deteriorated yield strength after excursion i.  

−+
−

/
1i

F =  deteriorated yield strength before excursion i. 
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There is a positive and a negative value for each deterioration parameter because the 

algorithm deteriorates the strength independently in both directions. That is to say, −
iF is updated 

after every positive inelastic excursion, and +
iF is updated after every negative inelastic 

excursion. 

The parameter is ,β  is calculated with Equation 3.6 each time the inelastic path crosses the 

horizontal axis and is associated with the appropriate γ value to model basic strength 

deterioration (γs). 

The basic strength deterioration mode also includes the deterioration of the strain-

hardening slope, which is rotated in accordance with the following equation:  

( ) +
−

+ −= 1,,, 1 isisis KK β   and  ( ) −
−

− −= 1,,, 1 isisis KK β                (3.9) 

The strain-hardening slope is also deteriorated independently in both directions. The slope of the 

strain-hardening branch is equal to zero when the yield strength has deteriorated to zero. If a 

residual branch is included in the backbone curve, the analytical model deteriorates the strain-

hardening stiffness to zero ( 0/
, =−+
isK ) when the yield strength deteriorates to yoFλ  ( yoF  is the 

initial yield strength). 

A peak-oriented model is used in Figure 3.6a to illustrate the basic strength deterioration 

mode. At point 3, βs is calculated for first time and the maximum strength that can be reached on 

the negative side is reduced from −
yF  to −

1F . The slope of the hardening branch decreases from 

−
0,sK  to −

1,sK . At point 7, βs is calculated again and the positive yield strength is modified from 

+
yF  to +

1F . Observe that the current βs value does not modify the yield strength based on −
1F , 

but deteriorates the positive yield strength for the first time. A similar deterioration occurs with 

the positive hardening slope. 

3.3.3 Post-Capping Strength Deterioration 

This deterioration mode translates the post-capping stiffness branch toward the origin and, unlike 

basic strength deterioration, the slope of the post-capping branch is kept constant. The post-

capping branch is moved inward by an amount equivalent to reducing the reference strength 

according to the following equation: 
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( ) −+−+
−

−= /
,

/
1,,

1
irefiref

FF icβ           (3.10) 

−+ /
refF  is the intersection of the vertical axis with the projection of the post-capping branch 

(Fig. 3.6b). There is a positive and negative reference strength parameter for independently 

deteriorating the positive and negative post-capping strength. βc is associated with an appropriate 

γ  value to model post-capping strength deterioration (γc). 

The deterioration of post-capping strength is computed each time the horizontal axis is 

crossed, but the deterioration parameter may not affect the loading path in the early stages of 

nonlinearity. In Figure 3.6b, the first post-capping deterioration is calculated at point 3 and the 

negative reference point moves to −
1,refF . This backbone modification does not affect the loading 

path due to the small magnitude of the negative displacement. At point 6, the deterioration of the 

post-cap strength is computed again and this time the loading path is modified because the 

updated cap displacement ( +
1cδ ) is exceeded in this excursion. 

3.3.4 Unloading Stiffness Deterioration 

The unloading stiffness (Ku) is deteriorated in accordance with the following equation: 

1,,, )1( −−= iuikiu KK β                     (3.11) 

where 

iuK ,  =  deteriorated unloading stiffness after excursion i 

1, −iuK =  deteriorated unloading stiffness before excursion i 

ik ,β  is associated with an appropriated cyclic deterioration parameter γk. 

The parameter kβ  is the only one that is calculated when a load reversal takes place in 

the inelastic range. Furthermore, this is the only deterioration mode in which the deterioration 

parameter in one direction is also used to update the deterioration parameter in the other 

direction. Consequently, the unloading stiffness is updated up to twice as much as the other 

deterioration parameters. Thus, if the same energy-dissipation capacity is expected for the four 

deterioration modes, it is recommended to assign a larger value to γk than to γs, γc and γa. If the 

same energy is dissipated in the positive and negative directions, then γk should be about twice as 

large as the other γ  values, i.e., acsk ,,2γγ = . 
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Figure 3.6c shows a peak-oriented model that includes unloading stiffness deterioration. 

At point 2 the first reversal in the inelastic range occurs and the unloading stiffness deteriorates 

from Ke to a deteriorated value Ku,1. At point 5 the first reversal on the negative side takes place 

and Ku,2 is calculated based on the updated βu and Ku,1. Unlike other deterioration modes, Ku,2 is 

updated based on the value of the unloading stiffness on the other side of the loop. 

The deterioration of unloading stiffness takes place each time that a reversal occurs and the 

updated unloading stiffness is used for subsequent updates of this parameter. However, the 

unloading stiffness update is disregarded if the reversal is considered an interruption in the 

direction of loading. In peak-oriented and pinching models, an interruption occurs when the path 

is on the unloading stiffness and a reversal takes place before the path targets the maximum 

displacement on the opposite side (Fig. 3.6c). In bilinear models, an interruption occurs when the 

path is on the unloading stiffness and has a reversal before reaching the backbone curve on the 

opposite side. 

3.3.5 Accelerated Reloading Stiffness Deterioration 

This deterioration mode increases the absolute value of the target displacement, defined as the 

maximum positive or negative displacement of past cycles, according to the direction of loading. 

Accelerated reloading stiffness deterioration is defined only for peak-oriented and pinching 

models and is governed by the following equation: 
−+−+

−
+= /

,
/

1,,
)1(

itit ia δβδ                               (3.12) 

There is a target displacement (δt) for each loading direction, and the reloading stiffness 

deterioration is calculated each time the horizontal axis is crossed (Fig. 3.6d). Equation 3.6 is 

employed to compute βa based on the corresponding parameter γa.  

1.3 3.4 CALIBRATION OF HYSTERETIC MODELS WITH COMPONENT TESTS 

The proposed hysteretic models have been calibrated with load-deformation data obtained from 

experiments on steel, reinforced concrete, and wood components. The best way of defining the 

backbone curve parameters (ductility capacity and post-capping stiffness) is with a monotonic 

test because cyclic deterioration effects are not present. The parameter γ  is estimated from 
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experiments in which the specimen is subjected to cyclic loading. The following are examples of 

some calibrations for different materials. 

3.4.1 Steel Specimens 

Figures 3.7–3.8 illustrate the calibration of the bilinear model on beam load-displacement 

relationships for steel beam-column subassemblies (Uang et al., 2000).  Because monotonic tests 

were not available to obtain the backbone curve for the simulations, the parameters of the 

backbone curve (Fy, δy, δc, αs, and αc) were estimated from the load-displacement relationship of 

the second excursion of the near-fault tests.  This second excursion is considered to be equivalent 

to a monotonic load-displacement relationship because only small structural damage occurred 

during the first excursion in the opposite direction.  Based on this approach, the following 

properties are utilized for all four simulations: Fy = 103 kips, δy = 1.03 in., αs  = 0.03, αc = -0.03, 

δc /δy = 2.75, and no residual strength (λ = 0).  The cyclic deterioration parameters are: c = 1.0 

and γs = γc = γk = γa = 130. The use of different γ values for each deterioration mode could have 

resulted in a better calibration. However, γ’s are set at the same value because the objective is to 

find representative parameters that can be used when no experimental results are available. 

Specimens LS1 and LS4 were tested using the standard SAC loading protocol (Fig. 3.7).  

The main difference between them is that the beam in specimen LS4 is braced to help it achieve 

its full plastic moment capacity. The analytical model provides a good correlation with the 

experimental loops. However, the response at early cycles cannot be fully reproduced because 

steel components develop cyclic strain hardening, a feature that is not included in the analytical 

model. 

Specimens LS2 and LS3 were tested using the SAC near-fault loading protocol. The 

specimens were loaded in opposite directions. As in the former case, the absence of cyclic strain 

hardening in the analytical model can be observed in the early cycles of the history where the 

load-deformation response of the model underestimates that of the experiment. In general, good 

correlation is observed between experimental and analytical loops for the four tests, although the 

same hysteretic properties are utilized for different loading protocols.  

Figures 3.9–3.10 show plots of negative and positive normalized hysteretic energy (NHE 

= total hysteretic energy dissipated / Fyδy) as a function of the number of cycles for all four 

specimens.  In all cases the history of NHE is similar for both the analytical model and the 
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experimental results. Thus, the bilinear hysteretic model is able to replicate the cumulative 

energy dissipated under the action of various loading protocols. Note that the sum of positive and 

negative NHE is smaller than the analytical input parameter γs,c,k = 130. The reason is that 

although γ ’s were directly calibrated from experimental results, complete loss of restoring force 

is not reached in any case. According to the hysteretic loops, specimen LS-2 is the closest to lose 

all its restoring force. Consequently, this is the case where the sum of positive and negative NHE 

is closest to the input parameter γs,c,k = 130 because the hysteretic energy capacity is almost 

exhausted. 

3.4.2 Wood Specimens 

Figure 3.11 illustrates the calibration of the pinching model on plywood shear wall load-

displacement relationships (Gatto and Uang, 2002). Four different loading protocols are used in 

the calibrations: ISO, SPD, CUREE standard, and CUREE-near-fault. The CUREE loading 

protocols were developed by Krawinkler et al. (2001) for wood-frame testing. The following 

properties for the backbone curve were obtained from a monotonic test and were utilized in the 

simulations: Fy = 7 kips, δy = 1.0 in., αs  = 0.10,  αc = -0.13,  δc /δy = 4, λ = 0, and κf  = κd = 0.25. 

The cyclic deterioration parameters used were: c = 1.0, γs = γc = γa  = 50, and γk = ∞ (no 

unloading stiffness deterioration). The graphs show that the pinching hysteretic model is able to 

simulate cyclic deterioration observed in the plywood shear wall panel tests for the four loading 

protocols. 

Figure 3.12 shows plots of positive and negative NHE as a function of the number of 

cycles. In all cases, the history of the NHE of the analytical model is below the one 

corresponding to the experimental results because the model remains elastic until δy is achieved. 

That is to say, the models do not dissipate energy below this threshold, whereas the experimental 

results exhibit energy dissipation at displacement levels well below the estimated value of δy.   

Although the trends in the history of NHE between the model and test results are slightly offset 

by this difference, the pinching model is able to replicate the cumulative energy dissipated, 

especially at relatively large deformation levels. 
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3.4.3 Reinforced Concrete Specimens 

The calibration of reinforced concrete (RC) specimens utilizes the experiments carried out by 

Moehle and Sezen (Sezen, 2000). They tested four columns with deficient transverse 

reinforcement, which were connected to very rigid top and base beams to produce double 

curvature. The two columns (“1” and “4”) with small constant axial load P = 0.15f′cAg are 

calibrated in this study. Column “1” was subjected to a stepwise increasing cyclic loading 

protocol and column “4” to a mostly monotonic history, consisting of several small cycles 

followed by a big final excursion. For calibration purposes, the backbone parameters were based 

on the results of column 4 and the cyclic deterioration parameters on the results of column 1. 

Figure 3.13 presents the experimental and analytical hysteretic loops of columns 1 and 4 along 

with the input parameters. Both cases exemplify the difficulties in reproducing early inelastic 

cycles in reinforced concrete components when the analytical models do not include the cracking 

point. However, the pinching model simulates well the highly inelastic behavior. 

 Figure 3.14 depicts the NHE dissipation histories for the aforementioned cases. For 

column 4, the NHE is negligible up to the last cycle, in which most of the energy is dissipated. 

For column 1, the sum of positive and negative NHE is also very small compared to γ = 50. The 

reason is that the large slope of the post-capping branch is preventing the total NHE from 

reaching a value close to γ, even for systems that are very close to complete failure. 

1.4 3.5 ILLUSTRATIONS OF CYCLIC DETERIORATION EFFECTS  

As shown in previous sections, the deteriorating model is capable of reproducing the response of 

tests of components made of steel, reinforced concrete, and wood. Calibrations with component 

tests have provided typical values for the deteriorating system parameters. This section illustrates 

the effects various deterioration parameters have on the hysteretic response when a component is 

subjected to the CUREE loading protocol (Krawinkler et al., 2000) (Fig. 3.15). Three parameters 

are of primary interest: the ductility capacity δc /δy, the post-capping stiffness αc, and the series 

of cyclic deterioration parameters γs, γc, γk, and γa.  In these illustrations it is assumed that all four 

cyclic deterioration parameters are equal. 

Figure 3.16 shows nine hysteretic responses that have the same post-capping stiffness,   

αc = -0.10, in common. From left to right in the figure the ductility capacity decreases from δc /δy 
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= 6 to δc /δy = 4 and 2, whereas from top to bottom in the figure the cyclic deterioration 

parameter decreases from γs,c,k,a = infinite to γs,c,k,a = 100 and 25.  Thus, the effect of a decrease in 

the ductility capacity can be studied by viewing the figure from left to right and the effect of a 

decrease in the cyclic deterioration parameter can be studied by viewing the figure from top to 

bottom. There are clear patterns both in the horizontal and vertical directions. It is noted, for 

instance, that for this specific loading history the ductility capacity becomes rather irrelevant if 

the cyclic deterioration parameter is small (γs,c,k,a = 25), i.e., cyclic deterioration effects 

overpower the effect of monotonic ductility (see bottom row of the figure). This observation is 

consistent but not very relevant because the combination of a monotonically ductile component 

that experiences rapid cyclic deterioration is rather unlikely.  For all other cases illustrated, the 

combination of ductility capacity and cyclic deterioration parameters control the response. 

Figure 3.17 presents the same arrangement of systems, but using a steep post-capping 

slope corresponding to αc = -0.50. There are clear differences between each graph of Figures 

3.16–3.17, demonstrating the importance of the post-capping stiffness.  For the steep post-

capping slope corresponding to αc = -0.50, the monotonic ductility capacity becomes much 

important because little “life” is left at deformations exceeding the monotonic ductility capacity.   

The important observation to be made is that the effects of none of the deterioration 

parameters can be evaluated in isolation.  It is the combination of all three deterioration 

parameters (δc /δy, αc, γs,c,k,a) that governs the cyclic behavior. 

1.5 3.6 ADDITIONAL OBSERVATIONS ON DETERIORATION MODEL 

The power of the proposed deterioration model is in its versatility that makes it feasible to 

represent many deterioration modes in a transparent and physically justifiable manner.  If the 

simplifications are acceptable that all cyclic deterioration modes can be represented by the same 

γ value, and that the exponent in Equation 3.6 can be taken as 1.0, then all cyclic deterioration 

modes are controlled by a single parameter, γs,c,k,a. There is no simpler way possible to describe 

cyclic deterioration. It is the combination of this single cyclic deterioration parameter with a 

backbone curve incorporating monotonic strength capping and a post-capping stiffness that 

makes this deterioration model simple but versatile. The following observations are believed to 

be of importance in the context of damage and deterioration modeling. 
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There are fundamental differences between this deterioration model and cumulative 

damage models. The latter merely count cumulative damage and use a counter to indicate degree 

of damage and complete “failure” (usually identified by the counter taking on a value of 1.0). 

They do not consider that cumulative damage causes a decrease in strength and stiffness and 

therefore leads to an increase in deformations. It is the loss of strength and the increase in 

deformation that ultimately will cause collapse of a structure. Moreover, cumulative damage 

models apply to components and not to structures. Many attempts are reported in the literature to 

extrapolate from component cumulative damage models to structural damage models, but none 

of these attempts are believed to have been successful in tracing damage close to collapse. 

Collapse is caused by deterioration in complex assemblies of components, and such deterioration 

must be modeled explicitly. 

• The proposed deterioration model incorporates cyclic deterioration controlled by 

hysteretic energy dissipation as well as deterioration of the backbone curve (strength 

capping at δc/δy and a post-capping decrease in strength defined by αc). This dual 

deterioration behavior is equivalent to the two-part damage concept contained in some 

cumulative damage models such as the Park-Ang model (Park and Ang, 1985).  This 

model, which was developed specifically for reinforced concrete components, consists of 

a linear combination of displacement and energy demands, expressed as follows: 

 HEd
F

 +  = DM
ultyult

max ∫δ
β

δ
δ

      (3.13)
 

  
where, 
 
DM  =  damage measure 

δmax  =  the maximum displacement of the system 

δult  =  the monotonic displacement capacity of the system 

β             =  structural performance parameter 

In concept, the parameters δult and β of this cumulative damage model are equivalent to 

δc and γ of the proposed deterioration model. 

• Inspection of Figures 3.9–3.10, 3.12, and 3.14 shows that the hysteretic energy-

dissipation capacity γFyδy is rarely achieved in component tests. Components usually 

reach zero resistance long before this capacity is utilized. This happens because of 
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strength capping and post-capping strength decrease and is equivalent to the importance 

of the first term of the Park-Ang model given by Equation 3.13. 

• In all studies reported in this report it is assumed that the exponent c in Equation 3.6 is 

1.0. Based on cumulative damage concepts it can be argued that c should be greater than 

1.0 (likely on the order of 1.5–2.0). This “simplification” is not believed to have a large 

effect on the response of deteriorating systems. An exponent greater than 1.0 will 

accelerate deterioration, but primarily for very large excursions. For such excursions, 

strength capping and post-capping strength decrease dominate over cyclic deterioration. 

1.6 3.7 SUMMARY 

This chapter describes the model developed for deteriorating structural components. The sources 

of deterioration considered are strength deterioration in the backbone curve and cyclic strength 

and stiffness deterioration. The models have been codified in an in-house SDOF program called 

SNAP and implemented in nonlinear analysis programs for MDOF structures that consider 

nonlinearities by means of concentrated plasticity (DRAIN-2DX and OpenSees). 

The hysteretic models have been calibrated with experiments of components made of 

steel, wood, and reinforced concrete. Some of the experimental programs consist of several 

identical specimens subjected to different loading protocols. In the calibration process, the same 

system and deterioration parameters are used for all the loading protocols. The correlation for 

most of the cases is good, suggesting that the backbone characteristics and the parameter γ for 

cyclic deterioration are adequate to represent component behavior regardless of the loading 

protocol. 

The effect of individual deterioration parameters on the hysteretic response depends 

largely on the relative values of all the other parameters. This can be observed from Figures 

3.16–3.17, in which hysteretic responses for systems with variations of a particular parameter are 

compared. 
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Fig. 3.1  Experimental hysteretic loops for a wood specimen subjected to monotonic 
and cyclic loading 
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Fig. 3.2  Backbone curve for hysteretic models 
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Fig. 3.3  Bilinear hysteretic model with strength limit 
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(a) (b) 

Fig. 3.4  Peak-Oriented hysteretic model; (a) basic model rules, (b) Mahin and Bertero’s 
modification (Mahin and Bertero, 1975) 
 

 

 
 

 
     (a)     (b) 

Fig. 3.5  Pinching hysteretic model; (a) basic model rules, (b) reloading deformation 
at the right of break point 
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 (a) Basic Strength Deterioration    (b) Post-capping Strength Deterioration 

 

 
 (c) Unloading Stiffness Deterioration  (d) Accelerated Reloading Stiffness Det. 
 

Fig. 3.6  Peak-oriented model with individual deterioration modes  
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UCSD STEEL TEST-LS1 (SYMMETRIC LOADING)
Bilinear Model, Fy=103 kips, δy=1.03 in

αs=0.03, αc=-0.03, δc/δy=2.75, γs,c,k=130, γa=N.A., λ=0
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UCSD STEEL TEST-LS4 (SYMMETRIC LOADING)
Bilinear Model, Fy=103 kips, δy=1.03 in

αs=0.03, αc=-0.03, δc/δy=2.75, γs,c,k=130, γa=N.A., λ=0
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(a) Test LS-1      (b) Test LS-4 

Fig. 3.7  Calibration of bilinear model on steel component tests using the SAC 
standard loading protocol (Uang et al., 2000) 
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UCSD STEEL TEST-LS3 (NEAR FAULT LOADING)
Bilinear Model, Fy=103 kips, δy=1.03 in

αs=0.03, αc=-0.03, δc/δy=2.75, γs,c,k=130, γa=N.A., λ=0
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 (a) Test LS-2      (b) Test LS-3 
Fig. 3.8  Calibration of bilinear model on steel component tests using the SAC near-fault 

protocol (Uang et al., 2000) 
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 (a) Test LS-1      (b) Test LS-4 

Fig. 3.9  History of NHE dissipation, SAC standard loading protocol test of Fig. 3.7, 
bilinear model 
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NHE-UCSD STEEL TEST-LS2 (NEAR FAULT LOADING)
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(a) Test LS-2 (b) Test LS-3 

Fig. 3.10  History of NHE dissipation, SAC near-fault loading protocol tests of Fig. 3.8, 
bilinear model     

 
UCSD TEST PWD EAST WALL (ISO LOADING)

Pinching Model, Fy=7 kips, δy=1.0 in, κs=0.25, κd=0.25,
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(a) ISO Loading Protocol               (b) CUREE Standard Loading Protocol 

UCSD TEST PWD EAST WALL (SPD LOADING)
Pinching Model, Fy=7 kips, δy=1.0 in, κs=0.25, κd=0.25,

αs=0.10, αc=-0.13, δc/δy=4, γs=50, γc=50, γk=∞, γa=50, λ=0
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Pinching Model, Fy=7 kips, δy=1.0 in, κs=0.25, κd=0.25,
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(c) SPD Loading Protocol                (d) CUREE Near-Fault Loading Protocol 

Fig. 3.11  Calibration of pinching model on plywood shear-wall component tests (Gatto 
and Uang, 2002) 
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NHE-UCSD PWD EAST WALL TEST (ISO LOADING)
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 (a) ISO Loading Protocol (b) CUREE Standard Loading Protocol 

NHE-UCSD PWD EAST WALL TEST (SPD LOADING)
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 (c) SPD Loading Protocol (d) CUREE Near-Fault Loading Protocol 

Fig. 3.12  History of NHE dissipation, pinching model and loading protocols for tests 

of Fig. 3.11     

R/C CALIBRATION (MOEHLE & SEZEN, Column 1)
Pinching Model, Fy = 12900 kips, δy = 1.03 in
αs=0.10, αc=-024, δc/δy=2.3, γs,c,k,a=50, κf,d=0.5, λ=0
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R/C CALIBRATION (MOEHLE & SEZEN, Column 4)
Pinching Model, Fy = 12900 kips, δy = 1.03 in
αs=0.10, αc=-0.24, δc/δy=2.3, γs,c,k,a=50, κf,d=0.5, λ=0
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    (a) Cyclic Loading Protocol      (b) Mostly Monotonic Loading Protocol 

Fig. 3.13  Calibration of pinching model on reinforced concrete columns of Moehle 
and Sezen experiments (Sezen, 2000) 
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NHE-RC (MOEHLE & SEZEN, Column 1)
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 (a) Cyclic Loading Protocol  (b) Mostly Monotonic Loading Protocol 

Fig. 3.14   History of NHE dissipation, pinching model and tests of Fig. 3.13 
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Fig. 3.15  CUREE standard loading protocol  
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Fig. 3.16  Deterioration effect on hysteretic response; peak-oriented model, CUREE protocol, αs = 0.03, αc = -0.10 
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Fig. 3.17  Deterioration effect on hysteretic response; peak-oriented model, CUREE protocol, αs = 0.03, αc = -0.50 



4 Collapse Assessment of SDOF Systems 

4.1 INTRODUCTION 

Even though the deterioration model described in Chapter 3 is a component model, in the SDOF 

study it is assumed that the system response follows the same hysteresis and deterioration rules 

as a representative component. Clearly this is a simplifying assumption, as it is idealistic to 

assume that all components of a structural system have the same deterioration properties and 

yield and deteriorate simultaneously. But such assumptions are often made when MDOF 

structures are represented with SDOF systems. 

Parameter studies on SDOF systems are easily implemented and help to identify the 

system parameters that may have a negligible or dominant influence on MDOF structures. The 

small computational effort needed to analyze SDOF systems permits the evaluation of a large 

number of systems. In addition, the modification of a particular parameter generally has a larger 

influence on SDOF systems than on MDOF structures. The latter structures usually have 

elements yielding at different times and some of the elements never reach the inelastic range; 

thus, their global stiffness matrix has smaller modifications than the corresponding stiffness of 

SDOF systems. 

In the past, a large number of studies have been carried out to evaluate the inelastic 

seismic demands of SDOF systems. Seismic demands have been studied by means of constant 

ductility inelastic displacement ratios (Miranda, 1993, 2000) or by means of strength reduction 

factors for constant ductility (Nassar and Krawinkler, 1991; Rahnama and Krawinkler, 1993). 

The latter study included the effect of strength and stiffness deterioration in hysteretic models 

with bilinear backbone curves. The results indicated that strength deterioration may greatly affect 

the response of SDOF systems, but the effects of unloading stiffness deterioration are relatively 

small. Gupta and Kunnath (1998) extended the investigation of Rahnama and Krawinkler, 

obtaining similar conclusions. However, these studies are based on systems without strength 

deterioration of the backbone curve and do not address the collapse limit state. More recently, 
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Song and Pincheira (2000) studied the effect of stiffness and strength deterioration on the 

maximum inelastic displacement of SDOF systems without including geometric nonlinearities. 

They found that the displacement ratio between a deteriorating and non-deteriorating system 

could be as large as two (especially in the short-period range) and that it varies significantly with 

the deterioration rate and type of ground motion. They assumed that an SDOF system collapses 

if its remaining strength is less than 10% of the yield strength. They reported that many systems 

collapsed for one or more ground motions under low strength coefficients but they did not trace 

this limit state for all the cases. Vamvatsikos (2002) carried out incremental dynamic analyses 

(IDAs) for pinched hysteretic SDOF systems that included a negative post-capping stiffness and 

residual strength but no cyclic deterioration. He detected that the cap displacement (δc, Fig. 4.1) 

and the slope of the post-capping stiffness are the two parameters that most affect the 

performance of medium-period-systems. 

This chapter summarizes the results of a comprehensive parameter study on the collapse 

of SDOF systems with deteriorating hysteresis properties. In SDOF systems collapse occurs 

when the loading path is on the backbone curve (which may have deteriorated due to cyclic 

deterioration) and the restoring force approaches zero (Fig. 4.1). This behavior may occur 

because of the presence of a backbone curve branch with negative slope, a condition caused by 

P-∆ effects and/or a negative post-capping stiffness branch. Note that a backbone curve with 

only positive stiffness branches may also lead to collapse if cyclic strength deterioration is 

sufficiently large to exhaust the available energy-dissipation capacity.  

In this part of the study, collapse is evaluated for a large number of SDOF systems 

subjected to a set of 40 ground motions. Statistics on the collapse capacity take into account the 

record to record variability. The effects of various system parameters are evaluated by comparing 

median collapse capacities of systems that have the same characteristics except for discrete 

variations in the studied parameter. 

4.2 SYSTEMS AND GROUND MOTIONS CONSIDERED IN PARAMETER STUDY  

The SDOF systems of the parameter study have common features, which include the same 

strain-hardening stiffness ratio (αs = 0.03) and the same 20 elastic periods to be analyzed for 

each hysteretic case. Also, most of the systems are subjected to the same set of 40 GMs, although 
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a limited study is carried out for two additional sets that present different frequency content 

characteristics (Sections 4.4.6–4.4.7).  

Collapse capacities are obtained in the fashion described in Section 2.3. The systems are 

analyzed under increasing relative intensity values to obtain (Sa/g)/η - EDP relationships. The 

smallest relative intensity represents elastic behavior, i.e., (Sa/g)/η = 1. Thus, previous to 

carrying out the dynamic analyses, the spectral acceleration at the period of the system or the 

yielding strength is scaled to obtain this relative intensity. For subsequent analyses the relative 

intensity is increased until the response of the system becomes unstable, which means that the 

(Sa/g)/η - EDP curve becomes flat (zero slope). The assessment of collapse is based not on EDPs 

but on the relative intensity of the system when collapse occurs. This relative intensity is referred 

as “collapse capacity,” (Sa,c/g)/η. Statistics are carried out for collapse capacity at each period. 

The resulting median (Sa,c/g)/η - T curves are called “median collapse capacity spectra,” and are 

the main tool to evaluate collapse capacity and the influence of system parameters on collapse. In 

addition, the generated (Sa/g)/η - EDP curves are utilized to investigate the effects of 

deterioration prior to collapse. 

In order to reduce the number of combinations to be analyzed, the study is divided into 

two parts: 

(1) Primary Parameter Study. Several discrete values are considered for the parameters of 

most interest and analyses are carried out for all possible combinations. The 

combinations are needed because the effect of a particular parameter on the response of 

the system may depend strongly on the relative value of the rest of the parameters. 

(2) Secondary Parameter Study. This considers parameters that could have an influence on 

the response but are not included in the main parameter study; only representative 

systems are evaluated.  

4.2.1 Parameters Evaluated in Primary Parameter Study 

This part of the study focuses on the five system parameters described below, each of them with 

three or four discrete values. A large number of nonlinear analyses are generated because all 

these parameters are combined, and each combination includes 20 natural periods and 40 GMs, 

in which the relative intensity is increased until collapse is reached. To limit the number of 
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systems to be analyzed, the rest of the parameters remain fixed. Conditions that prevail for all 

systems are as follows: 

(a) 20 natural periods of vibration ranging from T = 0.1 s to T = 4 s  

(b) A set of 40 ordinary ground motions as described in 4.2.3 

(c) The increment in the relative intensity is [(Sa/g)/η]step = 0.25. The lowest value for 

(Sa/g)/η used in the analysis is 1.0, which represents elastic behavior. If the system 

collapses under the effect of a particular ground motion, the algorithm iterates to locate 

the (Sa,c/g)/η level with an accuracy of 0.1%. 

(d) The hardening stiffness ratio is αs = 0.03. Previous studies have revealed that αs has only 

a small effect on the response when the hardening stiffness ranges from about 0.02Ke to 

0.08Ke (Krawinkler and Nassar, 1991). 

(e) The initial percentage of critical damping is ξo = 5%, and damping is proportional to 

mass. 

(f) No residual strength is considered. 

The system parameters investigated in the primary parameter study are described below 

(see Chapter 3 for the corresponding descriptions): 

1. Post-capping stiffness ratio (αc). The following αc values cover the range of post-capping 

stiffness values obtained from experimental results (Sezen, 2000; Inoue et al., 2000; 

Elwood, 2002) 

(a) small, αc = -0.1  

(b) large, αc = -0.3  

(c) very large, αc = -0.5  

2. Ductility capacity. The term “ductility” usually refers to the ability of a structure or its 

components to offer resistance in the inelastic domain of the response (Paulay and 

Priestley, 1992). In models with backbone curves with negative slope branches, the 

strength decreases for large deformations but the term ductility is used only to express the 

deformation associated with a certain drop in strength. This drop in strength ranges from 

80 to 95% (Nakashima, 1994). In this research, ductility capacity is defined based on the 

displacement at which the peak strength is attained, i.e., no drop in strength is considered.  

(a) very ductile, δc/δy = 6 

(b) medium ductile, δc/δy = 4  
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(c) non-ductile, δc/δy = 2 

3. Cyclic deterioration (CD) of basic strength, post-capping strength, unloading stiffness 

and reloading stiffness. The primary parameter study comprises deterioration of the four 

parameters with the same rate. Four levels of CD are considered based on the parameter 

γ, which defines the hysteretic energy capacity of the system. 

(a) no CD, γs,c,a,k = infinite 

(b) slow CD, γs,c,a = 100 and γk = 200 

(c) medium CD, γs,c,a = 50 and γk = 100 

(d) rapid CD, γs,c,a = 25 and γk = 50 

4. P-∆ effect  

(a) no P-∆ 

(b) small P-∆, corresponding to T1 = 0.1N (see Section 4.3.6) 

(c) large P-∆, corresponding to T1 = 0.2N (see Section 4.3.6) 

5. Hysteretic models  

(a) peak-oriented 

(b) pinched (with κf,d = 0.25) 

(c) bilinear 

Table 4.1 shows the studied combinations in the primary parameter study for peak-

oriented models and no P-∆. Identical analyses were carried out for pinching and bilinear models 

and for small and large P-∆ levels. The intermediate ductile system with parameters αc = -0.10, 

δc/δy = 4, γs,c,k,a = 100, and P-∆ = 0 is often used as a reference case for presenting results. 

Because the evaluation is carried out for 20 periods, these characteristics represent a set of 

reference SDOF systems. However, the large number of combinations implies that some of the 

presented results cannot be compared with the reference systems. 

4.2.2 Parameters Evaluated in Secondary Parameter Study 

The parameters of the secondary parameter study are evaluated for representative systems. The 

discrete values for each parameter are given below. 

1. Backbone curve with residual strength. The effect of this parameter is evaluated 

considering two residual strength levels. These levels are based on FEMA 356 (2000) 
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recommendations to specify deformation ranges in which the component responds with 

substantially reduced strength: 

(a) λ = 0.2 Fy  

(b) λ = 0.4 Fy 

2. Effect of individual cyclic deterioration modes. In the primary parameter study, the same 

rate of deterioration is considered for all four modes of cyclic deterioration. In the 

secondary parameter study the effect of individual deterioration modes on collapse 

capacity is isolated. 

3. Level of pinching in pinched hysteretic model: The effect on collapse capacity is 

evaluated for the following cases:  

(a) κf,d  = 0.25 (from primary parameter analysis) 

(b) κf,d  = 0.5 

(c) κf,d  = 0.75 

4. Damping of the system (ξ). The primary parameter study considers systems with mass 

proportional damping and initial (or elastic) percentage of critical damping     ξo = 5%. 

This percentage of critical damping is applied to the system without P-∆ effects. In this 

work, the effect on collapse capacity is studied for the following cases:  

(a) mass proportional damping for ξo = 5% and 10% 

(b) stiffness proportional damping for ξo = 5% and 10% 

(c) mixed formulation for ξo = 5% and 10%, preserving ξo value in the inelastic range.  

5. Deteriorating systems subjected to near-fault ground motion (NFGM) records.  

6. Deteriorating systems subjected to long-duration records. 

4.2.3 Set of Ground Motion Records LMSR-N 

In this study, most of the structural systems are subjected to a set of 40 “ordinary” ground 

motions recorded in California (LMSR-N, large magnitude small distance-new7). The records do 

not exhibit pulse-type near-fault characteristics and are recorded on stiff soil or soft rock, 

corresponding to soil type D according to NEHRP (FEMA-356, 2002). The source-to-site 

distance ranges from 13–40 km. and the moment magnitude from 6.5–6.9 (Table 4.2).  

                                                 
7 The GM selection process for this bin is discussed in Medina (2002). 



 59

The selected intensity measure, IM, is the 5% linear elastic spectral acceleration at the 

period of the SDOF systems, Sa(T). This IM has the advantage that seismic hazard data for Sa are 

readily available; however, there are drawbacks to the use of a single scalar IM, and alternatives 

are being investigated (Cordova et al., 2000; Luco, 2002). The use of Sa as IM implies that all the 

ground motions are scaled to a common Sa at the elastic period of the SDOF system. Thus, the 

frequency content of the ground motion cannot be considered explicitly. The large dispersion in 

spectral accelerations due to the different frequency content of the selected ground motions is 

illustrated in Figure 4.2, in which the records of set LSMR-N are scaled to have the same 

spectral acceleration at T = 0.9 s. Figure 4.2b shows the dispersion in terms of the standard 

deviation of the log of Sa for the scaled spectra, 
aSlnσ , which is small only in the vicinity of T = 

0.9 s. The dispersion increases with period, and response predictions may exhibit significant 

scatter depending on the extent of inelasticity, which leads to period elongation. 

The use of a single set of GMs for most of this study is partly justified by previous 

studies showing that the inelastic response of SDOF and MDOF systems is not affected greatly 

by earthquake magnitude and distance to the source—except for near-fault regions (Shome, 

1999; Miranda, 2000; Medina, 2002; Jalayer, 2003).  

Regarding the size of the set of GMs, the uncertainty associated with the estimated EDPs 

and collapse capacities may be quantified as a function of the number of data points evaluated in 

the form of confidence levels. The use of a set of 40 GMs provides estimates of the median that 

are within a one-sigma confidence band of 10% as long as the standard deviation of the natural 

log of the collapse capacities or EDPs is less than 63.01.0 =N , where N is the number of 

records (Medina, 2002). 

1.1 4.3 RESULTS OF PRIMARY PARAMETER STUDY 

Most of the results discussed and illustrated in this chapter represent statistical values, 

particularly medians. “Counted statistics” is used to obtain the first moments of EDPs given 

(Sa/g)/η, and “computed statistics” is utilized for collapse capacities (Appendix A). The EDPs 

used in the SDOF study are δmax/Sd, δmax/δy and occasionally normalized hysteretic energy 

dissipation, NHE. The presented results are for peak-oriented hysteresis models unless stated 

differently. 
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To identify the effect of each parameter on the response, the results are grouped in sets of 

similar systems that present a variation of specific parameters. Because none of the parameters 

can be evaluated independently of the others, the variation of parameters is carried out for 

systems with different characteristics. For instance, the effect of αc on (Sa,c/g)/η is quantified for 

different types of hysteretic models, δc/δy’s, γ’s and P-∆ levels (see Table 4.1). The following 

sections summarize the salient findings of this study. 

4.3.1 Effect of Deterioration on EDPs Prior to Collapse 

Although the main objective of this study is collapse capacity assessment, the evaluation of the 

response prior to collapse provides valuable information about the effect of various deteriorating 

models on EDPs. The main objectives of this section are (a) to quantify the increment in the 

response when deteriorating systems are used instead of non-deteriorating ones; and (b) to 

determine the intensity levels at which the response of deteriorating systems starts to deviate 

from that of non-deteriorating systems. In this investigation the term “non-deteriorating” is used 

for systems without any type of material deterioration, although they could include P-∆ effects. 

The results presented in this section are grouped according to variations of specific parameters 

and are for systems with T = 0.2, 0.9, and 3.6 s, corresponding to short-, medium-, and long-

period systems, respectively. 

Effect of Cyclic Deterioration (CD) on EDPs. Figure 4.3 shows (Sa/g)/η - EDP curves 

for a system with T = 0.9 s, αc = -0.10, δc/δy = 4, P-∆ = 0, and different γs,c,k,a values for 

deteriorating systems. Curves for a non-deteriorating system with the same elastic and hardening 

stiffness and for the “equal displacement rule” are also included. For low relative intensities the 

equal displacement rule is approximately valid for all systems, i.e., for 4/)/( ≤= ηgSR a , the 

ductility and relative intensity have approximately the same value, i.e., yR δδ /max≈ . 

Comparisons of the response between these systems indicate that the effect of CD is small (at 

most 10–15%) before the ductility capacity is reached (δmax/δy = δc/δy = 4). The curves start to 

show large deviations from the non-deteriorating system once this threshold is surpassed. This 

can be observed best in Figure 4.3c by applying the equal displacement rule.  All three figures 

clearly show the benefit being derived from an increase in the energy-dissipation capacity 

(increase in γ’s) of the SDOF system—for a system with αc = -0.10 and δc/δy = 4. 
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The results for very short and long-period systems with the same properties are presented 

in Figures 4.4 and 4.5, respectively. For systems with T = 0.2 s and rapid CD, a clear deviation 

from the non-deteriorating system is evident long before the ductility capacity is reached. On the 

other hand, for long-period systems the effect of CD is relatively small even for values of δmax/δy 

much greater than the ductility capacity of 4. The above trends are similar for systems including 

P-∆ effects. 

Effect of Post-Capping Stiffness on EDPs. In systems that are identical except for the 

post-capping stiffness branch, the EDPs are the same for displacements less than cδ . For 

medium-period systems with a flat post-capping stiffness (αc = -0.10), the relative intensity of 

the system may be increased significantly after this displacement threshold is surpassed (Fig. 

4.6). However, for αc = -0.30 and –0.50, the additional relative intensity that the system can 

sustain once δmax/δy > δc/δy is small.  

The last observation holds true also for short- and long-period systems (Fig. 4.7), leading 

to the conclusion that only relatively small improvement in response can be obtained once the 

ductility capacity δc/δy is reached, unless the post-capping stiffness is relatively flat, i.e., it makes 

little difference whether αc is –0.30 or –0.50. Only for αc = -0.1 a clear improvement is observed 

for all systems. As Figure 4.7b shows, the improvement beyond δmax/δy = δc/δy  = 4, in terms of 

additional displacement capacity and additional “intensity capacity,” is particularly large for 

long-period systems.  P-∆ effects could modify this conclusion, especially for long-period 

systems where large instability coefficients usually have to be considered (see Section 4.3.6). 

Effect of Ductility Capacity on EDPs. Figures 4.8–4.9 present median (Sa/g)/η - EDP 

curves for identical systems except for the ductility capacity value. Because CD is not included, 

the curves for deteriorating and non-deteriorating systems are identical up to δmax/δy = δc/δy. All 

the presented systems have a flat post-capping stiffness, and for this reason all systems exhibit a 

significant increase in displacement and intensity beyond that associated with the ductility 

capacity.  

4.3.2 General Trends in Collapse Capacity Spectra, (Sa,c/g)/η - T 

Collapse capacity spectra are used in the following sections to evaluate the effects of the system 

parameters that greatly affect collapse. To obtain an idea of the possible collapse capacity values, 
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Figure 4.10 shows the range of median collapse capacity spectra for deteriorating peak-oriented 

models including all possible combinations of the primary parameter study (Table 4.1). Each 

median collapse capacity spectrum refers to the estimation of the geometric mean of the 40 

individual collapse capacity spectra, which are obtained by subjecting a particular system to the 

records of the set LMSR-N (Section 2.3.4).  

Figure 4.11 presents median collapse capacity spectra for representative systems, as well 

as the ratios of collapse capacities with respect to the most ductile system of the primary 

parameter study (αc = -0.1, δc/δy = 6, γs,c,k,a = Inf, P-∆ = 0). Note that collapse capacities of the 

reference case (αc = -0.1, δc/δy = 4, γs,c,k,a = 100, P-∆ = 0) are about 30% smaller that those of the 

most ductile system. Collapse capacities of the less ductile system are up to five times smaller 

than those of the most ductile one. However, from this figure alone it is difficult to identify the 

parameters that most influence the response of the system because several of them are modified 

at once. Thus, the effect of each individual parameter is isolated in the following sections. From 

here on, when ratios of collapse capacities are presented, they are always obtained by using the 

most ductile case of the specific parameter variation as the base case. 

A basic conclusion from the primary parameter study is that the effect of any one 

parameter on the collapse capacity is dictated in part by the rest of the parameters. In this 

investigation, the interdependence is evaluated for the five parameters of the primary parameter 

study. For instance, the effect of αc on collapse capacity is assessed for systems with different 

values of δc/δy, γ and P-∆ effect. The results are presented for systems with peak-oriented 

hysteretic models except when the effects of different hysteretic models are evaluated. 

4.3.3 Effect of Post-Capping Stiffness on Collapse Capacity 

The dependence of the median (Sa,c/g)/η on αc is shown in Figure 4.12 for periods between 0.1–

1.0 s. The system corresponds to the reference case if αc = -0.10. Except for very short-period 

systems, the collapse capacities are very sensitive to variations of αc when this parameter is 

small. Collapse capacities increase exponentially when αc approaches zero. For large αc values, 

(Sa,c/g)/η stabilizes at the relative intensity that the system can develop when the maximum 

displacement is equal to δc.  

Figure 4.13 presents the effect of αc on the median (Sa,c/g)/η for a set of systems with 

δc/δy = 4, γs,c,k,a = infinite, and no P-∆ effects. Median collapse capacity curves and ratios with 
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respect to the most ductile system of this set are presented. Except for very short-period systems, 

a large decrease in collapse capacity is observed for systems with αc = -0.30 with respect to 

systems with αc = –0.10. Any further increase in negative slope beyond αc = -0.30 has a small 

effect because collapse occurs soon after δc has been reached. The effect of αc on the collapse 

capacity increases for systems with longer periods when P-∆ = 0. 

The effect of αc is even larger for systems with smaller δc/δy. Figure 4.14 presents the 

effect of αc for the same set of systems of Figure 4.13 except for δc/δy = 2. As can be seen, the 

collapse capacities are significantly reduced compared to δc/δy = 4; a reduction that is 

proportionally larger for systems with large αc, leading to smaller collapse capacity ratios. That 

is to say, the effect of αc on collapse capacity is magnified in systems with small ductility 

capacity because proportionally a larger fraction of the relative intensity is developed after δc is 

surpassed. If P-∆ effects are included, collapse capacities are greatly reduced for medium- and 

long-period systems where the stability coefficient is larger. Compare Figures 4.15–4.16 with 

Figures 4.13–4.14, respectively. As observed, the effect of αc still is relevant and the ductility 

capacity parameter still has an important influence. 

The influence of CD on the effect of αc on collapse capacity is illustrated in Figure 4.17, 

which shows collapse capacities for the systems of Figure 4.13 but including medium CD (γ = 

50). Larger collapse capacity ratios are observed because CD reduces in a larger proportion the 

collapse capacities of systems with small αc. That is to say, the effect of αc on collapse capacity 

is reduced for systems with large CD.  

Collapse capacities of bilinear models are smaller than those of the peak-oriented models 

(compare Figs. 4.13–4.18). The main reason is that the negative post-capping stiffness affects the 

bilinear model more because of the “ratcheting” effect (Section 4.3.7). In bilinear models the 

effect of αc on (Sa,c/g)/η is smaller in the short-period range compared with the peak-oriented 

one. This occurs because of the large decrease in collapse capacity for systems with flat post-

capping stiffness; compare Figures 4.13 and 4.18. Note that collapse capacities for bilinear 

models with αc = -0.30 and αc = -0.50 are practically the same. 

The dispersion of collapse capacities is presented in Figure 4.19 for representative 

systems, using the standard deviation of the log of (Sa,c/g)/η. In general the dispersion is larger 

for more ductile systems, as the one with αc = -0.10 and no P-∆ effects (4.19a).    P-∆ effects 

slightly reduce the dispersion because they make the system less “ductile.” The largest standard 
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deviation is at most about 0.60, which means that the estimates of the median are within a one-

sigma confidence band of 10% because the number of records used is 40. 

Summarizing, the effect of αc may modify the collapse capacity by more than 100%, 

particularly for long-period systems with no P-∆ effects. The magnitude of this effect depends 

not only on the “ductility” of the system but also on the parameters that induce such behavior. 

For instance, systems are less ductile when δc/δy is smaller, but the effect of αc becomes larger 

because a larger proportion of the nonlinear response occurs after δc has been reached. On the 

other hand, systems are more ductile when CD is slower, and in these systems the effect of αc is 

more important.  

4.3.4 Effect of Ductility Capacity on Collapse Capacity 

The dependence of the median (Sa,c/g)/η on δc/δy is illustrated in Figure 4.20. If δc/δy = 4, the 

SDOF system is equivalent to the reference system. The δc/δy -(Sa,c/g)/η relationship is close to 

linear for all periods. For very short periods the corresponding curve is close to a horizontal line, 

indicating that the collapse capacity is not affected much by variations in δc/δy, as in the case of 

αc. 

Figure 4.21 shows the effect of δc/δy on systems with αc = -0.10, γ = infinite, and P-∆ = 0. 

Median collapse capacity curves as well as the ratios with respect to the most ductile system are 

presented. Observe that except for very short periods, the median collapse capacity is essentially 

period independent (Fig. 4.21b). The effect of δc/δy on collapse capacities is significant, but 

much less than the ratio of ductility capacities.  The main reason for the relatively small effect is 

the fact that because of the flat post-capping slope (αc = 0.1) all systems exhibit a significant 

intensity increase beyond that associated with δc. Figure 4.22 shows the same information but 

using systems with αc = -0.30. The steeper post-capping slope significantly reduces the collapse 

capacities, but also magnifies the effect of δc/δy. Collapse ratios close to 0.40 are observed. The 

effect of δc/δy increases for larger αc values because collapse occurs relatively soon after δc is 

reached.  

Collapse capacities are reduced if P-∆ effects are included, but collapse capacity ratios 

still tend to be period independent and with values similar to those obtained for systems with no 

P-∆ effects (compare Figs. 4.23 and 4.21). The effect of δc/δy on the collapse capacity for 
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systems with medium CD (γ = 50) is shown in Figure 4.24, which can be compared with the 

system with no CD (Fig. 4.21). The effect of δc/δy on the collapse capacity becomes relatively 

small for systems with significant CD.  

Figure 4.25 shows similar information to that of Figure 4.21 but using systems with a 

bilinear model. Compared with peak-oriented models, the collapse capacities are smaller but the 

effect of δc/δy is larger. As will be explained in Section 4.3.7, bilinear models are more affected 

by the presence of a branch with negative stiffness. Therefore, the effect of reducing δc/δy has a 

larger effect on the collapse capacity because δc is surpassed at earlier stages of nonlinear 

behavior.  

Figure 4.26 presents a measure of dispersion for systems having different δc/δy. There is 

no significant difference or clear trend among the dispersion curves for systems with large and 

small ductility capacity. This suggests that dispersion largely depends on the post-capping 

stiffness parameter rather than the ductility capacity. P-∆ effects reduce the standard deviation of 

the log of the data, especially for long-period systems. 

4.3.5 Effect of Cyclic Deterioration on Collapse Capacity 

Cyclic deterioration is assumed to be proportional to the energy-dissipation capacity of the 

system, defined by the parameter γ. The dependence of the median (Sa,c/g)/η on γ is illustrated in 

Figure 4.27. If γs,c,k,a = 100, the system corresponds to the reference system. The systems of 

Figure 4.27 have a negative post-capping branch (αc = -0.10) that eventually leads to collapse 

even if CD is not present. As the figure shows, for these systems CD has an appreciable effect on 

the collapse capacity only if γ is on the order of 100 or smaller.   

Figure 4.28 presents the effect of CD on collapse capacities for a set of systems with   

δc/δy = 4 and αc = -0.10. Except for very short periods, the collapse capacity ratios are in essence 

period independent, with values as small as 0.5 (this large effect is observed only for αc = -0.10). 

The expectation might be that CD has a larger effect for short-period systems because of the 

larger number of inelastic cycles.  As Figure 4.28b shows, this is not true—for two reasons.  

First, for short-period systems the effects of all system parameters on the collapse capacity are 

small because of the dominant displacement amplification effect for inelastic systems. And 

second, for systems without CD the normalized hysteretic energy (NHE) demands are much 
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higher for short-period systems than for medium- and long-period systems, but the demands 

become less period sensitive for systems with cyclic deterioration (Fig. 4.29). Thus, the 

displacement amplification effect dominates over the effect of cyclic deterioration. 

Figure 4.30 presents the same information as Figure 4.28, but for systems with small 

ductility capacity. The patterns are the same but the effect of CD on the collapse capacity is 

smaller for systems with small ductility capacity because these reach collapse faster and have 

less time to dissipate hysteretic energy. Figure 4.31 shows the effect of CD on the collapse 

capacity for systems with αc = -0.30, which again can be compared with Figure 4.28. Once 

again, the presence of a parameter that reduces the collapse displacement in the system reduces 

the effect of CD on the collapse capacity because the number of inelastic cycles is decreased.  

The effect of CD on the collapse capacity is much reduced in medium- and long-period 

systems that include P-∆ effects. Figure 4.32 presents the results for the set of systems of Figure 

4.28 but including small P-∆ effects. Collapse capacity ratios for different CD values approach 

unity for long-period systems. This indicates that for such systems P-∆ effects dominate over the 

effect of CD on collapse capacity.  

The effect of CD on the collapse capacity for bilinear models is illustrated in Figure 4.33, 

which can be compared with Figure 4.28. The collapse capacity ratios are about the same for 

bilinear and peak-oriented models, but the median collapse capacities are clearly smaller for the 

bilinear model for reasons that will be discussed in Section 4.3.7. 

The dispersion for similar systems with different rates of CD (Fig. 4.34) indicates that the 

standard deviation of the log of the data decreases somewhat with an increase in CD. 

It is concluded that the effect of CD on the collapse capacity always increases when any 

of the other system parameters cause a more ductile response. This is a clear pattern that was not 

detected in other parameters. However, the effect of CD on the collapse capacity is smaller than 

that caused by large variations in the backbone curve parameters and, for long-period systems, 

by P-∆ effects. 

4.3.6 Effect of P-∆ on Collapse Capacity 

Traditionally, P-∆ effects are quantified by means of the elastic stability coefficient (Sun et al., 

1973; Bernal, 1986). This coefficient can be associated with a rotation of the original backbone 

curve (Fig. 4.1) and could have a very significant effect on the behavior of the system (Vian and 
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Bruneau, 2001). In fact, systems without material deterioration may collapse if P-∆ effects are 

sufficiently large. The stability coefficient is defined as: 

hF
W

kh
P

y

yδ
θ ==                                              (4.1) 

where P is the vertical acting load, which here is assumed to be equal to the weight of the SDOF 

system, gmW /= ; ke is the elastic stiffness, yye Fk δ/= ; and h is the height of the system. For 

SDOF systems, the stability coefficient can be expressed in a simplified form by taking into 

account that: 

k
mT π2=                     (4.2) 

After substituting Equation (4.2) into (4.1) and considering g = 981 cm/s2, the elastic 

stability coefficient can be defined as a function of the period and the height (in centimeters) of 

the SDOF system: 

h
T 225=θ         (4.3) 

his equation helps to set practical limits for θ. For instance, if T = 1.0 s and the height of the 

system is 244 cm ( ≈ 8′); then θ ≈  0.10, which is a large coefficient for a system with T = 1.0 s. 

The reason for the large value is the small height of 244 cm, which is not representative for a 

medium-period system. Moreover, the number of parameters influencing P-∆ effect is increased 

if SDOF systems are used as simplifications of MDOF structures, i.e., the number of stories, 

assumed loading pattern, deflected shape of the MDOF structure, irregularities in height or plan, 

distribution of vertical load, etc. (Bernal, 1992). As discussed in Chapter 5, P-∆ effects for 

equivalent SDOF systems should be derived from both elastic and inelastic stability coefficients 

obtained from global pushover analysis of the MDOF structure.  

Thus, stability coefficients for equivalent SDOF systems should be calculated for each 

specific structure.  In order to establish general trends, in this section the effect of P-∆ on 

collapse capacity is evaluated by using the elastic stability coefficients corresponding to the first 

story of the generic frames used in Chapter 5. These frames have 3, 6, 9, 12, 15, and 18 stories, 

and for a given number of stories a stiff and a flexible model are designed by targeting a 

fundamental period of vibration of T1 = 0.1N and T1 = 0.2N, respectively.  For these frames, the 

elastic first-story stability coefficient can be estimated as 0.0178T1 and 0.0356T1 for the stiff and 
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flexible models, respectively.  Consequently, the following three P-∆ levels are used here for 

each period:  

(a) no P-∆, θ = 0.0 

(b) small P-∆, θ = 0.0178T1 (stiff system, T1 = 0.1N)  

(c) large P-∆,  θ = 0.0356T1 (flexible system, T1 = 0.2N) 

Figure 4.35 shows the stability coefficients for each P-∆ level as a function of the period 

of the system. The assigned levels are used only to identify general patterns.  

The effect of P-∆ on collapse capacities is shown in Figure 4.36 for an intermediate 

ductile SDOF system. As observed, the P-∆ effect produces the largest modification of collapse 

capacities in the long-period range. The effect is largest in this range because of the large 

stability coefficients that overcome the 3% strain hardening of the second branch of the 

backbone curve and cause an effective negative tangent stiffness as soon as the yield 

displacement is reached. Note that in the long-period range the collapse capacities for systems 

with small and large P-∆ effects are similar. At this range, the strain-hardening slope has become 

negative for both P-∆ levels (Fig. 4.35). Therefore, merely the presence of a branch with 

negative stiffness greatly accelerates collapse, regardless of the value of the slope (Bernal, 1986; 

Gupta and Krawinkler, 2001). 

Figure 4.37 shows the same information as Figure 4.36, but for systems with a small 

ductility capacity. The collapse capacity is reduced, but the collapse capacity ratios are similar 

for the two cases, indicating that ductility capacity does not greatly modify the effect of P-∆ on 

collapse capacity. 

Figure 4.38 presents collapse capacities for the systems of Figure 4.36, but using a large 

αc value. Comparing these two figures in the long-period range, it is seen that the effect of a 

large αc value is large for systems without P-∆ effect but small for systems with P-∆. The reason 

is that the backbone curve (without P-∆ effects) already has a steep negative αc; thus, the 

increment in the negative stiffness due to the inclusion of P-∆ effects is small compared with 

systems with a small αc.  

The effect of P-∆ on the collapse capacity is marginally affected by the CD rate of the 

system, as revealed by a comparison of collapse capacities and corresponding ratios for systems 

with medium CD of Figure 4.39 with those of Figure 4.36. 
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Figure 4.40 displays collapse capacities for bilinear models. Comparing these results with 

those of Figure 4.36 (peak-oriented models), it is clear that the negative stiffness of the backbone 

curve has a larger effect on the deterioration of bilinear models. The following section provides 

more details in this respect.  

4.3.7 Effect of Type of Hysteretic Model on Collapse Capacity 

This section is aimed to test the effect of the type of hysteretic model on the collapse capacity, 

given that former sections have focused on results for peak-oriented models. To obtain a general 

idea of collapse capacities when using different hysteretic models, Figure 4.41a shows median 

(Sa,c/g)/η ratios for pinching over peak-oriented models for all the systems that do not include P-

∆ effects. The median collapse capacity of pinching models is larger than that of peak-oriented 

models, except in the short-period range. Figure 4.41b shows median collapse capacity ratios for 

bilinear over peak-oriented models without P-∆ effects. In this case the pattern reverses and the 

difference between collapse capacities is more pronounced.  

Therefore, in the medium- and long-period ranges, collapse capacities are largest for 

pinching models, followed by those for peak-oriented and bilinear models (the same trends in the 

response of EDPs are obtained by Foutch, 1996). In the short-period range the behavior is 

reversed and the bilinear models have the largest collapse capacities. In the case of systems with 

P-∆ effects, the patterns for collapse capacities are preserved but the ratios are closer to 1.0, 

particularly for long-period systems (Fig. 4.42). The ratios are studied in more detail below to 

understand what system characteristics produce smaller or larger ratios in the former figures. 

Figure 4.43 presents bilinear over peak-oriented collapse capacity ratios for two systems 

with extreme backbone curve features. One of the systems has a small ductility capacity and a 

flat post-capping stiffness (δc/δy = 2, αc = -0.1), whereas the other has δc/δy = 6 and αc = -0.3. 

The latter system8 has large ductility capacity but collapse occurs soon after δc is surpassed 

because of the steep post-capping stiffness. That is to say, most of the collapse capacity is 

developed previous to the attainment of δc, i.e., in a range in which the hysteretic model behaves 

in the same way as that of a non-deteriorating system. For this system the ratios are closer to one, 

meaning that the collapse capacity is similar for both hysteretic models. This is in agreement 
                                                 
8  These systems are useful to understand the patterns of Figure 4.43 but they are not usually expected in real 
components because of the combination of very ductile and non-ductile parameters in the same backbone curve. 
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with the results for EDPs obtained by Foutch (1998) and the results for R-factors for constant 

ductility obtained by Nassar and Krawinkler (1991).  

In the systems with small ductility capacity (δc/δy = 2) the post-capping stiffness is 

reached relatively soon and because of the small post-capping stiffness (αc = -0.1) a large part of 

the collapse capacity of the system is developed after δc is surpassed. In these systems, the 

bilinear over peak-oriented collapse capacity ratios are as low as 0.6, indicating that collapse 

capacity for bilinear models is substantially smaller than that of peak-oriented models. One 

reason, and probably the primary one, is the presence of a branch on the backbone curve with 

negative tangent stiffness, which produces a ratcheting effect for bilinear systems that tends to 

cause a faster collapse. However, a negative post-yielding slope may be originated by other 

factors. For instance, Rahnama and Krawinkler (1993) have concluded that peak-oriented models 

behave better than bilinear ones if large P-∆ effects are present that produce a negative post-

yielding slope. The peak-oriented model spends most of its time in “inner” loops in which the 

loadings stiffness is always positive, rather than on the backbone curve where the negative 

tangent stiffness leads to drifting of the displacement response. 

Figure 4.44 present the bilinear over peak-oriented collapse capacity ratios for several 

combinations of αc and δc/δy. These graphs confirm that the steeper the post-capping slope, the 

closer the collapse capacities for both hysteretic models.  

Figure 4.45 shows bilinear over peak-oriented collapse capacity ratios for systems with 

small αc, medium or small δc/δy, and different rates of CD. The difference in collapse capacities 

is larger for systems with less cyclic deterioration. Therefore, the effect of cyclic deterioration is 

smaller in systems with bilinear models.  

4.3.8 Increment in Collapse Capacity after Cap Displacement, δc, is Reached 

Traditionally, guidelines including inelastic behavior, such as FEMA 356, consider that collapse 

of SDOF systems occurs almost immediately after the peak (cap) point in the backbone curve is 

reached or, at most, when the strength on the backbone curve has decreased 20% with respect to 

its peak value. This section aims to quantify the increase in collapse capacity after δc is reached.  

In the first part, systems without P-∆ effects are studied. Figure 4.46 shows the median 

ratio of collapse capacity over the intensity level at which the ductility capacity of the systems is 

reached. As observed, the ratios increase for systems with longer period. The ratios of four 
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identical systems except for the CD rate are plotted in 4.46a. The ductility capacity of the 

systems is δc/δy = 4. The ratios are larger for systems with less CD, which indicates that the effect 

of CD on EDPs increases after δc is surpassed.  

The ratios of 4.46b correspond to identical systems except for αc. For systems with a 

steep post-capping slope, the increment in collapse capacity is small after δc is reached. But the 

increment is very large for systems with a flat post-capping slope. Figure 4.46c presents systems 

where the only parameter that is varied is the ductility capacity, and unlike former cases, the less 

ductile the system (smaller δc/δy), the larger is the increase in collapse capacity 9. The reason is 

that the displacement until collapse after surpassing the peak displacement (δf –δc) is 

proportionally larger in systems with small δc/δy, particularly for flat post-capping slopes. This 

can be interpreted as having a larger δf /δc ratio. For instance, the systems of Figure 4.46 have 

ductility capacities of δc/δy = 2, 4, and 6, and δf /δc = 6.3, 3.8, and 3.0, respectively. 

Consequently, the system with small δc/δy and small αc develops a large part of the collapse 

capacity once the negative slope is reached.  

If P-∆ is included the above ratios are greatly reduced because the P-∆ effects lead faster 

to collapse when the slope of the backbone curve is negative, especially for long-period systems 

where the P-∆ effect dominates. This is observed in Figure 4.47, which repeats the results of 

Figure 4.46 but including small P-∆ effect. Figure 4.48 shows how the ratios decrease when the 

same system (δc/δy = 4 and αc = -0.1) is subjected to increasing P-∆ levels.  

In summary, for models with small αc collapse capacity may be underestimated by a 

great amount by neglecting the capacity of the system that is developed after δc is reached. For 

systems with large αc, the collapse capacities may be approximated with the relative intensity 

developed when the peak displacement is reached. 

4.4 RESULTS OF SECONDARY PARAMETER ANALYSIS  

4.4.1 Effect of Residual Strength, λFy, on Collapse Capacity  

The effect of residual strength, which is not included in the primary parameter study, is evaluated 

in this section. Models with residual strength and no P-∆ effects do not collapse unless CD is 

                                                 
9 The ratios for this set of systems have collapse capacities over relative intensities calculated at different δc/δy’s, 
because this is the parameter that is being varied. 
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included and the hysteretic energy capacity is exhausted (Fig. 4.49a). When the system includes 

P-∆ effects, the backbone curve rotates and collapse occurs if (Sa/g)/η is large enough to cause a 

zero restoring force when the loading path is on the backbone curve (Fig. 4.49b).  

The displacement at which collapse occurs depends on the geometry of the backbone 

curve. Figure 4.50 presents displacements at collapse normalized by the yield displacement (δf 

/δy) for backbone curves with different residual strengths. The ratios correspond to ductile and 

non-ductile systems and include small P-∆ effects and no CD. As can be seen, the presence of 

residual strength increases the normalized collapse displacement in a larger proportion for non-

ductile systems. Also, residual strength does not modify δf /δy ratios in long-period systems, 

where the large P-∆ effect leads to collapse before the loading path reaches the residual branch. 

Recognizing that the effect of residual strength is sensitive to the geometry of the 

backbone curve, several analyses were performed for systems with small P-∆ effects and the 

following parameters: δc/δy = 2, 4, 6 and αc = -0.10, -0.30. Residual strengths of λFy = 0.2Fy and 

0.4Fy are selected in accordance with FEMA 356, which recommends the former value for most 

of the beam-column elements in most structural materials. The residual strength of 0.4Fy is 

included because FEMA recommends residual strength values as large as 0.4, 0.6, and even 

0.75Fy for some elements, e.g., shear walls and RC infilled columns. The results discussed below 

about the effect of residual strength on collapse capacity are for systems with small P-∆ effects 

and are grouped according to the CD rate. 

Residual Strength Effect of Systems without CD. Figures 4.51–4.52 present collapse 

capacities for ductile and non-ductile systems with no CD. The addition of residual strength 

increases collapse capacities only for systems of short and medium periods. The increase is 

important only for non-ductile systems with λ = 0.4; for systems with λ = 0.2 the increment is 

negligible for all the systems. 

Residual Strength Effect of Systems with CD. Collapse capacities for the same systems 

are presented in Figures 4.53–4.54, but considering a medium CD rate. In the very short-period 

range (T < 0.3 sec) the inclusion of CD greatly reduces the collapse capacity of systems with 

residual strength. Nonetheless, for short-period non-ductile systems including CD, the increment 

in collapse capacity when λ = 0.4 can be as much as twice that of models without residual 

strength (Fig. 4.54b). The reduction in collapse capacity is explained by observing that δmax /δy 

ratios are greatly reduced in the short-period range when CD is included (Fig. 4.55).  
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Collapse Capacity Based on Pre-Established Collapse Displacement. As observed in 

Figure 4.55a, hysteretic models with residual strength and no CD may have unreasonably large 

displacements leading to unrealistic collapse capacities, especially in the short-period range. To 

avoid this situation, a judgment-based maximum displacement is imposed, in which the collapse 

displacement of the backbone curve with residual strength is at most 1.6 times the collapse 

displacement of the backbone curve without residual strength, δf (λ>0) ≤ 1.6 δf (λ=0). This 

displacement constraint produces reasonable δmax/δy ratios even when CD is not included (Fig. 

4.56). 
Figure 4.57 presents the effect of residual strength on collapse capacity for systems with 

the displacement restriction δf (λ>0) ≤ 1.6 δf (λ=0). These results can be compared with those of 

Figures 4.51b and 4.52b. As observed, the maximum collapse capacity ratios are about 1.2 but 

only for non-ductile systems with λ = 0.4. For systems with λ = 0.2 the effect of residual strength 

on collapse capacity is negligible. 
Hence, residual strength does not affect significantly the collapse capacity of most 

structural components when reasonable assumptions for λ and δf /δy ratios are made. 

4.4.2 Effect of Individual Cyclic Deterioration Modes 

The effect of CD on collapse capacity has been evaluated considering the same deterioration rate 

for basic strength, post-capping strength, unloading stiffness, and accelerated reloading stiffness 

deterioration. This section isolates the effect of each deterioration mode on collapse capacity, an 

assumption that may not be realistic but is useful for identifying the CD modes that are more 

relevant in the estimation of collapse capacity. For each analyzed deterioration mode the 

corresponding parameter γ is varied, whereas the rest of the modes remain without deterioration. 

Cyclic Basic Strength Deterioration.  This deterioration mode produces translation of 

the hardening branch toward the origin and deterioration of its slope (Section 3.3.2). The effect 

of this deterioration mode can be very different for systems with and without post-capping 

stiffness. 

In systems without a post-capping branch collapse occurs when the hysteretic energy 

capacity of the system is exhausted, which means that restoring strength is zero. To illustrate this 

effect, Figure 4.58a presents the hysteretic response for a non-deteriorating system subjected to 

the CUREE standard loading protocol (Gatto and Uang, 2002), whereas Figure 4.58b shows the 



 74

hysteretic response for the same system but with γs = 50. As can be seen, the hysteretic response 

may be greatly modified when the only source of deterioration is cyclic basic strength 

deterioration. Regarding the effect of γs on collapse capacity, Figure 4.59 shows collapse 

capacities for similar systems without strength capping and different CD rates. The collapse 

capacity ratios for the less ductile systems (γs = 25) can be as low as 0.40 with respect to systems 

with slow CD10 (γs = 100), corroborating that CD effects increase in systems without a negative 

branch in the backbone curve.  

In systems with a post-capping branch the effect of cyclic basic strength deterioration is 

substantially smaller due to the presence of additional sources of deterioration. This is observed 

in Figure 4.60, which shows the hysteretic response for a system with δc/δy = 2 and αc = -0.10 

subjected to the CUREE standard loading protocol. For Figure 4.60a, the only source of 

deterioration is the negative post-capping stiffness, whereas Figure 4.60b also includes cyclic 

basic strength deterioration. Note that although the hardening branch moves inwards, the 

absolute value of cap displacement (δc) increases. The increase of δc implies that systems 

including strength CD may have a better response than systems not including CD, when 

subjected to ground motions. Figure 4.61 presents collapse capacity ratios for systems with a 

peak-oriented model, δc/δy = 2 and αc = -0.10 and different rates of strength CD (the ratios are 

taken with respect to the system with no CD). As observed, some ratios are larger than one, 

indicating that when only strength CD is included, the effect of increasing the absolute value of 

δc may overcome the effect of strength capping. The box on the bottom left corner of Figure 4.61 

shows the collapse capacity ratios when the four CD modes are included. 

The conclusion is that cyclic basic strength deterioration must be combined with cyclic 

post-capping strength deterioration in order to accelerate collapse. Experimental results have 

demonstrated that indeed both cyclic deterioration modes occur simultaneously. 

Cyclic Post-Capping Strength Deterioration.  This individual CD mode translates the 

post-capping branch toward the origin (Section 3.3.3). To illustrate the magnitude of this effect, 

Figure 4.62a shows hysteretic responses for a system with δc/δy = 2 and αc = -0.10, which can be 

compared with the response of the same system but without CD (Fig. 4.60a). As observed, the 

effect of cyclic post-capping strength deterioration is very large because the absolute cap 

                                                 
10   The system with γs = infinite corresponds to the non-deteriorating one because strength capping is not included.  
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displacement is rapidly decreasing11 and there is no cyclic basic strength deterioration to 

counteract this shifting. The rapid translation toward the origin of the cap displacement may 

overcome the effect of the other three CD modes. For instance, observe that the hysteretic 

response of Figure 4.62a is very similar to that of Figure 4.62b, which corresponds to the same 

system but including the four CD modes. This effect is also present in collapse capacity 

evaluation, as observed in Figure 4.63, which illustrates the large decrease in collapse capacities 

when only cyclic post-capping strength CD is present. The small window presents the ratios for 

similar systems in which the four modes of CD are included.  

The large interdependence between basic strength and post-capping strength CD points 

out the futility of a study of these modes in an isolated way because the approach may lead to 

unreasonable results. Moreover, the isolation of these two modes is not justified by experimental 

information. The calibrations carried out in Section 3.4 indicate that the CD rates of these two 

modes are similar.  

Cyclic Unloading Stiffness Deterioration.  According to experimental results, the cyclic 

unloading stiffness deterioration rate may be different from the deterioration rate of the other CD 

modes. For instance, the rate of cyclic unloading stiffness deterioration for wood specimens may 

be very slow compared with that of the other CD modes (Krawinkler et al., 2000). The effect of 

cyclic unloading stiffness deterioration is illustrated in Figure 4.64, which presents the hysteretic 

response for a system including this CD mode. The effect on the response is not large, as can be 

seen from comparing Figures 4.64 and 4.60a. 

The effect of the cyclic unloading stiffness deterioration mode on collapse capacity is 

practically negligible for models with strength capping (Fig. 4.65). The reason is that the effect 

of the strength deterioration due to the negative post-capping stiffness overcomes the effect of 

cyclic unloading stiffness deterioration. For peak-oriented and pinching models, this CD effect is 

even smaller than for bilinear models. 

Cyclic Reloading (Accelerated) Stiffness Deterioration. This deterioration mode 

increases the absolute target displacement (Section 3.3.6) and occurs only in peak-oriented and 

pinching models. The hysteretic response for a system including this CD mode and subjected to 

the CUREE standard loading protocol is presented in Figure 4.66.  

                                                 
11  The cap displacement, δc, is obtained as the intersection of the updated post-capping branch with the backbone 
curve. This is shown in Figure 4.62b for the second update of δc in the positive side. 
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Figure 4.67 shows the effect of cyclic reloading stiffness deterioration on the collapse 

capacity ratios for systems with strength capping. The small window shows a comparison with 

collapse capacity ratios when the effects of all the CD modes are present. The effect of cyclic 

reloading stiffness deterioration on collapse capacity increases with the deterioration rate, and for 

rapid CD rates may cause about the same deterioration as the four CD modes combined.  

4.4.3 Effect of Level of Pinching in Pinched Hysteretic Model, κf,d  

This section evaluates the influence of the level of pinching on the response of pinched models. 

Pinching of the hysteretic loop occurs when the loading path is directed first toward a “break” 

point instead of the maximum previous displacement (see Section 3.2.4). The level of pinching is 

controlled by the parameters κf and κd that define the “break” point. κf modifies the maximum 

load experienced in the direction of loading and κd is a percentage of the maximum permanent 

deformation (Fig. 3.6). Hysteretic models with small pinching have large kappa values (κf,d close 

to 1.0) and are similar to hysteretic loops of peak-oriented models. The pinching models of the 

principal parameter study utilize κf,d = 0.25.  The effect of pinching models with κf,d = 0.50 and 

0.75 on the collapse capacity are discussed below. 

Figure 4.68 shows the effect of the level of pinching on collapse capacities for a set of 

ductile systems. Three pinching models with κf,d values of 0.25, 0.5, and 0.75 are considered, as 

well as the equivalent peak-oriented model. Collapse capacities for the latter model are very 

similar to those of the pinching model with κf,d = 0.75, the model with the smallest pinching 

effect. The collapse capacity ratios present differences of 15% for long-period systems, although 

for periods smaller than T = 2 s, the difference is within the 10% range. Figure 4.69 presents the 

same information for non-ductile systems. As can be seen, the effect of the level of pinching on 

the collapse capacity is even smaller for this set of systems.  

4.4.4 Effect of Damping Formulation 

This and the following section evaluate modifications in the response due to different damping 

formulations and percentage of initial critical damping, ξο. 

Regarding the damping formulation, SDOF systems traditionally are analyzed using 

damping proportional to mass. Fajfar et al. (1993) studied the effect of different damping 
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formulations on the response of several EDPs and R factors. This section extends these results 

for deteriorating systems and is focused on the effect of different formulations on collapse 

capacity. The equation of motion for nonlinear SDOF systems illustrates the implications of this 

approach (Chopra, 1995): 

)(),( tumuufucum gs &&&&&& −=++                 (4.4) 

where “fs” is the restoring force for the linear and the nonlinear range and “c” is the critical 

damping coefficient. Damping formulation refers to whether “c” is proportional to mass, 

stiffness, or a combination of both.  

If (4.4) is divided by the mass, m: 
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n =ω  is the natural frequency of the system, and yu  and yf  correspond to the 

displacement and force at yielding, respectively. The percentage of critical damping is given by: 
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At this point, it is convenient to introduce the usual approach for considering damping on 

MDOF structures. In these systems, damping may be expressed as linearly proportional to mass 

and stiffness, according to Rayleigh equation (Clough and Penzien, 1993): 

KMC βα +=                                     (4.7) 

where M and K are the mass and stiffness of the MDOF structure, and α and β are the 

corresponding parameters of proportionality, which are obtained based on the frequencies of two 

modes of the structure. The damping for MDOF structures can be visualized as the “combined” 

curve of Figure 4.70. In the case of SDOF systems, the only frequency corresponds to the 

intersection of the “mass proportional” and “stiffness proportional” curves. Thus, in the elastic 

interval, ξ is constant and independent of the damping formulation ( 0ξξ = ), whereas in the 

inelastic range ξ varies according to one of the three formulations considered in this study: 

(a) Damping proportional to mass. As observed in Figure 4.70, ξ increases in the inelastic 

interval if “c” is proportional to mass. The proportionality implies that: 

⇒== mmc n 00,2 ξωα   00,2 ξωα n=                  (4.8) 
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where 0,nω  and 0ξ  are the initial natural frequency and initial percentage of critical 

damping, respectively. In the inelastic range α  and “c” are not modified and by 

rearranging equations 4.6 and 4.8 the increment in ξ is obtained as:  
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The only variable in Equation (4.9) is tn,ω , which is the natural frequency based  on the 

tangent stiffness. This frequency always decreases in the inelastic interval, causing an 

increment inξ . 

(b) Damping proportional to tangent stiffness. As can be seen in Figure 4.70, if c is 

proportional to stiffness, ξ  decreases linearly with the natural frequency in the inelastic 

interval. Mathematically:   
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In the inelastic range, the parameter of proportionality, β , is constant but c decreases 

because et kk < . Substituting 4.10 in 4.6:  
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The last identity shows that ξ  is reduced in the inelastic interval. Note from Equation 

4.10 that if the system has damping proportional to initial stiffness, the obtained response 

is that of systems with damping proportional to mass.  

(c) Mixed formulation. ξ  can take any value located in the region delimited by the mass and 

stiffness proportional curves of Figure 4.70. The case that preserves ξo in the inelastic 

interval is analyzed below. For a system with constant damping, β must be adjusted 

according to the initial and inelastic frequencies: 

tt kc β=    
t

o
t ω

ωββ =              (4.12) 

Then “c” is a function of two variables ( tt k,β ) that are adjusted each time the stiffness of 

the system is modified. The substitution of 4.12 in 4.6 shows that the percentage of 

critical damping in the inelastic interval is constant: 
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These three approaches are implemented in the program SNAP (Chapter 3) and are used 

to evaluate the modification in the response of deteriorating and non-deteriorating SDOF systems 

having ξο = 5 and 10%. 

Effect of Damping Formulation (ξο = 5%). Figure 4.71 shows (Sa/g)/η - EDP curves 

for a non-deteriorating system with T = 0.5 s under the three aforementioned damping 

formulations. Systems with damping proportional to mass have the smallest response because 

ξ is increased in the inelastic interval. Systems with damping proportional to tangent stiffness 

and systems with constant ξ have very similar response because the hardening ratio is small (αs = 

3%). As observed in the displacement ratios of Figure 4.71b, the effect of damping formulation 

is more important at large (Sa/g)/η levels because the response is highly inelastic, which is the 

region where the formulations differ from each other. Figure 4.72 presents normalized 

displacement ratios for T = 0.2 and 0.9 s, showing that the effect of damping formulation is more 

relevant for systems with short periods. For deteriorating systems, (Sa/g)/η - EDP curves present 

these trends up to close to collapse. 

Regarding the collapse of deteriorating systems, models with stiffness proportional 

damping develop collapse capacities almost 20% smaller than those of systems with mass 

proportional damping. In the presence of P-∆ effects the differences are smaller, particularly for 

long-period systems (Figs. 4.73–4.74). 

Effect of Damping Formulation (ξο = 10 %). The effect of damping formulation 

increases for systems with ξο = 10 %, where differences in collapse capacities may be on the 

order of 30% depending on the used damping formulation (Figs. 4.75–4.76). 

4.4.5 Effect of Numerical Value of ξο 

In this section, selected systems are analyzed utilizing ξο = 5 and 10%. Comparisons with 

different percentages of critical damping are carried out for systems with mass and stiffness 

proportional damping. 
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Effect of ξο for Systems with Mass Proportional Damping. Mass proportional 

damping is widely used for SDOF systems and is the formulation of the primary parameter 

analysis. Figure 4.77a presents median collapse capacities for ductile and non-ductile systems 

with ξο = 5 and 10%. Figure 4.77b shows collapse capacities ratios of systems with ξο = 10% 

over systems with ξο = 5% for both sets of systems. When using mass proportional damping, the 

effect of increasing ξο from 5% to 10% produces an increment in the collapse capacity of 15–

20%. The properties of the hysteretic model do not greatly modify this percentage. 

Effect of ξο  for Systems with Stiffness Proportional Damping. The same systems are 

evaluated using damping proportional to stiffness. Figure 4.78 reveals that the use of systems 

with stiffness proportional damping produces smaller collapse capacities, but they are not greatly 

affected by the value of ξο. The reason is that when collapse takes place the response is highly 

inelastic, which reduces the importance of the damping force because it is proportional to the 

tangent stiffness. 

4.4.6 Deteriorating SDOF Systems Subjected to Near-Fault Ground Motions  

The following two sections deal with the response of SDOF systems subjected to near-fault 

ground motions (NFGMs) and long-duration (LD) records. Hysteretic energy dissipation is very 

different for these sets of records. In the case of systems subjected to NFGMs, a large part of the 

hysteretic energy is dissipated in one or two large pulses, whereas systems subjected to LD 

records dissipate energy throughout a large number of cycles. For this reason, special emphasis is 

given to the effect of CD on collapse capacity. 

NFGMs are defined as GMs recorded less than 15 km from the fault rupture zone and 

exhibiting forward directivity. There is evidence that NFGMs have different frequency and 

duration characteristics than ordinary GM’s because of forward directivity effects (Somerville et 

al., 1997), which take place if the rupture propagates toward the site. Since the propagation 

occurs at a velocity that is close to the shear wave velocity, most of the seismic energy from the 

rupture arrives at the site in a large pulse of motion at the beginning of the record. This large 

pulse is mostly oriented in the fault normal component and can be observed in the velocity time 

histories (Fig. 4.79). 

Looking for a simplified approach, Alavi and Krawinkler (2001) demonstrated that pulses 

could be used to reproduce EDPs of non-deteriorating systems subjected to NFGMs. For this 



 81

reason, this parameter study includes a set of recorded NFGMs and a simple pulse model that 

attempts to reproduce with reasonable accuracy the collapse capacities obtained by using a set of 

NFGMs. 

Pulse. The Pulse P2 (Alavi and Krawinkler, 2001) was utilized for representing the 

impulsive characteristics of NFGMs. The pulse is fully defined by a pulse shape and two 

parameters, i.e., the pulse period (Tp) and a pulse intensity parameter, which can be either the 

maximum pulse acceleration ag,eff or the maximum pulse velocity, vg,eff. In this pulse the ground 

experiences a reversing displacement history that is generated through a double cycle of 

acceleration input. The acceleration input is represented by the square wave shown in Figure 

4.80, which results in a triangular velocity cycle and a second-order reversing displacement 

history. The corresponding elastic strength demand spectrum is presented in Figure 4.81, where 

the period of the structure is normalized by the pulse period, and the spectral ordinates are 

normalized by the peak ground acceleration, ag,eff. 

Set of Records. The selected set of records, NF-11, includes 11 near-fault ground 

motions recorded mostly on stiff and very stiff soil, i.e., soils D and C, respectively, according to 

NEHRP (Table 4.3). The records have pulse periods ranging from about 1–4 s, which were 

calculated using the error minimization procedure proposed by Krawinkler and Seung-Jee. In the 

spectra for NFGMs, the periods are normalized by the pulse period, and the selected IM is 

Sa(T/Tp) instead of Sa(T). Figure 4.82 shows the spectra of individual ground motions and of the 

Pulse P2, scaled at Sa(T/Tp) = 0.8. 

Collapse Capacities for NFGMs. Collapse capacities as a function of T/Tp, for systems 

with δc/δy = 4 and αc = -0.10, are presented in Figures 4.83–4.84 for models with no CD and 

rapid CD, respectively. The dispersion for both cases is presented in Figure 4.85, which is 

relatively small, especially when T/Tp is close to 1. Thus, the normalization of the system period 

reduces the dispersion.  

Figure 4.83 shows an increase in collapse capacity of the NFGMs for larger T/Tp ratios, 

but the increase in collapse capacity for Pulse P2 is much larger than that for the median of the 

NFGMs. There is an abrupt increase in collapse capacity for Pulse P2 from T/Tp = 0.6 to 0.7. 

Most of the individual NFGM records also present this sudden increase, but each record has this 

increment at a different T/Tp ratio and the “jump” in collapse capacity is lost when the median is 

computed. Therefore, although collapse capacity patterns are similar for Pulse P2 and for most of 

individual NFGM records, Pulse P2 does not represent well the median of collapse capacities 
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obtained from the NF-11 records. It appears that a better approach to estimate the pulse period of 

these NFGMs is needed. 

Figure 4.86 shows a comparison of median collapse capacities for NF-11 and for Pulse 

P2 for different CD rates. For systems with rapid CD rates, the collapse capacity for Pulse P2 

and the median collapse capacity for NF-11 are similar because CD overcomes the differences in 

frequency content of NFGMs and pulses.  

Effect of CD on Systems Subjected to NFGMs. Figure 4.87 presents collapse capacity 

spectra and spectral ratios for systems with δc/δy = 4 and αc = -0.10 when subjected to the set 

NF-11. The effect of CD on collapse capacities tends to increase with the T/Tp ratio. Because of 

the period normalization, the effect of CD for systems subjected to NFGMs and systems 

subjected to ordinary GMs cannot be directly compared. Nevertheless, the collapse ratios are 

consistently smaller when the set NF-11 is used (Figs. 4.87–4.28). The same trends for collapse 

ratios are preserved if αc is changed to -0.30, as shown in Figure 4.88. Collapse capacities for the 

same systems subjected to ordinary GMs are presented in Figure 4.31. 

4.4.7 Deteriorating SDOF Systems Subjected to Long-Duration Ground Motions 

The set of records LSMR-N used in most of this study corresponds to California records. These 

GMs have relatively short strong motion duration and likely do not reflect the maximum 

influence that CD may have on collapse capacity because CD is based on the dissipated 

hysteretic energy during the THA. Therefore, the effect of CD on collapse capacity is expected 

to be more important if the GMs have longer duration because more hysteretic energy would be 

dissipated.  

The strong motion duration is the time interval over which a significant amount of 

seismic energy is dissipated. Many of the available definitions are based on the Arias intensity 

(Bommer and Martinez Pereira, 1996), which is defined as (Arias, 1970): 
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π         (4.14) 

where a(t) is the accelerogram of total duration T. The simplest measurements of strong motion 

duration are based on the interval over which a specified portion of IA is achieved. Trifunac and 

Brady (1975) proposed an interval from 5%–95% that has been widely used. Therefore, strong 

motion duration is defined here as the time it takes for the cumulative energy of the GM record 
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to grow from 5%–95% of its value at the end of the history. It has been argued that this definition 

does not have a real physical significance because the duration is not correlated with seismic and 

geophysical parameters such as the rupture history (Bommer and Martinez Pereira, 1996). 

Although these shortcomings are recognized, this strong motion definition is accepted in order to 

make a parameter study manageable. 

In this study, long-duration records are those having a strong motion duration longer than 

30 s according to the Trifunac and Brady definition. Thirteen long-duration records (set LD-13) 

were selected with strong motion durations ranging from 30.4 to 49.9 s with a mean of 39.0 s 

(Table 4.4). In contrast, the set LMSR-N has strong motion durations ranging from 8–25 s, with 

a mean of 15.2 s.  

Elastic Strength Demand Spectra. Figure 4.89 shows median elastic acceleration 

spectra scaled at T = 0.5 and 0.9 s. As can be seen, the shape of the median spectral acceleration 

for sets LD-13 and LMSR-N is similar, although the plateau of LD-13 is larger and starts the 

steep descending slope at about T = 0.9 s. This leads to some discrepancies between the two 

median spectra when the records are scaled. For spectra scaled at T = 0.5 s, the median spectral 

acceleration at the right of the scaled period is larger for LD-13, which suggests that at T = 0.5 s, 

the collapse capacity should be smaller when an SDOF system is subjected to the set LD-13. On 

the other hand, when scaling at T = 0.9 s the spectra are very similar to the right of the scaled 

period.  

Normalized Hysteretic Energy. The dissipated hysteretic energy is expected to increase 

when SDOF systems are subjected to long-duration records. Figure 4.90 compares median NHE-

at-collapse for peak-oriented models with slow CD subjected to the sets LD-13 and LMSR-N. 

Systems subjected to LD-13 dissipate more energy, especially in the short-period range. Figure 

4.91 shows median NHE-at-collapse ratios of LD-13 over LMSR-N for several rates of CD. The 

effect of LD records is larger in the short- and medium-period ranges and for systems with low 

CD rate (large γ values).  

Collapse Capacity. Figure 4.92 shows the effect of CD on collapse capacity for peak-

oriented systems subjected to the sets LD-13 and LMSR-N. Collapse capacities exhibit important 

differences in the short-period range, which are expected according to the elastic spectra of 

Figure 4.89. The collapse capacity ratios with respect to the case with infinite CD are shown in 

Figure 4.93, where it is observed that the effect of CD is larger for long-duration records, 

particularly for systems with T < 1 s and rapid CD rates. Although this is in agreement with the 
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results of NHE-at-collapse, the difference is within the 10% range for most of the periods and 

rates of CD. That is to say, the large effect of LD records on NHE-at-collapse is not reflected in 

collapse capacities. This suggests that a large part of the contribution to NHE in long-duration 

records comes from “trailing” excursions.  

Figure 4.94 present the effect of LD records on similar systems with bilinear models. In 

the short- and medium-ranges, LD records produce differences in collapse capacity ratios of 15-

20%, whereas for long periods the ratios are very similar. As explained in 4.3.7, bilinear systems 

deteriorate more under the presence of branches with negative slope. In peak-oriented models the 

inelastic deformation developed in a given direction is recovered as soon as reloading occurs, 

whereas in bilinear ones the recovery only occurs when the structure yields in the opposite 

direction. This behavior increases the effect of LD records on systems where the loading path is 

for more time on a branch with negative slope. 

The small effect of LD records has been reported in the past by using simpler models. For 

instance, Rahnama and Krawinkler (1993) calculated the response of non-deteriorating SDOF 

systems and did not find a correlation between inelastic seismic demand parameters and the 

duration of strong motion. Bernal (1992) studied the correlation between long-duration records 

and collapse of non-deteriorating systems including P-∆ effects. He found that GM duration had 

a minor effect on the response of peak-oriented models, but some correlation with bilinear ones. 

1.2 4.5 SUMMARY 

4.5.1 Results of Primary Parameter Study 

In this section the following five nonlinear parameters that affect the nonlinear response of 

SDOF systems are evaluated: the type of hysteretic model, post-capping stiffness, ductility 

capacity, cyclic deterioration, and P-∆ effects. All possible combinations among parameters were 

considered because the effect of a particular parameter on collapse capacity is dictated in great 

part by the relative value of the rest of the parameters. In addition, information prior to collapse 

was processed to identify differences between systems without and with deterioration before 

collapse takes place. 

Effect of Deteriorating Models on EDPs. The cyclic deterioration effect modifies 

(Sa/g)/η - EDP relationships, since the early stages of nonlinearity. However, this modification is 

small (within the 10% range) before the loading path reaches δc (Fig. 4.1). On the other hand, 
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post-capping stiffness and ductility capacity only modify the nonlinear response after surpassing 

δc but their effect on EDPs is larger. Thus, non-deteriorating models can estimate EDPs with 

reasonable accuracy as long as the maximum displacement does not exceed δc.  

Effect of Post-capping Stiffness on Collapse Capacity, αc. The collapse capacity is 

very sensitive to variations of αc when this parameter is small. If αc is very large the collapse 

capacities are not greatly modified by αc variations. A change in post-capping stiffness from αc = 

-0.1 to αc = -0.3 may reduce the collapse capacity to 40% of its original value when no P-∆ 

effects are included. Any further increase in the slope has a small effect because collapse occurs 

soon after δc has been reached. The effect of αc on collapse capacity is greatly reduced if 

important P-∆ effects are present, especially in ductile systems. 

Effect of Ductility Capacity on Collapse Capacity, δc/δy. The relationship between 

collapse capacity and ductility capacity is almost linear for all values of (Sa,c/g)/η. Collapse 

capacities for systems with δc/δy = 2 can be up to 60% smaller than those for systems with δc/δy = 

6. The actual percentage is mainly affected by post-capping stiffness and to a lesser degree by 

the CD rate. The effect of δc/δy on collapse capacity is essentially independent of the period of 

the system and, unlike the rest of the parameters, is not largely affected by the presence of P-∆ 

effects.  

Effect of Cyclic Deterioration on Collapse Capacity. The collapse capacity increases 

for slower rates of CD, represented by larger γ values. The increment of collapse capacity is 

asymptotic because γ  = infinite represents a deteriorating system with no CD, which has a finite 

collapse capacity. Collapse capacities vary by as much as a factor of 2 for similar systems with 

different CD rate. Collapse capacity ratios of systems with different CD are essentially period 

independent for systems without P-∆ effects. However, these ratios are greatly affected for 

systems including P-∆ effects, particularly in the medium- and long-period ranges. 

P-∆ Effect on Collapse Capacity. The P-∆ effect is very important for ductile systems 

because these would be able to sustain large inelastic deformations if the P-∆ effect were not 

considered. P-∆ effects accelerate the collapse of deteriorating systems and may be the primary 

source of collapse for flexible but ductile structural systems. Their presence overpowers the 

effect of αc and CD. But the results must be interpreted with caution because the relationship 

between P-∆ effects in SDOF and MDOF systems is complex. Rigorously, equivalent P-∆ effects 

in SDOF systems must be derived for each particular MDOF structure. 
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Effect of Hysteretic Model on Collapse Capacity. In the medium- and long-period 

ranges, the largest collapse capacities correspond to pinching models, closely followed by those 

of peak-oriented models. Collapse capacities of bilinear models are the smallest ones because the 

presence of a negative stiffness has a larger effect on this model. 

Increment in Collapse after δc Is Reached. The collapse capacity of the system may 

increase by more than 100% with respect to the relative intensity at which the loading path 

reaches the peak strength, i.e., δc.  

4.5.2 Results of Secondary Parameter Study 

Residual Strength. The effect of residual strength is studied for systems with residual strength 

of 20% (small) and 40% (medium) of the yield strength of the system. The former is practically 

negligible for all the systems of interest. Medium residual strength may increase collapse 

capacity more than two times for non-ductile systems. However, when realistic collapse 

displacements are considered, the collapse capacity increases by 20% at most. 

Effect of Individual Cyclic Deterioration Modes. The effect of individual cyclic 

deterioration modes must be viewed with caution because of the large interdependence among 

various deterioration modes. For instance, cyclic basic strength deterioration and cyclic post-

capping strength deterioration modes should not be analyzed individually because the updated 

value of the cap displacement (δc) depends on both deteriorations modes. 

Regarding the cyclic unloading stiffness deterioration mode, its effect is marginal when 

post-capping stiffness is included, especially on peak-oriented and pinching models because a 

large part of this CD effect is lost in the reloading. The effect is small mainly because it is 

overpowered by the deterioration in strength due to the negative slope of the backbone curve. 

The effect of cyclic reloading stiffness deterioration on collapse capacity increases 

strongly with the deterioration rate and, for rapid CD rates, may cause about the same 

deterioration than the four CD modes combined.  

Level of Pinching.  The effect of the level of pinching on collapse capacities is small, 

usually within the 10% range. This is expected because differences between peak-oriented and 

highly pinched models (κf,d = 0.25) are not significant.  

Damping. In the nonlinear range, ξ, increases for damping proportional to mass and 

decreases for damping proportional to stiffness. Consequently, analytical models with mass 
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proportional damping have a better response but they may lead to non-conservative results if ξ in 

the inelastic interval is expected to be similar to ξ in the elastic range. 

If the backbone curve has small strain-hardening stiffness, the response of systems with 

damping proportional to tangent stiffness is very similar to that of systems with constant ξ in the 

linear and nonlinear ranges. 

For systems with mass proportional damping, the effect of increasing ξ from 5–10%, may 

increase the collapse capacity of the system by more than 20%. This increase is roughly 

independent of the period of the system and the value of the system parameters. In systems with 

stiffness proportional damping, the modifications in collapse capacity due to modifications in ξ 

are negligible. 

Systems Subjected to Near-Fault Ground Motions. The dispersion in collapse capacity 

is smaller when the period of the system is normalized by the pulse period of the NFGM records. 

The effect of CD on the collapse capacity is about 10–20% smaller when a system is subjected to 

a set of NFGMs instead of ordinary GMs.  

Systems Subjected to Long-Duration Records. The effect of CD on collapse capacity 

increases when long-duration records are used instead of ordinary ground motions. This 

increment is larger in the short- and medium-period ranges, but the largest differences still do not 

exceed 10%–15%. On the other hand, NHE-at-collapse can be almost two times larger for 

systems subjected to long-duration records. Nevertheless, these large differences do not 

contribute to changes in the collapse capacity of the systems. It is likely that a large portion of 

the NHE at collapse corresponds to “trailing” excursions. 

The effect of using a set of LD records is slightly larger for bilinear models because these 

models deteriorate more under the presence of branches with negative slope. This behavior 

increases the effect of LD records on systems in which the loading path is on a branch with 

negative slope for an increased amount of time. 

SDOF systems have been subjected to three sets of GMs that dissipate energy in different 

ways. Under NFGMs, a large part of the HE is released in one or two large pulses; under long-

duration GMs, the HE is dissipated in a large number of inelastic excursions. Energy dissipation 

for ordinary GMs is between these two cases. Nonetheless, the effect of CD on collapse capacity 

is not greatly modified by the set of GMs used in the analysis.  
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Table 4.1  SDOF systems of primary parameter study, peak-oriented models, P-∆=0 

DETERIORATING SDOF SYSTEMS
Peak Oriented Models with P-∆ = 0

Common Post-Capping Ductility Capacity Cyclic Deterioration
Characteristics Stiffness δc/δy γs,c,k,a

- Infinite Infinite
 αs = 0.03 -0.1 2 Infinite

100
 T = 0.1 to 4.0 s 50

25
 λ = 0 (No residual 4 Infinite

           strength) 100
50

 ξo = 5% 25
6 Infinite

 [(Sa/g)/η]initial = 1.0 100
50

 [(Sa/g)/η]step = 0.25 25
-0.3 2 Infinite

100
50
25

4 Infinite
100
50
25

6 Infinite
100
50
25

-0.5 2 Infinite
100
50
25

4 Infinite
100
50
25

6 Infinite
100
50
25  
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Table 4.2  Set of ordinary ground motion records, LMSR-N (after Medina, 2002) 
Record ID Event Year Mw Station R (km) NEHRP Site Mechanism fHP (Hz) fLP (Hz) PGA (g) PGV (cm/s) PGD (cm) D (s) Rec. Length (s)

IV79cal Imperial Valley 1979 6.5 Calipatria Fire Station 23.8 D strike-slip 0.10 40 0.078 13.3 6.2 23.3 39.5
IV79chi Imperial Valley 1979 6.5 Chihuahua 28.7 D strike-slip 0.05 0.270 24.9 9.1 20.1 40.0
IV79cmp Imperial Valley 1979 6.5 Compuertas 32.6 D strike-slip 0.20 0.186 13.9 2.9 21.7 36.0
IV79e01 Imperial Valley 1979 6.5 El Centro Array #1 15.5 D strike-slip 0.10 40.0 0.139 16.0 10.0 8.9 39.5
IV79e12 Imperial Valley 1979 6.5 El Centro Array #12 18.2 D strike-slip 0.10 40.0 0.116 21.8 12.1 19.4 39.0
IV79e13 Imperial Valley 1979 6.5 El Centro Array #13 21.9 D strike-slip 0.20 40.0 0.139 13.0 5.8 21.2 39.5
IV79nil Imperial Valley 1979 6.5 Niland Fire Station 35.9 D strike-slip 0.10 30.0 0.109 11.9 6.9 21.7 40.0
IV79pls Imperial Valley 1979 6.5 Plaster City 31.7 D strike-slip 0.10 40.0 0.057 5.4 1.9 10.7 18.7
IV79qkp Imperial Valley 1979 6.5 Cucapah 23.6 D strike-slip 0.05 0.309 36.3 10.4 15.7 40.0
IV79wsm Imperial Valley 1979 6.5 Westmorland Fire Station 15.1 D strike-slip 0.10 40.0 0.110 21.9 10.0 25.2 40.0
LP89agw Loma Prieta 1989 6.9 Agnews State Hospital 28.2 D reverse-oblique 0.20 30.0 0.172 26.0 12.6 18.4 40.0
LP89cap Loma Prieta 1989 6.9 Capitola 14.5 D reverse-oblique 0.20 40.0 0.443 29.3 5.5 13.2 40.0
LP89g03 Loma Prieta 1989 6.9 Gilroy Array #3 14.4 D reverse-oblique 0.10 40.0 0.367 44.7 19.3 11.4 39.9
LP89g04 Loma Prieta 1989 6.9 Gilroy Array #4 16.1 D reverse-oblique 0.20 30.0 0.212 37.9 10.1 14.8 39.9
LP89gmr Loma Prieta 1989 6.9 Gilroy Array #7 24.2 D reverse-oblique 0.20 40.0 0.226 16.4 2.5 11.5 39.9
LP89hch Loma Prieta 1989 6.9 Hollister City Hall 28.2 D reverse-oblique 0.10 29.0 0.247 38.5 17.8 17.4 39.1
LP89hda Loma Prieta 1989 6.9 Hollister Differential Array 25.8 D reverse-oblique 0.10 33.0 0.279 35.6 13.1 13.2 39.6
LP89hvr Loma Prieta 1989 6.9 Halls Valley 31.6 D reverse-oblique 0.20 22.0 0.134 15.4 3.3 16.2 39.9
LP89sjw Loma Prieta 1989 6.9 Salinas - John & Work 32.6 D reverse-oblique 0.10 28.0 0.112 15.7 7.9 20.3 39.9
LP89slc Loma Prieta 1989 6.9 Palo Alto - SLAC Lab. 36.3 D reverse-oblique 0.20 33.0 0.194 37.5 10.0 12.5 39.6
LP89svl Loma Prieta 1989 6.9 Sunnyvale - Colton Ave. 28.8 D reverse-oblique 0.10 40.0 0.207 37.3 19.1 21.2 39.2
NR94cen Northridge 1994 6.7 LA - Centinela St. 30.9 D reverse-slip 0.20 30.0 0.322 22.9 5.5 12.4 30.0
NR94cnp Northridge 1994 6.7 Canoga Park - Topanga Can. 15.8 D reverse-slip 0.05 30.0 0.420 60.8 20.2 10.4 25.0
NR94far Northridge 1994 6.7 LA - N Faring Rd. 23.9 D reverse-slip 0.13 30.0 0.273 15.8 3.3 8.8 30.0
NR94fle Northridge 1994 6.7 LA - Fletcher Dr. 29.5 D reverse-slip 0.15 30.0 0.240 26.2 3.6 11.8 30.0
NR94glp Northridge 1994 6.7 Glendale - Las Palmas 25.4 D reverse-slip 0.10 30.0 0.206 7.4 1.8 11.5 30.0
NR94hol Northridge 1994 6.7 LA - Holywood Stor FF 25.5 D reverse-slip 0.20 23.0 0.231 18.3 4.8 12.0 40.0
NR94lh1 Northridge 1994 6.7 Lake Hughes #1 # 36.3 D reverse-slip 0.12 23.0 0.087 9.4 3.7 13.9 32.0
NR94lv2 Northridge 1994 6.7 Leona Valley #2 # 37.7 D reverse-slip 0.20 23.0 0.063 7.2 1.6 12.5 32.0
NR94lv6 Northridge 1994 6.7 Leona Valley #6 38.5 D reverse-slip 0.20 23.0 0.178 14.4 2.1 10.4 32.0
NR94nya Northridge 1994 6.7 La Crescenta-New York 22.3 D reverse-slip 0.10 0.3 0.159 11.3 3.0 11.0 30.0
NR94pic Northridge 1994 6.7 LA - Pico & Sentous 32.7 D reverse-slip 0.20 46.0 0.186 14.3 2.4 14.8 40.0
NR94stc Northridge 1994 6.7 Northridge - 17645 Saticoy St. 13.3 D reverse-slip 0.10 30.0 0.368 28.9 8.4 15.7 30.0
NR94stn Northridge 1994 6.7 LA - Saturn St 30.0 D reverse-slip 0.10 30.0 0.474 34.6 6.6 11.6 31.6
NR94ver Northridge 1994 6.7 LA - E Vernon Ave 39.3 D reverse-slip 0.10 30.0 0.153 10.1 1.8 15.9 30.0
SF71pel San Fernando 1971 6.6 LA - Hollywood Stor Lot 21.2 D reverse-slip 0.20 35.0 0.174 14.9 6.3 11.2 28.0
SH87bra Superstition Hills 1987 6.7 Brawley 18.2 D strike-slip 0.10 23.0 0.156 13.9 5.4 13.5 22.1
SH87icc Superstition Hills 1987 6.7 El Centro Imp. Co. Cent 13.9 D strike-slip 0.10 40.0 0.358 46.4 17.5 16.1 40.0
SH87pls Superstition Hills 1987 6.7 Plaster City 21.0 D strike-slip 0.20 18.0 0.186 20.6 5.4 11.3 22.2
SH87wsm Superstition Hills 1987 6.7 Westmorland Fire Station 13.3 D strike-slip 0.10 35.0 0.172 23.5 13.0 19.6 40.0  

 
Table 4.3  Set of near-fault ground motions, NF-11 

Corner Freq. NFGM Mw R(km) Tp (s) 
Approx

Tp (s) 
w/P2 

PGV Soil 
USGS/ 

NEHRP LF, Hz HF, Hz 

KB95obj 6.9 0.6 0.9 160 B/C 0.05 null 
NR94newh 6.7 7.1 1.3 119 C/D 0.12 23 
NR94rrs 6.7 7.5 

1.0 

1.2 174 C/D null null 
EZ92erzi 6.7 2 2.1 119 C/D 0.1 null 
NR94sylm 6.7 6.4 2.1 122 C/D 0.12 23 
NR94wpi 6.7 7.2 

2.0 

2.2 109 B/C 0.1 30 
IV79melo 6.5 0.0 2.6 117 C/D 0.1 40 
IV79ar06 6.5 1.2 3.4 110 C/D 0.1 40 
TW99tcu076 7.6 2.0 

3.0 

3.3 63 C/D 0.1 50 
LN92luc 7.3 1.1 4.5 98 A/- .08 60 
TW99tcu075 7.6 1.5 

4.0 
 4.1 87 C/D 0.03 50 
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Table 4.4  Set of long-duration records, LD-13 

Long Duration Record Mw PGA 
gals 

Accele- 
rogram 

Duration

Bracketed 
Duration 

(sec) 

West. WA, Olympia 1949 6.5 71.4 80.0 41.3 
Kern, Taft 021, 1952 7.7 153.0 54.2 30.3 
Kern, Hol 090, 1952 7.7 43.0 78.5 31.3 
Cerro Prieto, IV79, cp237 6.5 152.1 63.7 36.2 
Llolleo, Chile 1985 8.0 551.9 100  36.2 
Viña del Mar, Chile 1985 8.0 223.0 100 49.9 
CHY015E, Taiwan 1999 7.6 142.4 150 37.5 
CHY025W, Taiwan 1999 7.6 156.2 90.0 33.7 
CHY046W, Taiwan 1999 7.6 139.6 90.0 33.0 
CHY087W, Taiwan 1999 7.6 133.2 90.0 31.9 
TCU120W, Taiwan 1999 7.6 220.8 90.0 32.6 
TCU123W, Taiwan 1999 7.6 160.7 90.0 35.4 
TCU138E, Taiwan 1999 7.6 191.1 150 34.1 
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Fig. 4.1  Backbone curves for hysteretic models with and without P-∆  
 

ELASTIC STRENGTH DEMAND SPECTRA
LMSR-N, ξ = 0.05, Scaled at T=0.9 sec
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 (a) Elastic Strength Demand Spectra  (b) Dispersion of Spectra 
 

Fig. 4.2  Spectra of ordinary GMs scaled to the same Sa at T = 0.9 s 
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EFFECT OF CYCLIC DET. ON (Sa/g)/η vs δmax/δy

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
 αs=0.03, αc= -0.10, δc/δy=4, γs,c,k,a=Var, λ=0
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EFFECT OF CYCLIC DET. ON (Sa/g)/η vs δmax/Sd

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
 αs=0.03, αc= -0.10, δc/δy=4, γs,c,k,a=Var, λ=0
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 (a) (Sa/g)/η - Median δmax/δy Curves   (b) (Sa/g)/η - Median δmax/Sd Curves 

 
EFFECT OF CYCLIC DET. ON δmax/δy RATIOS

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
 αs=0.03, αc= -0.10, δc/δy=4, γs,c,k,a=Var, λ=0
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(c) (Sa/g)/η - Median EDP ratios 
 

Fig. 4.3  Effect of CD on EDPs, T = 0.9 s, αc = -0.1, δc/δy = 4, P-∆= 0  
 

EFFECT OF CYCLIC DET. ON (Sa/g)/η vs δmax/δy

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.2 sec.
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EFFECT OF CYCLIC DET. ON δmax/δy RATIOS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.2 sec.
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(a) (Sa/g)/η - Median δmax/δy Curves                               (b) (Sa/g)/η - Median EDP ratios 
 

Fig. 4.4  Effect of CD on δmax/δy, T = 0.2 s, αc = -0.1, δc/δy = 4, P-∆= 0 
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EFFECT OF CYCLIC DET. ON (Sa/g)/η vs δmax/δy

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=3.6 sec.
 αs=0.03, αc= -0.10, δc/δy=4, γs,c,k,a=Var, λ=0
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EFFECT OF CYCLIC DET. ON δmax/δy RATIOS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=3.6 sec.
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(a) (Sa/g)/η - Median δmax/δy Curves                             (b) (Sa/g)/η - Median EDP ratios 
 

Fig. 4.5  Effect of CD on δmax/δy, T = 3.6 s, αc = -0.1, δc/δy = 4, P-∆= 0 
 

EFFECT OF αc ON (Sa/g)/η vs δmax/δy

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
 αs=0.03, αc= Var, δc/δy=4, γs,c,k,a=Inf, λ=0
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EFFECT OF αc ON δmax/δy RATIOS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
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(a) (Sa/g)/η - Median δmax/δy Curves                            (b) (Sa/g)/η - Median EDP ratios 

 
Fig. 4.6  Effect of αc on δmax/δy, T = 0.9 s, δc/δy = 4, γ = inf., P-∆= 0 

 
EFFECT OF αc ON (Sa/g)/η vs δmax/δy

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.2 sec.
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(a) T = 0.2 s.                                                                       (b) T = 3.6 s. 
 

Fig. 4.7  Effect of αc on median δmax/δy, T = 0.2 and 3.6 s, δc/δy = 4, γ = inf., P-∆= 0 
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EFFECT OF δc/δy ON (Sa/g)/η vs δmax/δy

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
 αs=0.03, αc= -0.10, δc/δy=Var, γs,c,k,a=Inf, λ=0
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EFFECT OF δc/δy ON δmax/δy RATIOS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
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(a) (Sa/g)/η - Median δmax/δy Curves                                    (b) (Sa/g)/η - Median EDP ratios 

Fig. 4.8  Effect of δc/δy on EDPs, T = 0.9 s, αc = -0.1, γ = inf., P-∆= 0 
 

EFFECT OF δc/δy ON (Sa/g)/η vs δmax/δy
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(a) T = 0.2 sec                                                                       (b) T = 3.6 sec 

Fig. 4.9  Effect of δc/δy on EDP ratios, T = 0.2 and 3.6 s, αc = -0.1, γ = inf., P-∆= 0 
 

 COLLAPSE CAPACITY 
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Fig. 4.10  Set of median collapse capacity spectra for peak-oriented models 
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 MEDIAN (Sa/g)/η AT COLLAPSE, VARIOUS SYSTEMS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=Var
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 (a) Median Collapse Capacity Spectra  (b) Median Collapse Capacity Ratios 
 

Fig. 4.11  Collapse capacity spectra for selected peak-oriented models  
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Fig. 4.12  Dependence of median (Sa,c/g)/η on αc; δc/δy = 4, slow CD, T = 0.1 s–1.0 s 
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EFFECT OF CAP SLOPE ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0,

αs=0.03, αc=Var, δc/δy=4, γs,c,k,a=Inf
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EFFECT OF CAP SLOPE ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0,
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 (a) Median Collapse Capacity Spectra (b) Median Collapse Capacity Ratios 

Fig. 4.13  Effect of αc on (Sa,c/g)/η ; δc/δy = 4, no CD, no P-∆ 
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 (a) Median Collapse Capacity Spectra (b) Median Collapse Capacity Ratios 

Fig. 4.14  Effect of αc on (Sa,c/g)/η ; δc/δy = 2, no CD, no P-∆ 
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Fig. 4.15  Effect of αc on (Sa,c/g)/η ; δc/δy = 4, no CD, small P-∆ 
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EFFECT OF POST-CAPPING STIFFNESS ON (Sa,c/g)/η
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  (a) Median Collapse Capacity Spectra (b) Median Collapse Capacity Ratios 

Fig. 4.16  Effect of αc on (Sa,c/g)/η ; δc/δy = 2, no CD, small P-∆ 
 

EFFECT OF CAP SLOPE ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0,
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Fig. 4.17  Effect of αc on (Sa,c/g)/η ; δc/δy = 4, medium CD, no P-∆ 
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Fig. 4.18  Effect of αc on (Sa,c/g)/η ; bilinear model, δc/δy = 4, no CD, no P-∆ 
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COMPUTED DISPERSION OF (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=Var, δc/δy=4, γs,c,a=Inf, γk=Inf
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(a) P-∆ = 0        (b) P-∆ = 0.1N 

Fig. 4.19  Effect of αc on dispersion of (Sa,c/g)/η ; δc/δy = 4, no CD 
 

(Sa/g)/η at COLLAPSE vs δc/δy
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
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Fig. 4.20  Dependence of median (Sa,c/g)/η on δc/δy; αc = -0.1, slow CD, T = 0.1 s–1.0 s 
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EFFECT OF δc / δy  ON MEDIAN (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0

αs=0.03, αc=-0.10, δc/δy=Var, γs,c,k,a=Inf
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Fig. 4.21  Effect of δc/δy on (Sa,c/g)/η ; αc = -0.1, no CD, no P-∆ 
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Fig. 4.22  Effect of δc/δy on (Sa,c/g)/η ; αc = -0.3, no CD, no P-∆ 
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Fig. 4.23  Effect of δc/δy on (Sa,c/g)/η ; αc = -0.1, no CD, small P-∆ 
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EFFECT OF δc / δy  ON MEDIAN (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0
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Fig. 4.24  Effect of δc/δy on (Sa,c/g)/η ; αc = -0.1, medium CD, no P-∆ 
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Fig. 4.25  Effect of δc/δy on (Sa,c/g)/η ; bilinear models, αc = -0.1, no CD, no P-∆ 
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(a) P-∆ = 0        (b) P-∆ = 0.1N 

Fig. 4.26  Effect of δc/δy on dispersion of (Sa,c/g)/η ; αc = -0.1, no CD 
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(Sa/g)/η at COLLAPSE vs γs,c,k,a
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Var, γk=Var, λ=0
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Fig. 4.27  Dependence of median (Sa,c/g)/η on γ; αc=-0.1, δc/δy = 4, T =0.1 s–1.0 s  
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Fig. 4.28  Effect of CD on (Sa,c/g)/η ; δc/δy = 4, αc = -0.1, no P-∆ 
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NHE at (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=Var
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Fig. 4.29  NHE associated with (Sa,c/g)/η for different CD rates; δc/δy = 4, αc = -0.1, no P-∆ 
 

EFFECT OF CYCLIC DET. ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
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Fig. 4.30  Effect of CD on (Sa,c/g)/η ; δc/δy = 2, αc = -0.1, no P-∆ 
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Fig. 4.31  Effect of CD on (Sa,c/g)/η ; δc/δy = 4, αc = -0.3 no P-∆ 
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EFFECT OF CYCLIC DET. ON (Sa/g) / η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=Var
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  (a) Median Collapse Capacity Spectra   (b) Median Collapse Capacity Ratios 

Fig. 4.32  Effect of CD on (Sa,c/g)/η ; δc/δy = 4, αc = -0.1, small P-∆ 
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Fig. 4.33  Effect of CD on (Sa,c/g)/η ; bilinear models, δc/δy = 4, αc = -0.1, no P-∆ 
 

COMPUTED DISPERSION OF (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
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Fig. 4.34  Effect of CD on dispersion of (Sa,c/g)/η ; αc = -0.1, δc/δy = 4 
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STABILITY COEFFICIENT FOR SDOF SYSTEMS

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 1 2 3 4
Period of SDOF System (sec)

St
ab

ili
ty

 C
oe

ff
ic

ie
nt

Small P-∆
Large P-∆

 
Fig. 4.35  Stability coefficients for SDOF parameter study 

 
EFFECT OF P-∆ ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=Var,
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Fig. 4.36  Effect of P-∆ on (Sa,c/g)/η ; δc/δy = 4, αc = -0.1, no CD  
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Fig. 4.37  Effect of P-∆ on (Sa,c/g)/η ; δc/δy = 2, αc = -0.1, no CD  
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EFFECT OF P-∆ ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=Var,

αs=0.03, αc=-0.30, δc/δy=4, γs,c,a=Inf, γk=Inf
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Fig. 4.38  Effect of P-∆ on (Sa,c/g)/η ; δc/δy = 4, αc = -0.3, no CD  
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Fig. 4.39  Effect of P-∆ on (Sa,c/g)/η ; δc/δy = 4, αc = -0.1, medium CD  
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(a) Median Collapse Capacity Spectra        (b) Median Collapse Capacity Ratios 

Fig. 4.40  Effect of P-∆ effect on (Sa,c/g)/η ; bilinear models, δc/δy = 4, αc = -0.1, no CD  
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 COLLAPSE CAPACITY
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Fig. 4.41  Median collapse capacity ratios for different hysteretic models, P-∆ = 0 
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(a) Pinching / Peak-Oriented                     (b) Bilinear / Peak-Oriented 

Fig. 4.42  Median collapse capacity ratios for different hysteretic models, P-∆ = 0.1N 
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Fig. 4.43  Examples of collapse capacity ratios for bilinear / peak-oriented hysteretic models  
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EFFECT OF HYST. MODEL ON (Sa/g)/η AT COLLAPSE
Bilinear / Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0
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(a) δc/δy = 2             (b) δc/δy = 6 

Fig. 4.44  Effect of hysteretic model on median collapse capacity; systems with different 
δc/δy and αc values  
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(a) αc = -0.1, δc/δy = 4                   (b) αc = -0.1, δc/δy = 2 

Fig. 4.45  Effect of hysteretic model on median collapse capacity; systems with different 
CD rates 
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INCREMENT IN (Sa/g)/η after reaching δc

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0
 αs=0.03, αc= -0.10 , δc/δy=4, γs,c,k,a=Var, λ=0
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Fig. 4.46  Median ratios of (Sa,c/g)/η over (Sa/g)/η when δ = δc; P-∆ =0 
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INCREMENT IN (Sa/g)/η after reaching δc

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0.1N
 αs=0.03, αc= -0.10 , δc/δy=4, γs,c,k,a=Var, λ=0
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Fig. 4.47  Median ratios of (Sa,c/g)/η over (Sa/g)/η when δ = δc; P-∆ =0.1N 
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Fig. 4.48  Median ratios of (Sa,c/g)/η over (Sa/g)/η when δ = δc; different P-∆ levels 
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HYSTERETIC LOOPS, (Sa/g)/η=10
Peak Oriented Model, NOR94hol, T=0.6 s., ξ=5%, P-∆ = 0

αs=0.05, αc= -0.10 , δc/δy=4, γs,c,k,a=Var, λ=Var
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(a) P-∆ = 0 

HYSTERETIC LOOPS, (Sa/g)/η=10
Peak Oriented Model, NOR94hol, T=0.6 s., ξ=5%, P-∆ ='0.1N'
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(b) P-∆ = 0.1N 

Fig. 4.49  Hysteretic response for a system with residual strength 
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δf/δy RATIOS FOR SYSTEMS W/RESIDUAL STRENGTH
P-∆='0.1N', αs=0.03, αc=-0.10, δc/δy=6
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δf/δy RATIOS FOR SYSTEMS W/RESIDUAL STRENGTH
P-∆='0.1N', αs=0.03, αc=-0.30, δc/δy=2
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(a) Ductile Systems       (b) Non-ductile Systems 

Fig. 4.50  Normalized collapse displacements (δf /δy) for systems with residual strength 
 

RESIDUAL EFFECT ON MEDIAN (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
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 (a) Median Collapse Capacity Spectra (b) Median Collapse Capacity Ratios 

Fig. 4.51  Effect of residual strength on (Sa,c/g)/η for ductile systems  
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Fig. 4.52  Effect of residual strength on (Sa,c/g)/η for non-ductile systems  
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RESIDUAL EFFECT ON MEDIAN (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
αs=0.03, αc=-0.10, δc/δy=6, γs,c,a=50, γk=100, λ=Var
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Fig. 4.53  Effect of residual strength on (Sa,c/g)/η for ductile systems with CD  
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Fig. 4.54  Effect of residual strength on (Sa,c/g)/η for non-ductile systems with CD  
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 (a) No CD (b) Medium CD 

Fig. 4.55  δmax/δy at collapse for a ductile system  
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MAX / YIELD DISP at COLLAPSE vs T
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0.1N, 

αs=0.03, αcap=-0.10, δc/δy=6, γs,c,k,a=Inf, λ=0.4
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Fig. 4.56  δmax/δy at collapse for a ductile system when δf (λ>0) ≤ 1.6 δf (λ=0)  
 

 
RESIDUAL EFFECT ON MEDIAN (Sa,c/g)/η

Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
αs=0.03, αc=-0.10, δc/δy=6, γs,c,k,a=Inf, λ=Var
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Fig. 4.57  Effect of residual strength on collapse displacements considering δf (λ>0) ≤ 1.6 δf (λ=0) 
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HYSTERETIC RESPONSE w/o CYCLIC DET.
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=Inf, γs,c,k,a=Inf, λ=0
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EFFECT OF BASIC STRENGTH DETERIORATION
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=Inf, γs=50, γc,k,a=Inf, λ=0

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-9 -6 -3 0 3 6 9
Normalized Displacement, δ/δy

N
or

m
al

iz
ed

 F
or

ce
, F

/F
y

 

(a) No CD Included       (b) Basic Strength CD 

Fig. 4.58  Effect of cyclic basic strength deterioration on the hysteretic response of 
systems without strength capping 

 

 
 

EFFECT OF STRENGTH DET. ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=N.A, δc/δy=Inf, γc,k,a=Inf
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 (a) Median Collapse Capacity Spectra (b) Median Collapse Capacity Ratios 

Fig. 4.59  Effect of cyclic basic strength deterioration on (Sa,c/g)/η, systems without 
strength capping 
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HYSTERETIC RESPONSE w/o CYCLIC DET.
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=2, γs,c,k,a=Inf, λ=0
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EFFECT OF BASIC STRENGTH DETERIORATION
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=2, γs=50, γc,k,a=Inf, λ=0
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 (a) No CD Included (b) Basic Strength CD 

Fig. 4.60  Effect of cyclic basic strength deterioration on the hysteretic response of 
systems with strength capping 

 
EFFECT OF STRENGTH DET. ON (Sa/g)/η AT COLLAPSE

Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
αs=0.03, αc=-0.10, δc/δy=4, γc,k,a=Inf
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Fig. 4.61  Effect of cyclic basic strength deterioration on (Sa,c/g)/η 
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EFFECT OF POST-CAPPING STRENGTH DET.
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=2, γc=50, γs,k,a=Inf, λ=0
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HYSTERETIC RESPONSE with CYCLIC DET.
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=2, γs,c,k,a=50, λ=0
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 (a) Post-Capping Strength CD (b) CD for all Four Modes 

Fig. 4.62  Effect of cyclic post-capping strength deterioration on the hysteretic response 
 
 

STRENGTH CAPPING DET. EFFECT ON (Sa/g)/η AT COL.
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
αs=0.03, αc=-0.10, δc/δy=4, γs,k,a=Inf, κf,d=N.A., λ=0

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4
Period (sec)

V
ar

ia
tio

n 
/ B

as
e 

C
as

e

γc = Inf
γc = 100
γc = 50
γc = 25

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

CD of ALL γ's

 
 

Fig. 4.63  Effect of cyclic post-capping strength deterioration on (Sa,c/g)/η 
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EFFECT OF UNLOADING STIFFNESS DET.
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=2, γk=100, γs,c,a=Inf, λ=0
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Fig. 4.64  Effect of cyclic unloading stiffness deterioration on the hysteretic response 
of a system with strength capping 
 

 
 
 

UNLOADING STIFFNESS DET. EFFECT ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, κf,d=N.A., λ=0
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Fig. 4.65  Effect of cyclic unloading stiffness deterioration on (Sa,c/g)/η 
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EFFECT OF ACCELERATED STIFFNESS DET.
Peak Oriented Model, CUREE Standard Loading Protocol, 

 αs=0.03, αc=-0.10, δc/δy=2, γa=50, γs,c,k=Inf, λ=0

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-9 -6 -3 0 3 6 9
Normalized Displacement, δ/δy

N
or

m
al

iz
ed

 F
or

ce
, F

/F
y

 
 

Fig. 4.66  Effect of cyclic reloading accelerated stiffness deterioration on the 
hysteretic response of a system with strength capping 
 

 
 

RELOADING STIFFNESS DET. EFFECT ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
αs=0.03, αc=-0.10, δc/δy=4, γs,k,c=Inf, κf,d=N.A., λ=0
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Fig. 4.67  Effect of cyclic accelerated stiffness deterioration on (Sa,c/g)/η  
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EFFECT OF κf,d ON (Sa/g)/η AT COLLAPSE
Pinching Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.10, δc/δy=6, γs,c,k,a=100, κf,d=Var, λ=0
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 (a) Median Collapse Capacity Spectra (b) Median Collapse Capacity Ratios 

Fig. 4.68  Effect of pinching level on (Sa,c/g)/η for ductile systems 

EFFECT OF κf,d ON (Sa/g)/η AT COLLAPSE
Pinching Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.30, δc/δy=2, γs,c,k,a=25, κf,d=Var, λ=0
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 (a) Median Collapse Capacity Spectra  (b) Median Collapse Capacity Ratios 

Fig. 4.69  Effect of pinching level on (Sa,c/g)/η for non-ductile systems 
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Fig. 4.70  Damping ratio–frequency relationship  

 
EFFECT OF DAMPING FORMULATION ON δmax/Sd

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.5 sec.
 αs=0.03, αc=N.A., δc/δy=Inf, γs,c,k=Inf
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EFFECT OF DAMPING FORMULATION ON δmax/Sd

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.5 sec.
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Fig. 4.71  Effect of damping formulation on δmax/Sd for non-deteriorating systems, T = 0.5 
s, ξο = 5%  

 
EFFECT OF DAMPING FORMULATION ON δmax/Sd

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.2 sec.
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EFFECT OF DAMPING FORMULATION ON δmax/Sd

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, T=0.9 sec.
 αs=0.03, αc=N.A., δc/δy=Inf, γs,c,k=Inf
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Fig. 4.72  Effect of damping formulation on median δmax/Sd ratios; non-deteriorating 
systems, ξ = 5% 
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DAMPING FORMULATION EFFECT ON (Sa,c/g)/η 

Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=Inf
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  (a) Median Collapse Capacity Spectra  (b) Median Collapse Capacity Ratios 

Fig. 4.73  Effect of damping formulation on (Sa,c/g)/η; P-∆ = 0, ξο = 5%  
 

DAMPING FORMULATION EFFECT ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=Inf
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Fig. 4.74  Effect of damping formulation on (Sa,c/g)/η; small P-∆, ξο = 5%  
 

DAMPING FORMULATION EFFECT ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=10%, P-∆=0, 

αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=Inf
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Fig. 4.75  Effect of damping formulation on (Sa,c/g)/η; P-∆ = 0, ξο = 10%  
 



 122

DAMPING FORMULATION EFFECT ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=10%, P-∆='0.1N', 

αs=0.03, αcap=-0.10, δc/δy=4, γs,c,k,a=Inf
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Fig. 4.76  Effect of damping formulation on (Sa,c/g)/η; small P-∆, ξο = 10%  
 
 

EFFECT OF ξο VALUE ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=Var, δc/δy=Var, γs,c,k,a=Var
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Fig. 4.77  Effect of ξο on (Sa,c/g)/η; mass proportional damping  
 

EFFECT OF ξo ON (Sa,c/g)/η
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 
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       (a) Median Collapse Capacity Spectra          (b) Median Collapse Capacity Ratios 

Fig. 4.78  Effect of ξο on (Sa,c/g)/η; stiffness proportional damping  
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Fig. 4.79  Velocity time history of a typical NFGM 
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Fig. 4.80  Pulse P2 ground acceleration time history (Babak and Krawinkler, 2001)  
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Fig. 4.81  Elastic strength (acceleration) demand spectrum for Pulse P2 
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ELASTIC STRENGTH DEMAND SPECTRA
Near-Fault, ξ = 0.05, Scaled at T/Tp=0.8
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Fig. 4.82  Elastic strength demand spectra of NFGMs and Pulse P2, scaled at Sa(T/Tp) = 0.8 
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[Sa(T/Tp)/g]/η at COLLAPSE vs PERIOD
Peak Oriented Model, NF-11, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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Fig. 4.83  Collapse capacities for systems w/o CD subjected to Set NF-11 and Pulse P2 
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Fig. 4.84  Collapse capacities for systems with rapid CD subjected to Set NF-11 and Pulse P2 
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STANDARD DEV. OF LOG OF [Sa(T/Tp)/g]/η at COLLAPSE
Peak Oriented Model, NF-11, ξ=5%,  P-∆=0,

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Var, γk=Var, λ=0
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Fig. 4.85  Dispersion of collapse capacities for systems subjected to Set NF-11 
 

CYCLIC DET. EFFECT ON [Sa(T/Tp)/g]/η AT COL.
Peak Oriented Model, NF-11 & Pulse P2, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,k,c,a=Var, λ=0
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Fig. 4.86  Effect of CD on (Sa,c/g)/η for systems subjected to Set NF-11 and Pulse P2  
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CYCLIC DET. EFFECT ON [Sa(T/Tp)/g]/η AT COL.
Peak Oriented Model, NF-11, ξ=5%, P-∆=0, 
αs=0.03, αc=-0.10, δc/δy=4, γs,k,c,a=Var, λ=0
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     (a) Median Collapse Capacity Spectra           (b) Median Collapse Capacity Ratios 

Fig. 4.87  Effect of CD on (Sa,c/g)/η for systems subjected to Set NF-11; δc/δy = 4, αc = -0.10 
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CYCLIC DET. EFFECT ON [Sa(T/Tp)/g]/η AT COL.
Peak Oriented Model, NF-11, ξ=5%, P-∆=0, 
αs=0.03, αc=-0.30, δc/δy=4, γs,k,c,a=Var, λ=0

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
T / Tp

V
ar

ia
tio

n 
/ B

as
e 

C
as

e

γs,c,k,a = Inf
γs,c,a = 100, γk=200
γs,c,a = 50, γk=100
γs,c,a = 25, γk=50

 
       (a) Median Collapse Capacity Spectra          (b) Median Collapse Capacity Ratios 

Fig. 4.88  Effect of CD on (Sa,c/g)/η for systems subjected to Set NF-11; δc/δy = 4, αc = -0.30 
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MEDIAN ELASTIC ACCELERATION SPECTRA 
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                   (a) Scaled at T = 0.5 s                (b) Scaled at T = 0.9 s 

Fig. 4.89  Median elastic acceleration spectra for Sets LD-13 and LMSR-N 
 

CYCLIC DET. EFFECT ON NHE AT (Sa,c/g)/η
Peak Oriented Model, LD-13 & LMSR-N, ξ=5%, P-∆=0, 
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Fig. 4.90  NHE at collapse for reference SDOF system; slow CD for Sets LD-13 and LMSR-N 
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NHE AT (Sa,c/g)/η RATIOS FOR DIFF. GM SETS
Peak Oriented Model, LD-13 & LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Var, γk=Var, λ=0
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Fig. 4.91  Ratios of NHE at collapse for reference SDOF system with different CD 

rates, Sets LD-13 over LMSR-N  
 
 

EFFECT OF CYCLIC DET. ON (Sa/g) / η AT COLLAPSE
Peak Oriented Model, LD-13 & LMSR-N, ξ=5%, P-∆=0, 
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Fig. 4.92  Effect of CD on (Sa,c/g)/η for systems subjected to sets of GM with 

different strong motion duration  
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EFFECT OF CYCLIC DET. ON (Sa/g)/η AT COLLAPSE
Peak Oriented Model, LD-13 & LMSR-N, ξ=5%, P-∆=0,

αs=0.03,  αc=-0.10, δc/δy=4, γs,c,k,a=Var
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Fig. 4.93  Effect of CD on median collapse capacity ratios for systems subjected to 

sets of GM with different strong motion duration 
 

EFFECT OF CYCLIC DET. ON (Sa/g)/η AT COLLAPSE
Bilinear Model, LD-13 & LMSR-N, ξ=5%, P-∆=0,

αs=0.03,  αc=-0.10, δc/δy=4, γs,c,k,a=Var
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Fig. 4.94  Effect of CD on median collapse capacity ratios for systems subjected to Sets 

of GM with different strong motion duration, bilinear models 
  



5 Global Collapse of MDOF Systems 

5.1 INTRODUCTION 

In MDOF structures collapse refers to the loss of ability to resist gravity loads. Collapse is local 

if one or several components carrying vertical load fail without compromising the stability of the 

whole system. Global collapse may occur by propagation of local collapses, often termed 

“progressive collapse” (Liu et al. 2003; Kaewkulchai and Willamson, 2003). In this study, global 

collapse implies dynamic instability in a side-sway mode, usually triggered by large story drifts 

that are amplified by P-∆ effects and deterioration in strength and stiffness.  

Several investigations have focused on the topic of global collapse due to P-∆ effects. For 

instance, Bernal (1992) evaluated the safety against dynamic instability of two-dimensional non-

deteriorating frames based on the reduction of a multi-story building to an equivalent SDOF 

system. The results indicated that the minimum base shear capacity needed to withstand a given 

ground motion without collapse is strongly dependent on the shape of the controlling 

mechanism. Gupta and Krawinkler (1999) evaluated the performance of steel moment-resisting 

frames (MRFs) in the SAC project. They concluded that P-∆ effects could lead to global collapse 

of the structures due to the development of a negative post-yielding stiffness in specific stories of 

the frame. Medina (2002) reached the same conclusions by evaluating non-deteriorating generic 

frames with different number of stories and different periods.  

Most of the previous investigations of global collapse of MDOF systems focus on 

geometric nonlinearities (P-∆ effects), but few systematic studies have taken into account 

deterioration of strength and stiffness in the nonlinear range. Two exceptions are the works of 

Lee and Foutch (2001) and Jalayer (2003) (see Chapter 2). In this chapter, global collapse of 

generic frames is evaluated for systems including nonlinear behavior by means of concentrated 

plasticity. The building models utilize rotational springs that include deterioration of strength in 

the backbone curve and cyclic deterioration. The procedure for evaluating collapse capacity is 
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similar to that implemented for SDOF systems, i.e., the relative intensity is increased until the 

relative intensity–EDP curve becomes horizontal. The collapse capacity is expressed in terms of 

the maximum relative intensity the frame can withstand prior to collapse. 

5.2 COLLAPSE CAPACITY OF MDOF SYSTEMS 

The general procedure for computing collapse capacity has been described in Section 2.3. Global 

collapse is obtained by increasing the relative intensity, [Sa(T1)/g]/γ, of the structure until the 

response of the system becomes unstable. Sa(T1) is a measure of the intensity of the ground 

motion and corresponds to the 5% damped spectral acceleration at the fundamental period of the 

structure, without P-∆ effects. γ  is a measure of the strength of the structure and is equivalent to 

the base shear coefficient12, γ = Vy/W, where Vy is the yield base shear without P-∆ effects and W 

is the weight of the structure. 

[Sa(T1)/g]/γ  represents the ductility dependent response modification factor, which in 

present codes is equal to the R-factor if no overstrength is present. [Sa(T1)/g]/γ  may be 

interpreted in two ways; either keeping the ground motion intensity constant while decreasing 

the base shear strength of the structure (the R-factor perspective), or keeping the base shear 

strength constant while increasing the intensity of the ground motion, i.e., the IDA perspective13 

(Vamvatsikos and Cornell, 2002).   

In MDOF structures, the threshold of inelastic behavior is not uniquely related to the 

intensity measure, Sa(T1), because the higher-mode effects are not included in the IM. Therefore, 

to assure elastic behavior for the lowest relative intensity, the selected initial relative intensity is 

chosen as [Sa,c(T1)/g]/γ  = 0.25. Since only bending elements are utilized in the generic frames 

(i.e., shear and axial failures are not modeled), collapse implies that the interstory drift in a 

specific story grows without bounds (incremental collapse), i.e., the [Sa(T1)/g]/γ - EDP curve 

becomes horizontal (Fig. 2.1). This large EDP increase with a minute increase in the relative 

intensity is associated with a state (not a mechanism in the classical sense) in which P-∆ effects 

become equal to the first-order story shear resistance provided by the structural elements. 

                                                 
12 The nomenclature for the base shear coefficient (γ) should not be confused with that of the cyclic deterioration 
parameter γs,c,k,a. 
13 The dual interpretation is not correct if gravity moments are a major portion of the plastic moment capacity of the 
beams, and/or there are considerable changes in column axial forces due to overturning moments, as compared to 
the gravity induced axial forces in columns. 
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Collapse may occur in a single story or in a set of stories. An evaluation of the time history 

response data shows that for the generic frames used in this study, collapse usually occurs in the 

lower stories (mostly in the bottom story) of the structure.  

Note that collapse is not associated with attaining zero strength in any of the structural 

elements. At some plastic hinge locations the bending resistance may have deteriorated to zero 

long before global collapse occurs. Zero bending resistance means that the “plastic hinge” 

responds like a natural hinge, since it is assumed that the element has sufficient shear capacity to 

prevent local gravity load collapse.   

The relative intensity of the last point of the [Sa(T1)/g]/γ  - EDP curve is the “collapse 

capacity” associated with the structural system and ground motion. Collapse capacity is 

expressed as {[Sa(T1)/g]/γ}c or in a simpler form as [Sa,c(T1)/g]/γ. For a system of given strength 

(γ), Sa,c(T1)/g represents the ground motion intensity leading to collapse, and for a given Sa value 

(hazard level), γc represents the strength threshold at incipient collapse. In the following 

discussion the emphasis is on median values of collapse capacity, which can be determined for 

different system parameters to assess the collapse sensitivity to deterioration properties of the 

structural system.   

The dynamic nonlinear analyses for evaluating collapse capacity are performed with a 

modified version of DRAIN-2DX (1993) that includes the component deterioration models 

developed in this investigation (see Chapter 3). DRAIN-2DX does not update the geometric 

stiffness matrix in a THA and, consequently, it does not take into account large displacement 

effects. However, this limitation does not greatly affect the collapse capacity results. Adam and 

Krawinkler (2003) considered an updated Lagrangian element to include large displacements in 

the frames of this study by utilizing the OpenSees platform (OpensSees, 2002). They concluded 

that for standard frame configurations, large displacement considerations (including member P-

δ) have no discernible effect on the seismic response up to incipient dynamic instability. 

5.3 MDOF SYSTEMS USED FOR COLLAPSE EVALUATION 

5.3.1 Basic Characteristics of Generic Frames 

The MDOF systems of this study are two-dimensional regular generic frames of a single bay and 

several stories and are based on the models developed by Medina (2002). The frames include 
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rotational springs with deterioration in strength and stiffness. Their basic characteristics are the 

following: 

• The frames have six different number of stories, N = 3, 6, 9, 12, 15, and 18 (Fig. 5.1). 

• The fundamental period of the structure is associated with the number of stories. “Stiff 

frames” have a fundamental period T1 = 0.1N, whereas “flexible frames” have T1 = 0.2N. 

These values are considered to be reasonable lower and upper boundaries for moment-

resisting frames. The overlap of the fundamental periods at T1 = 0.6 s, 1.2 s, and 1.8 s 

allows assessing of the effects of N on the response. 

• The same moment of inertia is assigned to the columns in a story and the beam above 

them. 

•  Relative element stiffnesses are tuned to obtain a straight line deflected shape for the 

first mode. Absolute stiffnesses are tuned to obtain the aforementioned periods. 

• The strength design of the frames is such that simultaneous yielding is attained under a 

parabolic load pattern (NEHRP, k = 2). 

• Centerline dimensions are used for all elements. 

• The ratio of span to story height is 2.0. 

• The same mass is used at all floor levels. 

• The effect of gravity load moments on plastic hinge formation is not included. 

• Global P-∆ is included, whereas member P-δ is disregarded. The mass used to consider 

P- ∆ effects is 1.4 times larger than the seismically effective mass. That is to say, P is the 

dead load plus a live load equal to 40% of the dead load. 

• Axial deformations and P-M-V interaction are not considered. 

• Soil-structure interaction is neglected. 

• For nonlinear dynamic analyses, 5% Rayleigh damping is assigned to the first mode and 

to the mode at which the cumulative mass participation exceeds 95%. 

• Gravitational loads are applied at the beginning of the time history. The geometric 

stiffness matrix (Kg) is then calculated, added to the elastic stiffness matrix (Ke) and kept 

constant throughout the time history. 

• Failure modes: In most cases, the strong column–weak beam philosophy is considered 

and the columns are modeled with infinite strength (BH frames) (Fig. 5.2). In Section 5.6 

the columns are modeled with finite strength (BH-CH, i.e., beam hinge model with 
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possible yielding of columns). Springs are added to the ends of all the columns to permit 

plastic hinging in the columns. A weak first-story mechanism (WS) is also modeled. 

Appendix B provides more information on the basic characteristics of the generic frames.  

5.3.2 Deteriorating Characteristics of Plastic Hinge Springs of Generic Frames 

To obtain a consistent evaluation of collapse capacity, the same deteriorating hysteretic model is 

assumed at every plastic hinge of the generic frames. A set of reference frames14 with rotational 

springs of intermediate ductility is used as a starting point. In these frames, the parameters for the 

moment-rotation relationship at the ends of the members are as follows: 

• Strain-hardening stiffness, αs,mem = 0.03 Ke 

• Small post-capping stiffness, αc,mem = -0.1 Ke 

• Medium ductility capacity, (δc/δy),mem = 4  

• No cyclic deterioration (CD), (γs,c,k,a)mem = infinite 

• Peak-oriented hysteretic model 

For reasons described in Appendix B, the elastic stiffness of members with concentrated 

plasticity is divided into the elastic stiffness of the rotational springs at the end of the member 

and the elastic stiffness of the beam-column element. Independently of these internal 

manipulations, the properties of the “springs” in the rest of this chapter refer to the moment-

rotation relationship at the end of the member. The nomenclature is simplified and, for instance, 

αc,mem becomes αc. 

For assessing the effect of different parameters, each parameter is varied individually 

while holding all others constant. The selection of parameters to be evaluated is primarily based 

on the results of the parametric study of SDOF systems. Parameters that do not have a large 

effect on the collapse capacity of SDOF systems are disregarded, i.e., residual strength and the 

level of pinching (κf,d). The emphasis is on those parameters that produce larger modifications to 

collapse capacity: 

 

                                                 
14 A “set of frames” refers to the group of frames of 3, 6, 9, 12, 15, and 18 stories for T1 = 0.1N and         T1 = 0.2N 
that share common characteristics in the springs of the members. 
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Post-capping stiffness ratio, αc = -0.1, -0.3, and -0.5. 

• Ductility capacity, δc/δy = 2, 4, and 6. 

• Cyclic deterioration, γs,c,k,a = 25, 50, 100 and infinite. 

• Hysteretic models. Peak-oriented, pinching, and bilinear models. 

Table 5.1 shows the sets of generic frames analyzed. Note that it includes a set of frames 

in which the variation is not related to the springs but to the P-∆ effects (cases 3 and 14). 

5.3.3 Set of Ground Motions 

The parametric study utilizes the set of 40 GMs used for SDOF systems, LMSR-N (Section 

4.2.3). The intensity measure is the 5% damped spectral acceleration at the first mode period of 

the structure, Sa(T1). This choice implies that the frequency content of the ground motion cannot 

be considered explicitly and that the fundamental period of the structure is known. For this 

reason, the dispersion in the response depends on the importance of higher mode effects (scatter 

for T < T1) and on the extent of inelasticity, which leads to period elongation (scatter for T > T1).  

Sections 5.4–5.7 summarize the salient findings for generic frames. The titles of the 

presented figures contain the following additional information as compared with the titles for 

SDOF systems: number of stories of the frame (N), and failure mechanism (BH, BH-CH (see 

Section 5.3.1). A four-digit code is used for identifying the generic frames. The first two digits 

correspond to the number of stories and the other two to the first mode period. For instance, 0918 

means a 9-story frame with T1 = 1.8 s.  

5.4 EDPS FOR GENERIC FRAMES WITH INFINITELY STRONG COLUMNS 

5.4.1 Effect of Deterioration Parameters on EDPs 

The assessment of several EDPs prior to collapse provides information on the effect of 

deterioration parameters on the response. The EDPs analyzed are: 

• Normalized maximum roof drift angle, ]/)(/[ 1max, HTSdrθ , where H is the total height of 

the frame 

• Normalized maximum story drift over the height, ]/)(/[ 1max, HTSdsθ  

• Normalized maximum story drift profiles, ]/)(/[ 1max, HTSdsiθ  
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• Maximum of story drift over story yield drift over the height, max,max, )/( yisi θθ . The yield 

story drift ( yi,θ ) is obtained from a pushover analysis. Intentionally, this quantity is not 

referred to as “maximum story ductility.” Traditionally, the term “ductility” refers to the 

ability of a component or a system to displace inelastically without significant 

deterioration in strength or stiffness. For non-deteriorating systems, this definition can be 

associated with the maximum story drift over the story yield drift. However, for 

deteriorating systems, the ratio yisi ,max, /θθ does not represent ductility because max,siθ  may 

be associated with a large deterioration in strength.  

Normalized maximum roof drift angles and normalized maximum story drift over height 

for the reference frame 0918 are presented in Figure 5.3, with the latter ones exhibiting much 

larger dispersions. The statistical curves for the same frames with non-deteriorating springs 

(“non-deteriorating frames”) are also shown. As observed, the statistical results for deteriorating 

systems start to deviate from those of non-deteriorating systems at relative intensities clearly 

smaller than the collapse capacities. 

Profiles of the normalized maximum story drift angle at several relative intensities are 

presented in Figure 5.4 for the reference and non-deteriorating frames 0918. The profiles 

describe the distribution of damage over the height of the structure. For elastic or close to elastic 

behavior, the maximum story drift angles occur in the upper portion of the frame. As the relative 

intensity level increases, the maximum story drift angle migrates from the top story to the bottom 

one. As observed, the profiles at low relative intensities are similar for both frames. However, 

the migration of the maximum story drift angle from top to bottom occurs earlier for the 

deteriorating model when collapse is close, e.g., compare the profile for the non-deteriorating 

frame at [Sa(T1)/g]/γ  = 6.0 with that of the reference frame at [Sa(T1)/g]/γ  = 5.5. 

Effect of Post-capping Stiffness on EDPs. The effect of the post-capping stiffness of the 

beam springs on the ratio max,max, )/( yisi θθ  is presented in Figure 5.5 for the 0918 frame. The 

frame with αc = -0.10 corresponds to the reference frame. All the systems have the same 

response until the cap deformation (δc) of the springs is reached. The relative intensity at which 

this occurs is slightly less than [Sa(T1)/g]/γ = 2.0, which is less than half of the collapse capacity, 

even for frames with steep post-capping stiffness (αc = -0.30 and –0.50). Because of moment 

redistribution, there is an increase of at least 100% from the intensity at which the springs start to 
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deteriorate in strength to the intensity at which collapse occurs. This behavior is not observed in 

SDOF systems with steep αc, where collapse occurs soon after the peak strength is reached. The 

ratios max,max, )/( yisi θθ  for systems with αc = -0.30 and –0.50 are very similar, a common 

phenomenon when comparing systems with steep negative slopes.  

The ratios max,max, )/( yisi θθ  at which the curves start to deviate from each other is about 

2.5. As expected, this value is smaller than the ductility capacity of the rotational springs because 

not all of the springs yield at the same time. 

Effect of Component Ductility Capacity on EDPs. Figure 5.6 shows max,max, )/( yisi θθ  

ratios for frames 0918 that have different ductility capacity in the rotational springs but the same 

αc = -0.10. The frame with δc/δy = infinite corresponds to the non-deteriorating one, whereas the 

system with δc/δy = 4 is the reference case. Variations in the ductility capacity of the beam 

springs produce differences in the median response at 0.2/]/)([ 1 <γgTSa . 

Effect of Cyclic Deterioration on EDPs. Figure 5.7 presents the effect of CD on the 

ratios max,max, )/( yisi θθ . The frames have springs with δc/δy = 4, αc = -0.10 and different rates of 

CD. The story ductilities over the height for the non-deteriorating frame are also displayed. For 

frames with springs having finite γs,c,k,a values, the curve γθθ /]/)([)/( 1max,max, gTSayisi −  deviates 

from that of the non-deteriorating frame before the peak-strength of the springs is attained. 

However, the effect becomes significant only after the peak strength is surpassed. 

5.4.2 Global Pushover Curves for Deteriorating Systems 

The pushover method estimates force and deformation demands using a static incremental, 

inelastic analysis (Lawson et al., 1994; Krawinkler and Seneviratna, 1998). In this work, the 

method is used to study the behavior of deteriorating systems. 

Figure 5.8 presents a comparison of global pushover curves for the non-deteriorating and 

the deteriorating reference frame 0909 when a parabolic lateral load pattern (NEHRP, k = 2) is 

applied to the system. For both systems the global strain-hardening stiffness is larger than in the 

beam springs (αs = 0.04 vs. 0.03). For the deteriorating system the global “ductility capacity” 

(drift at onset of deterioration divided by yield drift) is smaller (3.0 vs. 4.0) and the global post-

capping stiffness is steeper (αc = -0.34 vs. –0.10) than in the beam springs. Also, for large 
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deformations there is a third post-yielding branch that indicates an apparent “recovery” in the 

stiffness of the global pushover curve. These observations deserve explanation. 

One contributor to these differences is the fact that columns remain elastic throughout the 

pushover analysis. Thus, initial displacements, which define the elastic stiffness, come from 

elastic contributions of beams and columns. After the simultaneous yielding of the beam springs 

in the pushover analysis (because of the assumptions discussed previously), the incremental 

displacements in the global pushover curve contain deformations from beams (beam elastic 

deformations and plastic hinge spring deformations), and elastic deformations from columns. 

These elastic deformations in columns account for the increase in the effective αs, part of the 

increase in αc, and the decrease in δc/δy of the global pushover curve. 

There is an additional phenomenon of inelastic redistribution that may affect the 

pushover curve (and dynamic time history results) at large inelastic deformations. If P-∆ effects 

are small and no strength deterioration occurs, the generic frames are expected to take on a 

deflected shape close to a straight line under a parabolic load pattern, regardless of the level of 

displacement. This is illustrated in Figure 5.9a for the non-deteriorating 1818 frame. This does 

not hold true when P-∆ effects are important (i.e., when they lead to a negative story tangent 

stiffness); see the deflection profiles of the 1836 frame in Figure 5.9b. In this frame the P-∆ 

effect amplifies the story drifts in the lower stories, which results in highly nonlinear deflected 

shapes with very large drifts in the lower stories and unloading (decrease in story drifts) in the 

upper stories.   

Post-capping strength deterioration has a similar effect as P-∆. Figure 5.10 shows 

deflected shapes associated with the roof drifts indicated with dotted vertical lines in Figure 5.8. 

Without post-capping strength deterioration, the deflected shapes remain essentially linear even 

though P-∆ (which is small for the 0909 frame) is included (Fig. 5.10a). When strength 

deterioration is included, the deflection profiles acquire a very different shape with great 

amplifications of drifts in the lower stories (Fig. 5.10b). This radical change in deflected shape 

occurs when the loading path is on the descending branch of the pushover curve. This change in 

deflected shape is the main reason for the difference between the αc = -0.10 of the component 

model and the effective αc = -0.34 seen in the global pushover.   

The same phenomenon also accounts for the “recovery” portion of the pushover curve at 

very large drifts. This recovery portion comes from the fact that the lower portion of the frame 
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has undergone very large horizontal displacements and the global bending mode (i.e., the 

cantilever bending mode) of the infinitely strong columns starts to dominate over the effect of 

frame action. This is illustrated in Figures 5.11–5.12. 

Figure 5.11 shows moment-rotation diagrams for beams at each floor level, from zero 

load to three load points, which are indicated in Figure 5.8 as “A,” “B,” and “C.” At load point A 

(δr/δyr = 3.1, beginning of deterioration), all springs at the beam ends, bottom to top, as well as at 

the column base, are close to their capping points [(δc/δy)elem = 4] and the deflected shape is still 

close to linear. As the roof displacement increases further, the beams close to the bottom of the 

structure undergo large rotations and deteriorate rapidly in strength whereas the beams close to 

the top unload (since the lateral loads on the frame decrease). At point B (δr/δyr = 5.3) the 

column springs at the base and the second-story beam springs are at zero strength, and the global 

resistance of the structure has deteriorated to about 0.4V/Vy. As the roof displacement is 

increased further, the springs at level 3 lose all their resistance and beam-moment deterioration 

propagates upward in the structure. This is also reflected in the deflection profiles of Figure 5.10.   

Despite the complete loss of resistance in the bottom level springs, the structure still has 

some lateral resistance left because of the global bending strength of the columns. Only the 

strength at the column base is capped and subjected to deterioration, whereas the columns at all 

other locations have infinite strength. The moment–roof drift relationships of Figure 5.12 

illustrate the transfer of resistance to the columns. In the first story, both the base of the columns 

and the beam reach their bending capacities and thereafter their strength deteriorates to zero, 

whereas the first-story column moment at level 2 (where the strength is infinite) increases even 

after the column base starts to deteriorate in strength. For lower-story columns, once the 

associated beam starts to deteriorate in strength, the column moment at the top of the story 

increases, whereas the column moment at the bottom of the same story decreases and reverses 

direction, taking large values opposite to the direction of frame action. Thus, for very large 

displacements the columns in the lower stories go into single curvature with large moments at 

both ends, i.e., the column acts more as a multi-story cantilever than a column in a moment-

resisting frame. This observation has been reported elsewhere (Gupta and Krawinkler, 1999; 

Medina, 2002). 

As can be seen from Figure 5.12, the column moments can become very large compared 

to the value when the beam reaches its bending strength. The implication is that the strong 

column–weak beam factor would have to be very large (larger than 3.0) in order to avoid column 
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plastic hinges at very large lateral displacements. The strong columns are responsible also for the 

stiffness recovery in the late stages of the global pushover curve shown in Figure 5.8. It is likely 

that such strong columns do not exist in actual frame structures, which makes the data presented 

here somewhat hypothetical. They are represented to evaluate and explain behavior from a 

mechanics perspective, but they have no significant bearing on the results presented for collapse 

capacities. The very large column moments occur at very large drifts, and an evaluation of the 

collapse capacities has disclosed that at these large drifts almost all IDAs have close to a 

horizontal slope, i.e., these phenomena dominate only close to collapse. The effect of limited 

column bending strength is discussed separately in Section 5.6. 

5.4.3 De-Normalized EDPs 

To illustrate “realistic” values for collapse capacities and associated drifts, the [Sa,c(T1)/g]/γ  − 

EDP curves of the type shown in Figure 5.4 are de-normalized for several reference frames by 

assuming a base shear strength  γ = 0.6, 0.6, 0.4, and 0.2 for periods of T1 = 0.3, 0.6, 0.9, and 1.8 

s, respectively. 

Figures 5.13–5.14 present IDAs for maximum roof drift angle [Sa(T1)/g−θr,max] for the 

reference frames 0303, 0306, 0909, and 0918. Note that most of the individual IDAs become 

almost horizontal at relatively small roof drifts, i.e., the large collapse roof drifts reported in the 

SAC studies (FEMA 350, 2000) are not observed here. One reason is that the elastic period of 

the SAC structures is even longer than that of the “flexible” structures used here, i.e., the yield 

drifts of the SAC structures are somewhat larger. However, most of the difference is attributed to 

the representation of component moment-rotation relationships using more realistic deterioration 

models in this study. Observe that the median EDP curves give the impression that the intensity 

increases at a rather high rate until the median curve terminates. This is not observed in the IDAs 

of individual records in which the rate of increase in intensity becomes small much earlier. 

The figures also include the global pushover curves for each frame. The base shear 

strength of the global pushover curve is normalized by the inverse of the effective mass 

coefficient of the first mode to obtain an approximate correlation with Sa(T1). The correlation is 

not exact in the elastic range due to the effect of higher modes in the response. For the 9-story 

frames, the onset of the third post-yielding branch of the global pushover curves approximately 
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coincides with the EDP region in which most of the individual curves become flat, and could be 

considered as an indication of the roof drift at which collapse occurs. 

Figure 5.15 presents the variation with relative intensity of the median θs,max /θr,max ratio 

for several reference frames. This information can be used to estimate the maximum interstory 

drift based on the IDAs of Figures 5.13–5.14. For instance, for the 0918 frame of Figure 5.15, for 

which the individual IDAs become horizontal around a roof drift of 0.04, the associated 

maximum story drift is on the order of 08.004.02 =x . 

5.5 COLLAPSE CAPACITY OF GENERIC FRAMES WITH INFINITELY STRONG 
COLUMNS 

5.5.1 Collapse Capacity for the Set of Reference Frames 

Figure 5.16 shows median and 16th percentile collapse capacity spectra for the set of reference 

frames. Collapse capacities are grouped in stiff (T1 = 0.1N) and flexible (T1 = 0.2N) frames. The 

collapse capacity strongly depends on the first mode period T1. This is expected for the short-

period structure with T1 = 0.3 s, where the collapse capacity is much smaller than that for T1 = 

0.6 s.  But the large decrease in collapse capacity for long-period structures is striking, indicating 

that the “period independent R-factor concept” may be way off for long-period structures, i.e., it 

would be non-conservative to assume that R is independent of T.  The reason is the P-∆ effect, 

which is more important than might be expected. 

The sensitivity to the number of stories is analyzed by comparing collapse capacity 

spectra for flexible and stiff frames with the same fundamental period (Fig. 5.16). In a vertical 

comparison, the frames have the same fundamental period and a different number of stories, e.g., 

0306 and 0606. In the period range between T = 0.6 s and 1.5 s frames with more stories have 

larger collapse capacities for the same fundamental period. One of the reasons for this pattern is 

that frames with more stories have smaller P-∆ effects. However, the differences are 15% at most 

and for long fundamental periods the trend may be reversed (see frames 0918 and 1818), likely 

because of higher-mode effects or different influences of deterioration parameters on collapse 

capacities.  

The effect of P-∆ is also appreciated in Figure 5.17, which shows collapse capacities 

versus the number of stories for flexible and stiff frames. Except for short-period frames, 

collapse capacities of stiff frames are larger (especially at long periods) because P-∆ effects are 
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smaller for these frames. The trend is reversed for the three-story frames because P-∆ effects are 

small and the displacements are more sensitive to the strength of the system, causing the 

structure with shorter fundamental period to have the smaller collapse capacity.  

5.5.2 Effect of Post-Capping Stiffness on Collapse Capacity 

The effect of the post-capping stiffness is isolated in Figure 5.18a, which shows median collapse 

capacities for frames similar to the reference frame but with different αc values.  There is a large 

difference between the collapse capacities for systems with αc = -0.1 and -0.3. However, if αc 

represents a steep slope, any further increase in slope has only a small effect because the 

component reaches zero strength soon after δc is reached. Figure 5.18b presents the collapse 

capacity ratios with respect to the most ductile system (the reference frame). The larger 

differences arise in the medium-period range, where ratios smaller than 0.7 are reported. This 

information may be compared with the ratios of Figure 4.12b, which presents collapse capacity 

ratios for SDOF systems with the same hysteretic properties as those of the springs at the beam 

ends of the frames. Although the P-∆ effects are not properly represented in the SDOF systems, 

the effect of post-capping stiffness on collapse capacity of SDOF and MDOF systems is 

comparable. 

Figure 5.18c shows the dispersion in collapse capacity due to RTR variability in terms of 

the standard deviation of the log of [Sa,c(T1)/g]/γ. The dispersion is not sensitive to the 

fundamental period of the frame and, although rather large, is smaller than that of the SDOF 

systems with the same hysteretic properties as the springs at the beam ends (Fig. 4.19a). The 

dispersion of collapse capacity is not greatly affected by changes of the αc value of the springs of 

the reference frame. The same conclusion is obtained when the ductility capacity and the CD 

parameters are modified.  

5.5.3 Effect of Ductility Capacity on Collapse Capacity 

The effect of ductility capacity (δc/δy) on the median collapse capacity is illustrated in Figure 

5.19a for systems with αc = -0.10. The effect of δc/δy is significant and, as observed in the 

collapse capacity ratios of Figure 5.19b, essentially independent of the fundamental period of the 

structure or the number of stories of the frame. The collapse capacity ratios may be compared 
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with those of the SDOF system with the same hysteretic characteristics of the springs of the 

frames (Fig. 4.23b). The same trends are observed, although the ratios of the generic frames are 

slightly larger (closer to 1.0), indicating a smaller effect in the MDOF systems.  

Figure 5.20 presents the effect of δc/δy for systems with αc = -0.30. The steeper post-

capping slope reduces the collapse capacities but increases the effect of δc/δy because collapse 

occurs relatively soon after δc is reached. That is to say, a larger proportion of the collapse 

capacity must be developed before the peak strength is surpassed. 

5.5.4 Effect of Cyclic Deterioration on Collapse Capacity 

Figure 5.21 illustrates the effect of CD on the collapse capacity of frames similar to the reference 

one but with different CD rates in the springs. The effect of CD is evident, although not 

overpowering, indicating that the combination of ductility capacity and post-capping stiffness is 

more important than the CD effect. The effect diminishes for long-period structures because of 

the dominant importance of P-∆ effects. Collapse capacity ratios of Figure 5.21b may be 

compared with those of Figure 4.28b for an SDOF system with the same hysteretic 

characteristics of the springs at the ends of the beams. It is observed that CD effects are larger for 

SDOF systems because these do not have redistribution capabilities. 

The utilized set of GMs (LMSR-N) includes records with relatively short strong motion 

duration. However, according to the study of long-duration records for SDOF systems (Section 

4.4.5), a large increase in the effect of CD on collapse capacity is not expected if a set of records 

with longer strong motion duration is used. Thus, CD appears to be an important but not 

dominant issue for collapse evaluation, unless the energy-dissipation capacity of the structural 

components is very small (γ = 25). 

5.5.5 Effect of Hysteretic Models on Collapse Capacity 

Figure 5.22 shows collapse capacity spectra for frames with peak-oriented, pinching, and bilinear 

models in the plastic hinge springs. The results indicate that frames with peak-oriented and 

pinching models have similar collapse capacities. On the other hand, the relative collapse 

capacities of frames with bilinear models present the same patterns as observed in SDOF 

systems. For MDOF systems with very small fundamental period the collapse capacity of frames 
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with bilinear springs is slightly larger than that of frames with peak-oriented or pinching springs. 

However, for frames with medium and long fundamental periods the trend reverses because the 

branch with negative slope in the plastic hinge springs has a larger “ratcheting” effect in bilinear 

models (Section 4.3.7). 

5.5.6 Effect of P-∆ Effects on Collapse Capacity 

Present engineering approaches have the potential to underestimate P-∆ effects, particularly for 

long-period structures where the elastic story stability coefficient (θe) severely undervalues the 

P-∆ effect in the inelastic range. In most practical cases the lower stories experience large drifts 

when the structure undergoes large inelastic deformations, and the story stability coefficient 

increases correspondingly.  

P-∆ effects may produce collapse of the structures even without the inclusion of material 

deterioration. Figure 5.23 presents global pushover curves for the reference frame 1836 with and 

without including P-∆ effects. As observed, different stability coefficients exist for the elastic 

( eθ ) and inelastic ranges ( iθ ). Figure 5.24a presents these coefficients for the generic frames. 

Both the elastic and the inelastic stability coefficients increase with the number of stories and 

depend on the strain hardening of the nonlinear elements, which for this study is 3% 15. For stiff 

frames, eθ  and iθ  practically overlap, but for flexible frames with a large number of stories iθ  

can be much larger than eθ . As a result of the increase in both coefficients with the number of 

stories, the flexible frames of 9, 12, 15, and 18 stories exhibit a negative post-yield stiffness due 

to structure P-∆ effects (Fig. 5.24b). This negative post-yielding stiffness can be associated with 

eventual collapse of the frame under large relative intensities, even if non-deteriorating models 

are used. Note that the non-deteriorating frame 1818 does not exhibit a negative slope. As shown 

below, this frame does not collapse due to P-∆, unlike non-deteriorating frames 0918 and 1836. 

This illustrates that the magnitude of P-∆ effects cannot be linked to some particular 

characteristic of the system such as the fundamental period or the number of stories. 

Figure 5.25 presents median collapse capacities for the reference and for the non-

deteriorating set of flexible frames. For non-deteriorating frames, collapse is caused solely by P-
                                                 
15  The strain-hardening coefficient of the global pushover curve ( 0,sα ) is larger than 3% because the columns of 
the frame remain elastic. 
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∆ effects. As observed, for the 9-story frames (T1 = 1.8 s) the collapse capacity of the non-

deteriorating system is more than three times larger than that of the reference frame. However, 

for the 18-story frames (T1 = 3.6 s.), P-∆ effects overpower the effect of material deterioration, 

and the collapse capacity of the non-deteriorating frame is only 40% larger than that of the 

reference frame. For non-deteriorating frames, the potential of collapse exists if the slope of the 

post-yielding slope in the global pushover curve is negative. Observe the strain-hardening slope 

of global pushover curves (Fig. 5.24b) and collapse capacities of non-deteriorating frames (Fig. 

5.25). 

To show the effect of P-∆ on collapse capacity, Figure 5.26 presents collapse capacities 

for the set of reference frames without and with P-∆ effects. As expected, the effects of  P-∆ on 

collapse capacity are very large for long-period flexible structures. However, the important 

observation is that the effects of P-∆ on collapse capacity apparently are also very large for 

medium and even short period structures in which both the elastic and inelastic stability 

coefficients are small (Fig. 5.24a). The reason is that components of deteriorating structures have 

a range of post-capping negative tangent stiffness, which leads to a negative story and global 

tangent stiffness range, which in turn is amplified (steeper) by even small P-∆ effects. This is 

evident in the global pushover curves of Figure 5.27, which shows global pushover curves 

without and with consideration of P-∆ for the 1212 reference frame. If P-∆ is ignored in the 

analysis, the ratcheting effect in the negative stiffness range is greatly reduced and very large 

displacements can be achieved without collapse. The consequence is a very large overprediction 

of the collapse capacity. The conclusion is that any realistic prediction of collapse capacity must 

incorporate P-∆ effects. 

1.1 5.6 RESULTS FOR GENERIC FRAMES WITH COLUMNS OF FINITE STRENGTH 

The generic frames evaluated in previous sections include infinitely strong columns, an 

assumption that may lead to demands in the columns several times larger than those of the 

beams. This condition can be quantified by means of the maximum “strong column factor” 

(SCF), which for beam-hinge frames can be defined as the sum of the maximum moment 

demands of the columns framing into a joint divided by the sum of the plastic moment capacity 

of the beams framing into the joint. For single-bay generic frames, the SCF at any joint is equal 
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to (2Mc/Mp,b)max, where pbM ,  is the bending strength of the beam, and Mc is the largest column 

moment demand occurring during the THA). Figure 5.28 shows maximum SCF over the height 

for the stiff 9-story reference frame, revealing that close to collapse the median SCF is on the 

order of 3 or more. These values establish an upper bound because they are based on the 

maximum negative or positive moment of the columns that frame into the joint. The fact that the 

SCF increases with the intensity of the GM is in accordance with results reported by Nakashima 

and Sawaizumi (2000) and by Medina (2002). 

In practical cases the column strength is limited, even if the strong column–weak beam 

philosophy is utilized. To evaluate the collapse capacity when the columns yield before reaching 

the large demands displayed in Figure 5.28, the column strengths of selected frames have been 

tuned, taking as reference Section 21.4.2.2 of ACI 318-02 (2002). This section establishes that 

for reinforced concrete members framing into a joint, ∑∑ ≥ gc MM 2.1 , where ∑ cM  is the 

sum of the moment capacity of the columns framing into the joint and ∑ gM is the sum of the 

moment capacity of the beams. The frames that are designed with the strong column–weak beam 

philosophy with the possibility of yielding in the columns are denoted as BH-CH models, and are 

classified as follows: 

(a) Frames with columns of “high strength”: ∑∑ = gc MM 4.2 , i.e., the strength of the 

columns is twice the minimum ACI guidelines ( gc MM 2.1= for the generic single-bay 

frames); 

(b) Frames with columns of “intermediate strength”: ∑∑ = gc MM 2.1 , i.e., minimum 

strength ACI requirements ( gc MM 6.0=  for the generic frames); and 

(c) Frames with columns of “low strength”: ∑∑ = gc MM 0.1 , i.e., less than ACI 

requirements ( gc MM 5.0=  for the generic frames).    

A special case is derived from frames with first-story columns of low strength, in which 

all columns and beams are infinitely strong with the exception of the first-story columns. This 

arrangement leads to a weak first-story mechanism (WS). 

Figure 5.29 presents the median collapse capacities for stiff and flexible reference frames 

of 3, 9, and 18 stories with columns of high strength, i.e., pbc MM ,2.1= . Because pbc MM ,> , at 

any joint the beam yields first, even if the inflection point of the columns greatly shifts toward 
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one end. In spite of the large reserve strength in the columns, the collapse capacity of these 

frames may decrease up to 25% compared to that of frames with infinitely strong columns. 

The same frames are analyzed using ∑∑ = gc MM 2.1 , i.e., pbc MM ,6.0= . Figure 5.30 

indicates that median collapse capacities for these BH-CH frames are drastically reduced with 

respect to those obtained for BH frames. Extensive plastic hinging in columns is observed long 

before the collapse capacity is attained and [Sa,c(T1)/g]/γ  becomes small. 

The set of frames BH-CH with the same moment capacity for beams and columns 

( pbc MM ,5.0= ) assures the development of story mechanisms. The median collapse capacities 

obtained for these frames (Fig. 5.31) are similar but even lower than those of BH-CH frames 

with pbc MM ,6.0= . The median collapse capacity for frames with a weak first story is very 

close to that of the BH-CH model with pbc MM ,5.0= , suggesting that the collapse mechanism of 

the analyzed generic frames for the latter two cases is usually in the first story. 

The decrease in collapse capacity for frames with limited column strength is very large, 

but there is a caveat to consider.  The generic structures used in this study have strength and 

stiffness properties that are tuned to a seismic load pattern and to a straight line first mode shape.  

This results in structures with flexible and weak upper stories, in which story mechanisms will 

form if plastic hinging is permitted in the columns.  This may not be the case in most real 

structures in which the upper stories often are stronger and stiffer than needed for lateral load 

considerations alone.  This caveat needs to be considered when interpreting the results presented 

here.  Nevertheless, the results do demonstrate the need for a review of presently employed 

strong column–weak girder design criteria. 

1.2 5.7 EQUIVALENT SDOF SYSTEMS INCLUDING P-∆ EFFECTS 

Equivalent SDOF systems are used in current design practice to estimate the roof displacement 

of MDOF structures (ATC-40, 1996; Miranda, 1999; FEMA-356, 2000). Nevertheless, most of 

these approximations do not consider P-∆ effects in a proper manner. As observed in Figures 

5.23 and 5.24a, the elastic and inelastic stability coefficients may be different when P-∆ effects 

become large. In these cases, a formulation based only on the elastic stability coefficient is 

unable to capture the inelastic response. This section presents a procedure to obtain the collapse 

capacity of MDOF structures based on nonlinear THA of equivalent SDOF systems including 
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large P-∆ effects. The basic difference with respect to current methodologies is the explicit 

consideration of the inelastic stability coefficient. 

5.7.1 Equivalent SDOF Systems without Consideration of P-∆ Effects 

The equivalent SDOF system without P-∆ effects is generated from the global pushover curve of 

the MDOF structure without P-∆. Several approaches have been developed for obtaining an 

equivalent period and strength for the SDOF system. In this work, this equivalent system is 

obtained by simplified procedures because the emphasis is on equivalent SDOF systems with 

large P-∆ effects.  

Regarding the period of the equivalent SDOF system, Seneviratna and Krawinkler (1997) 

observed that the first mode period T1 is a good approximation to the equivalent SDOF period 

Teq, without considering P-∆ effects.  

The ratio of the yield strength of the equivalent SDOF system to the base shear of the 

MDOF system can be approximated with the effective mass coefficient  (ATC-40, 1996) of the 

first mode. This coefficient is defined as the effective modal mass over the total mass of the 

system, for the first mode:  
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 is the first mode shape of the MDOF system, M~  is the mass matrix, M is the total 

mass of the system, rr  is the influence vector representing the displacements of the masses 

resulting from static application of a unit ground displacement (Chopra, 1995). In the proposed 

procedure, the collapse capacity is obtained for the SDOF system and the results are multiplied 

by the inverse of the effective mass coefficient to translate them to the MDOF domain. 

5.7.2 Auxiliary Backbone Curve and Stability Coefficient to Include P-∆ Effects 

P-∆ Representation in SDOF Systems. In the SDOF domain, consideration of P-∆ effect 

implies rotation of the hysteresis diagram by an angle equal to the stability coefficient θ (Fig. 

5.32a). For peak-oriented and pinching models, this geometric nonlinearity effect should not be 

replaced by an equivalent material nonlinearity effect in which the post-yield stiffness is reduced 
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by an angle equal to the stability coefficient (Fig. 5.32b). In the latter case the reloading stiffness 

branch begins at the intersection with the horizontal axis, whereas in the P-∆ case the reloading 

stiffness branch begins at the intersection with the rotated zero force axis. Pilot studies have 

shown that this early softening of stiffness of Figure 5.32b overestimates the collapse capacity of 

the system because the loading path tends to reduce the drifting of the displacement response 

(“ratcheting effect”).  

Also, as observed in Figure 5.32b, adjusting the post-yield stiffness does not modify the 

strength and stiffness in the elastic interval. As shown below, this difference is less relevant in 

the computation of collapse capacity than the early softening of the unloading stiffness.   

Thus, P-∆ in SDOF systems should be represented by rotation of hysteresis diagrams.  

The question is what is the most appropriate stability coefficient (angle of rotation) to be 

employed. The P-∆ effect in MDOF systems depends on many aspects, including relative story 

strength and stiffnesses, distribution of gravity loads over the height, and extent of inelastic 

behavior. It can be argued that in the elastic range of response the maximum story stability 

coefficient is most appropriate. However, in the inelastic range the P-∆ effect grows, and its 

importance strongly depends on the deflected shape of the structure, which varies with the extent 

of inelastic behavior. Thus, the maximum elastic story stability coefficient loses much of its 

meaning in the inelastic range and it may underestimate the importance of P-∆ effects in MDOF 

systems. For instance, compare the median collapse capacity spectrum of the SDOF system (αc = 

-0.10) of Figure 4.15a with that of Figure 5.16. 

The search for appropriate stability coefficients in equivalent SDOF systems is a 

challenge partially addressed here. In this study, P-∆ effects are represented by the elastic and the 

inelastic stability coefficient obtained from the global pushover curve (Fig. 5.23). 

Auxiliary SDOF System. As discussed in Section 5.5.6, the coefficients θi and θe are 

often different, but in an SDOF system the rotation applies to both the elastic and inelastic 

ranges. Thus, the need exists to create an auxiliary backbone curve whose rotation by an 

“auxiliary” stability coefficient results in the desired backbone curve including P-∆ effect, but 

with the constraint that the auxiliary stability coefficient should be close to θi. The relations 

between the auxiliary backbone curve and the backbone curves of the equivalent SDOF system 

with and without P-∆ are illustrated in Figure 5.33. The following three conditions are required 

to generate the auxiliary backbone and stability coefficient: 
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(a) The yield strength for the system with P-∆ must be the same when obtained from the 

original backbone without P-∆ and when obtained from the auxiliary backbone curve: 

  ∆=−=− Pyeauxyaux FFF 0,, )1()1( θθ   (5.2) 

 The following subscripts refer to the backbone curves: “0” for the original backbone 

curve without P-∆ effects (from the global pushover curve), “P∆” for the original 

backbone curve with P-∆ effects and “aux” for the auxiliary backbone curve. 

(b) The post-yield stiffness including P-∆ effects is the same as when calculated with the 

auxiliary envelope or the original backbone curve: 

  00,, )()( KK isauxauxauxs θαθα −=−  (5.3) 

(c) The strain-hardening coefficient of the auxiliary backbone curve is the same as that of the 

original backbone curve, i.e., 

     0,, sauxs αα =  (5.4) 

The combination of Equations 5.2–5.4 results in the following stability coefficient, yield 

strength, and fundamental period for the auxiliary backbone curve: 
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For backbone curves with a small strain-hardening coefficient ( sα < 10%), the 

formulation can be condensed by assuming that the slope of the post-yield stiffness of the 

auxiliary backbone curve is equal to that of the original backbone curve (instead of using the 

same strain-hardening coefficient of Equation 5.4): 

      00,, KK sauxauxs αα =  (5.6) 

This simplification does not lead to an appreciable loss of accuracy, and when Equation 5.6 is 

combined with Equations 5.2–5.3, the following expressions are produced: 

 
ie

i
aux θθ

θθ
+−

=
1

,    0,, )1( yieauxy FF θθ +−=  ,  
ie

aux TT
θθ +−

=
1

1
0  (5.7) 

This set of equations should be used with a coefficient auxs,α  obtained from Equation 5.6.  

Simplified Auxiliary SDOF System. For systems with large P-∆ effects, the elastic 

stability coefficient is usually small compared with the inelastic one. In these cases, the 

formulation may admit an additional simplification in which the elastic stability coefficient is 
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assumed to be zero (Fig. 5.34). For the studied generic frames, this simplification may produce 

differences in collapse capacities in the order of 10% compared with the complete formulation. 

However, the approach provides flexibility to the procedure (see Section 5.7.4). Using this 

simplification, Equation 5.7 is adjusted as follows: 

i

i
aux θ

θθ
+

=
1

,  0,, )1( yiauxy FF θ+=  and 
i

aux TT
θ+

=
1

1
0   (5.8) 

As a consequence of not including eθ  in the formulation, ∆= Py FF 0,  (Eq. 5.2), i.e., the 

yield strength of the backbone curve is not reduced due to P-∆ effects. Note that for peak-

oriented and pinching models, neglecting the elastic stability coefficient is not equivalent to 

rotating the post-yielding branch, although the corresponding backbone curves are equal (see 

dotted backbone curve in Fig. 5.34). 

The collapse capacities for equivalent SDOF systems, using different approaches for 

including P-∆ effects, are shown in Figure 5.35 for a peak-oriented non-deteriorating system. 

The period of the MDOF system without P-∆ effects is T0 = 3.6 s. The curves represent collapse 

capacities for the following equivalent SDOF systems: (a) systems with auxiliary backbone 

curve based on eθ  and iθ  ( eθ  is fixed at 0.09 and iθ  varies from 0.09 to 0.40; Equation 5.7 is 

employed to generate the auxiliary SDOF system), (b) systems with auxiliary backbone curve 

without considering eθ , according to Equation 5.8, and (c) systems where only the post-yielding 

branch rotates based on iθ , i.e., the incorrect P-∆ representation. If case (a) is taken as the 

reference one, it can be seen that case (c) greatly overestimates collapse capacities. This is 

evident from the comparison with collapse capacities of the auxiliary and simplified auxiliary 

SDOF systems  [cases (a) and (b)]. The basic difference of these systems is the modification of 

the yield strength due to the consideration of eθ . Observe that this modification does not 

significantly affect the corresponding collapse capacities. 

5.7.3 Procedure to Obtain Collapse Capacity of MDOF Structures Based on Collapse 
Capacity of Equivalent SDOF Systems 

The procedure proposed to compute the collapse capacity of non-deteriorating MDOF structures 

based on THA of auxiliary SDOF systems can be summarized as follows: 
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1. Global pushover analyses are performed for the MDOF structure with and without 

considering P-∆ effects to obtain the elastic and inelastic stability coefficients. It is 

recommended to select an inverted triangular or parabolic load pattern for this purpose. 

2. The period of the SDOF system without P-∆ effects is set equal to the fundamental period 

of the frame without P-∆ effects. The auxiliary backbone curve and the auxiliary stability 

coefficient are obtained based on the elastic and inelastic stability coefficients. 

3. The median collapse capacity is obtained based on the auxiliary SDOF system and the 

auxiliary stability coefficient. For this purpose, time history analyses are performed 

subjecting the auxiliary system to the selected set of GMs. The type of hysteretic model 

used in the nonlinear elements of the MDOF system is assigned to the equivalent SDOF 

system to represent the load-deformation response. 

4. Collapse capacity of the MDOF structure is estimated based on the collapse capacity of 

the SDOF system, which is scaled up according to the inverse of the effective mass 

coefficient. 

Alternatively, the THA of auxiliary SDOF systems (step 3) may be replaced by using 

ica gS θη −/)/( ,  curves for SDOF systems, which could be generated for several periods of 

interest. Once these curves are translated into the MDOF domain by means of the effective mass 

coefficient, the collapse capacity of the MDOF system is obtained based solely on iθ . 

5.7.4 Illustration of Procedure to Obtain Collapse Capacity of MDOF Structures Based 
on Collapse Capacity of Equivalent SDOF Systems 

The peak-oriented non-deteriorating generic frame 1836 is used to illustrate the procedure 

because it is the frame with the largest P-∆ effect.  

1. The global pushover curves with and without P-∆ effects are obtained by using a 

parabolic load pattern, which for this frame leads to a linear deflected shape in the elastic 

range. The reported stability coefficients are 09.0=eθ  and 37.0=iθ , and have been 

shown in Figure 5.23. 

2. The period of the equivalent SDOF system without P-∆ effects is used as the fundamental 

period of the frame without P-∆ effects. Thus the data used for computing the auxiliary 

backbone curve are: .6.30 sT = , 04.00, =sα , 09.0=eθ  and 37.0=iθ . The parameters of 
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the auxiliary SDOF system are obtained from Equation 5.7: 29.0=auxθ , .18.3 sTaux = , 

0,, 28.1 yauxy FF =  and 0313.0, =auxsα . 

3. Based on the auxiliary SDOF system and assuming a peak-oriented model, the median 

collapse capacity of the SDOF system is computed as =]/)/[( , ηgS ca  2.39.  

4. The collapse capacity of the SDOF system is scaled up by the inverse of the effective 

mass coefficient of the first mode to obtain the MDOF collapse capacity. The effective 

mass coefficient for the 18-story frame is 77.01, =mα , and the equivalent collapse 

capacity of the MDOF system is ]/)/)([( 1, γgTS ca  ≅  2.39/0.77 = 3.1. The “exact” MDOF 

median collapse capacity, obtained by carrying out THA for the non-deteriorating frame 

1836 is ]/)/)([( 1, γgTS ca  = 3.94. 

If the simplified auxiliary backbone curve is employed, Equation 5.8 is used for 

computing the parameters of the auxiliary SDOF system: 27.0=auxθ , sTaux 08.3= , 

0,, 37.1 yauxy FF = , and 029.0, =auxsα . The median collapse capacity of the simplified auxiliary 

SDOF system is ]/)/)([( 1, γgTS ca  = 2.59 and the collapse capacity of the MDOF system 

is ]/)/)([( 1, γgTS ca  ≅  2.59/0.77 = 3.36. Note that for this example the simplified auxiliary 

backbone curve provides a solution closer to the “exact” one. 

If ica gS θη −/)/( ,  curves for the period of interest (T0) were available, the collapse 

capacity of MDOF systems may be estimated without performing THAs. Figure 5.36 presents 

these curves for an SDOF system with T0 = 3.6 s, which are obtained by varying iθ  and 

generating a simplified auxiliary SDOF system for each iθ , according to Equation 5.8. The 

simplified auxiliary SDOF system provides more flexibility to the approach because the curves 

are not generated for a specific pair ( eθ , iθ ). As observed in Figure 5.36, the curve with collapse 

capacity for the SDOF system is scaled up based on the effective mass coefficient to obtain 

equivalent collapse capacities for the MDOF structure [ ica gTS θγ −/)/)(( 1, ]. The coefficient iθ  

obtained from the global pushover curves is used to obtain the equivalent MDOF collapse 

capacity. Observe that the use of eθ  would lead to a large overestimation of the collapse capacity 

of the MDOF system. 



 
 155

The procedure has been tested for several frames under different parameter variations. 

For instance, Figure 5.37 presents the median collapse capacity–stability coefficient curve and 

the “exact” collapse capacity for three non-deteriorating 18-story frames with different strain 

hardening in the springs. The squares indicate the collapse capacity based on the inelastic 

stability coefficient obtained from the global pushover analysis, whereas the stars indicate the 

“exact” collapse capacity of each system. These coefficients and the associated collapse 

capacities strongly depend on the strain-hardening coefficient of the nonlinear elements of the 

frame. The procedure results in a reasonable approximation, and it is likely that a more formal 

procedure for obtaining the equivalent system without P-∆ effects will result in a better 

approximation. 

A similar example is developed by varying the ratio of the weight, P, used to consider P-

∆ effects over the seismically effective weight, W. The stability coefficients of this study have 

been computed with a P/W ratio equal to 1.4, i.e., P is the dead load plus a live load equal to 40% 

of the dead load. Figure 5.38 shows stability coefficients as well as MDOF and equivalent 

MDOF collapse capacities for P/W ratios of 1.4, 1.2, and 1.0. Observe the large effect of the P/W 

ratio on the collapse capacity of the MDOF structure, which may lead to differences of almost 

70% depending on the additional live load included in P.  

5.8 SUMMARY 

Effect of Deterioration on EDPs of Frames 

• The relative intensity–EDP relationships for frame structures with deteriorating structural 

properties start to deviate from those of non-deteriorating frames long before collapse 

occurs. 

• When the collapse level is approached, the migration of maximum story drift angles from 

top to bottom of the frames is more pronounced for deteriorating frames than for non-

deteriorating ones. 

• The rapid growth of the bottom story drifts with increasing relative intensity is evident 

from pushover deflection profiles, which change from a straight line profile at small 

relative intensities to a highly curved profile as more elements enter the range of post-

capping strength deterioration. The deflection patterns are similar to those of non-

deteriorating systems with large P-∆ effects. 
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• Unlike SDOF systems, entering the branch of negative slope in the plastic hinge springs 

does not produce immediate collapse even when this negative slope is steep. Neither is 

collapse produced when zero resistance is reached in some of the springs. This 

phenomenon is attributed to moment redistribution in MDOF systems. 

• The effect of CD on EDPs is present at relatively low relative intensities, but is important 

only when the negative slope has been reached in the plastic hinge springs. For beam-

hinge frames, the effect of CD is smaller in MDOF systems than in SDOF systems with 

the same hysteretic characteristics. 

Effect of Deterioration on Collapse Capacity of Frames 

• The collapse capacity strongly depends on the first mode period T1. The large decrease in 

collapse capacity for long-period structures indicates that the period independent R-factor 

concept is not appropriate because of the large importance of   P-∆ effects in the inelastic 

range. 

• The dispersion of collapse capacity, defined as the standard deviation of the log of the 

data, is only mildly sensitive to the fundamental period of the frame and to deterioration 

parameters, and usually is on the order of 0.4. 

• The slope of the post-capping branch of the plastic hinge springs has a significant effect 

on the collapse capacity. If this slope is small (e.g., αc = -0.10), the strength of the 

component (and therefore the system) decreases slowly and component deformations 

much larger than δc can be attained before collapse occurs. If the slope is on the order of 

αc = -0.30 or larger, the post-capping reserve deformations become small and collapse 

may occur much earlier. The median collapse capacity ratio due to a post-capping 

stiffness change from αc = -0.10 to -0.30 may be as small as 0.70. 

• The effect of component ductility capacity (δc/δy) on the collapse capacity of the frames 

is large and is essentially independent of the fundamental period of the frame, except for 

very short-period systems. However, collapse capacities for MDOF systems do not 

increase in the same proportion as with the component ductility capacities.  For instance, 

an increase in component ductility capacity by a factor of 3 (from δc/δy = 2 to δc/δy = 6) 
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increases the median collapse capacity by a factor of about 1.6 if αc = -0.1 and about 1.75 

if αc = -0.3. 

• The effect of CD on collapse capacity is an important but not dominant issue for collapse 

evaluation. 

• The collapse capacity of deteriorating frames is very similar when a pinching model is 

used for the plastic hinge springs at the beam ends instead of a peak-oriented one. When 

a bilinear model is used for the plastic hinge springs, the same patterns as for SDOF 

systems are observed. For MDOF systems with very short fundamental period, the 

collapse capacity of frames with bilinear springs is larger than that of frames with peak-

oriented or pinching springs. However, for frames with medium and long fundamental 

periods the trend reverses because the branch with negative slope in the plastic hinge 

springs has a larger ratcheting effect in bilinear models (i.e., the story drifts increase more 

rapidly). 

• Present code guidelines for strong column–weak beam designs do not prevent the 

development of plastic hinges in the columns. The maximum column moment demands 

will exceed the strength capacity given by this requirement at small relative intensities. In 

some cases, the strong column factor would have to be much larger than unity to prevent 

plastic hinging in columns in frame structures with highly inelastic response. 

• Column hinging, which changes the mechanism leading to collapse, has a very 

detrimental effect on collapse capacity.  The collapse capacity of generic frames with a 

strong column factor of 1.2 decreases drastically (in most cases by a factor smaller than 

0.5) compared to that of generic frames with infinitely strong columns.  If the strong 

column factor is 2.4, the collapse capacity decreases by about 25% or less. 

• Weak first stories, defined here by plastic hinging in the first-story columns while 

keeping the structure above the first story elastic, have the most detrimental effect on 

collapse capacity. Collapse capacity for these systems is very similar to that of frames in 

which ∑∑ = bpcp MM ,, .  

• P-∆ effects can cause collapse of non-deteriorating flexible long-period structures, and 

greatly accelerate the collapse of deteriorating frames. Disregard of P-∆ effects may 

overestimate the collapse capacity of the generic frames by a factor of two or larger. This 
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overestimation is particularly large for flexible long-period frames in which the P-∆ 

effects overpower the effects of material deterioration. 

• The importance of P-∆ effects can be judged by stability coefficients.  For elastic 

response the elastic story stability coefficient is the appropriate measure. However, in the 

inelastic regime, in which P-∆ may cause a mechanism that spreads over one or several 

stories, the elastic story stability coefficient becomes a poor measure of the importance of 

P-∆. In this case a global inelastic stability coefficient (defined by the difference in the 

post-yield slopes of the global pushover curves without and with P-∆) should be 

employed.  

• For tall and slender frames the global inelastic stability coefficient may be much larger 

than the elastic one.  Thus, P-∆ effects may be much more important than estimated from 

an elastic stability coefficient. 

• Attempts are made in this study to use equivalent SDOF systems for computing the 

collapse capacity of MDOF structures with large P-∆ effects. If the inelastic stability 

coefficient is incorporated in the equivalent SDOF system by means of an auxiliary 

backbone curve, the estimate of the MDOF collapse capacity obtained from the 

equivalent SDOF system is found to be reasonable, yet conservative (i.e., the actual 

collapse capacity is underestimated).  

Table 5.1  Parameters of springs of sets of generic frames used for collapse evaluation 

CASE Model αc δc/δy γs,c,k,a P-∆ Observations
1 Peak-oriented N.A. Infinite Infinite Included Non-Det. System
2 -0.1 2 Infinite Included Ductility Capacity effect
3 4 Infinite Reference Frame
4 100 CD effect
5 50 CD effect
6 25 CD effect
7 6 Infinite Ductility Capacity effect
8 -0.3 2 Infinite Included PostCap. Stiff & Duct. Effect
9 4 Infinite PostCap. Stiff & Duct. Effect

10 6 Infinite PostCap. Stiff & Duct. Effect
11 -0.5 4 Infinite Included Post-Capping Stiffness Effect

12 Pinching -0.1 4 Infinite Included Hysteretic Model effect
13 Bilinear -0.1 4 Infinite Included Hysteretic Model effect
14 Peak-oriented -0.1 4 Infinite Not Included P-∆ effect  
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(a) Stiff Frames, T1  = 0.1N                            

GENERIC FRAMES
Number of Stories vs. First Mode Period, T1 = 0.2 N
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(b) Flexible Frames, T1 = 0.2N 

Fig. 5.1  Family of generic frames, stiff and flexible frames (after Medina, 2002) 
 

 
 

Fig. 5.2  Beam hinge (BH) mechanism  
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[Sa(T1)/g]/γ vs NORM. MAX. ROOF DRIFT
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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(a) Normalized Maximum Roof Drift 

[Sa(T1)/g]/γ vs NORM MAX STORY DRIFT over HEIGHT
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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(b) Normalized Maximum Story Drift over Height 

Fig. 5.3  Individual and statistical [Sa(T1)/g]/γ – EDP relationships for set of 
reference frame 0918 and statistical relationships for set of non-
deteriorating frames 
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NORM. MAX. STORY DRIFT PROFILE - MEDIANS
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Inf, αc=N.A., γs,c,k,a=Inf, λ=0
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(a) Non-deteriorating Frame 
 

NORM. MAX. STORY DRIFT PROFILE - MEDIANS
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0
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(b) Reference Frame 

Fig. 5.4  Median normalized maximum story drift profiles for a 9-story frame with 
T1 = 1.8 s  
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EFFECT OF αc ON [Sa(T1)/g]/γ
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=4, αc=Var, γs,c,k,a=Inf, λ=0
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Fig. 5.5  Effect of αc of rotational springs on maximum of story drift over story 

yield drift over the height, 9-story frames with T1 = 1.8 s 
 

EFFECT OF δc/δy ON [Sa(T1)/g]/γ
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=-0.10, γs,c,k,a=Inf, λ=0
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Fig. 5.6  Effect of δc/δy of rotational springs on maximum of story drift over story 

yield drift over the height, 9-story frames with T1 = 1.8 s 
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EFFECT OF CD ON [Sa(T1)/g]/γ
N=9, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Var, λ=0
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Fig. 5.7  Effect of CD rate of rotational springs on maximum of story drift over story 

yield drift over the height, 9-story frames with T1 = 1.8 s 
 

 

GLOBAL PUSHOVER CURVES
N=9, T1=0.9, BH, Peak Oriented Model, LMSR-N, ξ=5%
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Fig. 5.8  Global pushover curves for the non-deteriorating and deteriorating (reference) 

frame 0909 
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DEFLECTED SHAPE FROM PUSHOVER ANALYSIS
T1 = 1.8 s., N = 18, Base Case Frame Model
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DEFLECTED SHAPE FROM PUSHOVER ANALYSIS
T1 = 3.6 s., N = 18, Base Case Frame Model
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(a) T1 = 1.8 s.                          (b) T1 = 3.6 s. 

Fig. 5.9  Deflected shapes from pushover analyses for non-deteriorating 18-story frames 
(after Medina, 2002) 
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Fig. 5.10  Deflected shapes from pushover analyses for frame 0909 
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Fig. 5.11  Moment–rotation relationships of rotational springs at beam ends and 
column base, reference frame 0909 
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Fig. 5.12  Moment (*1/1000) vs. normalized roof drift of columns and beams of 
reference frame 0909 
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Sa(T1)/g vs MAX. ROOF DRIFT ANGLE, γ=0.6
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   (a) Frame 0303, γ = 0.6      (b) Frame 0306, γ = 0.6 

Fig. 5.13  Maximum roof drift angle from dynamic and static nonlinear analysis for the 3-
story reference frames 
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   (a) Frame 0909, γ = 0.4       (b) Frame 0918, γ = 0.2 

Fig. 5.14  Maximum roof drift angle from dynamic and static nonlinear analysis for the 9-
story reference frames 
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Fig. 5.15  Ratio of maximum interstory drift angle over maximum roof drift angle, 3 

and 9-story-reference frames 
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Fig. 5.16  Median and 16th percentile collapse capacity spectra, set of reference 

frames 
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Fig. 5.17  Median collapse capacities — number of stories, set of reference frames 
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Fig. 5.18  Effect of αc of springs on collapse capacity of generic frames, δc/δy = 4, γs,c,k,a = inf. 
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Fig. 5.19  Effect of δc/δy of springs on collapse capacity of generic frames, αc = -0.1, 
γs,c,k,a = inf. 
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Fig. 5.20  Effect of δc/δy of springs on collapse capacity of generic frames, αc = -0.3, γs,c,k,a

= inf. 
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CYCLIC DETERIORATION EFFECT ON [Sa,c(T1)/g]/γ 
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   (b) Median Ratios of Col. Capacity Spectra   (c) Dispersion of Collapse Capacity Spectra 
  
Fig. 5.21  Effect of CD of springs on collapse capacity of generic frames, δc/δy = 4, αc = -0.1  
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HYSTERETIC MODEL EFFECT ON [Sa,c(T1)/g]/γ 
N=Var, T1=Var, BH, LMSR-N, ξ=5%,
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Fig. 5.22  Effect of hysteretic model on median collapse capacity of generic frames  
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Fig. 5.23  Elastic and inelastic stability coefficients obtained from global pushover 

curves, peak oriented non-deteriorating frame 1836 
 



 
 174

 

GLOBAL STABILITY COEFFICIENT
T1=0.1N &T1=0.2N

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 3 6 9 12 15 18 21
Number of Stories (N)

G
lo

ba
l S

ta
bi

lit
y 

C
oe

ff
ic

ie
nt

θe, T1 = 0.1N
θi, Τ1 = 0.1Ν
θe, Τ1 = 0.2Ν
θi, Τ1 = 0.2Ν

  
(a) Stability Coefficients from Global Pushover Curves 
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(c) Post-Yield Stiffness Ratio in Global Pushover Curve 

Fig. 5.24  Post-yield stiffness ratio and stability coefficients from global pushover 
curves, generic frames with strain hardening in rotational springs of 3% 
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EFFECT OF P-∆ ON [Sa,c(T1)/g]/γ
N=Var, T1=0.2N, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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Fig. 5.25  Collapse capacity of flexible non-deteriorating and flexible reference frames 

with P-∆ effects 
 

EFFECT OF P-∆ ON MEDIAN [Sa,c(T1)/g]/γ
N=Var, T1=Var, BH, Peak Oriented Model, LMSR-N, 

ξ=5%, αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0
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Fig. 5.26  Effect of P-∆ on collapse capacity of reference frames 
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GLOBAL PUSHOVER CURVES
N=12, T=1.2 s., BH, Peak Oriented Model, LMSR-N, ξ=5%

αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf
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Fig. 5.27  Effect of P-∆ on global pushover curves for reference frame 1212  
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MAX. STRONG COLUMN FACTOR OVER HEIGHT
N=9, T1=0.9, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

θe=0.015, αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6
Maximum Strong Column Factor Over Height (2Mc/Mp,b)

[S
a(

T
1)

/g
]/ γ

Median
84th
Individual

 
Fig. 5.28  Maximum strong-column factor over the height for reference frame 0909 

 
 

MEDIAN [Sa,c(T1)/g]/γ vs PERIOD
N=Var, T1=Var, BH & BH-CH, P. O. Model, LMSR-N, 

ξ=5%, αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0
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Fig. 5.29  Effect on median collapse capacity of including columns with high strength 

( pbc MM ,4.2∑ = ) 
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MEDIAN [Sa,c(T1)/g]/γ vs PERIOD
N=Var, T1=Var, BH & BH-CH, P. O. Model, LMSR-N, 

ξ=5%, αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0
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Fig. 5.30  Effect on median collapse capacity of including columns with intermediate 

strength ( pbc MM ,2.1∑ = ) 
 

COMPUTED MEDIAN [Sa,c(T1)/g]/γ vs PERIOD
N=Var, T1=Var, BH & BH-CH; P. O. Model, LMSR-N, 

ξ=5%, αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0

0

2

4

6

8

10

0 1 2 3 4
Fundamental Period, T1 (sec)

[S
a,

c(T
1)

/g
]/ γ

BH-CH, T1 = 0.1N
BH-CH, T1 = 0.2N
BH, T1 = 0.1N
BH, T1 = 0.2N

ΣMc = 1.0Mb,p

 
Fig. 5.31  Effect on median collapse capacity of including columns with low strength  

( pbc MM ,0.1∑ = ) 
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(a) P-∆ Representation by Rotation of Hysteresis Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  Incorrect P-∆ Representation by Adjustment of Post-Yield Stiffness 
 

Fig. 5.32  Representation of P-∆ effects in SDOF systems 
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Fig. 5.33 P-∆ Effects obtained with an auxiliary backbone curve based on elastic and 
inelastic stability coefficients 

 
 

 
 

Fig. 5.34 P-∆ Effects obtained with a simplified auxiliary backbone curve and rotation  

of the strain hardening branch by the inelastic stability coefficient 
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(Sa,c/g)/η of SDOF SYST. FOR DIFF. P-∆ APPROACHES
Peak Oriented Model, LMSR-N, ξ=5%, T0=3.6 sec, 

αs,0=0.04, αc=N.A, δc/δy=Inf, γs,c,a=Inf, γk=Inf
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Fig. 5.35  Collapse capacities for equivalent SDOF systems using different P-∆ approaches 

[Sa,c(T1)/g)/g FROM SIMPLIF. AUX. SDOF SYSTEM
Peak Oriented Model, LMSR-N, ξ=5%, T0=3.6 sec, 
αs,0=0.04, αc=N.A, δc/δy=Inf, γs,c,a=Inf, γk=Inf, λ=0
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Fig. 5.36  Collapse capacity–inelastic stability coefficient curves obtained from 

SDOF systems with auxiliary backbone curves, T0 = 3.6 s 
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[Sa,c(T1)/g]/γ FROM SIMPLIF. AUX. SDOF SYSTEM
Peak Oriented Model, LMSR-N, ξ=5%, T0=3.6 sec, 

αs,0=0.04, αc=N.A, δc/δy=Inf, γs,c,a=Inf, γk=Inf
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Fig. 5.37  Test of collapse capacity–inelastic stability coefficient curves for MDOF 

structures with T0 = 3.6 s. and variations of αs at the rotational springs 

[Sa,c(T1)/g)/γ FROM SIMPLIF. AUX. SDOF SYSTEM
Peak Oriented Model, LMSR-N, ξ=5%, T0=3.6 sec, 

αs,0=0.04, αc=N.A, δc/δy=Inf, γs,c,a=Inf, γk=Inf
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Fig. 5.38  Test of collapse capacity–inelastic stability coefficient curves for MDOF 
structures with T0 = 3.6 s. and variations of P/W ratio 

 



6 Effect of Uncertainty in System Parameters 
on the Variance of Collapse Capacity 

6.1 INTRODUCTION 

In previous chapters, collapse capacity has been evaluated considering deterministic system 

parameters, and record to record (RTR) variability has been the only source of uncertainty 

included in the dispersion of collapse capacity. Although the parameters of the structural system 

are also subjected to uncertainty, small attention has been paid to the study of probability 

distributions of system parameters. The main assumption has been that uncertainties related to 

the system parameters are expected to be small compared to those originated by RTR variability. 

For instance, Esteva and Ruiz (1989) studied the probability of failure of reinforced concrete 

(RC) MDOF structures when uncertainty is included in the system parameters. They utilized 

non-deteriorating systems and considered failure when the ductility demand at any given story 

reached some predetermined available capacity. Statistical information for parameters such as 

yielding strength of the bars, concrete strength, and dimensions was taken from investigations on 

distributions of the system parameters carried out by Mirza and McGregor (1979)16. The 

conclusion was that uncertainty of the aforementioned parameters did not produce large 

modifications on the probability of failure of the system.  

The small effect of uncertainty in the system parameters on the response of non-

deteriorating systems has led to the practice of replacing the distributions of the parameters with 

expected values. However, the uncertainty of system parameters in deteriorating systems has not 

been systematically evaluated. The results of chapters 4 and 5 suggest that the variance of 

collapse capacity could be significantly influenced by uncertainty in parameters that define the 

hysteresis model, such as ductility capacity, post-capping, stiffness or CD rate. The level of 

                                                 

16  First moments and distributions of system parameters also can be found in Ellingwood (1983). 
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uncertainty of these parameters is large because of the intrinsic large aleatory variability in the 

nonlinear range and the inability to accurately evaluate these parameters, i.e., the epistemic 

uncertainty is also large. 

 In this chapter, the sensitivity of collapse capacity to uncertainty in the system 

parameters is investigated by using the first-order second-moment method (FOSM), whereas 

Monte Carlo simulations are employed to verify the accuracy of FOSM results. In the first part, 

different alternatives for applying the FOSM method to collapse capacity evaluation are explored 

for an SDOF system of intermediate ductile characteristics. Thereafter, the increment in the 

variance of collapse capacity is obtained for representative SDOF systems and for a set of 

generic frames with intermediate ductile features. 

1.1 6.2 FOSM METHOD 

6.2.1 General Formulation 

Given a function Y = f(Q1, Q2,…, Qn) and given that Q  is a random vector, the mean and 

variance of Y can be approximated by a Taylor’s series expansion of the performance function (f) 

about the expected values of the random variables (Wolff, 1994; Melchers, 1999; Baker and 

Cornell, 2003). The simplest approximation is termed a first-order second-moment (FOSM) 

method, as only first-order (linear) terms of the series are retained and only the first two 

moments (mean and variance) are considered. This means that the method is exact for linear 

performance functions, and that for a given degree of curvature, the method is more accurate for 

smaller values of the variances. The first two moments are calculated as follows: 
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where Q  is the vector of random system parameters, qµ is the vector of mean values of Q , and 

the correlation coefficient is equal to: 

ji qq
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Note that the first moments of Y can be estimated without knowing the probability 

distribution of the function Y = f(Q ). The relative magnitudes of the terms in Equation 6.2 

provide an explicit indication of the contribution to uncertainty of each variable. The 

disadvantages of the method are that it is necessary to approximate the value of the derivatives 

and that an error for nonlinear functions can be introduced by neglecting higher-order terms. 

In the application of the method for computing the variance of collapse capacity, an 

additional term needs to be added to Equation 6.2 to account for the already calculated RTR 

variability (Section 6.2.2). Also, because FOSM is a simplified method that requires little 

information to be implemented, several alternatives for approximating the derivative of the 

function “f” in Equation 6.2 are presented in Section 6.2.3. 

6.2.2 Computations in Log Domain of Data 

In last section, the FOSM formulation is expressed in the linear domain of the data, i.e., the 

parameter values and collapse capacities utilized in Equations 6.1–6.3 are obtained directly from 

the time history analyses (THA). However, in this research it is preferred to compute the 

additional variance of collapse capacity in the log domain of the data, i.e., by using the natural 

logarithm of the parameter values and corresponding collapse capacities. The main reason is that 

high nonlinearities in the system parameters – collapse capacity relationships tend to be reduced 

in the log domain. Therefore, the results become less sensitive to numerical variations because 

the likelihood of evaluating collapse capacity in a highly nonlinear region is reduced. Appendix 

D provides more details of the reasons for preferring the computations in the log domain of the 

data.  

The following formulation is derived from the methodology proposed by Baker and 

Cornell (2003) for estimating the role of supplementary variables in uncertainty. To compute the 

total variance in the log domain, collapse capacity 17 is initially expressed in the linear domain 

as: 

                                                 

17 Collapse capacity was defined in Chapter 2 as [(Sa/g)/η]c for SDOF systems and as {[(Sa(T1)/g)]/γ}c for MDOF 
systems. For the sake of simplicity, in this chapter this nomenclature is usually shortened to Sa,c/η for SDOF systems 
and to Sa,c(T1)/γ for MDOF structures (although for developing the formulation, only Sa,c/η is used). If collapse 
capacity is used as a subscript, the nomenclature is simplified to Sa,c. 
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 ( )RTRQQQfS knca εη ).,...,,(/ 21, =            (6.4) 

where the random variable ( )RTRkε  has a mean equal to one. This formulation is called the 

“multiplicative approach” because in the linear domain ( )RTRkε  is a multiplier to the function 

),...,,( 21 nQQQf .  Taking the natural log on both sides of Equation 6.4:  

))(ln()),...,,ln()/ln( 21, RTRQQQS knca εη +=          (6.5) 

 

Observe that in the log domain )](ln[ RTRkε  is added to the new function “g.” By using 

QX ln= , Equation 6.5 becomes: 

))(ln()),...,,()/ln( 21, RTRXXXgS knca εη +=       (6.6) 

Since the expected value of )](ln[ RTRkε  is equal to zero, the FOSM method estimates the mean 

as: 

 )(ln , XgS ca
µµ ≅                  (6.7) 

The variance of )](ln[ RTRkε  is equal to 2
)(ln , RTRS ca

σ , which is the variance of the collapse 

capacity when the system parameters are deterministic and the only source of uncertainty is RTR 

variability. Thus, the first-order approximation of the variance of collapse capacity is 18: 
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The first term on the right-hand side of Equation 6.8 represents the contribution to the 

variance of collapse capacity due to uncertainty of all the system parameters. The correlation 

coefficient, 
ji xx ,ρ , is calculated in the same way as 

ji qq ,ρ (Equation 6.3). 

If only one probabilistic system parameter is involved, Equation 6.8 simplifies to: 
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Note that in the log domain of the data, the variance of collapse capacity due to RTR 

variability ( 2
)(ln , RTRS ca

σ ) is added to the variance of collapse capacity due to uncertainty in the 

                                                 

18  The term 2
)(, TOTS ca

σ  is denoted as Var[Sa,c(TOT)] in the graphs of this chapter. 
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system parameters. This formulation assumes that, in the linear domain, the coefficient of 

variation of collapse capacity due to RTR variability is a constant for variations of the 

probabilistic parameter, i.e., )(,
... RTRS ca

voc  is constant under variations of xi (see Appendix D). 

6.2.3 Computation of Derivative 

An approximation of the derivate, iX xg ∆∆ /)(µ , needed to evaluate Equation 6.8 may be 

obtained in several ways. For instance, the performance function may be evaluated at two system 

parameter values and the derivative estimated as the slope of the straight line that connects the 

pairs [xi, g(xi)]. The simplest option is to consider the mean of the system parameter and its 

corresponding collapse capacity as one pair because these values are known. The second point 

can be any increment above or below the mean. It is recommended to take the increment as one 

standard deviation to capture some of the nonlinear behavior of the function over a range of 

likely values (Wolff, 1994; Baker and Cornell, 2003). In Figure 6.1, the straight line connecting 

these two points is dubbed “secant 1,” and from now on, this approach will be referred as the 

“one-side” approach. The increment with respect to the mean value is represented as σn±=∆ , 

where n is a multiplier. For computations in the log domain of the data:  

x
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∂ )()()( 2)(ln1)(ln 21          (6.10) 

where )()(ln ixS x
iac

µ  is the log of the estimator of the geometric mean of collapse capacity (due to 

RTR variability) when the probabilistic system parameters are )exp( 1x  and )exp( 2x  19. This is an 

additional approximation because the estimator of the geometric mean is modified according to 

the GMs included in the bin. After this simplification the only source of uncertainty in the 

computation of the derivative is the uncertainty in the probabilistic parameter.  

A second alternative to compute the derivative is to select the points located at one 

increment above and below the expected value of the random system parameter (Wolff, 1994). 

This option, which is referred as the “two-side” approach, is shown in Figure 6.1 with the 

straight line dubbed “secant 2.” For smooth functions this method should result in a better 

                                                 

19  Remember that QX ln= . 
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approximation because the slope of “secant 2” is closer to the derivative evaluated at xµ . The 

computational effort increases because collapse capacity needs to be evaluated at two additional 

system parameter values. For computations in the log domain of the data, the derivative is 

approximated as: 

x
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x
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σ
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There are other approaches for calculating the derivative such as the standard numerical 

differentiation method, which utilizes a central difference representation for the derivative 

(Hornbeck, 1975). These methods are not implemented because they involve a larger 

computational effort and a pilot study did not improve the accuracy of the results. 

6.2.4 FOSM Equation for Parameter Study 

In subsequent sections, δc/δy, αc and γs,c,k,a are considered the probabilistic system parameters of 

the structural system. For the sake of simplicity, the nomenclature of these parameters is 

shortened to δ, α, and γ, respectively, and Equation 6.8 can be particularized as follows: 
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In this shortened nomenclature, for instance, the term 
γ
α
δ
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square of the derivative of the function “g” with respect to the system parameter δc/δy. The 
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function “g” depends on the parameters δc/δy, αc, and γs,c,k,a. The derivative is obtained around 

the mean values of each one of the probabilistic parameters. 

The first three terms of Equation 6.12 correspond to contributions to the variance of the 

natural logarithm of collapse capacity due to uncertainty in δc/δy, αc, and γs,c,k,a. The following 

three terms involve correlations among these three parameters. For example, the fourth term is 

dubbed “δα correlation” and expresses the dependence of one parameter on the other one. In the 

following sections, the terms for the contributions to total variance of the log of collapse capacity 

are shortened as follows: 
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2
)(ln , ασ

caS  is the contribution to variance of the log of collapse capacity due to uncertainty 

in post-capping stiffness. Similar interpretation is given to 2
)(ln , δσ

caS  and 2
)(ln , γσ

caS . 

2
)(ln ., αδρσ

caS  is the contribution to variance of the log of collapse capacity due to correlation 

between the parameters δ and α. Similar explanation is given to the terms 2
)(ln ., γδρσ

caS  and 

2
)(ln ., γαρσ

caS . 

The three terms involving correlation among parameters can be condensed into a term 

called “combined correlation.” Therefore, Equation 6.13 is condensed to: 
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Sometimes all the contributions to variance of the log of collapse capacity due to the 

system parameters are grouped into a single term, 2
)(ln , XS ca

σ , and Equation 6.14 is simplified as 

follows: 
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6.3 EVALUATION OF FOSM METHOD FOR OBTAINING VARIANCE OF 
COLLAPSE CAPACITY  

This section explores the most suitable alternatives for computing additional variance of collapse 

capacity using the FOSM method. Because the method is an approximation that simplifies the 

nature of the problem, the validity of obtained results depends on the assumptions made for each 

particular situation. For this reason, this section is divided into three parts. In the first part, only 

one system parameter at a time is considered in a probabilistic format. At this point, the most 

consistent alternatives for applying the FOSM method to a single probabilistic parameter are 

selected. In a second stage, uncertainty of several parameters is considered at the same time to 

evaluate the effect of correlation among them. In the third part, Monte Carlo simulation is used 

for verifying some of the results obtained by the FOSM method. 

The SDOF system used for these evaluations is the reference system of Chapter 4, which 

is subjected to the set of records LMSR-N and has the following features: 

• Peak-oriented hysteretic model 

• No P-∆ effect 

• Medium ductility capacity, δc/δy = 4  

• Small post-capping stiffness, αc = -0.1 Ke 

• Slow cyclic deterioration rate, γs,c,k,a = 100 

Variance of System Parameters. Statistical information about the parameters that define 

the hysteretic backbone and its corresponding cyclic deterioration are difficult to find in the 

literature. Possibly the best source for RC components is the database collected by Fardis and 

Biskinis (2003), in which statistical information for yield and ultimate rotation of components 

with different characteristics is presented. The ultimate rotation is defined as the rotation at 

which 15% of the peak strength is lost. The coefficients of variation (c.o.v.) of the yield and 

ultimate rotation is used for estimating the standard deviation of the log of ductility capacity in 

an approximated way because the rotation at peak strength is not computed in the database of 

Fardis and Biskinis. They report c.o.v. of about 0.55 for the ultimate rotation of rectangular RC 

members subjected mainly to cyclic loading. 

Information about the variation of ductility capacity of steel beam-columns is taken from 

the database collected by Nakashima (1994). He compiled information from 224 tests carried out 

by Japanese researchers for steel beam-columns having an H-shaped cross section and bent about 
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the strong axis. In all the selected tests the lateral load was applied monotonically and the axial 

load remained constant during the experiment. Ductility capacities were measured considering 

that the strength on the backbone curve had dropped to 95% (δc,95), 90% (δc,90), and 80% (δc,80) 

with respect to its peak value. According to the first definition of ductility capacity, the c.o.v. for 

components with very small axial load is c.o.v. (δc,95/δy) = 0.54. The c.o.v. increases for 

components subjected to significant axial load and is also expected to increase for tests including 

cyclic loads. 

Based on these published data, a reasonable and likely conservative (high) value for the 

standard deviation of the log of ductility capacity is 0.60. Regarding the parameters αc and γs,c,k,a, 

systematic information is not available in the literature. However, the limited information 

compiled from several component tests suggests that the dispersion is also high for these 

parameters. Thus, it has been decided to use the dispersion adopted for ductility capacity also for 

the parameters αc and γs,c,k,a.  

6.3.1 Sensitivity of Collapse Capacity due to a Single Probabilistic System Parameter  

In this section the FOSM method is applied to a single probabilistic parameter for the purpose of 

evaluating the following parts of the process: 

(a) Estimation of the derivative. The one-side and two-side approaches shown in Section 

6.2.3 to approximate the derivative are tested. The sensitivity study also includes the 

effect of different increments for these approaches, i.e., the number of standard deviations 

at which the parameters are evaluated. 

(b) Assumed dispersion. The implications of assuming a standard deviation of the log of the 

data of 0.60 for all the parameters are investigated by carrying out a sensitivity study that 

involves different dispersions for these parameters. 

6.3.1.1 Post-Capping Stiffness 

This parameter is relevant in collapse capacity evaluation because it greatly affects the 

displacement at which the backbone curve reaches zero restoring force or the residual strength. 

The boundaries for αc are the horizontal and vertical slopes, i.e., c 0α =  and cα = −∞ , 
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respectively. Positive post-capping slopes are not consistent with the definition of a peak strength 

value at the displacement δc. 

For the following calculations, the sign of αc is changed from negative to positive to be 

able to compute logarithms, and the nomenclature is simplified as follows: 

303.2)10.0ln(lnln −=== αα µµ
c

. Note that the mean in the log domain is the logarithm of the 

“deterministic” parameter value of the reference SDOF system. 

Computation of the Derivative. The derivative of the function “g” due to variations in 

αc is evaluated by considering that the rest of the parameters have mean values that remain 

constant under the aforementioned variations. The derivative is approximated as the straight line 

that connects two pairs of the form [lnαc,i, ln Sa,c/η(αc,i)]. 

In the one-side approach, Sa,c/η is evaluated at )exp( ln1, αα mc =−  and 

)exp( lnln2, αα σα nmc ±=− ; see “secant 1” in Figure 6.1. The effect of different increments for 

the second pair is also studied, i.e., different “n” values. Eight increments are evaluated: 

∆ = ασ ln25.0± , ασ ln5.0± , ασ ln0.1± , and ασ ln5.1± . In all cases, 60.0ln =ασ . For illustration, 

the two αc values generated at ασ ln0.1±=∆ are: 

055.0)903.2exp(903.216 lnlnln =−=−⇒−=+= c
th ασµ ααα

182.0)703.1exp(703.184 lnlnln =−=−⇒−=−= c
th ασµ ααα  

SDOF analyses are performed at these eight increments in the period range from T = 0.1 

to 4.0 s. Figure 6.2 shows collapse capacity spectra for different αc values that correspond to the 

proposed increments. Figure 6.3 presents the dependence of median (Sa,c/g)/η on αc for all the 

evaluated periods. If these curves are plotted in a log-log space, they are smoother and closer to 

straight lines (Fig. 6.4), a feature that provides stability to the computation of the derivative.  

To obtain an idea of the magnitude of the variances involved in the study, Figure 6.5 

shows the variance of collapse capacity due to RTR variability and due to uncertainty in αc 

( 2
)(, RTRS ca

σ  and 2
)(, ccaS ασ , respectively). The derivative to compute 2

)(, ccaS ασ  is obtained by 

evaluating αc at )exp( ln1, αµα =− c  and )exp( lnln2, αα σµα +=− c . As observed, 2
)(, ccaS ασ  becomes 

relevant for the reference system in the long-period range.  

The one-side approach for computing the variance of collapse capacity due to uncertainty 

in αc ( 2
)(ln , ασ

caS ) is presented in Figure 6.6 for all the considered increments. The additional 
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variance is presented as a fraction of the uncertainty due to RTR variability 

( 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α ). As can be seen, this ratio greatly varies according to the direction in which 

the increment is considered, and the differences are more pronounced for large increments i.e., 

compare 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α  for αα σ lnln 5.1+=∆  and αα σ lnln 5.1−=∆  (Fig. 6.6b). On the other 

hand, the use of small increments ( αα σ lnln 25.0=∆ ) produces curves with erratic behavior 

because 2
)(ln , ασ

caS  is more sensitive to numerical variations in the calculated collapse capacity.  

For the two-side approach, the derivative is obtained by evaluating post-capping stiffness 

at )exp( lnln1, αα σµα nc −=−  and )( lnln2, αα σµα nc +=− , which corresponds to “secant 2” in 

Figure 6.1. The 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α  ratios under this alternative are shown in Figure 6.7. It is 

concluded that although this option requires a larger computational effort, it is more appropriate 

for this parameter because the additional uncertainty is less dependent on the increment 

( αα σ lnln n=∆ ) and the curves are smoother. 

Effect of Assumed Dispersion in αc. The dispersion of the system parameters has been 

assumed as 60.0ln =ασ . This section evaluates the effect of the selected dispersion of αc by 

using four different standard deviation of the log of the parameter: =ασ ln 0.15, 0.30, 0.60 and 

0.90. The two-side approach is used for approximating the derivative and the considered 

increment is one standard deviation, i.e., αc is evaluated at )exp( lnln1, αα σµα −=− c  and 

)exp( lnln2, αα σµα +=− c . As observed in Figure 6.8, the selected dispersion of αc has a large 

influence on the 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α  ratios. 

6.3.1.2 Ductility Capacity  

The evaluation carried out for αc is repeated for δc/δy under similar assumptions, such as the 

same dispersion for the parameter, 6.0ln =δσ . Because the lower limit for this parameter is δc/δy 

= 1, a change of variable is performed, the new variable being δc/δy–1 (when used as a subscript, 

it is simplified to δ ). The change of variable is relevant when applying Monte Carlo simulation 

(Section 6.3.3) because a lognormal distribution is assigned for ductility capacity and this 

modification prevents the possibility of generating values for δc/δy smaller than unity. 
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Collapse capacity spectra generated with increments similar to those used for αc are 

presented in Figure 6.9. For the reference system, the dispersion of collapse capacities is less 

affected by uncertainty in ductility capacity than by uncertainty in αc. Figure 6.10 shows that 

(δc/δy - 1)–Sa,c/η relationships can be approximated by straight lines in the linear and log space. 

As in the case of αc, the one-side approach for approximating the derivative leads to 
2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ δ  ratios that greatly depend on the selected increment. The problem is 

circumvented by approximating the derivative with the two-side approach (secant 2 in Fig. 6.1). 

The resulting 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ δ  ratios are shown in Figure 6.11.  

For testing the selected value 60.0ln =δσ , 2
)(ln , δσ

caS  is evaluated for four ductility capacity 

dispersions: =δσ ln 0.12, 0.30, 0.60, and 0.90. In all cases, the two-side approach with an 

increment of one standard deviation is used for approximating the derivative. 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ δ  

ratios for the selected dispersions are presented in Figure 6.12, which shows large differences in 

the results according to the selected δσ ln . 

To put the results of Figure 6.12 into perspective with those shown in Figure 6.8, it is 

emphasized that the relatively small effect of ductility capacity on the variance, compared to the 

large effect of αc is a consequence of choosing a central value of -0.10 for the latter parameter. In 

Section 4.3 it has been shown that for this flat post-capping stiffness the relative intensity at 

collapse (collapse capacity) is much larger than the relative intensity associated with reaching δc, 

and is not very sensitive to the ductility capacity. Different results would be obtained for a 

similar system but with a parameter αc = -0.30. 

6.3.1.3 Cyclic Deterioration  

The hysteretic energy capacity is based on γs,c,k,a. A value ∞=akcs ,,,γ  defines a system without 

cyclic deterioration effects. When used as a subscript, γ represents the four modes of cyclic 

deterioration.  

The dispersion of the parameter γs,c,k,a is also taken as 6.0ln =γσ . Because collapse 

capacity is less sensitive to variations of CD rates, larger increments are used compared to 

previously discussed parameters: ∆ = γσ ln5.0± , γσ ln0.1± , γσ ln5.1± , and γσ ln33.2± . For a 
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central value of 100,,, =akcsγ , a variation of one standard deviation results in 551 =γ  and 

1822 =γ . 

Figure 6.13 shows collapse capacity spectra for the reference SDOF system, γs,c,k,a  values 

corresponding to a central value of 100, and increments as listed in the previous paragraph. As 

observed, Sa,c/η is less sensitive to different CD rates than to variations in previously discussed 

parameters. Figure 6.14 presents the dependence of median Sa,c/η on γs,c,k,a for different periods. 

For this parameter the curves do not resemble a linear function neither in the linear nor log space.  

The two-side approach for approximating the derivative provides smooth 
2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ γ  ratios that are not greatly affected by the size of the increment (Fig. 6.15). 

For estimating the effect of the selected dispersion of γs,c,k,a on collapse capacity, 2
)(ln , γσ

caS is 

calculated for =γσ ln 0. 30, 0.60, 0.90, and 1.40. The results presented in Figure 6.16 indicate that 

the dispersion of γs,c,k,a may be relevant for the 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ γ  ratios, but not as much as the 

effect of the selected dispersion of αc or δc/δy. 

6.3.2 Sensitivity in Collapse Capacity due to Several Probabilistic Parameters  

The contributions to 2
)(ln , TOTS ca

σ  from ductility capacity, post-capping stiffness and CD, as well as 

possible correlation among them are evaluated for the reference SDOF system. The derivative is 

approximated with the two-side approach and the size of the increment with respect to the mean 

value is one standard deviation, i.e., the parameters are evaluated at )exp( lnln1 xxx σµ −=  and 

)exp( lnln2 xxx σµ += . 

6.3.3.2 Sensitivity due to Uncertainty in System Parameters, No Correlation 

2
)(ln

2
)(ln ,,
/ RTRSXS caica
σσ  ratios for the three system parameters are shown in Figure 6.17 when 

considering the same dispersion for the three parameters, 60.0lnlnln === γδα σσσ . 

The contribution to total variance of collapse capacity ( 2
)(ln , TOTS ca

σ ) of GMs and system 

parameters is shown in Figure 6.18. These graphs reveal the importance of uncertainty in the 
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post-capping stiffness for the reference SDOF system, which is due to the small value of this 

parameter. Note that the evaluation assumes the same dispersion for the three parameters, which 

does not necessarily occur in real components.  

6.3.3.3 Sensitivity due to Uncertainty in System Parameters, Correlation Included 

The estimation of coefficients of correlation usually is more complicated than estimating the first 

two moments for the individual parameters. The correlation among the deteriorating parameters 

is expected to be high because usually the system parameters of a given component tend to be 

less or more ductile to the same degree. For instance, it is likely to have a component with 

smaller ductility capacity if the post-capping slope is steeper. Correlation among the studied 

parameters is not documented, but the following low- and high-correlation factors are proposed 

based on judgmental criteria and values reported by Esteva and Ruiz (1989): 

Low correlation: 5.0−== αγαδ ρρ  and 5.0=δγρ  

High correlation: 8.0−== αγαδ ρρ  and 8.0=δγρ  

αδρ  is negative because usually a system with high ductile characteristics has a smaller 

post-capping stiffness coefficient and larger ductility capacity. The same reasoning is used for 

assigning the signs to the other two correlations. 

Figure 6.19 presents individual contributions to 2
)(ln , TOTS ca

σ  for the reference SDOF 

system, including “low” correlation. At some periods the variance of collapse capacity due to 

uncertainty in the system parameters, 2
)(ln , XS ca

σ , is larger than that caused by RTR variability. 

Figure 6.20 shows the contributions of individual low correlations to the combined correlation. 

The correlation ratios are essentially period-independent except in the short-period range and the 

two larger ratios involve the post-capping stiffness parameter. This is expected because it is the 

parameter that most contributes to 2
)(ln , TOTS ca

σ . 

Figure 6.21 presents the same information as Figure 6.19 when high correlation is 

considered. 2
)(ln , XS ca

σ  is not greatly modified when high correlation is used instead of low 

correlation. 
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6.3.3.4 FOSM Method without Explicit Contribution of Parameters 

In former sections, the FOSM method has been used for computing the additional variance of 

collapse capacity due to individual parameters. The total contribution from system parameters 

has been computed by adding the explicit contribution to uncertainty of each parameter, as well 

as their corresponding correlations, which are calculated with Equation 6.8. 

It is detected that combined correlation may be the most important contributor to variance 

of collapse capacity for some systems. However, the correlation contributions are derived in an 

indirect way in the FOSM method because correlation is not explicitly included in the THA or in 

the computation of the derivative. To verify the effect of the combined correlations obtained for 

the reference SDOF system, the properties of the three probabilistic parameters are modified at 

the same time and the FOSM method is applied. The parameters are varied in the same 

proportion for considering full correlation, i.e., 1, ±=
ji xxρ . The explicit contributions of each 

parameter are not recoverable in this approach but the correlation among parameters is implicit 

in the THA and does not need to be calculated by the FOSM method. 

As a first step, 2
)(ln , TOTS ca

σ  is computed considering explicit contributions of the 

parameters. The process is the same as in the previous section but considering full correlation 

among parameters. Then the effect of combined correlation is computed according to Equation 

6.8. Figure 6.22 presents the variance of collapse capacity due to RTR variability and uncertainty 

in system parameters. 

In a second step, the contribution of the parameters is not accounted for explicitly. 

Collapse capacity is evaluated for a system with low ductility, which considers the 16th percentile 

of δc/δy and γs,c,k,a and the 84th of αc. Collapse capacity is also evaluated for a system with high 

ductility, in which the former parameter percentiles are inverted. Thereafter, the derivative is 

computed with information of the systems with high and low ductility according to Equation 

6.11. Because all the probabilistic parameters varied at once previous to performing the THA, 

Equation 6.8 is reduced to only one term that includes even the full correlation among the system 

parameters, i.e., FOSM is not required to compute the correlation. Figure 6.23 presents 
2

)(ln , TOTS ca
σ  under both approaches. The results computed with explicit and non-explicit 

contributions are very similar, validating the large combined correlations obtained with Equation 

6.8. 
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Summarizing, alternatives for applying the FOSM method to collapse capacity sensitivity 

have been evaluated. The computations in the log domain are preferred, and parameter 

evaluation at )exp( lnln1 xxx σµ −=  and )exp( lnln2 xxx σµ +=  results in a good approximation to the 

derivative of Equation 6.8. Also, the sensitivity to low and high correlation has been explored 

without finding large differences in 2
)(ln , TOTS ca

σ . 

6.3.3 Monte Carlo Simulation  

The distribution associated with the probabilistic description of system parameters is unknown 

but is not required in the FOSM method. It is likely that the real distribution of the system 

parameters may be approximated with a lognormal or a truncated Gaussian distribution. This is 

suggested from previous studies (Mirza and McGregor, 1979; Ellingwood, 1983) that have 

obtained distributions for some parameters of structural components. If the distribution of the 

system parameters were known, 2
)(ln , XS ca

σ  could be calculated using Monte Carlo simulation, a 

technique that provides a more precise answer than the FOSM method but involves large 

computational effort. In this section, the distribution of the system parameters is assumed to be 

lognormal to test the ability of the FOSM method to deliver reasonable results on collapse 

capacity sensitivity. 

Monte Carlo simulation involves sampling randomly to simulate artificially a large 

number of events. The technique requires the knowledge of the distribution of the system 

parameter and a performance function to correlate this distribution with collapse capacity. Then, 

the performance function is evaluated for many possible values of the random variables. Because 

the distributions of the system parameters must be known or assumed, the results for collapse 

capacity sensitivity are only accurate to the extent that these distributions are accurate. 

Two approaches for applying Monte Carlo simulation to collapse capacity sensitivity are 

evaluated. They differ from each other in the method used to obtain the function that correlates 

the system parameter with collapse capacity. 



 
 199

6.3.3.1 Monte Carlo Simulation Using Time History Analysis (THA) 
In this approach the system parameter is correlated with collapse capacity by performing a THA 

for each random number, which is computationally expensive. The simulation is applied to the 

reference SDOF system at T = 0.6 and 1.8 s. The following cases are addressed to verify several 

components of Equation 6.8 that are the basis of the FOSM method: 

(a) Three simulations are carried out considering as a random variable only one system 

parameter. Simulations for αc, δc/δy, and γs,c,k,a are performed assuming lognormal 

distribution and a dispersion σln Xi = 0.60 for all the parameters. 

(b) The three probabilistic parameters used in the FOSM method are taken as random 

variables at once. Lognormal distribution is assumed for all the parameters, and to 

account for full correlation, the same random number is used to compute the three system 

parameters20. The random number must be associated with each parameter in such a way 

that all the parameters represent about the same level of ductility. For instance, if the 

random number is 0.80, δc/δy and γs,c,k,a values are associated to the 80th percentile in the 

corresponding CDF to produce a more ductile system. However, the cumulative 

distribution function (CDF) for αc must correspond to 20th percentile because flatter αc’s 

make the system more ductile. 

For each random number, the system parameters are modified and the THA is carried out 

for the 40 records of the set LMSR-N, but only the median value is recovered. This is an 

approximation that intends to obtain the dispersion on collapse capacity due entirely to the 

uncertainty in the system parameters and to eliminate RTR variability.  

Figure 6.24 presents the dependence of median Sa,c/η on αc obtained for two different 

Monte Carlo simulations. In the first one, αc is the only parameter considered in a probabilistic 

format (under the lognormality assumption), whereas the second relationship considers αc, δc/δy 

and γs,c,k,a as random variables (according to option b). The curves intersect at the median value 

of the parameter (αc = 0.10), and the simulation in which the three parameters are varying 

together produces smaller collapse capacities to the right of the median αc value. This is because 

not only αc is causing less ductile behavior, but also δc/δy and γs,c,k,a. The reverse trend occurs for 
                                                 

20  The same set of random numbers must be employed to evaluate the effect of modifying one or more variables 
when using Monte Carlo simulation (Melchers, 1999). 
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αc < 0.10. Similar patterns for the dependence of collapse capacity on δc/δy and γs,c,k,a are 

observed in Figures 6.25–6.26. 

Figure 6.27 presents the fragility curve (CDF) that expresses the probability of collapse 

given the value of (Sa/g)/η (see Chapter 7). The “counted” fragility curve (FC) is obtained by 

assigning to each individual collapse a probability of 1/N (N = total number of realizations) and 

adding the number of cases collapsing at each (Sa/g)/η level. A good approximation to the 

counted FC is obtained by fitting a lognormal distribution. Thus, the collapse capacity 

distribution is very similar to a lognormal one when the system parameters also have a lognormal 

distribution. 

Figure 6.28 compares the fitted collapse FC for uncertainty only in αc with the 

corresponding FC when uncertainty is included in αc, δc/δy, and γs,c,k,a. The dispersion in collapse 

capacity increases with the number of probabilistic parameters involved, which is indicated with 

a flatter FC. 

The variances obtained with Monte Carlo simulation are very similar to those reported by 

the FOSM method. Figure 6.29 presents 2
)(ln , XS ca

σ  obtained with the FOSM method and with 

Monte Carlo simulation at T = 0.6 and 1.8 s. The difference in the variance at T = 1.8 s. is 8%, 

whereas at T = 0.6 s, the variances are practically the same.  

6.3.3.2 Monte Carlo Simulation Using Fitted Function instead of THA 

The dependence of Sa,c/η on the system parameters tends to be smooth (Figs. 6.3–6.4, 6.10, and 

6.14). Therefore, instead of performing a THA for each realization, a function that correlates 

system parameters with collapse capacities is fitted through some discrete values. This procedure 

reduces the computational time but the fitted curve may miss irregularities captured by THA. 

The method is applied to the reference SDOF system and is illustrated here using the 

post-capping stiffness parameter. A lognormal distribution is assumed for αc, which in the log 

domain transforms into a Gaussian distribution of mean )10.0ln(ln =αµ  and dispersion 

60.0ln =ασ . Expressions for ln(Sa,c/η) as a function of ln(αc) are obtained from fitting curves to 

the relationships of Figure 6.4. Figure 6.30a shows the exponential function fitted to the curve 

corresponding to T = 0.5 s. After Monte Carlo simulation is performed, the histogram of log of 
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collapse capacities is obtained (Fig. 6.31), which can be fitted with a normal distribution in the 

log domain of the data. The variance of collapse capacity obtained by this fitting is very similar 

to the one obtained by the FOSM method.  

As an alternative, a straight line may be used to represent the ln(αc)–ln(Sa,c/η) 

relationship with about the same coefficient of correlation (R = 0.98 instead of R = 0.99) (Fig. 

6.30b). Moreover, if the straight line baSac += δlnln  is a good representation of the ln(αc)–

ln(Sa,c/η) relationship, there is no need for Monte Carlo simulation because the variance of 

collapse capacity due to uncertainty in αc is: 
2
ln

22
][ln , αα σσ a

caS =        (6.16) 

Straight lines are fitted to the dependence of Sa,c/η on αc in the log space for all the evaluated 

periods (Figs. 6.3–6.4). Then, the slopes of the straight lines are used for obtaining the variance 

from a linear transformation. Figure 6.32 shows the 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α  ratios obtained with the 

FOSM method and with the linear approximation. The curves are very similar because the 

FOSM method is exact for linear relationships.  

The dependence of ln(Sa,c/η) on ln(δc/δy) also resembles straight lines and the same 

approach may be used. In the case of CD, the curves do not fit a straight line but the direct 

method still provides a large simplification to the simulation process. 

In summary, Monte Carlo and FOSM methods deliver similar results for computing 
2

)(ln , XS ca
σ . The latter method is preferred because it requires much smaller computational effort 

and does not necessitate commitment to a distribution of the system parameters. 

6.4 SENSITIVITY ANALYSIS FOR REPRESENTATIVE SDOF SYSTEMS 

The contributions to the variance of collapse capacity depends on combinations of the system 

parameters αc, δc/δy, and γs,c,k,a, which together represent the “ductility characteristics” of the 

system. This section evaluates five SDOF systems with different ductility characteristics and no 

P-∆ effects, and another five identical systems with “small” P-∆ effect. The probabilistic 

parameters are αc, δc/δy, and γs,c,k,a  and the measure of dispersion is 

60.0lnlnln === γδα σσσ . Τhe correlation factor is set as 0.8 for all cases, i.e., ραγ = ραδ = -0.8 

and ρδγ = 0.8. 
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Figure 6.33 presents sensitivity results on collapse capacity for a peak-oriented model 

with intermediate “ductility” characteristics and no P-∆ effect. The system is similar to the 

reference system but has γs,c,k,a = 50 instead of 100. This modification intends to detect γs,c,k,a 

ranges that produce larger contributions to the variance of Sa,c/η. According to Figure 6.14, the 

dependence of collapse capacity is higher when the mean of γs,c,k,a is in the vicinity of 50 than 

when γs,c,k,a is in the neighborhood of 100. This is reflected in a slight increment in the 

contribution of 2
)(ln , γσ

caS  (Fig. 6.33a). However, 2
)(ln , ασ

caS  still overpowers the contribution of the 

other two parameters, as it does the contributions to the combined correlation, which for long 

periods is even larger than that of RTR variability. Figure 6.33b presents the 2
)(ln , RTRS ca

σ , 

2
)(ln , XS ca

σ , and 2
)(ln , TOTS ca

σ  for the system with intermediate ductility characteristics. For systems 

with no P-∆ effects, the combined uncertainty in all the system parameters usually becomes the 

most important contributor to 2
)(ln , TOTS ca

σ  for long-period systems. Also, for periods longer than 

about 0.6 s, the total variance of collapse capacity is essentially period independent and has a 

value close to 40.02
)(ln ,

=TOTS ca
σ . Clearly these results strongly depend on the assumed measure 

of dispersion of the system parameters, which is taken here as 60.0lnlnln === γδα σσσ . Figure 

6.33c shows the contributions of the correlation among parameters to the combined correlation. 

The contributions are essentially period independent, and αγ and δα correlations have the largest 

contributions because αc is the most important contributor of the three probabilistic parameters. 

Figure 6.34 presents contributions to the variance of collapse capacity for a similar 

system but with αc = -0.30. As observed, 2
)(ln , ασ

caS  is no longer the most important contributor to 

2
)(ln , TOTS ca

σ  due to the presence of a steeper post-capping stiffness. The large value of αc reduces 

2
)(ln , XS ca

σ  (Fig. 6.34b) and modifies the contributions from i,j correlations to the combined 

correlation (Fig. 6.34c). 

Contributions to the variance of collapse capacity for a peak-oriented model with no P-∆ 

effects and low ductility characteristics are shown in Figure 6.35. As can be seen, the 

contribution of 2
)(ln , ασ

caS  to 2
)(ln , TOTS ca

σ  is again the most important for a single parameter, whereas 

2
)(ln , γσ

caS is smaller compared with that of systems with intermediate ductility. Although this is the 
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most sensitive region for γ, the variation in post-capping stiffness overpowers the rest of the 

variations. Low ductility characteristics reduce the magnitude of 2
)(ln , TOTS ca

σ , which oscillates 

between 0.20 and 0.30 for most of the periods, except in the short-period range. 

The contributions to variance of (Sa,c/g)/η for a system with high ductility are presented 

in Figure 6.36. 2
)(ln , δσ

caS  greatly increases for this system, although 2
)(ln , ασ

caS still is the largest one. 

CD contributions are reduced compared with the system with intermediate ductility because the 

dependence of collapse capacity on CD is smaller for higher γ ’s. For T > 0.6 s, 2
)(ln , TOTS ca

σ  is 

essentially period independent with values slightly larger than 0.40. Note that the magnitude of 
2

)(ln , TOTS ca
σ  does not increase substantially compared with the system with intermediate “ductility” 

(Fig. 6.33). Regarding combined correlation, the results for systems with high ductility show that 

the ratio 2
)(ln , TcaS ρσ / 2

)(ln , XS ca
σ  increases when 2

)(ln , ασ
caS , 2

)(ln , γσ
caS , and 2

)(ln , δσ
caS  are similar, in 

accordance with Equation 6.12. 

Contributions to 2
)(ln , TOTS ca

σ  for a bilinear model with intermediate ductility features and 

no P-∆ effects are shown in Figure 6.37a. In this case, δc/δy is the parameter with the largest 

contributions to variance of collapse capacity. Figure 6.37b shows that 2
)(ln , TOTS ca

σ  decreases for 

bilinear models compared with equivalent results for peak-oriented models, particularly in the 

short- and medium-period range. 

The results for similar systems that include P-∆ = “0.1N” (see Section 4.3.6) are 

presented in Figures 6.38–6.42. The contributions to variance of collapse capacity are 

considerably modified. There is a large reduction in 2
)(ln , XS ca

σ , especially in the medium- and 

long-period ranges. The largest contributions to variance of collapse capacity come from 

uncertainties in ductility capacity and combined correlation, except for systems with low 

“ductility.” 2
)(ln , ασ

caS  is reduced because of the rotation of the entire backbone curve to include P-

∆ effects. CD contribution is even smaller when P-∆ effects are present. Also, 2
)(ln , TOTS ca

σ  is 

significantly reduced when P-∆ effects are included, especially in the long-period range. Most of 

this reduction comes from a decrease in 2
)(ln , XS ca

σ , whereas 2
)(ln , RTRS ca

σ  exhibits only small 

differences because of P-∆ effects. 
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In summary, combined correlation has the largest influence on 2
)(ln , TOTS ca

σ  for most of the 

systems. The P-∆ level of the system greatly modifies the variance of collapse capacity due to 

uncertainty in the system parameters. The contributions of any probabilistic parameter to 
2

)(ln , TOTS ca
σ  depend on the location of the mean of the parameter in the (Sa,c/g)/η - ix  relationship 

and on the ductility characteristics of all the other parameters.  

6.5 SENSITIVITY COMPUTATION FOR MDOF SYSTEMS USING FOSM 
METHOD 

2
)(ln , XS ca

σ  is computed for a set of generic frames designed with the strong column–weak beam 

philosophy, assuming that the columns are infinitely strong. The springs at the ends of the beams 

have a peak-oriented hysteretic model, δc/δy = 4, αc = -0.10, γs,c,k,a = 50 and no residual strength. 

The dispersion of system parameters is 60.0lnlnln === γδα σσσ  and the correlation among 

parameters is 80.0=ijρ .  

Contribution to variance of collapse capacity, correlations, and absolute variances are 

presented in Figures 6.43–6.45 for stiff frames (T1 = 0.1N, periods from 0.3–1.8 s). For these 

frames, αc is the system parameter with the largest influence on 2
)(ln , TOTS ca

σ , whereas the 

combined correlation is the most important contributor to 2
)(ln , XS ca

σ . The results for MDOF 

structures may be compared with those of the SDOF system that shares the same hysteretic 

properties of the springs at the beam ends of the frames21 (see small window in Figs. 6.43 and 

6.45). As observed, both SDOF and MDOF systems have 2
)(ln , XS ca

σ  contributions that account for 

about 40% of 2
)(ln , TOTS ca

σ . More than half of 2
)(ln , XS ca

σ  comes from combined correlations. 

The same results for flexible frames (T1 = 0.2N, periods from 0.6–3.6 s) are presented in 

Figures 6.44–6.46. For these frames, the parameter δc/δy gains on influence for long-period 

frames, whereas the influence of uncertainty in post-capping stiffness diminishes. 

                                                 

21  Rigorously, the equivalent SDOF system must be obtained from a global pushover analysis of the MDOF 
structure and taking into account the inelastic stability coefficient for computing the equivalent P-∆ effect. 



 
 205

Flexible frames may be compared with the region of the SDOF systems located between 

T = 0.6 and 3.6 s. The patterns for SDOF and MDOF systems are similar, but the contributions 

of uncertainty in the system parameters to the total variance are somewhat larger for MDOF 

systems. 

6.6 SUMMARY 

The first part of this chapter discusses the feasibility of applying the FOSM method for 

computing the variance of collapse capacity due to uncertainty in the system parameters. The 

most suitable alternatives for the implementation of the method are summarized below: 

• The computations of variance of collapse capacity are carried out in the log domain of the 

data. This option is preferred over computations in the linear domain of the data because 

high nonlinearities in the dependence of collapse capacity on the system parameter are 

usually reduced. Also, the results become less sensitive in a domain that makes the curves 

smoother. In addition, there are physical lower limits for the system parameters that are 

better modeled with a lognormal distribution. 

• The derivative of the function “g” used in the FOSM formulation is approximated with 

the slope of a straight line that connects two pairs of system parameters and 

corresponding collapse capacities. The two-side approach, in which the selected points 

are located at about the same distance from the mean [ )exp( lnln1 xx nx σµ −=  and 

)exp( lnln2 xx nx σµ += ] is a better option than using the mean value and the mean plus 

some increment (one-side approach). In any case, if the one-side approach is employed, 

the increment should be taken in the “direction of interest.” 

• The preferred increment is about one standard deviation to capture some of the nonlinear 

behavior of the function over a range of likely values. Larger increments may produce 

biased results due to nonlinearities of the function, and smaller increments become 

sensitive to numerical variations of computed collapse capacities. 

• Calculation of the contribution to variance of collapse capacity due to uncertainty in the 

system parameters ( 2
)(ln , XS ca

σ ) is very sensitive to the assumed dispersion of the system 

parameters. Better knowledge of the behavior of components after the yielding point will 

reduce this dispersion significantly 
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• Monte Carlo simulation was used to verify some results obtained by using the FOSM 

method. If a lognormal distribution is assumed for the system parameters, the results for 

both techniques are very similar, since the dependence of collapse capacity on the system 

parameters is generally smooth. A function can be fitted to this relationship eliminating 

the necessity of carrying out a THA for each realization.  

In the second part, a sensitivity study is carried out with representative SDOF systems 

and a set of MDOF generic frames. 

• The variance of collapse capacity due to uncertainty in the system parameters ( 2
)(ln , XS ca

σ ) 

may be larger than the variance due to RTR variability, 2
)(ln , RTRS ca

σ . This occurs for long-

period systems with no P-∆ effects and for 60.0lnlnln === γδα σσσ  and 8.0, =jiρ . In 

the short-period range, 2
)(ln , XS ca

σ  is small. Total variance of collapse capacity ( 2
)ln(TOTσ ) 

ranges from about 0.20 for systems with low ductility to more than 0.40 for systems with 

high ductility. 

• Variance of collapse capacity is very sensitive to variations of αc for peak-oriented 

models with P-∆ = 0. The ratio of 2
)(ln , ασ

caS over 2
)(ln , RTRS ca

σ  is similar for systems with low 

and high ductility.  For bilinear models 2
)(ln , ασ

caS  is less important because once the 

loading path is on the negative slope of the backbone curve, it is more difficult to avoid 

collapse and the value of the negative slope is less relevant. 

• If high correlation is considered among parameters ( 8.0, =jiρ ), the contribution to 

variance of collapse capacity due to correlation among parameters ( 2
)(ln , TcaS ρσ ) is the 

largest component from uncertainty in the system parameters ( 2
)(ln , XS ca

σ ), particularly for 

systems with no P-∆ effects. 

• If P-∆ effect is included, 2
)(ln , ασ

caS  is reduced, especially for long-period systems where 

larger stability coefficients produce larger negative slopes. Then the largest contribution 

to total variance of collapse capacity comes from δc/δy ( 2
)(ln , δσ

caS ). 

• Ductility capacity (δc/δy) is the parameter with largest influence for systems with high 

ductility. This is particularly true for systems including P-∆ effects. 
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• The variance of collapse capacity due to uncertainty in CD ( 2
)(ln , γσ

caS ) usually is small. 

For slow rates of CD (large γs,c,k,a’s) the dependence of collapse capacity on γs,c,k,a is very 

small. Although the dependence increases for faster rates of CD (small γs,c,k,a’s, (Fig. 

6.14), the influence of CD is overpowered by other factors such as the post-capping 

stiffness coefficient and P-∆ effects. 

• The variance of collapse capacity is computed for a set of stiff and flexible generic 

MDOF frames. A comparison of 2
)(ln , XS ca

σ  for stiff and flexible frames with the same 

fundamental period reveals that additional factors, such as the number of stories and P-∆ 

effects, have an important influence on the variance of collapse capacity. 

• The results for variance of collapse capacity of MDOF structures were compared with 

those of SDOF systems that have the same hysteretic properties of the springs of the 

generic frames. Although these are not “precise” equivalent SDOF systems, the results 

suggest that sensitivity studies on SDOF systems are useful to detect most of the 

important trends in the computation of 2
)(ln , XS ca

σ  for regular MDOF structures. 
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Fig. 6.1  Approximations of derivative xxg ∂∂ /)(  for computing 2
)(ln , XS ca

σ  using the 
FOSM method 

 

(Sa/g)/η at COLLAPSE vs PERIOD
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=Var, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.2 Collapse capacity spectra for different αc values; δc/δy = 4, slow CD 
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(Sa/g)/η at COLLAPSE vs αc
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=Var, δc/δy=4, γs,c,a=100, γk=200, λ=0
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(a) Periods from T = 0.1 to 1.0 s                      (b) Periods from T = 1.2 to 4.0 s 

Fig. 6.3  Dependence of median (Sa,c/g)/η on αc in the linear domain of the data; δc/δy = 4, 
slow CD 
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(a) Periods from T = 0.1 to 1.0 s                      (b) Periods from T = 1.2 to 4.0 s 

Fig. 6.4  Dependence of median (Sa,c/g)/η on αc in the log domain of the data; δc/δy = 
4, slow CD 
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Var[ln Sa,c(α)] and Var[ln Sa,c(RTR)]
σlnα = 0.60, Derivative with µlnα and µlnα + σlnα, P-∆=0,
P.O. Model, LSMR-N, αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=100 
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Fig. 6.5  2

)(ln , ασ
caS  and 2

)(ln , RTRS ca
σ  for reference SDOF system22, derivative based on 

)exp( ln1 αµ=x  and )exp( lnln2 αα σµ +=x  
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Fig. 6.6  Effect on 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α of the increment used for computing the 

derivative; reference SDOF system, )exp( ln1 αµ=x  and )exp( lnln2 αα σµ nx +=  

 

                                                 

22   Section 6.2.4 contains the definitions of contributions to variance of collapse capacity such as 2
)(ln , ασ

caS . 
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DERIV. EFFECT ON Var[ln Sa,c(α)] / Var[ln Sa,c(RTR)] 
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnα=0.60 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.7  Effect on 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ α  of the increment used for computing the 

derivative; reference system, )exp( lnln1 αα σµ nx −=  and )exp( lnln2 αα σµ nx +=  
 

EFFECT OF σlnα ON Var[ln Sa,c(α)] / Var[ln Sa,c(RTR)] 
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnα=Var 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.8  Effect of the assumed ασ ln  on 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ α  ratios; reference SDOF 

system, derivatives based on )exp( lnln1 αα σµ −=x  and )exp( lnln2 αα σµ +=x  
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(Sa/g)/η at COLLAPSE vs PERIOD
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=Var, γs,c,a=100, γk=200, λ=0
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Fig. 6.9 Collapse capacity spectra for different (δc/δy –1); αc = -0.10, slow CD 
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(a) Linear Domain of the Data     (b) Log Domain of the Data 

Fig. 6.10  Dependence of median (Sa,c/g)/η on δc/δy; αc = -0.10, slow CD,  periods from T 
= 0.1–1.0 s 
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DERIV. EFFECT ON Var[ln Sa,c(δ)] / Var[ln Sa,c(RTR)]
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnδ=0.60 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.11  Effect on 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ δ  of the increment used for computing the 

derivative; reference system, )exp( lnln1 δδ σµ nx −=  and )exp( lnln2 δδ σµ nx +=  
 

EFFECT OF σlnδ ON Var[ln Sa,c(δ)] / Var[ln Sa,c(RTR)]
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnδ=Var
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Fig. 6.12  Effect of the selected δσ ln  on 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ δ  ratios; reference SDOF 

system, derivatives based on )exp( lnln1 δδ σµ −=x  and )exp( lnln2 δδ σµ +=x  
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(Sa/g)/η at COLLAPSE vs PERIOD
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Var, γk=Var, λ=0
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Fig. 6.13 Collapse capacity spectra for different CD rates; δc/δy = 4, αc = -0.10 
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Fig. 6.14  Dependence of median (Sa,c/g)/η on γs,c,k,a; αc = -0.10, δc/δy= 4, periods from T = 
0.1–1.0 s 
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DERIV. EFFECT ON Var[ln Sa,c(γ)] / Var[ln Sa,c(RTR)]
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnγ=0.60

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.15  Effect on 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ γ  of the increment used for computing the 

derivative; reference system, )exp( lnln1 γγ σµ nx −=  and )exp( lnln2 γγ σµ nx +=  

EFFECT ON σlnγ ON Var[ln Sa,c(γ)] / Var[ln Sa,c(RTR)]
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnγ=Var
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Fig. 6.16  Effect of the selected γσ ln  on 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ γ  ratios; reference SDOF 

system, derivatives based on )exp( lnln1 γγ σµ −=x  and )exp( lnln2 γγ σµ +=x  
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Var[ln Sa,c(X)] / Var[ln Sa,c(RTR)] RATIOS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, σlnX=0.60

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.17  2

)(ln
2

)(ln ,,
/ RTRSXS caica
σσ ratios for different system parameters; derivatives based 

on )exp( lnln1 xxx σµ −=  and )exp( lnln2 xxx σµ += , reference system 
 

 

CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60
P.O. Model, P-∆=0, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200
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Fig. 6.18  Contribution of uncertainty in system parameters to 2

)(ln , TOTS ca
σ ; reference 

system, no correlation included 
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CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρi,j=0.5
P.O. Model, P-∆=0, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200
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Fig. 6.19  Contribution of uncertainty in system parameters to 2

)(ln , TOTS ca
σ ; reference 

system, low correlation included 
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Fig. 6.20 Contribution of ij correlation to combined correlation, 5.0, =jiρ  
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CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρi,j=0.8
P.O. Model, P-∆=0, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200
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Fig. 6.21  Contribution of uncertainty in system parameters to 2

)(ln , TOTS ca
σ ; reference 

system, high correlation included 
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σlnXi=0.60, ρi,j=1.0, P. O. Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.22 2

)(ln , RTRS ca
σ , 2

)(ln , XS ca
σ  and 2

)(ln , TOTS ca
σ ; reference system, full correlation 
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Var[ln Sa,c(TOT)], σlnXi=0.60, ρi,j=1.0, 
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.23  Comparison of 2

)(ln , TOTS ca
σ  obtained with FOSM method by considering 

explicit and non-explicit contribution of system parameters, full correlation 
 

 

MEDIAN (Sa,c/g)/η, Monte Carlo Simulation, T = 0.6 s
Log Dist, Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0 

αs=0.03, αc=Var, δc/δy=Var, γs,c,a=Var, γk=Var, λ=0
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Fig. 6.24  Dependence of median (Sa,c/g)/η on αc. Monte Carlo simulation with 

uncertainty in αc and in the three probabilistic system parameters, T = 0.6 s 
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MEDIAN (Sa,c/g)/η, Monte Carlo Simulation, T = 0.6 s
Log Dist, Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0 

αs=0.03, αc=Var, δc/δy=Var, γs,c,a=Var, γk=Var, λ=0
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Fig. 6.25  Dependence of median (Sa,c/g)/η on δc/δy; Monte Carlo simulation with 

uncertainty in δc/δy and in the three probabilistic system parameters, T = 0.6 s 
 

 

MEDIAN (Sa,c/g)/η, Monte Carlo Simulation, T = 0.6 s
Log Dist, Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0 
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Fig. 6.26  Dependence of median (Sa,c/g)/η on γs,c,k,a; Monte Carlo simulation with 

uncertainty in γs,c,k,a and in the three probabilistic system parameters, T = 0.6 s 
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(Sa/g)/η vs PROBABILITY OF COLLAPSE, T=0.6 s
Assumed Log Dist., P. O. Model, LMSR-N, ξ=5%, P-∆=0

 αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=100
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Fig. 6.27  Comparison of fragility curves obtained from counted and fitted 

lognormal distributions of 2
)(ln , ασ

caS  
 

 

(Sa/g)/η vs PROBABILITY OF COLLAPSE, T=0.6 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0
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Fig. 6.28 Fragility curves from fitted lognormal distributions for 2

)(ln , ασ
caS  and 2

)(ln , XS ca
σ  
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VAR[ln Sa,c(Xi)], FOSM & MONTE CARLO METHODS 
σlnXi=0.60, ρi,j=1.0, P.O. Model, LMSR-N, ξ=5%, P-∆=0, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.29  Comparison of 2

)(ln , ica XSσ  obtained with FOSM (solid lines) and Monte 
Carlo simulation, reference system, full correlation 

 
 

(Sa/g)/η at COLLAPSE vs αc, T = 0.5 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=Var, δc/δy=4, γs,c,a=100, γk=200, λ=0
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(a) Fitting with Exponential Curve              (b) Linear Regression 

Fig. 6.30 Regression for dependence of (Sa,c/g)/η on αc at T = 0.5 s, reference SDOF system 
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MONTE CARLO SIMULATION, T=0.5 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=Var, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.31  Histogram of 2

)(ln , ασ
caS from Monte Carlo simulation; reference SDOF 

system, T = 0.5 s 
 

 

Var[ln Sa,c(α)] / Var[ln Sa,c(RTR)] RATIOS
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. 6.32  Comparison of 2

)(ln
2

)(ln ,,
/ RTRSS caca
σσ α  ratios for FOSM method and 

approximation from linear regression, reference SDOF system 



 
 224

 
CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρij=0.8

P.0., P-∆=0, αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=50, γk=100
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(a) Contributions to 2
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σ  (b) 2

)(ln , RTRS ca
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σ  and 2
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σ  

 
CONTRIB. OF i,j CORRELATION TO COMBINED CORR.

ρij=0.8, P.O., P-∆=0, αs=0.03, αc=-0.10, δc/δy=4, γs,c,a,k=50 
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(c)  i,j Correlation / Combined Correlation 
 

Fig. 6.33  Contributions to variance of (Sa,c/g)/η for a peak-oriented system with 
intermediate ductility, no P-∆ 
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CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρij=0.8
P.0., P-∆=0, αs=0.03, αc=-0.30, δc/δy=4, γs,c,a=50, γk=100
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   (c)  i,j Correlation / Combined Correlation 
 

Fig. 6.34  Contributions to variance of (Sa,c/g)/η for a peak-oriented system with δc/δy = 
4, αc = -0.30, γs,c,k,a = 50, no P-∆ effects 
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CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρij=0.8
P.0., P-∆=0, αs=0.03, αc=-0.30, δc/δy=2, γs,c,a=25, γk=50
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Fig. 6.35  Contributions to variance of (sa,c/g)/η for a peak-oriented system with low 
ductility, no P-∆ 
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Fig. 6.36  Contributions to variance of (sa,c/g)/η for a peak-oriented system with high 
ductility, no P-∆ 
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Bilinear, P-∆=0, αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=50, γk=100
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Fig. 6.37  Contributions to variance of (sa,c/g)/η for a bilinear system with 
intermediate ductility, no P-∆ 
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CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρij=0.8
P.0., P-∆=0.1N, αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=50, γk=100
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Fig. 6.38  Contributions to variance of (sa,c/g)/η for a peak-oriented system with 
intermediate ductility, small P-∆ 
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Fig. 6.39  Contributions to variance of (Sa,c/g)/η for a peak-oriented system with δc/δy 
= 4, αc = -0.30, γs,c,k,a = 50, small P-∆ 
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Fig. 6.40  Contributions to variance of (sa,c/g)/η for a peak-oriented system with low 
ductility, small P-∆ 
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Fig. 6.41  Contributions to variance of (sa,c/g)/η for a peak-oriented system with high 
ductility, small P-∆ 
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Fig. 6.42  Contributions to variance of (sa,c/g)/η for a bilinear system with 

intermediate ductility, small P-∆ 
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CONTRIBUTION TO Var[ln Sa,c(TOT)], σlnXi=0.60, ρij=0.8
P.0., T1=0.1N, BH, αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=50, γk=100
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Fig. 6.43  Contributions to 2

)(ln , TOTS ca
σ  for set of MDOF systems with T = 0.1N and 

springs at ends of beams with intermediate ductile characteristics 
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Fig. 6.44  i,j correlation / combined correlation for set of MDOF systems with T = 0.1N

and springs at ends of beams with intermediate ductile characteristics 
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VAR OF LOG OF (Sa,c/g)/η, σlnXi=0.6, ρi,j=0.8, T1 = 0.1N
N = Var, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=50, γk=100, λ=0
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Fig. 6.45  2

)(ln , RTRS ca
σ , 2

)(ln , XS ca
σ  and 2

)(ln , TOTS ca
σ  for set of MDOF systems with T = 0.1N 

and springs at ends of beams with intermediate ductile characteristics 
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Fig. 6.46  Contributions to 2

)(ln , TOTS ca
σ  for set of MDOF systems with T = 0.2N and 

springs at ends of beams with intermediate ductile characteristics 
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CONTRIB. OF i,j CORRELATION TO COMBINED CORR. 
ρij=0.8, P.O., T1=0.2N, αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=50, γk=100 
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Fig. 6.47  i,j correlation / combined correlation for set of MDOF systems with T = 0.2N 

and springs at ends of beams with intermediate ductile characteristics 
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Fig. 6.48  2

)(ln , RTRS ca
σ , 2

)(ln , XS ca
σ  and 2

)(ln , TOTS ca
σ  for set of MDOF systems with T = 0.2N and 

springs at ends of beams with intermediate ductile characteristics 

 



7 Fragility Curves and Mean Annual Frequency 
of Collapse 

7.1. INTRODUCTION  

In seismic performance assessment, collapse constitutes one of several limit states of interest, 

such as a limit state that contributes to the cost of damage, if monetary losses or downtime are 

performance targets. In this context collapse could be viewed as a damage measure for which it 

is useful to develop fragility curves (FCs). In addition, collapse is the main source of casualties 

and loss of lives. In this context, collapse is an intermittent decision variable that could be 

described by the mean annual frequency (MAF). 

This chapter explores alternatives for representing FCs based on computed collapse 

capacities and the effect that different system properties have on these curves. Previous to the 

presentation of the MAF of collapse, approximated hazard curves (HCs) for a specific site are 

introduced, which are derived from equal hazard spectra. Numerical integration is used for 

combining the FCs and HCs to obtain the MAF of collapse for a given site. The advantages of 

computing the MAF of collapse by using FCs derived directly from collapse capacities instead of 

EDPs associated with collapse are discussed. 

1.1 7.2 COLLAPSE FRAGILITY CURVES (FCs)  

A fragility function for a limit state expresses the conditional probability of exceeding the limit 

state capacity for a given level of ground motion intensity. The objective of this study is to 

evaluate the limit state of collapse by using the spectral acceleration at the fundamental period of 

the system as the ground motion intensity. Thus, the FC for these conditions is: 

][][)( ,,, ,
xSPxSSSPxF caacaaSC ca

≤==≥=      (7.1) 
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)(
,, xF
caSC  corresponds to the value of the fragility curve (FC) at spectral acceleration, x, 

for the limit state of collapse, i.e., the “collapse fragility curve.” By considering that the demand 

(Sa = x) is statistically independent of the capacity of the system (Sa,c), the FC can be expressed 

as the probability that Sa,c is less than or equal to x. The collapse FC can be viewed also as the 

cumulative distribution function (CDF) of a random variable, the collapse capacity, Sa,c. 

In previous chapters, “collapse capacity” has been used as the parameter for collapse 

evaluation. This normalized parameter is defined as the ratio of the ground motion intensity to a 

structural strength parameter when collapse occurs ([(Sa/g)/η]c for SDOF systems and 

{[Sa(T1)/g]/γ}c for MDOF systems23]. Therefore, it is possible to generate “normalized collapse 

fragility curves” by using this normalized parameter instead of the ground motion intensity. For 

SDOF systems, normalized collapse FCs are obtained by modifying Equation 7.1 as follows: 

]/)/[()( ,/)/(, ,
xgSPxF cagSC ca

≤= ηη                       (7.2) 

One of the advantages of assessing collapse based on the relative intensity (collapse 

capacity) is that the parameter can be easily de-normalized and plugged directly in Equation 7.1 

(see Section 7.2.4.).  

7.2.1 Normalized Counted Collapse Fragility Curves 

Counted collapse fragility curves are obtained by treating the collapse capacity data as a random 

sample, i.e., equally likely outcomes. For instance, if the limit state of collapse is evaluated for a 

system subjected to 40 ground motions, the probability of collapse increases by 1/40 (0.025) 

after each individual collapse occurs. 

Data of the type shown in Figure 2.4 are utilized to develop normalized collapse fragility 

curves, which describe the probability of collapse given the value of (Sa/g)/η (or [Sa(T1)/g]/γ  for 

MDOF systems). Typical results of counted fragility curves are presented in Figure 7.1a for 

SDOF systems of various periods but with the same baseline hysteretic properties: 

• Peak-oriented model 

• Medium ductility capacity, δc/δy = 4 

                                                 
23  For the sake of simplicity, collapse capacity is also expressed as (Sa,c/g)/η for SDOF systems and 

[Sa,c(T1)/g]/γ  for MDOF systems. 
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• Small post-capping stiffness, αc = -0.10 

• No cyclic deterioration, γs,c,k,a = infinite 

As observed, normalized collapse fragility curves are very similar for SDOF systems 

with these hysteresis properties and periods longer than about T = 0.6 s. This is expected from 

observing that median collapse capacities for SDOF systems with P-∆ = 0.1N are essentially 

period independent for periods longer than about T = 0.6 s (Fig. 4.32a). Figure 7.1b presents 

fragility curves for systems with the same natural period T = 0.6 s, but different hysteretic 

properties. As can be seen, probability of collapse is very sensitive to hysteretic properties.   

7.2.2 Normalized Collapse Fragility Curves Obtained by Fitting Lognormal Distribution 
to Data 

Counted FCs are based on the real distribution of the sample data but are difficult to incorporate 

into analytical formulations. For this reason, a lognormal distribution is fitted to collapse 

capacity data and, although it is an approximation of the distribution of the sample data, it 

facilitates numerical and analytical calculations. The lognormal distribution is a logical selection 

for several reasons: (a) most of the individual collapse capacity data have a skewed distribution 

with a longer tail for upper values (Fig. 2.4 and 2.5 and Appendix C for a goodness-of-fit test), 

(b) collapse capacity values are always positive and, (c) previous studies have associated the 

distribution of spectral acceleration and the response of a nonlinear structure (in terms of EDPs) 

to lognormal distributions (Shome and Cornell, 1999). 

Figure 7.2 presents FCs for different SDOF systems. The irregular curves are obtained 

from the ordered data points (counted FCs), whereas the smooth curves are the result of fitting a 

lognormal distribution to the data, which fits the data rather well. For this reason in the 

subsequent graphs for MDOF frames only the fitted distributions are shown.  

The dependence of the fragility curves on the system period is presented in Figure 7.2a 

for SDOF systems with baseline hysteretic properties. As observed, for a given relative intensity 

the systems with short period have a higher probability of collapse. On the other hand, Figure 

7.2b presents FCs for SDOF systems with the same elastic period (T = 0.6 s.) but different 

hysteretic properties. This figure shows the large sensitivity of the probability of collapse to the 

hysteretic properties, emphasizing the importance of “ductility” in the prevention of collapse.  
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The FCs of Figure 7.2b can be used for obtaining collapse capacity ratios for different 

probabilities of collapse, i.e., over the entire range of probabilities of collapse, the relative 

intensity of each FC is normalized by the relative intensity of the FC corresponding to the most 

ductile system (Fig. 7.3). The collapse capacity ratios obtained from the counted FCs are 

essentially independent of the probability of collapse in the range of 0.20–0.80. This indicates 

that the dispersion in the collapse capacity is approximately the same for each case. This 

observation may justify the extrapolation of the conclusions obtained from median collapse 

capacities ratios in Chapters 4 and 5 to other probabilities of collapse. In the case of the collapse 

capacity ratios obtained from fitted lognormal distributions, there is a clear pattern of a decrease 

in collapse capacity ratios for higher probabilities of collapse. In any case, the aforementioned 

extrapolation still would be feasible because the difference between the collapse capacity ratios 

at the probability of collapse of 0.50 and probabilities of collapse in the range from 0.20–0.80 is 

relatively small. 

7.2.3 De-normalization of Collapse Fragility Curves 

In most of this study, collapse capacities are based on the maximum relative intensity (Sa/g)/η  

(or [Sa(T1)/g]/γ  for MDOF systems) that the system may resist. However, to compute the MAF 

of collapse, these curves need to be de-normalized by a specific strength of the structural system. 

That is to say, the structural strength parameter (γ or η) should remain constant. As an 

illustration, Figure 7.4 presents de-normalized FCs for an SDOF system with baseline hysteretic 

properties under different base shear strengths. As can be seen, for a given probability of 

collapse the spectral acceleration at collapse decreases proportionally to the decrease in the 

strength of the system. Observe that for large shear strength values it is possible to anticipate 

small values of the MAF of collapse. For instance, for the system with η = 1, the probability of 

collapse is only of about 5% at the very large spectral acceleration Sa/g = 3. Therefore, the 

combination of this FC with any reasonable HC for a given site will result in a low MAF of 

collapse because the annual rate of exceedance of a ground motion with Sa/g ≥  3 will be very 

small. 
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7.2.4 Collapse Fragility Curves for MDOF Frames with Parameter Variations 

Figure 7.5 presents FCs for MDOF systems that can be compared directly to the SDOF fragility 

curves of Figure 7.2a. These curves are obtained for generic frames with beam-hinge 

mechanism, in which the hysteretic properties of the springs at the end of the beams correspond 

to the baseline structural properties (see Chapter 5 for a description of the generic frames). The 

four-digit code identifies the number of stories and the first mode period of each frame, i.e., 0918 

means a 9-story frame with T1 = 1.8 s.   

Figure 7.5 shows a pattern equivalent to that exhibited in the median collapse capacity 

spectra of MDOF systems (Chapter 5), of high fragility (small collapse capacity) for short period 

structures (T1 = 0.3 s.), a large decrease in the fragility for medium period structures (T1 = 0.6 

and 0.9 s.), and then an increase in fragility for long-period structures (T1 = 1.8 and 3.6 s.) 

because of the predominance of P-∆ effects. 

The effects of ductility capacity and post-capping tangent stiffness are illustrated in 

Figures 7.6–7.7 for four frames with the first mode period varying from 0.3 s–3.6 s. An increase 

in the ductility capacity shifts the fragility curves to the right, but not by an amount proportional 

to the increase in ductility capacity. An increase in the slope of the post-capping tangent stiffness 

(from flat to steep) has a very detrimental effect on the fragility.   

In concept, all observations that have been made previously for median collapse 

capacities hold true for the FCs. The value of these curves lies in their probabilistic nature that 

permits probabilistic expressions of performance and design decisions. For instance, if for a 

given long return period hazard (e.g., 2/50 hazard) a 10% probability of collapse could be 

tolerated, then the intersections of a horizontal line at a probability of 0.1 with the individual 

fragility curves provides targets for the R-factor that should be employed in design, in 

conjunction with the spectral acceleration associated with this hazard. If such horizontal lines are 

drawn in the graphs of Figures 7.6–7.7, it can be conjectured that the indicated R-values are low, 

even for rather ductile systems. 

The second value of the fragility curves lies in the opportunity they provide for a rigorous 

computation of the MAF of collapse. 
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1.2 7.3 SPECTRAL ACCELERATION HAZARD  

Information about the seismic hazard is necessary in order to obtain the MAF of collapse. 

Generally seismic hazard is reported in terms of 5%-damped spectral acceleration at the 

fundamental period of the system, )( 1TSa , which becomes the ground motion intensity measure 

(IM). Hazard curves (HCs) report the mean annual frequency of exceeding a particular spectral 

acceleration for a given period and damping ratio.  

Seismologists usually provide spectral acceleration hazard curves for a given site. This 

information may be approximated by a power-law relationship in the region of interest (FEMA 

355C, 2000; Luco, 2002; Jalayer, 2003):  

             [ ] k
oIM xkxIMPx −=≥=)(λ       (7.3) 

or specifically: 

 [ ] k
aoaaaTS SkSTSPS

a

−=≥= )()( 1)( 1
λ                               (7.4) 

)()( 1 aTS S
a

λ is defined here as the MAF of the ground motion having a spectral response 

acceleration at the fundamental period of the system greater than Sa. For the small probabilities 

of interest here it is numerically equal to the annual probability of exceedance. The parameter ko 

is a constant that depends on the seismicity of the site and k approximates the local slope of the 

hazard curve, in the log domain, around the return period of interest. The slope of the hazard 

curve is a function of the hazard level, location and response period.  

To illustrate the computation of MAF of collapse, HCs for various periods are 

approximated from the equal hazard spectra employed in PEER studies for a Los Angeles 

building (Somerville and Collins, 2002) (Fig. 7.8). The equal hazard spectra for the site were 

derived from the USGS probabilistic ground motion maps for rock site conditions. Spectra for 

soil site conditions were generated from the rock site spectra by using the Abrahamson and Silva 

(1997) ground motion model. These curves represent an equal probability of exceeding the 

ground motion at any period for 50/50, 10/50, and 2/50 hazard levels. The hazard levels are 

based on a probability of exceedance in a 50-year period. For instance, 10/50 refers to the 

probability of exceedance of 10% in 50 years (1/475). 

The values at each period are used to derive power-law relationships of the type of 

Equation 7.2. Several reasonable approaches could be proposed for this purpose. The simplest 

one is to approximate the hazard curve in the region of interest with a straight line in the log-log 
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domain of spectral acceleration and probability of exceedance. A linear regression analysis is 

used to fit the straight line (Fig. 7.9). The use of the three hazard levels “averages” the 

probability of exceedance over all the possible spectral acceleration values, which is convenient 

for the example of Section 7.4 because the region of interest for the MAF of collapse changes 

according to the period and the ductility characteristics of the system. 

Figure 7.10 presents some of the hazard curves derived from the equal hazard spectra. As 

can be seen, the annual frequency of exceedance has reasonable limits even for small spectral 

accelerations, which usually does not occur when the approximation is made only with the 10/50 

and 2/50 hazard levels. However, note that the probabilities of exceedance of the approximated 

HCs may be overestimated for large spectral accelerations because the linear regression flattens 

the HCs in this region. For this reason, in the computation of the MAF of collapse, the HCs are 

terminated at Sa/g = 3.  

1.3 7.4 MEAN ANNUAL FREQUENCY OF GLOBAL COLLAPSE  

7.4.1 Formulation 

The MAF of collapse ( cλ ) can be calculated once the de-normalized FCs of the system and HCs 

for the site of interest are known. The MAF of collapse is expressed as the mean annual 

frequency of the strong motion intensity (Sa) being larger than the collapse capacity (expressed 

as a function of Sa,c given η) multiplied by the probability of having such a strong motion 

intensity: 

∫
∞

=>=
0

, ).(.].[ dxxfvxSSSP
aSacaacλ             (7.5) 

where, )(xf
aS  is the probability density function (PDF) at the spectral acceleration value x given 

an event of interest, and v represents the annual rate of the occurrence of such events (rate of 

seismicity). In Section 7.2 the first term of the integral was defined as the collapse fragility 

curve. Therefore:  

∫
∞

=
0

, ).(.).(
,

dxxfvxF
aca SSCcλ               (7.6) 
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The PDF of the spectral acceleration value can be expressed in terms of the 

complementary cumulative distribution (CCDF) function (Jalayer, 2003): 

dx
xdG

xf a

a

S
S

)(
)( =        (7.7) 

In this equality, the CCDF [ )(xG
aS ] is the probability of exceeding a certain value, whereas the 

CDF [ )()()( xdxfxF
aa SS = ] is the probability of being less than or equal to a certain threshold. 

Therefore, their corresponding derivatives are equal in absolute values but have opposite signs. 

By substituting Equation 7.7 in 7.6: 

∫
∞

=
0

, )(.).(
,

xdGvxF
aca SSCcλ               (7.8) 

In addition, the spectral acceleration hazard, )(xd Saλ , is equal to: 

)(.)( xdGvxd
aSa =λ         (7.9) 

by substituting Equation 7.9 in 7.8: 

∫
∞

=
0

, )().(
,

xdxF aSCc ca
λλ                        (7.10) 

Equation 7.10 explicitly expresses the MAF of collapse in terms of the collapse fragility curve 

for a given median base shear strength over a Sa hazard curve pertaining to a specific site. The 

process of integrating Equation 7.10 has been illustrated graphically in Figure 2.10.  

Note that this approach is more straightforward than the methodology for computing 

collapse based on displacement demands and capacities. The “EDP-based approach” 

decomposes the collapse limit state into two steps and requires an additional integration (Jalayer, 

2003). First, the EDP hazard is obtained as the probability of exceeding a demand threshold 

given that the IM is equal to a certain value, x. In a second step, the probability of collapse is 

obtained as the likelihood of having an EDP demand hazard larger than the EDP capacity. Thus, 

it is concluded that the evaluation of global collapse based on the relative intensity of the system 

facilitates the computation of the mean annual frequency of collapse. 
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7.4.2 Computation of Mean Annual Frequency of Collapse for a Specific Site, SDOF 
Systems 

The example presented in this section illustrates the methodology to compute the MAF of 

collapse for various periods and selected strength levels, η. It also permits a gross quantification 

of the effect of several parameters on the MAF of collapse.  

Collapse FCs for SDOF systems with baseline hysteretic properties and P-∆ = 0.1N are 

shown in Figure 7.11 for different periods and for a yield strength coefficient η = 0.2. As can be 

seen, in the period range of T = 0.1 to 2.0 s, the longer the period the larger the spectral 

acceleration that leads to collapse for a given probability of collapse. This fact will be reflected 

in smaller MAF of collapse for SDOF systems with longer periods. 

The FCs of Figure 7.11 and the HCs obtained from the equal hazard spectra (Section 7.3) 

are utilized for solving Equation 7.10 by numerical integration. The result of this integration is 

represented graphically in Figure 7.12, where a curve for MAF of collapse due to xSa =  is 

obtained for T = 0.5 s. Figure 7.13 shows more of these curves for systems with different 

periods. The diamonds on the FCs of Figure 7.11 indicate the spectral acceleration at which the 

peaks of the curves for MAF of collapse due to xSa =  occur. For this example, all the peaks are 

located at the spectral acceleration region at which the FC begins to build up, and where the 

probability of collapse is about 0.20.  

The areas under the curves of Figure 7.13 corresponds to the MAFs of collapse, which 

are plotted in Figure 7.14 for several periods and different strengths for SDOF systems with the 

baseline hysteretic properties. The MAFs of collapse illustrate general trends and are the product 

of a rigorous computational process. Observe that the MAF of collapse may differ by several 

orders of magnitude for systems with the same properties but different yield strength.  

A comparison of MAFs of collapse for systems of different hysteretic properties, given   

η = 0.2, is presented in Figure 7.15. The figure shows that the MAF of collapse can increase by 

more than one order of magnitude due to the ductile characteristics of the system. Figures 7.14–

7.15 show a strong dependence of the MAF of collapse on the natural period of SDOF systems 

with otherwise identical properties. 

Effect of Uncertainty in System Parameters. An SDOF system with baseline properties 

but γs,c,k,a = 50 is utilized for computing the MAF of collapse including uncertainty in system 
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parameters. Figure 6.33 presents the contribution of uncertainty in system parameters to variance 

of collapse capacity for the aforementioned system. This contribution can be larger than that due 

to RTR variability. The MAF of collapse for this system is presented for different periods and 

two different strengths in Figure 7.16. As can be seen, the additional variance increases the MAF 

of collapse by about 50–100% compared with the case where RTR variability is the only source 

of uncertainty. 

The total variance in collapse capacity due to RTR variability and uncertainty in the input 

parameters may increase the MAF of collapse several times. Figure 7.17 presents MAFs of 

collapse for the former systems with η = 0.2, considering deterministic SDOF systems, systems 

with dispersion due to RTR variability, and systems with dispersion due to RTR variability plus 

uncertainty in the system parameters. If it were possible to calculate the collapse capacity of the 

system in a deterministic way, the MAF of collapse would decrease by more than a factor of four 

at some periods. 

7.4.3 Computation of Mean Annual Frequency of Collapse for a Specific Site, MDOF 
Systems 

The study of MAF of collapse for the generic frames of Chapter 5 is divided into MAFs for stiff 

and flexible frames. Figure 7.18 shows the FCs of the stiff frames (T1 = 0.1N) for a base shear 

strength γ = 0.2 24. Unlike SDOF systems with P-∆ = 0.1N (small P-∆), the collapse FCs are 

sensitive to variations of the fundamental period of the system over the full range of periods of 

interest. The main reason for this trend is the large P-∆ effect for systems with long fundamental 

period. This phenomenon is not observed in SDOF systems with small P-∆ effects because the 

elastic stability coefficient utilized in these systems does not capture the large P-∆ effects of the 

generic frames with long fundamental period. 

The combination of FCs of Figure 7.18 with the corresponding HCs results in the MAFs 

of collapse shown in Figure 7.19 for several strength levels. The curves are for stiff MDOF 

systems with beam-hinge mechanism and baseline hysteretic properties in the springs of the 

beams. Figures 7.20–7.21 show equivalent FCs and MAFs of collapse but for flexible frames. 

                                                 
24   The fundamental period for some generic frames does not coincide with the periods evaluated by Somerville and 
Collins. In these cases, the seismic hazard information has been obtained by interpolating the data of the existing 
periods. 
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Figure 7.22 presents the MAFs of collapse for stiff and flexible frames for two different 

strengths. 

A comparison of Figures 7.19 and 7.21 for MDOF systems with the MAFs of Figure 7.14 

(SDOF systems) leads to the following observations: 

• For SDOF systems of equal strength (η value) the MAF of collapse decreases with period 

because Sa values decrease with period in uniform hazard spectra. 

• For long-period MDOF systems the beneficial effect of smaller Sa values at a given 

hazard diminishes and essentially disappears. The cause is the P-∆ effect, which 

dominates the response of long-period structures, particularly in the presence of post-

capping strength deterioration.  For this reason the MAF of collapse curves in Figures 

7.19 and 7.21 become essentially horizontal at longer periods (which is not observed in 

the SDOF curves).   

1.4 7.5 SUMMARY  

A rigorous approach is proposed for estimating the mean annual frequency (MAF) of collapse of 

SDOF and MDOF systems. The main observations are as follows: 

• The collapse capacity data of Chapters 4 and 5 are used to develop fragility curves. It is 

observed that the probability of collapse is very sensitive to the hysteretic properties of 

the system, which corroborates the importance of using ductile components for 

preventing collapse. 

• All the observations made in Chapters 4 and 5 for median collapse capacities hold true 

also for the fragility curves. This observation can be deduced from computing the 

collapse capacity ratios at different probabilities of collapse, which can be obtained 

directly from a set of different FCs (Fig. 7.3). These collapse capacity ratios do not 

change significantly for different probabilities of collapse in the range of the 20–80th 

percentile. Therefore, the median collapse capacity ratios of chapters 4 and 5, which 

reflect the difference in collapse capacity at the median value, may also be used for 

identifying behavioral trends for different probabilities of collapse.  

• Non-ductile systems have fragility curves with steeper slope, indicating that failure may 

be brittle for these systems. 
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• If the spectral acceleration at the first mode period of the system is used as the intensity 

measure, then hazard curves can be developed using available seismic hazard 

information.  The use of such hazard curves in the computation of the MAF of collapse, 

and of the collapse capacity information presented in chapters 4 and 5, should give good 

results provided the frequency content of the ground motions is insensitive to magnitude 

and distance (Medina, 2002; Jalayer, 2003), and provided the ground motions are 

representative for the hazard levels that control the MAF of collapse. 

• To illustrate the computation of the MAF of collapse, equal hazard spectra are used for 

approximating hazard curves at several periods for a given site. A linear regression 

analysis is performed at each period with information at the 50/50, 10/50, and 2/50 

hazard levels. The obtained hazard curves provide reasonable results for systems of 

different periods, strengths and ductility characteristics. 

• The potential for global collapse of a frame structure can be expressed probabilistically in 

terms of a mean annual frequency of collapse using fragility curves derived from collapse 

capacities. The use of this type of FCs results in a straightforward calculation because a 

single integration is needed to relate the fragility curve with the seismic hazard of the site.  

• The base shear strength of the system is a dominant factor in the magnitude of the MAF 

of collapse for a given system. Variations of the base shear strength from η (or γ for 

MDOF systems) = 0.5 to 0.1 may produce a difference in the MAF of collapse of more 

than two orders of magnitude.  

• The MAF of collapse may increase by more than one order of magnitude for non-ductile 

systems compared with ductile ones. 

• The MAF of collapse for MDOF systems shows the large effect of P-∆ for systems with 

longer periods. 

• Uncertainty in the system parameters may increase the MAF of collapse by 50–100% 

(assuming the dispersions in the parameters of Chapter 6) compared with the cases in 

which RTR variability is the only source of uncertainty. For the studied systems, the 

MAF of collapse may decrease by more than a factor of four if it were possible to 

estimate collapse capacity in a deterministic way. 
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(Sa/g)/η vs PROBABILITY OF COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'

 αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=Inf

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16
(Sa/g)/η

Pr
ob

ab
ili

ty
 o

f C
ol

la
ps

e

T = 0.3 s.

T = 0.6 s.

T = 0.9 s.

T = 1.8 s.

 

(a) Different Periods, Baseline Hysteretic Characteristics  

(Sa/g)/η vs PROBABILITY OF COLLAPSE, T=0.6 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'
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(b) Various Systems, T = 0.6 s 

Fig. 7.1 Counted fragility curves for SDOF systems 
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(Sa/g)/η vs PROBABILITY OF COLLAPSE
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'
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(a) T = 0.3 and 1.8 s, Baseline Hysteretic Properties 

(Sa/g)/η vs PROBABILITY OF COLLAPSE, T=0.6 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'
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(b) Various Systems, T = 0.6 s 

 
Fig. 7.2 Fragility curves for SDOF systems obtained by fitting a lognormal distribution  
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COLLAPSE CAPACITY RATIOS, T=0.5 s
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N'
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Fig. 7.3 Collapse capacity ratios for different probabilities of collapse, T = 0.5 s  

 

(Sa/g) vs PROBABILITY OF COLLAPSE
P.O. Model, LMSR-N, ξ=5%, P-∆='0.1N', T =0.6 sec
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Fig. 7.4  De-normalization of fragility curves at different base shear strength for 
SDOF systems; baseline hysteretic properties, T = 0.6 s 
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[Sa(T1)/g]/γ vs PROBABILITY OF COLLAPSE
N=Var, T1=Var, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0
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(a) T1 = 0.1N   

[Sa,c(T1)/g]/γ vs PROBABILITY OF COLLAPSE
N=Var, T1=Var, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=4, αc=-0.10, γs,c,k,a=Inf, λ=0
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(b) T1 = 0.2N 

Fig. 7.5  Fragility curves for frame structures with springs at beams ends with baseline 
hysteretic properties  
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[Sa(T1)/g]/γ vs PROBABILITY OF COLLAPSE
N=3, T1=0.3, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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(a)  3-Story, T1 = 0.3 s 

[Sa(T1)/g]/γ vs PROBABILITY OF COLLAPSE
N=9, T1=0.9, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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(b) 9-Story, T1 = 0.9 s 

Fig. 7.6  Fragility curves for stiff generic frames of 3 and 9 stories with parameter 
variations in springs of the beams 
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[Sa(T1)/g]/γ vs PROBABILITY OF COLLAPSE
N=18, T1=1.8, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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(a) 18-Story, T1 = 1.8 s 

[Sa(T1)/g]/γ vs PROBABILITY OF COLLAPSE
N=18, T1=3.6, BH, Peak Oriented Model, LMSR-N, ξ=5%, 

αs=0.03, δc/δy=Var, αc=Var, γs,c,k,a=Inf, λ=0
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(b) 18-Story, T1 = 3.6 s 

Fig. 7.7  Fragility curves for 18-story generic frames with parameter variations in 
the springs of the beams 
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Equal Hazard Spectra, Van Nuys, CA.
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Fig. 7.8 Equal hazard spectra used to derive hazard curves for specific periods  

 

HAZARD CURVE, VAN NUYS, CA, HC-LR
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Fig. 7.9  Hazard curves obtained from linear regression analysis by using 50/50, 
10/50, and 2/50 seismic hazard levels, T = 0.5 s  

 
 



 252

HAZARD CURVE, VAN NUYS, CA, HC-LR
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Fig. 7.10  Hazard curves obtained from linear regression analysis by using 50/50, 
10/50, and 2/50 seismic hazard levels, T = 0.5, 1.0, and 2.0 s  

 

FRAGILITY CURVES FOR Sa,c/g for η=0.2
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

 αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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Fig. 7.11  Fragility curves of SDOF systems with baseline hysteretic properties for 

computing MAF of collapse, η = 0.2  
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HC, FC and MAF of COL. due to Sa/g=x, T=0.5 s, 
Peak Oriented Model, LMSR-N, P-∆='0.1N', η=0.2
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Fig. 7.12  HC, FC, and MAF of collapse due to xSa =  at T = 0.5 s, SDOF system 

with baseline hysteretic properties, η = 0.2 

MEAN ANNUAL FREQ. OF COL. due to Sa/g = x
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', η=0.2
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Fig. 7.13  Mean annual frequency of collapse due to xSa =  for SDOF systems with 

baseline hysteretic properties, η = 0.2 
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MEAN ANNUAL FREQ. OF COLLAPSE, Van Nuys, CA.
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', HC-LR
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Fig. 7.14  Mean annual frequency of collapse for SDOF systems with baseline 

hysteretic properties for different η’s and periods  
 

 

MEAN ANNUAL FREQ. OF COLLAPSE, Van Nuys, η=0.2
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', HC-LR
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Fig. 7.15  Mean annual frequency of collapse for SDOF systems with different 

hysteretic properties, η = 0.2 
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MEAN ANNUAL FREQ. OF COLLAPSE, Van Nuys
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', HC-LR
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Fig. 7.16  MAF of collapse for SDOF systems with dispersion due to RTR variability 

plus uncertainty in the system par., αc=-0.1, δc/δy=4, γs,c,k,a= 50 
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Fig. 7.17  MAF of collapse for deterministic SDOF systems, systems with dispersion 

due to RTR variability, and systems with dispersion due to RTR variability 
plus uncertainty in the system par., αc=-0.1, δc/δy=4, γs,c,k,a= 50 
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FRAGILITY CURVES FOR Sa,c/g for γ=0.2
N = Var, T1 = 0.1N, BH, P. O Model, LMSR-N, ξ=5%

 αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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Fig. 7.18  Fragility curves of stiff generic frames with baseline hysteretic properties 

in the springs of the beams, γ = 0.2 
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Fig. 7.19  Mean annual frequency of collapse for stiff generic frames, baseline 

hysteretic properties in the springs of the beams, different γ’s  
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FRAGILITY CURVES FOR Sa,c/g for γ=0.2
N = Var, T1 = 0.2N, BH, P. O., LMSR-N, ξ=5%
 αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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Fig. 7.20  Fragility curves of flexible generic frames with baseline hysteretic 

properties in the springs of the beams, γ  = 0.2 
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Fig. 7.21  Mean annual frequency of collapse for flexible generic frames, baseline 

hysteretic properties in the springs of the beams, different γ’s  
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MEAN ANNUAL FREQ. OF COL., γ = 0.2 & 0.5
Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', HC-LR
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Fig. 7.22  Comparison of mean annual frequency of collapse for flexible and stiff frames, 

baseline hysteretic properties in the springs of the beams, different γ’s  
 

 
 



 

8 Summary and Conclusions 

In earthquake engineering, “global collapse” refers to the inability of a structural system to 

sustain gravity loads under seismic excitation, and may have several causes. The propagation of 

an initial local failure (e.g., loss of axial force capacity in a column) may result in cascading or 

progressive collapse. Incremental collapse occurs if the displacement of an individual story, or a 

series of stories, is very large and P-∆ effects fully offset the deteriorated first-order story shear 

resistance. This report is concerned only with incremental or “side-sway” collapse, which is 

triggered by deterioration in strength or stiffness of the lateral load-resisting system and is 

accelerated by P-∆ effects. 

Recently, deteriorating systems have been used to estimate collapse. For instance, Lee 

and Foutch (2001) and Jalayer (2003) employed the incremental dynamic analysis (IDA) concept 

(Vamvatsikos, 2002) for estimating the global dynamic stability capacity of steel and RC frames, 

respectively. Although they utilized deteriorating models, a “displacement-based” approach was 

used for evaluating collapse, i.e., failure was assessed based on engineering demand parameter 

(EDP) demands, which become very sensitive to small perturbations when the system is close to 

collapse. Other studies have focused on collapse predictions that either ignore material 

deterioration or use a cumulative damage index to simulate material deterioration while 

predicting response by using non-deteriorating systems.   

This report proposes a methodology for evaluating global collapse based on deteriorating 

systems and a relative intensity measure instead of an EDP. The relative intensity is the ratio of 

ground motion intensity to a structural strength parameter. Usually, the ground motion intensity 

is defined as the 5%-damped spectral acceleration at the fundamental period of the system, 

whereas the structural strength parameter is the base shear strength of the system normalized by 

its seismic weight. The relative intensity is increased until the response of the system becomes 
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unstable, which means that the relative intensity – EDP curve becomes flat (zero slope). This 

relative intensity is referred to as “collapse capacity.”  

The main objectives of this study are to  

• develop hysteretic models that incorporate all important phenomena contributing to 

global collapse, 

• develop a consistent procedure for computation of the collapse capacity, 

• obtain collapse capacities for representative SDOF systems and MDOF frame structures,  

• identify the parameters that most influence collapse and to assess the sensitivity of 

collapse capacity to these parameters,  

• quantify the dispersion of collapse capacity due not only to record to record variability 

but also to uncertainty in the structural parameters of the system, 

• develop collapse fragility curves for SDOF and MDOF systems, and  

• develop a methodology for computing the mean annual frequency of collapse. 

 

Deteriorating Hysteretic Models  

 

The results of this study depend strongly on the availability of hysteretic models to realistically 

represent the monotonic and cyclic behavior of structural components, including all important 

modes of strength and stiffness deterioration. A general but versatile hysteretic model is 

developed that can be adapted to bilinear, peak-oriented, and pinched hysteretic loops. The 

model considers capping and the associated deterioration of strength in the backbone curve and 

cyclic deterioration of strength and stiffness based on energy dissipation. The model has been 

calibrated with several experimental results of tests of structural steel, reinforced concrete, and 

wood components, obtaining good correlation in general. The backbone characteristics and the 

cyclic deterioration parameters are a function of the structural properties of the component. Thus, 

the calibrated parameters determined for a given specimen under a certain loading protocol can 

be used for different loading histories, provided that the salient features of the response are 

captured in the calibrated model. 
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Evaluation of Global Collapse 

 

SDOF Parameter Study. In SDOF systems collapse occurs when the loading path is on the 

backbone curve (which may have deteriorated due to cyclic deterioration) and the restoring force 

approaches zero. Comprehensive parameter studies on SDOF systems are easily implemented 

and serve to identify the main collapse capacity trends for MDOF structures, as well as the 

system parameters that have dominant or negligible influence on the collapse capacity. It is 

observed that the variation of a particular parameter generally has a larger influence on SDOF 

systems than on MDOF structures, in which the elements yield at different times and some of 

them may never reach the inelastic range.  

Assuming that the system response may be idealized by the hysteretic rules of 

representative component models, an extensive SDOF parameter study is carried out for 

assessing the effect of various system parameters on the collapse capacity. The study comprises 

systems for 20 periods of vibration ranging from T = 0.1–4 s. In most of the analyses, the 

systems are subjected to a set of 40 ordinary ground motions. In the primary parameter study, 

three or four values are considered for the parameters of most interest and analyses are 

performed for all possible combinations. The parameters to be evaluated are the post-capping 

stiffness ratio (αc), the ductility capacity (δc/δy), cyclic deterioration (as a function of the 

parameter γs,c,k,a), P-∆ effect, and three different hysteretic models. In the secondary parameter 

study, representative systems are selected for investigating the effect on collapse capacity of the 

residual strength of the backbone curve, the individual cyclic deterioration modes, the level of 

pinching in pinched hysteretic models, the damping formulation of the system, and the effect of 

near-fault and long-duration ground motions records. The most relevant findings are the 

following:  

• The effect of most of the aforementioned parameters on collapse capacity is dictated in 

great part by the relative value of all the other parameters. 

• Prior to collapse, non-deteriorating models estimate EDPs with reasonable accuracy as 

long as the onset of strength deterioration in the backbone curve (cap displacement, δc) is 

not surpassed. Before this threshold is reached, cyclic deterioration is the only source of 

material deterioration and its effect on the EDPs is relatively small. 
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• Ductility capacity and post-capping stiffness are the two parameters that most influence 

the collapse capacity of a system. The effect of one of these two parameters is greatly 

affected by the relative value of the other parameter. 

• Cyclic deterioration appears to be an important, but not dominant, issue for collapse 

evaluation. 

• P-∆ effects must be included when SDOF systems are used as surrogates of MDOF 

structures. The elastic story stability coefficients of the MDOF systems may be a poor 

measure of the importance of P-∆ effects when equivalent SDOF systems are used to 

predict MDOF collapse capacities. 

• In the medium- and long-period ranges (periods larger than about T = 0.6 s.), the largest 

collapse capacities correspond to pinching models, closely followed by those of peak-

oriented models. Collapse capacities of bilinear models are the smallest because the 

presence of a negative stiffness has a larger effect on this model. 

• The effect of a small residual strength (20% of maximum strength) on collapse capacity 

is practically negligible for all the studied systems. A residual strength of 40% may 

increase collapse capacity by a significant amount for non-ductile systems.  

• When using pinching hysteretic models, the effect of the amount of pinching on collapse 

capacity is small, usually within the range of 10%. 

• Collapse capacity for SDOF systems with mass proportional damping is larger (by about 

20%) than that of systems with tangent stiffness proportional damping. This occurs 

because in the latter systems the damping force is reduced when the tangent stiffness is 

different from the elastic one. 

• SDOF systems have been subjected to three sets of ground motions that dissipate 

hysteretic energy in different ways. Under near-fault ground motions, a large part of the 

hysteretic energy is released in one or two large pulses; under long-duration ground 

motions, the hysteretic energy is dissipated in a large number of inelastic excursions. For 

ordinary ground motions, the dissipated energy is in between these two cases. 

Nonetheless, the effect of cyclic deterioration on collapse capacity is not greatly affected 

by the set of ground motions used in the analysis.  
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MDOF Systems. In MDOF systems incremental collapse is associated with a mechanism in 

which P-∆ effects become equal to the deteriorated first-order story shear resistance provided by 

the structural elements. Collapse may occur in a single story or in a series of stories. An 

evaluation of the time history response data shows that for the generic frames used in this study, 

collapse usually occurs in the lower stories (mostly the first one) of the structure. The use of 

deteriorating models permits simulation of the response until collapse occurs. It also permits 

redistribution of moments to less damaged components and takes into account the ability of the 

system to sustain significantly larger deformations than those associated with reaching the 

ductility “capacity” of one component.  

The MDOF systems used in this study are two-dimensional regular single-bay frames of 

3, 6, 9, 12, 15, and 18 stories. The fundamental period of the frames is associated with the 

number of stories (N). “Stiff frames” have a fundamental period T1 = 0.1N, whereas “flexible 

frames” have T1 = 0.2N. The frames are designed in such a way that the first mode is a straight 

line and simultaneous yielding is attained in all stories when subjected to a parabolic load 

pattern. Unless otherwise specified, frames are designed according to the strong column – weak 

beam concept, i.e., columns are infinitely strong. Thus, a beam-hinge mechanism is developed, 

i.e., plastic hinges are confined to the beam ends and the base of the first-story columns. Global 

P-∆ effects are modeled in all cases. The frames are subjected to a set of 40 ordinary ground 

motions.  

To obtain a consistent evaluation of collapse capacity, it is assumed that every plastic 

hinge of the generic frames has the same deteriorating hysteretic model. The effects of the 

following parameters on the collapse capacity are evaluated: post-capping stiffness ratio, 

ductility capacity, the rate of cyclic deterioration, and the type of hysteretic model. The main 

findings are summarized below: 

• The collapse capacity, defined as the ratio of the spectral acceleration at the fundamental 

period of the structure [Sa(T1)] divided by the base shear coefficient (γ = Vy/W) at 

collapse, strongly depends on the first-mode period (T1). The large decrease in collapse 

capacity for long-period structures indicates that the period-independent R-factor concept 

is not appropriate because of the large importance of P-∆ effects in the inelastic range. 

• As in SDOF systems, the post-capping stiffness and the ductility capacity of the 

rotational springs are the two deterioration parameters that most influence the collapse 
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capacity of MDOF systems. Due to moment redistribution in MDOF systems, entering 

the branch of negative slope in certain of the springs does not produce immediate 

collapse, even when this negative slope is very steep.  

• The collapse capacity of deteriorating frames is very similar when a pinching model is 

used for the plastic hinge springs at the beam ends instead of a peak-oriented model. 

When a bilinear model is used for the plastic-hinge springs, similar patterns to those 

observed for collapse capacity of SDOF systems are detected. For MDOF systems with 

very short first period, the collapse capacity of frames with bilinear springs is larger than 

that of frames with peak-oriented or pinching springs. However, for frames with medium 

and long first periods the trend reverses because the branch with negative slope in the 

plastic hinge springs has a larger “ratcheting” effect in bilinear models, i.e., the story 

drifts increase more rapidly. 

• Present code guidelines for strong column–weak beam designs do not prevent the 

development of plastic hinges in the columns. The column moment demands will exceed 

the strength capacity given by this requirement at small relative intensities.  

• Column hinging, which changes the mechanism leading to collapse, has a very 

detrimental effect on collapse capacity.  The collapse capacity of generic frames with a 

strong column factor of 1.2 decreases dramatically (in most cases by a factor smaller than 

0.5) compared to that of generic frames with infinitely strong columns.  If the strong-

column factor is 2.4, the collapse capacity decreases by about 25% or less. 

• P-∆ effects can cause collapse of non-deteriorating flexible long-period structures, and 

greatly accelerate the collapse of deteriorating structures. Disregard of P-∆ effects may 

overestimate the collapse capacity of the generic frames by a factor of two or larger. This 

overestimation is particularly large for flexible long-period frames in which the P-∆ 

effects are larger than the effects of material deterioration. 

• For tall and slender frames, the global inelastic stability coefficient (defined by the 

difference in the post-yield slopes of the global pushover curves without and with P-∆) 

may be much larger than the elastic coefficient. Thus, P-∆ effects may be more important 

that estimated from an elastic stability coefficient. 

• Equivalent SDOF systems can be used for computing the collapse capacity of MDOF 

structures with large P-∆ effects, but they must take into account that the elastic and 
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inelastic stability coefficients may differ significantly. If this occurs, the global inelastic 

stability coefficient may be incorporated into the equivalent SDOF system by means of 

an auxiliary backbone curve. The estimate of the MDOF collapse capacity obtained from 

the equivalent SDOF system is found to be relatively accurate, yet conservative (i.e., the 

actual collapse capacity is underestimated).  

Effect of Uncertainty in the System Parameters on Variance of Collapse Capacity 

Dispersion in collapse capacity comes from record-to-record (RTR) variability and from 

uncertainty in the system parameters. The variance due to RTR variability is large and is 

explicitly considered in the time history results presented in chapters 4 and 5. The first-order 

second-moment (FOSM) method is employed to estimate the additional variance of collapse 

capacity due to uncertainty in the system parameters. The most salient findings are the following: 

• Uncertainty in post-capping stiffness and ductility capacity produce the largest additional 

contributions to the variance of collapse capacity. The former one is more relevant for 

systems with small P-∆ effects and/or systems with peak-oriented or pinching models. 

Ductility capacity is more important when P-∆ effects are large and when a bilinear 

model is used. 

• The presence of large P-∆ effects (i.e., in flexible long-period structures) drastically 

reduces the contribution of uncertainty in the system parameters to the variance of 

collapse capacity. In absolute terms, the variance of collapse capacity due to RTR 

variability experiences a small reduction due to the presence of P-∆ effects, whereas the 

variance of collapse capacity due to uncertainty in the systems parameters can have a 

large decrease when P-∆ effects are included. 

• Sensitivity studies on SDOF systems are useful to detect important trends in the 

computation of the variance of collapse capacity due to uncertainty in the system 

parameters for regular MDOF structures. 

• If high correlation is considered among parameters such as the ductility capacity and 

post-capping stiffness in each hinge (coefficient of correlation larger than about 0.8), the 

contribution to variance of collapse capacity due to correlation among parameters may be 

the most important contribution from uncertainty in the system parameters. 
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The use of the FOSM method for estimating the contributions of uncertainty in system 

parameters to the variance of the collapse capacity is an approximation. This approximation 

should be acceptable considering how little is known at this time about the uncertainty of the 

system parameters (type of distribution and the value of the measure of dispersion). Moreover, it 

is usually assumed that the main contributor to total uncertainty is the RTR variability, at least 

when the evaluation is based on EDPs. However, the contribution of system parameter 

variability to the variance of the collapse capacity may be comparable to that of the RTR 

variability if large, but not unrealistic, values for the measure of dispersion of the important 

system parameters are used. In this study, the standard deviation of the log of the probabilistic 

parameters is assumed as 0.60. 

Mean Annual Frequency of Collapse 

In the context of performance-based earthquake engineering, one performance objective is to 

provide “adequate” protection against collapse. A suitable measure for assessing collapse safety 

is the mean annual frequency (MAF) of collapse, which is obtained by combining a collapse 

fragility curve with the seismic hazard curve for a given site. In this context, the following 

observations and conclusions are made: 

• Collapse fragility curves, which express the probability of collapse in terms of a relevant 

ground motion intensity measure (Sa(T1) is used for this purpose), are developed directly 

from the collapse capacity of the system computed from nonlinear time history analysis 

using an appropriate set of ground motions. They incorporate the effect of RTR 

variability but may also incorporate the effect of variability in the system parameters. 

• The evaluation of global collapse based on the relative intensity of the system facilitates 

the computation of the MAF of collapse, which is obtained by integrating the collapse 

fragility curve for a given base shear strength over a spectral acceleration hazard curve 

pertaining to a specific site. On the other hand, the “EDP-based approach” decomposes 

the collapse limit state into two steps and requires an additional integration. 

• For a structural system of given hysteretic properties, the base shear strength is a 

dominant factor in the magnitude of the MAF of collapse. Variations in the base shear 

strength from η = 0.5–0.1 (for SDOF systems) may produce a change in the MAF of 

collapse of more than two orders of magnitude. Variations in the ductility capacity of the 
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system from δc/δy = 2 to 6 may modify the MAF of collapse by more than one order of 

magnitude. It must be reminded that these conclusions are sensitive to the hazard curve 

slope (Jalayer, 2003). For California sites, as the one used in this work, the hazard curve 

slope usually is steep. Thus, the sensitivity would be less if the hazard curves 

corresponded to central and eastern U.S. sites. 

• Uncertainty in the system parameters may increase the MAF of collapse by 50–100% 

(assuming the dispersions in the parameters as discussed in Chapter 6), as compared with 

the cases in which RTR variability is the only source of uncertainty. 

 

Concluding Remarks 

 

This study is a small step toward a comprehensive quantification of the limit states of global or 

partial collapse in earthquakes. There are various collapse modes, and only one is explicitly 

covered by the methodology explored in this study. Moreover, the conclusions drawn from this 

study are limited by the scope and assumptions made throughout this work. 

An important contribution of this work is the development of a transparent methodology 

for the evaluation of incremental collapse, in which the assessment of collapse is closely related 

with the physical phenomena that lead to this limit state. That is to say, the methodology 

addresses the fact that collapse is caused by deterioration in complex assemblies of components 

that should be modeled explicitly.  

In previous studies on collapse, damage indices or judgmental limits on engineering 

demand parameters are used as indirect ways for estimating attainment of this limit state. In the 

collapse methodology proposed in this work there are no indirect criteria. However, great 

uncertainty in collapse capacity still exists because of RTR variability and limited knowledge of 

the parameters of the deteriorating systems. More comprehensive experimental results will 

permit a better estimation of the uncertainty of the system parameters, and better intensity 

measures should reduce RTR variability. At that point, the proposed methodology should lead to 

a more precise evaluation of global collapse. 
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Suggestions for Future Work 

 

Areas for future research on the evaluation of collapse potential of structures in earthquakes 

include the following: 

• Improvement of the analytical tools to include all the deterioration effects and to model 

P-M-V interaction and local failure modes such as loss of gravity load resistance at beam-

to-column and slab-to-column connections; 

• Consistent experimental results for obtaining the distribution and first and second 

moments of the system parameters; 

• More extensive calibration of the deteriorating hysteretic model with component test 

results 

• Comparison of the MAF of collapse obtained with the proposed methodology with that 

obtained when computing collapse based on an “EDP-based approach”;  

• Application of the methodology to existing structures; and 

• Assessment of other collapse modes, in particular propagation of local collapse, i.e., 

progressive collapse. 



References 

ACI Committee 318-02 (2002), “Building code requirements for structural concrete (ACI 318-

02) and commentary (ACI 318R-02), ”American Concrete Institute, Farmington Hills, MI. 

Abrahamson, N. A. and Silva, W. J. (1997), “Empirical response spectral attenuation relations 

for shallow crustal earthquakes,” Seismological Research Letters, 68, 1, pages 94-127. 

Adam, C., and Krawinkler, H. (2003), “Large deflections of elastic-plastic frames exposed to 

pulse-type ground motion,” Proceedings of the Response of Structures to Extreme Loading, 

Elsevier Science, Toronto, Canada, Aug. 3-6, 2003 

Alavi, B. and Krawinkler, H. (2001), “Effects of near-fault ground motions on frame structures,” 

John A. Blume Earthquake Engineering Research Center, Report No. 138, Department of 

Civil Engineering, Stanford University. 

Arias, A. (1970), “A measure of earthquake intensity,” Seismic Design for Nuclear Power 

Plants, R. J. Hansen Ed., MIT Press, pages 438-483 

Aschheim, M. and Moehle, J. P. (1992), “Shear strength and deformability of RC bridge columns 

subjected to inelastic cyclic displacements,” UCB/EERC-92/04, Berkeley: Earthquake 

Engineering Research Center, University of California 

ATC-40, Applied Technology Council (1996), “Seismic evaluation and retrofit of concrete 

buildings,” Report No. SSC 96-01, Seismic Safety Commission, Redwood City, California 

Aydinoglu, M. N. (2001), “Inelastic seismic response analysis based on story pushover curves 

including P-Delta effects,” Report No. 2001/1, KOERI, Department of Earthquake 

Engineering, Bogazici University, Istanbul, Turkey 

Aydinoglu, M. N. and Fahjan, Y.M.  (2002), “A unified formulation of the piecewise exact 

method for inelastic seismic demand analysis including P-Delta effect,” Report No. 2002/3, 

KOERI, Department of Earthquake Engineering, Bogazici University, Istanbul, Turkey 

Baker, J.W., and Cornell, C.A. (2003), “Uncertainty specification and propagation for loss 

estimation using FOSM methods,” PEER Technical Report #2003-07.  



 270

Benjamin, J. R. and Cornell, C. A. (1970), “Probability, statistics, and decision for civil 

engineers,” McGraw Hill, Inc. New York 

Bernal, D. (1987), “Amplification factors for inelastic dynamic P-Delta effects in earthquake 

analysis,” Earthquake Engineering & Structural Dynamics, 15, 5, July 1987, pages 635-651 

Bernal, D. (1992), “Instability of buildings subjected to earthquakes,” Journal of Structural 

Engineering, 118, 8, Aug. 1992, pages 2239-2260 

Bernal, D. (1994), “Viscous damping in inelastic structural response,” Journal of Structural 

Engineering, Vol. 120, No. 4, April 1994, pp. 1240-1254 

Bernal, D.  (1998), “Instability of buildings during seismic response,” Engineering Structures, 

20, 4-6, Apr.-June 1998, pages 496-502 

Bommer, J. and Martinez-Pereira, A. (1996), “The prediction of strong-motion duration for 

engineering design,” Proceeding of the Eleventh WCEE, Paper No. 84, Acapulco, Mexico 

Chopra, A.K. (1995), “Dynamics of structures: theory and applications to earthquake 

engineering,” Prentice Hall, Englewood Cliffs, NJ, 1995, 729 pages 

Clough, R. W. and Penzien, J. (1993),  “Dynamics of structures,” McGraw Hill, Inc., New York, 

1993, 738 pages, 2nd edition 

Cordova, P., et. al.(2000), “Development of a two-parameter seismic intensity measure and 

probabilistic assessment procedure,” PEER-2000/10, The Second U.S.-Japan Workshop on 

Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building 

Structures, 11-13 September, Japan, Berkeley: Pacific Earthquake Engineering Research 

Center, University of California, Mar. 2000, pages 195-214 

Cornell, C. A. et. al. (2002), “Probabilistic basis for 2000 SAC Federal Emergency Management 

Agency Steel Moment Frame Guidelines,” Journal of Structural Engineering, 128, 4, Apr. 

2002, pages 526-534. 

C.K. Sun, G. V. Berg and R.D. Hanson (1973), “Gravity effect on single-degree inelastic 

systems,” Journal of the Engineering Mechanics Division, ASCE, 99, Feb. 1973, pages 183-

200 

D’Ambrisi, A and Filippou, F. (1999), “Modeling of cyclic shear behavior in RC members,” 

Journal of Structural Engineering, 125, 10, Oct. 1999, pages 1143-1150 

DRAIN-2DX (1993), “DRAIN-2DX: Basic program description and user guide,” Report No. 

UCB/SEMM-1993/17, by Prakash, V., Powell, G. H., and Campbell, S., University of 

California, Berkeley, CA, Nov. 1993, 97 pages 



 271

Ellingwood, B. (1993), “Probabilistic codified design,” Lecture notes presented at Structural 

Reliability: Theory and Applications, University of California at Berkeley, March 24, 1983 

Elwood, K. J. (2002), “Shake table tests and analytical studies on the gravity load collapse of 

reinforced concrete frames,” Ph.D. Dissertation, Department of Civil and Environmental 

Engineering, University of California, Berkeley.  

Esteva, L. and Ruiz, S. (1989), “Seismic failure rates of multistory frames,” Journal of Structural 

Engineering, 115, 2, Feb. 1989, pages 268-284 

Fajfar, P., Vidic, T. and Fischinger, M. (1993), “Influence of damping model on the seismic 

response of nonlinear SDOF systems,” Structural Dynamics, EURODYN ’93, Balkema, 

Rotterdam 

Fajfar, P. (2000), “A nonlinear analysis method for performance-based seismic design,”  

Earthquake Spectra, 16, 3, Aug. 2000, pages 573-592 

Fardis, M.N. and Biskinis, D.E. (2003), “Deformation capacity of RC members, as controlled by 

flexure or shear,” Proceeding of the Symposium in Honor of Professor Otani, Japan, 2003. 

FEMA 350 (2000), “Recommended seismic design criteria for new steel moment-frame 

buildings,” SAC Joint Venture, September 2000 

FEMA 355C (2000), “State of the art report on systems performance of steel moment frames 

subject to earthquake ground shaking,” SAC Joint Venture, September 2000 

FEMA 356 (2000), “Prestandard and commentary for the seismic rehabilitation of buildings,” 

Federal Emergency Management Agency, Washington D.C. 

FEMA 368 (2000), NEHRP recommended provisions for seismic regulations for new buildings 

and other structures, Building Seismic Safety Council, Washington D.C. 

Foutch, D.A. and Shi, S. (1996), “Effect of hysteresis type on the seismic response of buildings,” 

Proceedings of the Sixth U.S. National Conference on Earthquake Engineering, EERI, 

Oakland, California, 1998, 12 pages 

Gatto, K. S. and Uang, C. M. (2002), “Effects of loading protocol and rate of loading on 

woodframe shearwall response,” Seventh U.S. National Conference on Earthquake 

Engineering, EERI , Oakland, California, 2002, 10 pages 

Gupta, A. and Krawinkler, H. (1999), “Seismic demands for performance evaluation of steel 

moment resisting frame structures,” John A. Blume Earthquake Engineering Research Center 

Report No. 132, Department of Civil Engineering, Stanford University. 



 272

Gupta, B. and Kunnath, S. K. (1998), “Effect of hysteretic model parameters on inelastic seismic 

demands,” Proceedings of the Sixth U.S. National Conference on Earthquake Engineering, 

EERI, Oakland, California, 1998, 12 pages 

Hadidi, H. (1983), “Seismic response of SDOF systems including P-Delta effect and stiffness 

degradation,” Thesis for the Degree of Engineer, August 1983. 

Hornbeck, R. W. (1975), “Numerical methods,” Quantum Publishers, Inc., N.Y., pages 16-23. 

Ibarra, L., Medina, R., Krawinkler, H. (2002),  “Collapse assessment of deteriorating SDOF 

systems,” Proceedings of the 12th European Conference on Earthquake Engineering, 

London, UK, Paper 665, Elsevier Science Ltd., September 9-13, 2002 

Inoue, K., Asari, T. and Ishiyama, Y. (2000), “Lateral stiffness-strength distribution and damage 

concentration along the height of a building,” Proceedings of the 12th WCEE, Upper Hutt, 

New Zealand, 2000, Paper No. 1764 

Jalayer, F. (2003), “Direct probabilistic seismic analysis: implementing nonlinear dynamic 

assessments,” PhD. Dissertation submitted to the Department of Civil Engineering, Stanford 

University 

Jennings, P. and Husid, R. (1968), “Collapse of yielding structures during earthquakes,” Journal 

of the Engineering Mechanics Division, ASCE, 94, EM5, pages 1045-1065,Oct. 1968 

Kaewkulchai, G. and Willamson, E.B. (2003), “Progressive collapse behavior of planar frame 

structures,” Proceedings of the Response of Structures to Extreme Loading Conference, 

Toronto, Canada, 2003 

Kanvinde, A. M. (2003), “Methods to evaluate the dynamic stability of structures-shake table 

tests and nonlinear dynamic analyses,” EERI Paper Competition 2003 Winner, Proceedings 

of EERI Meeting, Portland, Feb. 2003 

Krawinkler, H., Parisi, F., Ibarra, L., Ayoub, A. and Medina, R. (2000),  “Development of a 

testing protocol for woodframe structures,” CUREE Publication No. W-02, 2000. 

Krawinkler, H. and Seneviratna, G. D. P. K. (1998). “Pros and cons of a pushover analysis for 

seismic performance evaluation,” Journal of Engineering Structures, 20, 4-6, Apr.-June 

1998, pages 452-464. 

Krawinkler, H., Zareian, F., Ibarra, L., Medina, R. and Lee, S. (2003),  “Seismic demands for 

single– and multi-story wood buildings,” CUREE Publication No. W-26, 2003. 



 273

Krawinkler, H., and Zohrei, M. (1983), "Cumulative damage in steel structures subjected to 

earthquake ground motions," Journal on Computers and Structures, 16, 1-4, 1983, pages 

531-541 

Kunnath, S. K., El-Bahy, A., Taylor, A. and Stone, W. (1997), “Cumulative Seismic Damage of 

Reinforced Concrete Bridge Piers,” Technical Report NCEER-97-006, Sep. 1997 

Kunnath, S. K., Reinhorn, A.M., Park, Y.J. (1990), “Analytical modeling of inelastic response of 

R/C structures,” Journal of Structural Engineering, 116, 4, Apr. 1990, pages 996-1027 

Kunnath, S. K., Reinhorn, A. M. and Abel, K. F. (1991), “A computational tool for evaluation of 

seismic performance of reinforced concrete buildings,” Computers and Structures,  41, 1, 

1991, pages 157-173 

Kunnath, S. K., Mander, J.B. and Lee, F. (1997),  “Parameter identification for degrading and 

pinched hysteretic structural concrete systems,” Engineering Structures, 19, 3, pages 224-

232. 

Lawson, R. S., Vance, V. and Krawinkler, H. (1994), “Nonlinear static push-over analysis—

why, when, and how?” Proceedings of the 5th U.S. Conference in Earthquake Engineering, 

Vol. 1, Chicago, IL. 

Lee, K. and Foutch, D. A. (2001), “Performance evaluation of new steel frame buildings for 

seismic loads,” Earthquake Engineering and Structural Dynamics, 31, pages 653-670 

Liu, Y., Xu, L. and Grierson, D. E. (2003), “Performance of buildings under abnormal loading,” 

Proceedings of the Response of Structures to Extreme Loading Conference, Toronto, Canada, 

2003 

Luco, N. (2002), “Probabilistic seismic demand analysis SMRF connection fractures and near-

source effects,” PhD. Dissertation submitted to the Department of Civil Engineering, 

Stanford University 

Lynn, A., Moehle, J., Mahin, S. and Holmes, W. (1996), “Seismic evaluation of existing 

concrete building columns,” Earthquake Spectra, Vol. 12, pages 715-739 

MacRae, G. A., (1994), “P-∆ effects on single-degree-of-freedom structures in earthquakes,” 

Earthquake Spectra, 10, 3, Aug. 1994, pages 539-568 

Medina, R. (2002), “Seismic demands for nondeteriorating frame structures and their 

dependence on ground motions,” PhD. Dissertation submitted to the Department of Civil 

Engineering, Stanford University 



 274

Mehanny, S.S.F. and Deierlein, G.G. (2000), “Modeling of assessment of seismic performance 

of composite frames with reinforced concrete columns and steel beams,” John A. Blume 

Earthquake Engineering Research Center Report No. 135, Department of Civil Engineering, 

Stanford University 

Melchers, R. E. (1999), “Structural Reliability Analysis and Prediction,” John Wiley and Sons, 

Chichester 

Miranda, E. (1993), “Evaluation for site-dependent inelastic seismic design spectra,” Journal of 

Structural Engineering, 119, 5, pages 1319-1338 

Miranda, E. and Bertero, V. (1994), “Evaluation of strength reduction factors for earthquake-

resistant design,” Earthquake Spectra, 10, 2, May 1994, pages 357-379 

Miranda, E. (1998), “Simplified method to estimate maximum seismic interstory drift demands 

in multi-story buildings,” Proceedings, Sixth U.S. National Conference on Earthquake 

Engineering, EERI, Oakland, California, 1998, 11 pages 

Miranda, E. (1999), “Approximate seismic lateral deformation demands in multistory buildings,” 

Journal of Structural Engineering, 125, 4, Apr. 1999, pages 417-425 

Miranda, E. (2000), “Inelastic displacement ratios for structures on firm sites,” Journal of 

Structural Engineering, 126, 10, pages 1150-1159 

Miranda, E., Sinan, D.A. (2003), “Dynamic instability of simple structural systems,” Journal of 

Structural Engineering, 129, 12, 2003 

Mirza, S. and McGregor, J. (1979), “Variation in dimensions of reinforced concrete members,” 

Journal of Structural Engineering, 105, ST4, Apr. 1979, pages 751-766 

Nakamura, T., and Yoshimura, M. (2002), “Gravity load collapse of reinforced concrete columns 

with brittle failure modes,” Journal of Asian Architecture and Building Engineering, 1, 1, pp. 

21-27 

Nakashima, M. (1994) “Variation of ductility capacity of steel beam-columns,” Journal of 

Structural Engineering, 120, 7, July 1994, pages 1941-1960 

Nakashima, M. and Sawaizumi, S. (2000), “Column-to-beam strength ratio required for ensuring 

beam-collapse mechanisms in earthquake responses of steel moment frames,” Proceedings of 

the 12 th WCEE, Upper Hutt, New Zealand, 2000, Paper No. 1109 

Nassar, A. and Krawinkler, H. (1991), “Seismic demands for SDOF and MDOF systems,” John 

A. Blume Earthquake Engineering Research Center Report No. 90, Department of Civil 

Engineering, Stanford University. 



 275

OpenSees (2002), Open System For Earthquake Engineering Simulation, Pacific Earthquake 

Engineering Research Center, http://peer.berkeley.edu/ 

Otani, S. (1974), “Inelastic analysis of R/C frame structures,” Journal of Structural Division, 

ASCE, 100, ST7, July 1974, pages 1433-1449 

Panagiotakos, T. B. and Farids, M. N. (2001), “Deformations of reinforced concrete members at 

yielding and ultimate,” ACI Structural Journal, 98, 2, March-April 2001 

Park, Y. and Ang, A. (1985), “Mechanistic seismic damage model for reinforced concrete,” 

Journal of Structural Engineering, 111, 4, Apr. 1985, pages 722-739 

Paulay, T. and Priestly, M. J. N., (1992) “Seismic design of reinforced concrete and masonry 

buildings,” John Wiley & Sons, Inc., 1992, 744 pages 

Pincheira, J. A. and Dotiwala, F. S. (1996), “Modeling of nonductile RC columns subjected to 

earthquake loading,” Proceeding of the Eleventh WCEE, Paper No. 315, Acapulco, Mexico 

Pincheira, J. A., Dotiwala, F. S. and D’Souza, J. T. (1999), “Seismic analysis of older reinforced 

concrete columns,” Earthquake Spectra, 15, 2, May 1999, pages 245-272 

Rahnama, M. and Krawinkler, H. (1993), “Effect of soft soils and hysteresis models on seismic 

design spectra,” John A. Blume Earthquake Engineering Research Center Report No. 108, 

Department of Civil Engineering, Stanford University. 

SAC System Performance: Development of Earthquake Ground Motions, “Suites of earthquake 

ground motions for analysis of steel moment frame structures, Task 5.4.1.” 

http://nisee.berkeley.edu/data/strong_motion/sacsteel/ground_motions.html 

Santa-Ana, P. R. and Miranda, E. (2000), “Strength reduction factors for multi-degree-of-

freedom systems,” Proceeding of the 12th WCEE, Upper Hutt, New Zealand, 2000, Paper No. 

1446 

Seneviratna, G.D.P.K., and Krawinkler, H. (1997), “Evaluation of inelastic MDOF effects for 

seismic design,” John A. Blume Earthquake Engineering Center Report No. 120, Department 

of Civil Engineering, Stanford University. 

Sezen, H. (2000), “Evaluation and testing of existing reinforced concrete building columns,” 

CE299 Report, University of California, Berkeley. 

Shome, N. and Cornell A. (1999),  “Probabilistic seismic demand analysis of nonlinear 

structures,” Report No. RMS-35, Dept. of Civil Engineering, Stanford University. 



 276

Shi, S. (1997), “Connection element (type 10) for Drain-2DX,” PhD Thesis submitted to the 

Department of Civil and Environmental Engineering, University of Illinois at Urbana-

Champaign. 

Sivaselvan, M.V., Reinhorn, A.M. (2000), “Hysteretic models for deteriorating inelastic 

structures.” Journal of Engineering Mechanics, 126(6), pages 633-640 

Somerville, P. and Collins, N. (2002), “Ground motion time histories for the Van Nuys 

building,” PEER Methodology Testbeds Project, URS Corporation, Pasadena, CA. March 7, 

2002. 

Somerville, P., Smith, N., Punyamurthula, S., and Sun, J. (1997a), “Development of ground 

motion time histories for phase 2 of the FEMA/SAC steel project,” SAC Background 

Document, Report No. SAC/BD-97/04. 

Somerville, P., Smith, N., Graves, R. and Abrahamson, N. (1997b). “Modification of empirical 

strong ground motion attenuation relations to include the amplitude and duration effects of 

rupture directivity,” Seismological Research Letters, 68, 1, pages 180-203. 

Song, J. and Pincheira , J. (2000), “Spectral displacement demands of stiffness and strength 

degrading systems,” Earthquake Spectra, 16,  4, Nov. 2000, pages 817-851. 

Sun, C. K., Berg, G. V. and Hanson, R. D. (1973), “Gravity effect on single-degree inelastic 

systems,” Journal of Engineering Mechanics, ASCE, 99, 1, pages 183-200 

Takeda, T., Sozen, M., Nielsen, N. (1970), “Reinforced concrete response to simulated 

earthquakes,” Journal of the Structural Division, 96, ST12, Dec.1970, pages 2557-2573 

Takizawa, H. and Jennings, P. (1980), “Collapse of a model for ductile reinforced concrete 

frames under extreme earthquake motions,” Earthquake Engineering and Structural 

Dynamics, 8, 1980, pages 117-144  

Trifunac, M. D. and Brady, A. G. (1975), “A study of the duration of strong earthquake ground 

motion,” Bulletin of the Seismological Society of America, Vol. 65, pages 581-626. 

Uang, C. M., Yu, Q. S. and Gilton, C. S. (2000), “Effects of loading history on cyclic 

performance of steel RBS moment connections,” Proceedings of the 12th WCEE, Upper Hutt, 

New Zealand, 2000, paper No. 1294, 

UBC (1997), “Uniform Building Code,” International Conference on Building Officials, 

Whittier, CA. 

Vamvatsikos, D. and Cornell, C. A. (2002), “Incremental Dynamic Analysis,” Earthquake 

Engineering and Structural Dynamics, 31, 3, Mar. 2002, pages 491-514. 



 277

Vamvatsikos, D. (2002), “Seismic performance, capacity and reliability of structures as seen 

through Incremental Dynamic Analysis,” PhD. Dissertation submitted to the Department of 

Civil Engineering, Stanford University 

Vian, D. and Bruneau, M. (2001), “Experimental investigation of P-Delta effects to collapse 

during earthquakes,” Technical Report MCEER-01-0001, June 2001 

Wen, Y. K. (1976), “Method for random vibration of hysteretic systems,” Journal of 

Engineering Mechanics Division, ASCE, 102, 2, pages 249-263 

Williams, M. and Sexsmith, R. (1995), “Seismic damage indices for concrete structures: a state-

of-the-art review,” Earthquake Spectra, 11, 2, May 1995, pages 319-348 

Williamson, E.B. (2003), “Evaluation of damage and P-D effects for systems under earthquake 

excitation,” Journal of Structural Engineering, 129, 8, pages 1036-1046 

Wolff, T. F. (1994), "Evaluating the reliability of existing levees," prepared for U.S. Army 

Engineer Waterways Experiment Station, Geotechnical Laboratory, Vicksburg, MS, Sep. 

1994 

Yoshimura, M. and Yamanaka, N. (2000), “Ultimate limit state of RC columns,” PEER-2000/10, 

The Second U.S.-Japan Workshop on Performance-Based Earthquake Engineering 

Methodology for Reinforced Concrete Building Structures, 11-13 September, Japan, 

Berkeley: Pacific Earthquake Engineering Research Center, University of California, Mar. 

2000, pages 313-326 

Yun, S-Y, Hamburger, R. O., Cornell, A. C., Foutch, D. A. (2002), “Seismic performance 

evaluation for steel moment frames,” Journal of Structural Engineering, 128, 4, Apr. 2002 



Appendix A: “Counted” and “Computed” 
Statistical Values 

In this investigation, central values and measures of dispersion are provided by “computed” or 

“counted” statistics according to the characteristics of the data. This appendix describes both 

procedures. 

A.1 “COMPUTED” STATISTICAL VALUES 

The median is considered the central value of interest and its best estimator is the “geometric 

mean,” x̂ 25: 
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As a measure of dispersion, the standard deviation of the natural log of the data is 

computed by: 
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xlnσ  is numerically approximately equal to the coefficient of variation ( xxxvoc µσ /... = ), 

at least for comparably small values, e.g., values smaller or equal than about 0.3. 

 

                                                 
25  In Appendix C is shown that collapse capacity distribution may be approximated with a lognormal distribution. 
Under lognormality assumptions the geometric mean is a logical estimator of the median (Benjamin and Cornell, 
1970).  
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An advantage of computed statistical values arises when the need exists to compare 

results from two sets of data. In this case, it is desirable to compute the median of the ratios of 

the data: 

)exp(ˆ /ln/ yxyx mm =          (A.3) 

where yxm /ln  is the mean of the log of the ratios of the data. The problem with this equation is 

that when the two sets of data are processed independently, the individual ratios, x/y, are not 

readily available. However, Equation A.3 can be manipulated in the following way to overcome 

this problem:  
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The last identity states that the estimator of the median of the ratios is equal to the ratio of 

the estimator of the medians. This adds flexibility to the procedure because statistics can be 

carried out independently for both systems and the computed medians can be compared a 

posteriori.  

A.2 “COUNTED” STATISTICAL VALUES 

In this alternative the median and different percentiles are directly obtained from the sorted data. 

For instance, for a set of 40 data points, the counted median is the average of the 20th and 21th 

sorted values; the 16th percentile is approximated with the 6th sorted value and the 84th percentile 

with the 34th sorted value. 

The standard deviation of the natural log of the values may be estimated by using either 

the median and 16th; the median and 84th percentile, or the 16th and 84th percentiles:  
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The value of xlnσ  varies according to the percentiles used for its computation. For 

calculating the dispersion of EDPs the median and 84th percentile are used. Counted statistics 

does not fit to any theoretical distribution, such as Gaussian or lognormal, but the obtained 

median and percentiles are associated with the real distribution of the data. Counted statistics is 
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very useful when data points are missing, i.e., when EDPs are undefined because collapse has 

taken place. If counted statistics is used, there is no need to stop a statistical evaluation when the 

first data are missing and the process can be continued until more than 50% of the individual 

data are lost. 
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Appendix B: Properties of Generic Frame 
Models 

B.1 MODAL AND STRUCTURAL PROPERTIES OF THE GENERIC FRAMES 

The main characteristics of the generic deteriorating frames used in this study are presented in 

Section 5.3. These frames are based on the non-deteriorating frames developed by Medina 

(2002) and have the same elastic modal and structural properties. As illustration, the modal 

properties for the 9-story frames are summarized in Table B.1. The table includes participation 

factors (PFi), mass participation (MPi), modal damping (ξi), and normalized mode shapes, φi.  

Tables B.2 and B.3 present the following structural properties for the 9-story frames: 

Stiffness properties (i denotes story or floor) 

• Weight ratio, Wi/W (W = total weight) 

• Moment of inertia ratio, Ii/I1 (I is the same for columns and top beam in a story) 

• Story stiffness ratio (load pattern independent), Kai/Ka1. The story stiffness is defined as 

the story shear force required to produce a unit displacement of a subassembly consisting 

of a “story” (two columns and the beam above). The columns of the subassembly are 

fixed at the base and all three elements (two columns and beam) have the same moment 

of inertia. 

• Floor stiffness ratio (load pattern independent), Kfi/Kf2. Floor stiffness is the story shear 

force required to produce a unit displacement of a subassembly consisting of a floor beam 

and half of the columns on top and below the floor level. 

• Story stiffness ratio, Kki/Kk1, based upon triangular load pattern and Ksi/Ks1, based upon 

parabolic load pattern. Story stiffness is defined here as the load pattern dependent story 

shear force required to cause a unit story drift in that story. 

• Beam stiffness ratio, Kbi/Kb2 

• Spring stiffness at base, Kc = 3EI / L of the second floor beam 
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Strength and deformation parameters for a structure designed with γ = Vy / W = 1.0 and a 

parabolic design load pattern without considering P-∆ effects. 

• Story shear strength ratio, Vi/V1 

• Story overturning moment ratio, MOT/MOT1 (overturning moment based on the axial loads 

and bending moments at the bottom of the columns in a story) 

• Story strain-hardening ratio from pushover analysis, αsi 

• Floor beam strength ratio, Mybi/Myb2 

• Column strength at base, Myc 

• Beam end yield rotation ratio, θyi/θy2 

• Column yield rotation at base, θyc 

• Story drift ratio, δsi/δr, where δsi is the story drift in story i, and δr is the roof 

displacement 

• Story drift angle ratio, θsi/θr (θi is defined as δsi/hi and θr as δr/H, where hi is the story 

height and H the total height) 

Information on the rest of the frames can be found in Medina (2002). 

B.2 STIFFNESS OF ROTATIONAL SPRINGS AT MEMBER ENDS 

Each flexural member that has the potential to deform into the inelastic range is modeled by the 

following subelements connected in series: plastic hinge rotational springs at member ends and 

an elastic beam-column element. Therefore, the structural properties of the member are a 

combination of the properties of the subelements. The rotational stiffness of the member, Kmem, 

can be derived from the structural properties of the frame (Tables B.2–B.3), e.g., for beams 

subjected to double curvature bending Kmem = 6EIbeam/Lbeam. The rotational stiffness, Kmem, can be 

related to the stiffness of the spring, Ks, and the stiffness of the beam-column element, Kbc, 

according to the following equation: 

bcs

bcs

bcs

mem KK
KK

KK

K
+

=
+

= 11
1

         (B.1)  
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Evident choices for subelement stiffnesses appear to be either 

1. Kbc = ∞, in which case Ks = Kmem, or 

2. Ks = ∞, in which case Kbc = Kmem 

Both options are not desirable in the context of computer analysis with the program 

DRAIN-2DX, which utilizes an event-by-event solution strategy. 

An infinite beam stiffness would force all deformations into the plastic hinge springs, 

which would lead to the following two problems: 

• The elastic spring stiffness, which has to be defined a priori, would be the same 

regardless of the moment gradient in the beam or column (e.g., 6EIbeam/Lbeam, if it is 

assumed that the beam deforms in double curvature). In reality, the moment gradient may 

change during the time history analysis (THA), which would not be accounted for in this 

model   

• All damping would have to be assigned to the rotational springs at the beam ends, which 

causes spurious damping moments at frame joints that are not in static equilibrium 

because DRAIN-2DX’s damping formulation is based on initial member stiffnesses (see 

Section B.4). 

Thus, the first option is discarded. 

The second option, considering an infinite spring stiffness would cause numerical 

instability problems and would also make it impossible to express strain-hardening and post-

capping stiffnesses as fractions of the elastic spring stiffness.  Thus, this option also had to be 

discarded. 

In order to avoid the problems of the second option and to minimize the problems 

associated with the first option, it was decided to use an elastic spring stiffness that is “n” times 

larger than the rotational stiffness of the beam-column element, Kbc, i.e.,: 

bcs nKK =                      (B.2) 

where n is a number >> 1; a value of n = 10 was used throughout this study.  The stiffness of the 

subelements can now be expressed as a function of the total stiffness of the member and the 

multiplier n,: 

 

membc K
n

nK 1+=    mems KnK )1( +=               (B.3) 
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A large value on n accomplishes the following: (a) it minimizes the problems identified 

in the first option because now all damping can be assigned to the elastic beam-column element 

and changes in moment gradients in this subelement can be accounted for, and (b) it permits 

incorporation of all backbone and cyclic deterioration characteristics in the plastic hinge 

rotational spring.  But the properties of these springs need to be modified because the 

deterioration properties belong to the full element and not to the springs alone. 

                        

B.3 PARAMETERS FOR DETERIORATING SPRINGS 

In Section B.2 the elastic stiffness of the member is related to the elastic stiffness of the 

rotational springs and the beam-column element. Additional parameters must be adjusted in the 

nonlinear range to reproduce the moment-rotation relationship at the end of the elements. Figure 

B.1 presents the hysteretic response of a beam member, which is the combination of the 

individual moment-rotations of the springs and the beam-column element. The moment-rotation 

of the beam-column element remains elastic during all the THA and the nonlinear response is 

entirely due to the springs. The parameters of the plastic hinge spring must be adjusted to be able 

to reproduce the nonlinear moment-rotation behavior of the member. 

Strain-Hardening Coefficient. The strain-hardening coefficient of the plastic hinge of 

the spring ( ss,α ) must be adjusted to obtain the strain-hardening coefficient for the moment-

rotation of the member, mems,α . Because the subelements are connected in series, the increment 

in rotation of the total element in the post-yielding range is the sum of the increments in rotation 

of the two subelements in this interval: 

bc

in

ss

in
bcsmem K
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θθθ             (B.4) 

where inM∆ is the increment in strength developed in the inelastic range and ssK ,  is the stiffness 

of the spring for the strain-hardening branch. The strain-hardening coefficient of the springs as a 

function of mems,α  is obtained by substituting Equation B.3 into Equation B.4 and by considering 

that 
memmem

in
mem K

M
α

θ ∆=∆ : 
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Note that the strain-hardening coefficient of the spring depends only on mems,α  and n. For 

instance, to obtain 3% strain hardening in the moment-rotation relationship at the end of the 

element, the springs require a post-yield rotational spring coefficient 0028.0, =ssα (when 

10=n ). 

In the extreme case that n = 0, the beam-column element is rigid and memsss ,, αα = . 

Post-Capping Stiffness Coefficient. The stiffness coefficient for the post-capping 

branch is calculated in the same way as that of the strain-hardening branch because it also is 

expressed as a fraction of the elastic stiffness of the member. For the reference frame (Section 

5.3.2), the post-capping stiffness coefficient for the moment-rotation relationship at the end of 

the beam is 10.0, −=memcα . If 10=n , the post-capping stiffness coefficient to be used for the 

springs is 0083.0, −=scα . 

Ductility Capacity of the Spring. The ductility capacity of the spring must be adjusted 

to obtain the correct ductility capacity of the moment-rotation relationship at the end of the 

member. By adding the deformation of the subelements in the elastic and inelastic ranges it is 

possible to derive the following equation that provides the ductility capacity of the spring:  

[ ] memycmemsmemycsyc n )/()1(1)/()/( , δδαδδδδ +−−=                     (B.6) 

For the reference frames, the ductility capacity of the moment-rotation at the end of the 

beam is 4)/( =memyc δδ . The ductility capacity of the spring when 10=n  is 1.33)/( =syc δδ . 

Parameter γ for Cyclic Deterioration. The parameter γ to be used in the springs needs 

to be adjusted to simulate the correct rate of deterioration of the moment-rotation relationship of 

the member. The following expression computes γs,c,k,a for the spring: 

memakcssakcs n ))(1()( ,,,,,, γγ +=                    (B.7) 

This relationship is exact only for elastic-plastic models but the error is very small (less than 1%) 

for the range of strain-hardening coefficients used in this work.  
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B.4 MODELING OF PLASTIC HINGES TO AVOID SPURIOUS DAMPING 
MOMENTS 

The damping for the generic frames is based on the Rayleigh damping formulation: 

                                                   oo KMC βα +=                                                   (B.8) 

where C is the viscous damping matrix, M is the mass matrix, Ko is the initial stiffness matrix, 

and α and βo are mass and stiffness proportional factors.  This formulation is implemented in the 

DRAIN-2DX computer program. 

An alternative viscous damping matrix is given by: 

                                                  ttt KMC βα +=                                                    (B.9) 

where Ct is the current damping matrix, Kt is the tangent (current) stiffness matrix, and βt is the 

stiffness proportional factor.  

To avoid unbalance of forces during the analysis, which is based on an event-to-event 

strategy, DRAIN-2DX only utilizes the constant damping matrix formulation of Equation B.8 

(DRAIN-2DX, 1993). However, a constant damping matrix causes spurious damping moments 

at the joints once a change of stiffness occurs in nonlinear elements that have stiffness 

proportional damping based on their initial stiffness (Bernal, 1994). That is to say, although 

dynamic equilibrium is satisfied, spurious damping moments cause static equilibrium to be 

violated at joints.  

The use of a current damping matrix was discarded because Kt in the solution of the 

equation of motion may lead to a potential unbalance of forces when an event-to-event strategy 

is implemented. Moreover, it is not clear how to use a tangent stiffness formulation when 

nonlinear elements have a negative slope. Thus, to obtain an approximate solution that satisfies 

static and dynamic equilibrium, a constant damping matrix formulation (Equation B.8) was 

selected with the following conditions: (a) plastic hinging is modeled by using nonlinear 

rotational springs with an initial stiffness several times larger than that of the beam-column 

element and (b) zero stiffness proportional damping is assigned to the springs.  

 

Adjustment of Damping in Subelements 

Because no stiffness proportional damping is assigned to the nonlinear rotational springs, the β 

(stiffness proportional) factor for the beam-column element needs to be adjusted. For 10=n , the 
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β factor must be multiplied by 1.1 to compensate for the lack of stiffness proportional damping 

provided by the rotational springs.  
 

Table B.1  Modal properties, N = 9, T1 = 0.9 and 1.8 s 
 

Modal Properties Story/Floor Mode Shapes
Mode Ti / T1 PFi MPi ξi φ1 φ2 φ3 φ4 φ5

1 1.000 1.421 0.789 0.050 0/1 0.000 0.000 0.000 0.000 0.000
2 0.394 0.626 0.117 0.040 1/2 0.111 0.229 -0.491 -0.624 -0.773
3 0.230 -0.298 0.045 0.050 2/3 0.222 0.431 -0.809 -0.806 -0.631
4 0.152 -0.226 0.022 0.068 3/4 0.333 0.579 -0.828 -0.386 0.295
5 0.107 -0.165 0.012 0.094 4/5 0.444 0.645 -0.506 0.362 0.875

5/6 0.556 0.606 0.072 0.851 0.262
6/7 0.667 0.437 0.686 0.558 -0.808
7/8 0.778 0.119 0.982 -0.424 -0.544
8/9 0.889 -0.361 0.533 -1.000 1.000

9/10 1.000 -1.000 -1.000 0.590 -0.334  
 
 

Table B.2  Structural properties, N = 9, T1 = 0.9 s 
 

Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern
Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θcy δsi / δr θsi / θr

0/1 7316974 64920 0.009
1/2 0.111 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036 1.000 1.000 0.096 0.861
2/3 0.111 0.965 0.965 0.963 0.996 0.980 0.965 0.996 0.859 0.036 0.988 1.024 0.097 0.875
3/4 0.111 0.913 0.913 0.908 0.982 0.937 0.913 0.982 0.719 0.037 0.964 1.056 0.100 0.902
4/5 0.111 0.836 0.836 0.829 0.951 0.872 0.836 0.951 0.581 0.038 0.919 1.098 0.104 0.938
5/6 0.111 0.739 0.739 0.727 0.895 0.785 0.739 0.895 0.447 0.039 0.846 1.145 0.109 0.981
6/7 0.111 0.618 0.618 0.602 0.807 0.674 0.618 0.807 0.321 0.040 0.737 1.193 0.115 1.031
7/8 0.111 0.475 0.475 0.453 0.681 0.541 0.475 0.681 0.207 0.042 0.587 1.234 0.120 1.084
8/9 0.111 0.311 0.311 0.275 0.509 0.385 0.311 0.509 0.112 0.043 0.388 1.247 0.126 1.138

9/10 0.111 0.131 0.131 0.500 0.284 0.206 0.131 0.284 0.040 0.045 0.147 1.120 0.132 1.189
W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
1800 24222 3226 562 1141 1120 14633949 1800 1841684 130200 0.009 16.800 0.013  

 
 

Table B.3  Structural properties, N = 9, T1 = 1.8 s 
 

Story/Floor Stiffness Properties γ = V y  / W = 1.0, Parabolic Design Load Pattern
Wi / W Ii / I1 Kai / Ka1 Kfi / Kf2 Kki / Kk1 Ksi / Ks1 Kbi / Kb2 Kc Vi / V1 MOTi / MOT1 αsi Mybi / Myb2 Myc θybi / θyb2 θcy δsi / δr θsi / θr

0/1 1829244 64920 0.035
1/2 0.111 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036 1.000 1.000 0.096 0.861
2/3 0.111 0.965 0.965 0.963 0.996 0.980 0.965 0.996 0.859 0.036 0.988 1.024 0.097 0.876
3/4 0.111 0.913 0.913 0.908 0.982 0.938 0.913 0.982 0.719 0.037 0.964 1.056 0.100 0.902
4/5 0.111 0.836 0.836 0.829 0.951 0.873 0.836 0.951 0.581 0.038 0.919 1.098 0.104 0.938
5/6 0.111 0.739 0.739 0.727 0.895 0.785 0.739 0.895 0.447 0.039 0.846 1.145 0.109 0.981
6/7 0.111 0.618 0.618 0.602 0.807 0.674 0.618 0.807 0.321 0.040 0.737 1.193 0.115 1.031
7/8 0.111 0.475 0.475 0.453 0.681 0.541 0.475 0.681 0.207 0.042 0.587 1.234 0.120 1.084
8/9 0.111 0.311 0.311 0.275 0.509 0.385 0.311 0.509 0.112 0.043 0.388 1.247 0.126 1.138

9/10 0.111 0.131 0.131 0.220 0.284 0.206 0.131 0.284 0.040 0.045 0.147 1.120 0.132 1.190
W I1 Ka1 Kf2 Kk1 Ks1 Kb2 V1 MOT1 Myb2 θyb2 δr θr

(k) (in4) (k/in) (k/in) (k/in) (k/in) (k-in) (k-in) (k) (k-in) (k-in) (k-in) (rad) (rad) (in) (rad)
1800 6055 807 141 284 281 3658487 1800 1841684 130200 0.036 66.900 0.052  
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MOMENT-ROTATION FOR ROOF BEAM, FRAME 0303
Peak Oriented Model, , NR94cnp, ξ=5%, R=3,

αs=0.03, αc=-0.10, δc/δy=4, γs,c,k,a=100
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Fig. B.1 Moment-rotation relationship for a member based on the moment-rotation 

of the plastic hinge springs and elastic beam-column element 
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Appendix C: Probability Distribution of 
Collapse Capacity 

In much of this report, estimators for the geometric mean and dispersion of collapse capacity are 

computed without fitting a distribution to the data. However, sometimes it is more convenient to 

evaluate global collapse and mean annual frequency of collapse by fitting a continuous 

distribution. Information about the distribution of collapse capacities is not reported in the 

literature, although it is known that the response of nonlinear structures may fit a lognormal 

distribution (Shome and Cornell, 1999). Furthermore, the distribution of collapse capacity due to 

RTR variability presents a long upper tail (Figs. 2.4–2.5), which suggests that a lognormal 

distribution may fit well. This appendix intends to verify that a lognormal distribution can be a 

good fitting of collapse capacity distribution.  

C.1 LOGNORMAL DISTRIBUTION PAPER AND KOLMOGOROV-SMIRNOV 
GOODNESS-OF-FIT TEST 

A widespread method for verifying the distribution assumption is to plot the results in a 

probability paper to obtain a straight line for the assumed distribution. If the assumption is 

reasonable, the cumulative frequency curve of the data is close to the straight line, and shows no 

systematic curvature. 

A Kolmogorov-Smirnov goodness of-fit-test is used to quantify how well the data fit the 

distribution models. The tests concentrates on the deviation between the hypothesized 

cumulative distribution function, )(xFX , and the observed cumulative histogram (Benjamin and 

Cornell, 1970): 

n
iXF i =)(* )(        (C.1) 
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in which )(iX  is the ith largest observed value in the random sample of size n. The maximum of 

the aforementioned deviations is calculated as follows, 

 [ ])()(*max )()(

1

i
X

i
n

i
XFXFD −=

=
         (C.2) 

That is to say, D is the largest of the absolute values of the n differences between the 

hypothesized CDF and the observed empirical CDF (counted) evaluated at the observed values 

in the sample. Theoretically, the value of D depends on n. For a specified significance level α, 

the test compares the observed maximum difference D with the critical value c, as follows: 

α−=≤ 1][ cDP         (C.3) 

Critical values c at various significance levels α are tabulated in Benjamin and Cornell 

(1970). If the observed D is less than the critical value c, the proposed distribution is accepted at 

the specified significance level α; otherwise, the assumed distribution would be rejected.  

C.2 COLLAPSE CAPACITY DISTRIBUTION DUE TO RTR VARIABILITY 

In this section goodness-of-fit tests are illustrated for a lognormal distribution that is fitted to 

collapse capacity data in which the dispersion is entirely due to RTR variability. Collapse 

capacities for three different peak-oriented SDOF systems, with T = 0.6 s, are plotted on 

lognormal probability paper along with the fitted lognormal distribution (Fig. C.1). The left 

vertical axis corresponds to the inverse function for the standard normal distribution of the CDF 

of collapse capacity, ]}/)/[({ ,
1 ηgSF ca

−Φ  or in a simplified way }{
,,

1

caSCF−Φ . The right vertical 

axis indicates the corresponding cumulative probabilities. The graphs are for systems with “low,” 

“intermediate,” and “high” ductility and the data fit well to a straight line, even at small and large 

fractiles. 

For this evaluation, the 5% significance level is selected, which is of common use. The 

number of collapse capacities is 40, which is the number of ground motions in the LMSR-N set 

to which the system is subjected. For a set of 40 data points and a 5% significant level (α = 

0.05), the critical value is c = 0.21 26(Benjamin and Cornell, 1970). The test statistic (D) is 

included in Figures C.1–C.3 for the three aforementioned SDOF systems. Because the test 

                                                 
26   For a sample size with a number of data, n, larger than 40, the critical statistic at 5% confidence level can be 
computed as nc /36.1=  
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statistic values are less than the critical value, the assumption of lognormal distribution for 

collapse capacity cannot be rejected at the 5% significance level. 

Figure C.2 shows lognormal distribution fittings for collapse capacities generated for 3 

and 6-story generic frames that have a fundamental period T1 = 0.6 s. The dispersion of the data 

is also entirely due to RTR variability. Once again, the visual fit is satisfactory and the computed 

“D” are smaller than c = 0.21. Thus, the assumption of lognormal distribution for collapse 

capacities of these generic frames cannot be rejected at the 5% significance level. 

C.3 SUMMARY 

The collapse capacities of several systems were plotted on lognormal probability paper along 

with the fitted lognormal distribution, obtaining a good fit even at small and large fractiles. To 

quantify how well the collapse capacity data fit the lognormal distribution, Kolmogorow-

Smirnov goodness-of-fit tests have been carried out. SDOF systems with low, intermediate and 

high ductile characteristics, as well as stiff and flexible generic frames have been tested. In all 

cases the critical value “c” for a 5% significance level is almost twice as large as the computed 

parameter D. These tests provide good arguments for representing collapse capacity data by a 

lognormal distribution. 
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Collapse Capacities on Lognormal Probability Paper,
T = 0.6 s., Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.10, δc/δy=6, γs,c,a=Inf, γk=Inf, λ=0
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Collapse Capacities on Lognormal Probability Paper,
T = 0.6 s., Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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          (a) High Ductility          (b) Intermediate Ductility                             

Collapse Capacities on Lognormal Probability Paper,
T = 0.6 s., Peak Oriented Model, LMSR-N, ξ=5%, P-∆='0.1N', 

αs=0.03, αc=-0.30, δc/δy=2, γs,c,a=Inf, γk=Inf, λ=0
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(c ) Low Ductility 

Fig. C.1 Fitting of lognormal distribution to collapse capacity data; peak-oriented 

SDOF systems; dispersion due to RTR variability 

 

 
Collapse Capacities on Lognormal Probability Paper,

N=3, T = 0.6 s., BH, Peak Oriented Model, LMSR-N, ξ=5%
αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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Collapse Capacities on Lognormal Probability Paper,
N=6, T = 0.6 s., BH, Peak Oriented Model, LMSR-N, ξ=5%

αs=0.03, αc=-0.10, δc/δy=4, γs,c,a=Inf, γk=Inf, λ=0
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(a) 3-Story Frame (Flexible)     (b) 6-Story Frame (Stiff) 

Fig. C.2 
 

Fitting of lognormal distribution to collapse capacity data; generic 

frames with T1 = 0.6 s; springs with intermediate ductility 
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Appendix D: Computations of Variance of 
Collapse Capacity in the Linear 
Domain of the Data 

In Chapter 6 additional variance of collapse capacity due to uncertainty in the system parameters 

is computed by applying the FOSM method in the log domain of the data. As an alternative, this 

appendix presents an overview of the FOSM method with computations in the linear domain of 

the data. Arguments are presented for why computations in the log domain of the data are 

preferable. 

D.1  FORMULATION FOR COMPUTATIONS OF COLLAPSE CAPACITY IN 
LINEAR DOMAIN  

An “additive” approach is used for computing the total variance in the linear domain of the data, 

i.e., collapse capacity is expressed as a function “f” plus a random variable that depends on RTR 

variability: 

( )RTRQfS zca εη += )(/,       (D.1) 

where Q  is the vector of random system parameters and ( )RTRzε  is a random variable with zero 

mean. Then, the total variance of collapse capacity, 2
)(, TOTS ca

σ , is given by: 

2
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          (D.2) 

To compare results obtained in the log and linear domain of the data, the geometric mean 

and dispersion of the probabilistic parameter(s) must be equivalent. Because the distribution of 

the system parameters is unknown, a first-order approximation is used:  

)exp( ln xx µµ ≅ ,         xxx lnσµσ ≅               (D.3) 
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D.2 LINEAR DOMAIN AND LOG DOMAIN OF DATA 

Some arguments in favor of the use of computations in the log domain of the data are presented 

based on the reference SDOF system of Chapter 4, considering uncertainty in the post-capping 

stiffness coefficient, αc. The first argument is related with the differences in the formulation, i.e., 

the multiplicative versus additive approach. The second one is about the stability in the 

computations of the variance of collapse capacity. 

D.2.1 Multiplicative versus Additive Approach  

Computations in the log domain of the data are based on a multiplicative approach, i.e., the 

random variable ( )RTRkε  multiplies the function ),...,,( 21 nQQQf  (Eq. 6.4). Thus, in the log 

domain of the data 2
)(ln , RTRS ca

σ  is added to the variance of collapse capacity due to uncertainty in 

the input parameters (Equation 6.8). This implies that the standard deviation of the log of 

collapse capacity due to RTR variability is the same for variations of a given probabilistic 

parameter ( )(ln , RTRS ca
σ  is constant under variations of xi). In the linear domain, this means that 

)(,
... RTRS ca

voc  is constant under variations of xi  

On the other hand, the computations in the linear domain of the data consider an additive 

approach, i.e., the random variable ( )RTRzε  is added to the function ),...,,( 21 nQQQf . This 

implies that the standard deviation of collapse capacity due to RTR variability is assumed as a 

constant for variations of the probabilistic parameter ( )(, RTRS ca
σ  is constant under variations of xi).  

Figures D.1–D.2 show the behavioral trends of )(, RTRS ca
σ  and )(,

... RTRS ca
voc  under 

variations of αc, for reference SDOF systems at different periods. The patterns indicate that the 

)(,
... RTRS ca

voc  tends to be more constant under variations of αc. This trend is more consistent with 

the multiplicative approach. Therefore, the computations in the log domain of the data are the 

most reasonable alternative from this point of view. Similar patterns were obtained for variations 

of ductility capacity and cyclic deterioration.  
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D.2.2 Computations in Linear and Log Domain of Data  

The additional variance of collapse capacity for the reference SDOF system due to uncertainty in 

the post-capping stiffness coefficient ( 2
)(, ασ

caS ) is obtained by applying the FOSM method with 

computations in the linear domain of the data, (see Section 6.3.1.1). The mean and standard 

deviation of cα  are derived from Equation D.3: 10.0≅αµ  and 06.0)6.0(10.0 =≅ασ . Once the 

sign is inverted27, the 16th and 84th percentiles for computations in the linear domain of the data 

are obtained: 

04.006.010.016 −=+−=+≅ ααα σµth  

16.006.010.084 −=−−=+≅ ααα σµth  

Note that these percentiles differ from those computed in the log domain of the data for 

the 16th and 84th percentiles (αc = -0.055 and -0.182, respectively). The discrepancy adds another 

source of uncertainty to the comparison. 

Once the collapse capacities for the 16th and 84th percentiles of cα  in the linear domain of 

the data are computed, 2
)(, ασ

caS  is calculated according to Equation D.2 and is presented in Figure 

D.3 as a percentage of variance of collapse capacity due to RTR variability ( 2
)(

2
)( ,,
/ RTRSS caca
σσ α ). 

As observed, these ratios are more than two times larger than the 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α  ratios for 

computations in the log domain of the data.  

The large difference in the results of Figure D.3 may be caused by the domain of the 

calculations itself or by the fact that the 16th and 84th percentiles are different for each domain. A 

closer look at the region where αc is evaluated reveals that th16
α is on the border of a highly 

nonlinear region (Fig. D.4). To eliminate the uncertainty due to collapse capacities evaluated at 

different percentiles, the 16th and 84th percentiles used for the computations in the log domain of 

the data are also used for the computations in the linear domain, i.e., 055.01, −=cα  and 

182.02, −=cα . Note that in the linear domain these values do not correspond to the 16th and 84th 

and are not at the same distance from the mean value. Figure D.5 presents the ratios of variance 

of collapse capacity due to uncertainty in cα  over the variance of collapse capacity due to RTR 
                                                 
27   The sign is inverted to be able to obtain natural logarithms (Section 6.3.1.1) 
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variability for computations on both domains. This time the ratios of additional uncertainty are 

very similar. This suggests that the different formulation utilized in each domain (multiplicative 

versus additive approach) is less important than the values at which the probabilistic parameter is 

evaluated for obtaining the derivative. 

To verify the importance of the selected percentiles of αc, the collapse capacity in the log 

domain of the data is computed using the αc values that were obtained for the 16th and 84th 

percentiles in the linear domain. The 2
)(ln

2
)(ln ,,
/ RTRSS caca
σσ α  ratios for different percentiles in the 

log domain of the data are very similar (Fig. D.6). This indicates that the dependence of collapse 

capacity on the selected percentiles of αc is less sensitive in the log domain of the data (Fig. 6.4).  

D.3 SUMMARY 

The above observations for uncertainty in the post-capping stiffness coefficient were also made 

for uncertainty in ductility capacity and cyclic deterioration. Thus, computations in the log 

domain of the data should be preferred for several reasons. In the first place, the multiplicative 

approach is more consistent with the identified behavioral trends of collapse capacity under 

variations of the probabilistic parameter. Also, the relationships between probabilistic parameters 

and collapse capacities are smoother in the log domain of the data, which tends to reduce 

variations in the results due to local irregularities. However, the main reason for this preference 

is that computations in the log domain of the data reduce the likelihood of evaluating collapse 

capacity in a highly nonlinear region.  
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ST. DEV. OF (Sa,c/g)/η, αc VARIATION
Peak Oriented Model, LMSR-N, ξ=5%, P-∆=0, 
αs=0.03, αc=Var, δc/δy=4, γs,c,a=100, γk=200, λ=0
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Fig. D.1  Standard deviation of collapse capacity under variations of αc 
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Fig. D.2  Coefficient of variation of collapse capacity under variations of αc 
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