PACIFIC EARTHQUAKE ENGINEERING
RESEARCH CENTER

Experimental and Analytical Studies on the
Seismic Response of Freestanding and Anchored
Laboratory Equipment

Dimitrios Konstantinidis
Department of Civil and Environmental Engineering
University of California, Berkeley

Nicos Makris
Department of Civil Engineering
University of Patras, Greece

PEER 2005/07
JANUARY 2005



PACIFIC EARTHQUAKE ENGINEERING
RESEARCH CENTER

Experimental and Analytical Studies on the
Seismic Response of Freestanding and Anchored
Laboratory Equipment

Dimitrios Konstantinidis
Department of Civil and Environmental Engineering
University of California, Berkeley

Nicos Makris
Department of Civil Engineering
University of Patras, Greece

PEER 2005/07
JANUARY 2005



Experimental and Analytical Studies on
the Seismic Response of Freestanding and Anchored
Laboratory Equipment

Dimitrios Konstantinidis

Graduate Student Researcher
Department of Civil and Environmental Engineering
University of California, Berkeley

and

Nicos Makris

Professor of Structures and Applied Mechanics
Department of Civil Engineering
University of Patras, Greece

PEER Report 2005/07
Pacific Earthquake Engineering Research Center
College of Engineering
University of California, Berkeley

January 2005



ABSTRACT

This report presents the results of a comprehensive experimental program investigating the seis-
mic response of freestanding and anchored laboratory equipment. The study is part of a broader
study on the UC Science Laboratory facility that implements the performance-based earthquake
engineering (PBEE) methodology proposed by the PEER Center.

In this study, quasi-static experiments were conducted in order to examine the mechanical
behavior of the contact interface between laboratory equipment and the floors on which the equip-
ment is situated. Based on the results of these experiments, the report presents two idealized con-
tact friction models that were constructed: (a) an elastoplastic model and (b) a classical Coulomb
friction model.

The report presents shake table test results of freestanding equipment subjected to ground
and floor motions with 50% and 10% in 50 years hazard levels. For the equipment tested,
although some rocking was observed, sliding was the predominant mode of response, with sliding
displacements reaching up to 2 ft. Numerical simulations with the elastoplastic model using MAT-
LAB and with the Coulomb model using the software Working Model 2D were performed. When
the friction coefficient values obtained from the quasi-static tests were used, the simulations
yielded time-history results that were in fair agreement with the experimental data. The predicted
responses were appreciably improved for both models when reduced values of the friction coeffi-
cients were used.

Following the PEER methodology, the report identifies a representative Intensity Measure,
IM, and the associated Engineering Demand Parameter, EDP. The proposed lognormal distribu-
tion of the EDP is tested against the shake table experimental results, and simple linear relation-
ships for the mean and standard deviation of the EDP in terms of the /M are offered. The report
presents generated fragility curves and an example that illustrates how to use them.

Results of shake table tests done on wooden scale models of the equipment confirm Work-
ing Model’s ability to capture the overturning potential of equipment and provide confidence in its
use to analyze the seismic response of equipment. Working Model was used to compute the
responses of equipment subjected to 2% in 50 years motions (which were not tested on the shake
table due to its displacement limitations). The report presents these responses together with gener-

ated fragility curves.
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The report finally presents results of shake table tests performed on anchored equipment
which indicate that recorded peak equipment accelerations are significantly larger than those
recorded during the freestanding equipment tests, on several occasions 7 or more times larger.

Such high accelerations may pose a threat to the sensitive contents of laboratory equipment.
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1 Introduction

1.1 MOTIVATION

During strong earthquake shaking, heavy equipment located at various floor levels of hospitals,
university laboratories, and other critical facilities may slide appreciably, slide-rock, rock, or even
overturn. Rocking response is very sensitive to the geometry of the rocking object and the kine-
matic characteristics of the ground. Minor variations in the input can result in overturning—catas-
trophe (Yim et al. 1980; Makris and Roussos 2000; Makris and Konstantinidis 2003a). Therefore,
rocking is in principle an undesirable response for the equipment because it is often the cause of
mechanical damage or total loss in the event of overturning. Yet even if overturning does not
occur, the high acceleration spikes that develop during impact of the rocking equipment are a
major concern, since they can result in serious damage or loss of the vulnerable and precious
equipment contents.

Of the possible modes of response, sliding is the most favorable. Nonetheless, excessive
sliding displacements may block a path or doorway that services evacuation. Large displacements
of sensitive/heavy equipment that result in impact with walls or neighboring equipment should be
avoided, since the resulting acceleration spikes endanger the contents or even the equipment
itself. In practice, excessive sliding is prevented by restraining the equipment—commonly by
chaining it to the framing of the nearby wall. Although this may succeed in reducing sliding dis-

placements, it substantially amplifies accelerations.

1.2 BACKGROUND AND TESTBED

1.2.1 Overview of the PEER Methodology

This research is part of a larger study that sets out to apply the PEER-proposed performance-

based earthquake engineering (PBEE) methodology on a specific testbed: an actual science labo-



ratory building, herein referred to as UC Science Building. Performance-based earthquake engi-
neering implies design, evaluation, and construction of engineered facilities whose performance
under common and extreme loads responds to the diverse needs and objectives of owners-users
and society (Comerio 2005).

The PEER PBEE methodology consists of four stages (Porter 2003):

* Hazard analysis. In this stage, the seismic environment of the facility site (e.g., fault dis-
tances, fault mechanisms, occurrence intervals, site soil conditions) is used to evaluate a
seismic hazard considering various facility features (e.g., structural and architectural fea-
tures). This includes the selection or generation of sets of ground-motion time histories
whose Intensity Measures, IM (e.g., Peak Ground Acceleration, PGA, Peak Ground Dis-
placement, PGD), characterize varying levels of seismic hazard (e.g., one set for events
with Probability of Exceedence, POE, of 50% in 50 years, one with POE of 10% in 50
years, and one with POE of 2% in 50 years).

+ Structural analysis. In this stage, a structural model of the facility is created, and nonlin-
ear dynamic analyses are performed in order to compute the response of the facility to
ground motions of a given /M. This produces Engineering Demand Parameters, EDP
(e.g., floor accelerations, interstory drifts).

» Damage analysis. In this stage, the above-determined EDP’s are used as input to compo-
nent fragility functions in order to determine Damage Measures, DM, to the facility
components (e.g., beams, columns, building contents).

» Loss analysis. Given the determined DM, the performance of the facility is evaluated.
This performance is parametrized by Decision Variables, DV, that are of greatest concern

to the stakeholders (e.g., deaths, dollars, downtime).

Each relationship, from the facility features (location and design) to the /M, from the /M to
the EDP, from the EDP to the DM, and from the DM to the DV, involves uncertainty and is there-
fore treated probabilistically. The PEER methodology can be summarized mathematically by

g[DV|D] = f f fp[DV|DM,D]p[DM|EDP,D]p[EDP|IM,D]
DM EDP IM glIM|D]dIMdEDPdDM (1.1



where p[A|B] denotes the probability density of 4 conditioned on knowledge of B, and g[A|B]
is the occurrence frequency of 4 given B (Porter 2003).

1.2.2 Testbed: The UC Science Research Facility

There is a class of buildings, such as museums, high-tech fabrication facilities, hospitals, and
research laboratories, in which the contents far outcost the structure itself (Comerio 2005). Often-
times the contents can also pose a credible health hazard to the building occupants or even the
general public. For instance, spillage or leakage of hazardous agents in a laboratory due to an
earthquake can cause serious injuries or deaths. Research facilities, which often occupy a rela-
tively large percentage of the campus space in universities, concentrate a significant portion of the
university’s research funding, valuable equipment, and ideas. The testbed for this study, the UC
Science Building, is such a research facility.

The UC Science Building is located on the western part of the main UC Berkeley campus
and is approximately 1 km west of the Hayward fault (Fig. 1.1 top). The building is six stories tall
plus a basement. The basement is contained within the perimeter of the approximately 306-ft
(north-south) by 105-ft (east-west) building (Fig. 1.1 bottom). It is a modern structure that was
completed in 1988 in order to provide high-tech research laboratories. It is 203,800 sq ft overall,
of which 122,000 sq ft are used for research laboratories, animal facilities, offices, and related
support spaces (Comerio 2005).

The gravity load-carrying system of the structure consists of a reinforced concrete space
frame. The floors consist of waffle slab systems with solid parts acting as integral beams between
columns. The lateral force-resisting system consists of coupled shear walls in the east-west direc-
tion and perforated shear walls in the north-south direction. The building foundation is a 38-in.-
thick mat. It is worth noting that the particular facility was chosen to apply the PEER PBEE meth-
odology because the structural system is expected to perform well in earthquakes. In fact, the seis-
mic performance of the building was rated above average: “operational” to “safe” for moderate
(72-year return period) to extreme seismic events (2500-year return period) (UCB 1997; Comerio
2000). The attention of the research could therefore be concentrated on the performance of the
valuable building contents and their contribution to losses, in particular downtime (Comerio

2005).
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Figure 1.1 Top: Location of the UC Science Laboratory Building. The heavy dashed line
traces the nearby Hayward fault. Bottom: Typical floor plan of the UC Science
research facility (from Comerio 2005).



1.3 OBJECTIVES OF THE RESEARCH

In this project, experimental and analytical studies were undertaken to examine the seismic vul-
nerability of freestanding and restrained laboratory equipment located in the UC Science Building
laboratories within several floor levels. The equipment of interest included low-temperature
refrigerators, freezers, incubators, and other heavy equipment.

The dynamic behavior of either freestanding or restrained equipment is sensitive to many
parameters, including the characteristics of the base input (mainly peak base acceleration and
duration of the predominant acceleration pulse of the excitation), the frictional characteristics of
the equipment-base interface, and the slenderness of the equipment. The results of the shake table
tests were used to arrive at relationships that describe a meaningful dimensionless engineering
demand parameter, EDP, as a function of intensity measure, /M, and mechanical properties of the
equipment, D. Since uncertainties are inherent in all stages of the PEER methodology, a probabi-
listic approach was taken. Finally, an analysis was performed to generate fragility curves, which
give the probability that the aforementioned EDP will exceed a specified limit as a function of the
IM and D.

Due to displacement limitations of the shake table, experiments could only be performed for
lower to intermediate hazard levels. The results obtained were used to validate/calibrate analytical
tools which, in turn, were used to compute the response of heavy laboratory equipment to higher
hazard levels. The results were used in the above recipe: construct a relationship between the EDP

and the /M and D, and generate fragility curves for various limit values.



2 Seismic Hazard and Structural Analysis

The seismic hazard study for the UC Science testbed was performed by Somerville (2001), while

the structural response analysis was performed by Lee and Mosalam (2005).

2.1 SEISMIC HAZARD

The seismic hazard on the Berkeley campus is dominated by potential ground motions generated
from the Hayward fault, which is located approximately one kilometer east of the site. The Hay-
ward fault is a strike-slip fault that has a potential to generate earthquakes having magnitudes as
large as My, = 7.0. The ground motions for the site were selected and scaled to correspond to
three hazard levels: (1) events with Probability of Exceedence, POE, equal to 50% in 50 years, (2)
events with POE 10% in 50 years, and (3) events with POE 2% in 50 years. For a hazard level
equal to 50% in 50 years, the largest contributions come from earthquakes in the magnitude range
of My, = 5.5 to My, = 6.0. For hazard level equal to 10% in 50 years and to 2% in 50 years, the
largest contributions come from earthquakes in the magnitude range of My, = 6.5 to My, = 7.0.
It is noteworthy that the higher 2% in 50% hazard levels do not reflect larger magnitudes (as the
Hayward fault can generate earthquakes only up to My, = 7.0) but rather stronger ground
motions with the same magnitude (with larger standard deviation above the mean) (Somerville
2001).

The motions listed in Table 2.1 have been selected to satisfy (to the extent possible) the

magnitude and distance combination from a strike-slip earthquake on NEHRP-classified S soil

type.

2.2 STRUCTURAL ANALYSIS

The interest of the UC Berkeley administration in the seismic response of the UC Science Labora-

tory Building supported a comprehensive nonlinear dynamic analysis of the building. The task



Table 2.1 List of selected records.

Earthquake Record My, Distance Hazard Level
[km]

Aigion, Greece OTE, FP 6.2 5.0 -

June 15, 1995 (ground)

Coyote Lake, California  Gilroy Array #6, FN 5.7 3.0 -

August 6, 1979 (ground)

Parkfield, California Cholome Array #6, FN 6.0 8.0 50% in 50 years

June 27, 1966 (ground and 6th floor)

Coyote Lake, California  Gilroy Array #6, FN 5.7 3.0 50% in 50 years

August 6, 1979 (ground)

Loma Prieta, California ~ Gavilan College, FN 7.0 9.5 10% in 50 years

October 17, 1989 (ground and 6th floor)

Tottori, Japan Kofu, FN 6.6 10.0 10% in 50 years

October 6, 2000 (ground and 6th floor)

Loma Prieta, California ~ Los Gatos PC, FP 7.0 3.5 2% in 50 years

October 17, 1989 (ground)

Loma Prieta, California  Corralitos, FP 7.0 34 2% in 50 years

October 17, 1989 (ground)

Loma Prieta, California  Gilroy Historic Bldg., FN 7.0 2% in 50 years

October 17, 1989

(ground and 6th floor)

was undertaken by Lee and Mosalam (2005) who developed an elaborate structural model of the
UC Science research facility. The model was created in OpenSees, a PEER-sponsored software
framework that simulates the performance of structural and geotechnical systems subjected to
earthquakes (McKenna and Fenves 2001). Modeling and analysis in OpenSees incorporates
recent model developments to improve on the accuracy of the computed seismic response.

Lee and Mosalam (2002) performed nonlinear time-history analyses of the structural model
subjected to all the selected ground records. These analyses resulted in simulated floor motions.
Floor motions are of unique interest in assessing the seismic response of building contents, since
they differ appreciably from ground motions. Table 2.1 lists the recorded ground-acceleration
motions and the simulated floor-acceleration motions that were used as input for the shake table

experiments conducted in this study.



3 Laboratory Equipment and Friction
Experiments

3.1 SLENDER LABORATORY EQUIPMENT

The equipment of interest included incubators, low-temperature freezers, refrigerators, and other
heavy laboratory equipment of the UC Science Building at the UC Berkeley campus. In particu-
lar, three pieces of equipment were obtained from the building laboratories in order to examine
their mechanical properties and to perform shake table tests. Figure 3.1 shows pictures of the
equipment, while Table 3.1 lists their geometric and physical characteristics. Figure 3.2 is a sche-
matic of a piece of equipment that shows the geometric quantities that are listed in Table 3.1. Each
piece of equipment has two vertical faces, designated here by W for width and D for depth. The
stockiness angles @y, and a, of a piece of equipment are defined by

@y = tan_l(%/) and «p = tan_l(g) (3.1

The stockiness of a block is an indicator of its disposition to enter rocking motion. The smaller the
stockiness, the more likely for the equipment to uplift, enter rocking motion, and possibly over-

turn. The frequency parameters py, and p,, are measures of the size of the equipment and are

3g 3g
- d = 3.2
Pw= Jar, ™ P07 R, (3.2)

where g is the acceleration of gravity and Ry, = JH + W/ 2,Rp = JH*+D* /2 (Fig. 3.2).

The larger the block (larger R), the smaller p. It is interesting to note that when two geometrically

given by

similar blocks (same stockiness angle ) of different size (different frequency parameter p)

experience free vibrations with the same initial conditions, #(0) = @ and 6(0) = 0, each

o
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response cycle of the larger block (smaller p) is longer than the corresponding response cycle of
the smaller block (larger p) (Housner 1963; Makris and Konstantinidis 2003a). Accordingly, the
quantity p is a measure of the dynamic characteristics of the block. For planar pure rocking
motion (no sliding), the frequency parameter p and the stockiness @ of the block are the two
parameters in the equation of motion.

Besides rocking, sliding and slide-rocking are possible modes of response for the laboratory
equipment. The study of the interface between the equipment and the floor surfaces on which the

equipment rests inside the UC Science laboratories was imperative.

3.2 FRICTION TESTS

The mechanical properties of the contact interface between the equipment and the laboratory
floors were determined by conducting slow pull tests on the equipment. The floors throughout the
UC Science Building are lined with vinyl tiles. In order to simulate the actual conditions, a 4-ft x
8-ft pressboard surface covered with identical vinyl tiles was constructed. Atop it rested the
equipment specimens. Figure 3.3 shows a schematic of the experimental setup of the pull tests
conducted on the equipment.

Figures 3.4 through 3.6 plot load-displacement curves recorded during the quasi-static pull
tests on the three pieces of equipment shown in Figure 3.1. All three sets of curves shown in Fig-
ures 3.4 through 3.6 exhibit a peak value when sliding initiates and subsequently a relatively con-
stant friction force, O, while sliding occurs. The pre-yielding elasticity in the load-displacement
curves originates from the flexure of the legs of the equipment prior to sliding. This pre-yielding
elasticity of the legs and the friction force that develops along the vinyl surface combine to a
yielding mechanism of the interface. A simple idealization of the yielding mechanism of the inter-
face is the elastoplastic model shown with dashed lines in Figures 3.4 to 3.6. The model parame-
ters that define the elastoplastic idealization are the yield displacement, Uy, and the normalized
strength, p1, = Q / mg, where Q is the post-yield constant force. Another idealization of the con-
tact interface is that of classical Coulomb friction where a static friction coefficient, u , and a
kinetic friction coefficient, y, , are used.

Simulation studies on the sliding response of the equipment using the elastoplastic model

with the values of the friction coefficient y; extracted from the slow pull tests yielded results

12



Figure 3.2 Schematic of a piece of equipment.
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which are in fair agreement with the experimental data. The predicted response of all three pieces
of equipment was appreciably improved when lower values of their respective friction coeffi-
cients were used. The lower friction levels of the elastoplastic idealization of the contact-interface
yielding mechanism are indicated in Figures 3.4 to 3.6 with solid lines. The heavy solid lines
shown in Figures 3.4 to 3.6 correspond to the Coulomb model with reduced friction coefficients.
The reduced values of the coefficients of static friction u and coefficients of kinetic friction y;,
have been obtained by best-fitting results from numerical simulations using the commercially
available software Working Model (2000) to results obtained from shake table experiments. Table
3.2 summarizes the values of friction coefficients and yield displacements that were obtained
from the slow pull tests and from the best fit of the data obtained from shake table studies. The
prediction of the recorded response using the values of the coefficients of friction shown in Fig-
ures 3.4 to 3.6 and Table 3.2 and a further discussion of the elastoplastic and the Coulomb models

of the contact interface are offered in Chapters 5 and 6.
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4 Shake Table Tests of Freestanding Laboratory
Equipment

The three pieces of equipment shown in Figure 3.1 were subjected to shake table tests at the Rich-
mond Field Station Earthquake Simulator Laboratory, UC Berkeley. The same type of pressboard
surface that was used as the base for the slow pull tests was positioned atop the shake table to sup-
port the equipment. Figure 4.1 shows a photograph of one of the freestanding equipment resting
on the shake table.

The displacement of the shake table and the equipment were measured with wire transduc-
ers attached to a frame fixed on the laboratory floor. Figure 4.1 shows the locations of the wire
transducers on the test specimen with heavy white lines. Accelerometers were also installed on
the positions shown with black arrows in Figure 4.1 in order to capture horizontal and vertical
accelerations.

The horizontal displacement capacity of the shake table at the Richmond Field Station is
+6.0 in. Given this constraint, experiments at full scale were run only for the ground motions with
hazard level equal to 50% in 50 years and 10% in 50 years. Shake table tests using the stronger
ground motions with probability of exceedence equal to 2% in 50 years were conducted on
scaled-down models by compressing the duration of the records. These shake table tests are dis-
cussed in Chapter 7 of this report.

Table 4.1 presents a list of the shake table tests conducted on the full-scale freestanding
equipment that are shown in Figure 3.1. On all the tests listed in Table 4.1 the shake table excita-
tion was one-directional. The motion of the equipment was mostly along the direction of the input
excitation. However, in several occasions the equipment while shaken along the primary direc-
tion, exhibited rotations about its vertical axis. In some cases these plane rotations were as small
as 0.005 rad, while in others as large as 0.33 rad, indicating that even when the excitation is one-

directional, the response is in fact in three dimensions.
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Table 4.1 lists the earthquake records that were used to test the freestanding equipment.
Also listed are the recorded Peak Table Acceleration, PTA, and the equipment peak sliding dis-
placement, U, .. The PTA4 level of the records used in this experimental program ranged from
0.43g to 1.70 g and the U, from 1 in. to as much as 24 in. The shake table tests indicated that
the primary mode of response of the three pieces of equipment is sliding. In fact, the maximum
recorded uplift rotation in all tests for the Kelvinator refrigerator was only 0.02 rad (0.069« ) and
only 0.005 rad (0.015a) for the ASP refrigerator. The maximum recorded uplift rotation for the
FORMA incubator was 0.13 rad (0.489« ). Although the FORMA incubator experienced larger
uplift rotations than the other two specimens, these rotations were still within safe levels. None-
theless, after about 20 tests one of the flimsy leg supports of the FORMA incubator failed due to
low-cycle fatigue. The resulting instability caused overturning of the specimen.

Figure 4.2 (bottom window) plots the OTE FP ground acceleration history recorded during
the 1995 Aigion, Greece, earthquake. The graph on the window above the acceleration record
plots the resulting shake table displacement, and the third window from the top plots with a heavy
solid line the recorded sliding displacement of the FORMA incubator. The recorded sliding dis-
placement history shows the equipment suddenly sliding once a threshold table acceleration is
exceeded (at about 3.8 sec). If the contact interface were characterized by a Coulomb friction
model (and there were no uplift), then this threshold value would simply be u g . However, the
real behavior is complicated by the fact that the contact interface exhibits a pre-yielding elasticity
due to the flexibility of the equipment legs and by the possibility of uplift. The top two graphs in
Figure 4.2 which plot with heavy solid lines the equipment uplift and the plane rotation (rotation
about the vertical axis) show that the specimen does indeed uplift and twist just slightly even
before the initiation of sliding (at about 3.65 sec).

In other cases, one mode of response does not seem to trigger the other, but rather both hap-
pen simultaneously. Figure 4.3, which plot the response of the FORMA incubator subject to the
Gilroy Array #6 record of the 1979 Coyote Lake, California, earthquake, shows a sliding-uplift-
ing-twisting coupling. Figures 4.4 to 4.6 plot the recorded response of the FORMA incubator to
two 50%-in-50-years and one 10%-in-50-years hazard level earthquake motions.

The response mode coupling is less pronounced for the Kelvinator refrigerator which,
although demonstrating a slightly larger coefficient of friction during the slow pull tests than the

FORMA incubator (u, = 0.37, versus u, = 0.30), is stockier (& = 0.289 versus @ = 0.266)

24



and therefore less susceptible to uplift. Figures 4.7 to 4.13 show that the Kelvinator refrigerator
exhibits relatively small rotations, never exceeding 7% its stockiness angle « in any of the tests.
Moreover, the Kelvinator refrigerator exhibits very small rotation about its vertical axis. The max-
imum recorded plane rotation in all tests performed on the Kelvinator refrigerator was 0.05 rad.

The ASP refrigerator is considerably stockier in one direction than in the other
(ay = 0.400 versus ap = 0.313; see Table 3.1 and Fig. 3.2). This geometric characteristic
prompted us to test this piece of equipment along both directions. When the table excitation is
along the more stocky direction (W), the configuration is designated Profile whereas when the
table excitation is along the more slender direction (D), the configuration is designated Face. Fig-
ures 4.14 to 4.21 plot the recorded response for all the shake table tests performed on the ASP
refrigerator in the Face configuration, and Figures 4.22 to 4.29 plot the response in the Profile
configuration. It is seen that the response is almost identical. Although the ASP refrigerator has
the largest coefficient of friction (¢, = 0.43 evaluated from the slow pull tests), which suggests a
propensity towards uplift rather than sliding, it is fairly stocky in each direction compared to the
FORMA incubator and Kelvinator refrigerator. Figures 4.14 to 4.21 and 4.22 to 4.29 show that the
recorded uplift rotations were in fact very small for both the Face and Profile directional tests.The
maximum recorded uplift rotation did not exceed 0.005 rad (1.5% of ay)).

An interesting characteristic to note is the waviness of the heavy solid lines that plot the
sliding displacement in Figures 4.2 to 4.29. In the experimental setup, the sliding displacement of
the equipment was not measured exactly at the floor-equipment interface but rather right above
the leg supports. Even when the equipment was not sliding, the flexibility of the supports caused
the equipment to wobble. As expected, the wobbling is more pronounced for the FORMA incuba-
tor whose legs were very flexible (Fig. 3.4), less pronounced for the Kelvinator refrigerator whose
legs are fairly stiff (Fig. 3.5), and almost non-existent for the ASP refrigerator whose legs are

nearly rigid (Fig. 3.6).
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5 Regression Analysis and Fragility Curves for
50% in 50 Years and 10% in 50 Years Hazard
Motions

5.1 SLIDING AND GOVERNING PARAMETERS

The shake table experiments on freestanding equipment presented in Chapter 4 indicated that
although rocking was realizable, overturning did not occur (except for the one case when the
FORMA incubator toppled due to a low-cycle fatigue failure of one of its leg supports). For the
practical purposes of this study, therefore, the major concern is the sliding displacement that a
piece of equipment will exhibit during earthquake shaking.

Many parameters influence the full behavior of a piece of equipment subjected to seismic
motion. However, since we are primarily concerned with sliding, the governing parameters
become those that describe (a) the mechanical characteristics of the equipment-floor interface and
(b) the kinematic characteristics of the base motion. From the slow pull tests performed on the
equipment (see Chapter 3), the load-displacement curves show that there is a pre-yielding elastic-
ity due to the flexibility of the legs. A peak value of force is reached (associated with the static
coefficient of friction yu ) after which the equipment starts sliding with a relatively constant force
(associated with the kinetic coefficient of friction y; ). Three parameters would therefore be nec-
essary to describe this model. Since the goal of this study is to develop a practical methodology
for estimating the sliding displacements and the probability that this will not exceed a certain
capacity limit, a /imited number of parameters had to be selected. The one parameter that best
describes the sliding resistance of the interface is the kinetic coefficient of friction u, , designated
hereafter simply as yu.

Figures 4.2 to 4.29 that plot the results of the shake table tests on the freestanding equip-

ment also plot the results obtained by numerical simulations for two different models of the slid-



ing interface: an elastoplastic model (MATLAB) and a Coulomb friction model (WM2D). It was
noted that when the values p obtained from the slow pull tests (see Figs. 3.4 to 3.6 and Table 3.2)
were used, the numerical predictions of the elastoplastic model (plotted with dashed grey lines in
Figs. 4.2 to 4.29) are, in general, somewhat closer to the experimental results (heavy black lines)
than the numerical prediction offered by the Coulomb friction model (solid grey lines). Neverthe-
less, even the elastoplastic model predictions are only in fair agreement with the experimental
results. A considerably improved agreement between experimental and numerical results from
either model is observed when the numerical value of u is reduced in the numerical simulations.
Interestingly, reducing u in the Coulomb friction model (solid black lines) yields results that are
generally just as close to the experimental results as the elastoplastic model predictions (dashed
black lines).

The characterization of the base earthquake motions is more complicated. The most widely
used parameter to indicate the strength of the motion is the Peak Ground Acceleration, PGA.
Since this study also deals with floor motions, the peak value of the motion is generically desig-
nated Peak Table Acceleration, PTA. However, this one value is not sufficient to characterize the
catastrophic potential of earthquake shaking. Past studies have demonstrated that strong near-fault
motions contain a predominant pulse that can be used to model some of the most prevalent kine-
matic characteristics of the motion (Makris and Roussos 2000; Makris and Chang 2000; and ref-
erences reported therein). Besides the PTA, this study also uses the predominant trigonometric
pulse’s circular frequency, w,,. Note that PTA / wlz) is a characteristic length scale of the excita-
tion that serves as a measure of its intensity (Makris and Black 2003). The following section is a
discussion on trigonometric pulses that can be used to approximate the predominant pulse of an

earthquake motion.

5.2 CLOSED-FORM DETERMINISTIC APPROXIMATION OF PULSE-TYPE AND
NEAR-SOURCE EARTHQUAKE MOTIONS

The bottom window of Figure 4.6 plots the fault-normal component of the ground acceleration
recorded at the Gavilan College station during the 1989 Loma Prieta, California, earthquake,
together with a one-sine acceleration pulse (heavy grey line) that approximates the main pulse of
the ground motion. The window above plots the resulting ground displacements of the recorded

motion and the trigonometric pulse that approximates it. The ground moves forward, and it recov-
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ers only partially after the equipment stops sliding. Note that the main pulse of the record coin-
cides with the initiation of sliding around ¢ = 4.2 sec. A forward-displacement such as this can
be approximated by a Type-A pulse given by (Jacobsen and Ayre 1958; Veletsos et al. 1965;
Makris 1997)

WA 1 .

ug(t) = Ewpvpsm(wpt), O<t< Tp

) = L 11 cos(w, 0] O0<t<T (5.1)

g T op p-/de I :
1

A 1 .
ug(t) = Evp[t—ansm(wpt)J, OstsTp

where v, is the amplitude of the velocity pulse and w,=2rn/T, is the circular frequency of the
pulse, which are selected judiciously to approximate the main displacement and velocity pulse. In
constructing Figure 4.6, the values of pulse duration T, = 04 sec and pulse velocity
v, = =28 in./sec were used.

Figure 4.2 (bottom) plots the fault-parallel acceleration history recorded at the OTE station
during the 1995 Aigion, Greece, earthquake, and a one-cosine acceleration pulse that approxi-
mates it. The window above plots the displacement of the ground obtained by twice-integrating
the recorded ground acceleration. It can be seen that in this case the ground moves in one direc-
tion, then reverses, fully recovering. This forward-and-back pulse can be approximated by a

Type-B pulse (Makris 1997)

.B

ug(t) = wpvpcos(wpt) , O<t< Tp

.B )

ug(t) = vpsm(a)pt) , O=<tr=< Tp (5.2)

Bty = 21 —cos(w )], 0<t<T
g T w p /e -

<

In constructing Figure 4.2, a pulse duration 7, = 0.53 sec and a velocity amplitude of
v, = 24 in./sec were used.

Not all near-source motions are forward or forward-and-back pulses. Figure 4.3 plots the
fault-normal component of the Gilroy Array #6 motion recorded during the 1979 Coyote Lake,
California, earthquake together with a Type-C; trigonometric pulse that approximates it. Figure

4.13 plots the 6th floor motion resulting from the nonlinear dynamic analysis of the UC Science
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Building subjected to the fault-normal component of the Kofu motion recorded during the 2000
Tottori, Japan, earthquake, together with a Type-C, pulse that approximates the two-cycle pre-
dominant pulse of the floor motion. Near-fault ground motions where the displacement history
exhibits one or more long duration cycles are approximated by Type-C pulses. An n-cycle ground
displacement is approximated by a Type-C, pulse, which is defined by (Makris and Chang 2000;
Makris and Roussos 2000)

N N 1 ¢

i, (1) = wpvpcos(wpt+<p) , O0<t< (n+§_7_rj Tp

oy . . 1 ¢

g (1) = vp[s1n(wpt+<p)—sm<p] , Osts(n+§—7—T)Tp (5.3)

”C"(t)_ljﬂ[—COS(a) 1+ ¢)—w,tsing + cose] 0<t<(n+l—"—0)T

In deriving Equation (5.3), it is required that the resulting displacement and velocity be differen-
tiable signals. The value of the phase angle, ¢, is determined by requiring that the ground dis-
placement at the end of the pulse be zero.

(n+1/2-¢/mT, c
L'tg"(t)dt =0 (5.4)
0

Evaluating this integral gives

cos[(2n+ n—p]+[(2n+ 1)n—2¢]sing —cosp = 0 (5.5)
The solution of the transcendental equation given by (5.5) gives the value of the phase angle ¢.
For example, for a Type-C; pulse (n = 1), ¢ is equal to 0.0697x ; whereas for a for a Type-C,
pulse (n = 2), ¢ is equal to 0.04107x.

Table 5.1 lists the input motions used for this shake table test study. The third column of
Table 5.1 also lists the type and defining parameters (7), and v ) of the trigonometric pulse that
approximates the predominant pulse of each of the earthquake input motions. The acceleration
and displacement time histories of these trigonometric pulses are plotted on the bottom two win-
dows of Figures 4.2 to 4.29 (heavy grey lines) together with their corresponding earthquake

records (black lines).
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5.3 INTENSITY MEASURE AND ENGINEERING DEMAND PARAMETER

5.3.1 Intensity Measure, IM

As mentioned earlier, the attempt to estimate the sliding response of the heavy laboratory equip-
ment that is the focus of this study is cast in a probabilistic framework. The PEER performance-
based earthquake engineering (PBEE) methodology suggests the identification of an intensity
measure, /M. After several considerations, a meaningful and, at the same time, simple, dimen-

sionless IM is

= PTA (5.6)

HE

where PTA is the peak table acceleration, u is the interface kinetic friction coefficient, and g is the
acceleration of gravity. Recall that the condition for sliding to occur is PTA / u g > 1, and since
generally p > u, it is possible for sliding to occur even for negative values of the chosen /M.
However, the amount of sliding that corresponds to such small /M values is extremely unlikely to
exceed preset sliding capacity limits, and is therefore of little importance for practical engineering
purposes. Moreover, the numerical simulation studies that were done in parallel with the experi-
mental studies showed that the coefficient of static friction w had little influence on the maxi-
mum sliding displacement that the equipment exhibited. On the other hand, this maximum sliding
displacement was considerably more sensitive to the kinetic coefficient of friction u . For this rea-
son, the expression for /M given by (5.6) features u and not .

Typically the /M is a characteristic of the ground motion irrespective of the characteristics
of the structural components themselves—which are denoted by D. In this case, it was found nec-
essary to incorporate the coefficient of friction u (which would otherwise be classified as a
design parameter, D) in the /M in order to be able to present an Engineering Demand Parameter,

EDP, as a simple function of one /M.

5.3.2 Engineering Demand Parameter, EDP

The chosen Engineering Demand Parameter, EDP, will be henceforth designated as A . It is given

by
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where U, . is the maximum sliding displacement recorded, w, is the circular frequency of the

x P
pulse that approximates the predominant pulse of the earthquake excitation, and P74 is the Peak
Table Acceleration of the earthquake excitation.

The choice for the EDP emerges from dimensional analysis in conjunction with previously
published results on the response of a sliding block. Within the context of earthquake engineering,
an early solution to the response of a rigid-plastic system like that shown on the bottom of Figure
6.1 (a rigid mass sliding on a moving base with interface coefficient of friction y = u, = p;)
subjected to a rectangular acceleration pulse was presented by Newmark (1965). Under a rectan-

gular acceleration pulse with amplitude a,> ug and duration T,, the acceleration, velocity, and

displacement of the base are respectively

iig(t) = a, O<t< Tp
iy (1) = ayt, 0<r=<T, (5.8)
u(t)—la £ O<r=T
gy T ot R

and the maximum relative-to-the-base displacement of the mass is (Newmark 1965)

%)
U =2n" L5l £-1 (5.9)
max CU,% ug
which can be rewritten as
U (1)2 2 a
_max_p _ yn (_1’_ 1) (5.10)
a, Mg

Equation (5.10) states that the graph of U w?/ a, asa function of a,/ pug-1 is one master

max-"p

line with slope 27r2, regardless of what a_, w,,

U can be extracted from this master line. This physical quality that different graphs can be

max

and p are. The maximum sliding displacement

morphed into one master graph by appropriate scaling of their axes is called similarity—an invari-
ance with respect to changes in scale—which is a decisive symmetry that shapes nonlinear behav-
ior.

Our quantity of interest U, ,. can be expressed as a function of independent variables a

X p°

w,, and ug

Upar = Fay, @ , pg) (5.11)
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the dependent variable U, and independent variables a,, w

s and ug, have reference dimen-

sions

1

Upard = L. la,] = LT, [w,l =T, [ugl=LT" (5.12)

masx]
Therefore, there are altogether 4 variables and 2 independent dimensions, L and 7. Buckingham’s
Pi Theorem, the central theorem of Dimensional Analysis, states that a dimensionally homoge-
neous equation with a total of £ variables and r reference dimensions, can be reduced to a relation-
ship among k — r independent dimensionless I1-products (Barenblatt 1996). Two obvious choices

for IT-products for the present problem are

U, w
M, = 2P  and II,=4E (5.13)
a, a,
and the two are related by a function
IT, = ¢(I1,) (5.14)
or
2
Unarp _ ¢(’£) (5.15)
4p 4p

Referring to Equation (5.10), we see that, for the rectangular acceleration pulse, this function is in

fact

1
ITZ_I) (5.16)

M, = 2712(
Note from Equations (5.6) and (5.16) that the /M chosen is exactly the quantity in parenthesis in
(5.16) except that the /M uses for simplicity P74 instead of a - The two values are expected to be
close. For the case of trigonometric pulses such as Type-A, Type-B, and Type-C,,, the response of
the rigid-plastic system is again described by Equation (5.15) (Makris and Black 2003; Konstan-
tinidis and Makris 2005), and the form of the function ¢ is obtained numerically. Figure 5.1 plots
with solid lines the response of the rigid-plastic system when subjected to a rectangular pulse and
to a one-sine (i.e., Type-A) trigonometric pulse. The dimensionless displacement
In, =v,, xwg /a, is plotted on a logarithmic scale in order to illustrate the relative strengths of

the two types of pulses. The closed-form solution due to the rectangular pulse is given by Equa-
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Peak Displacement of a Sliding Block Subjected to Square and Type-A Pulse Excitations

104 T T T T T T T T T
q (1) &
X — I, = ZRZ(L— 1]
3 — I,
10 3 a . E
’ O Working Model, a, = 0.5g T, = Isec
, 7 —t ! x Working Model, a,=08g T,= 1.5sec ]
10" ¢ 3
o
(L)
oCa 10" | i
S q
x
I
:)E
i 10° E
= i
[ i
107F "
-
i a, — numerical (MATLAB)
-2
10 F © O Working Model, a, = 1g T, = 2sec E
P X Working Model, a, = 1.5g 7, = 4sec
10'3 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Hf“g/ap

Figure 5.1 Dimensionless displacement Il; as a function of the dimensionless strength II,
for rigid-plastic system subjected to rectangular and Type-A acceleration pulses
with amplitude a,, and duration 7,=2n/w,. The response saturates into a single
master curve for each pulse, indicating the physical similarity.
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tion (5.10), while the solution due to the one-sine pulse is obtained numerically using standard

ODE solvers available in MATLAB (2002).

5.4 FRAGILITY ANALYSIS FOR 50% AND 10% IN 50 YEARS HAZARD LEVEL
MOTIONS

5.4.1 Regression of the Experimental Data

Figure 5.2 (top) plots the Engineering Demand Parameter A = U, axw; / PTA as a function of
the Intensity Measure PTA / ug—1 for the shake table tests performed on the three pieces of
equipment. The value of the coefficient of friction, u, is that obtained by the slow pull tests (see
Chapter 3). It is obvious that the data exhibits considerable scattering, which suggests that A has
to be treated as a random variable. A least-squares linear regression of the data is plotted with a
solid line, and it provides the mean value A of the random variable A as a function of the inten-
sity measure

A(P—TA) - 1.31(5@-‘—1) (5.17)

H8 H8

The coefficient of determination, rz, for this regression is equal to 0.25 (Scheaffer and McClave
1995). This value is a quantitative confirmation for the necessity to consider A as a random vari-
able. The shaded bars on the top graph of Figure 5.2 are statistical bins that are used to create a
graph of the standard deviation to the mean as a function of the Intensity Measure. This standard

deviation, o ,(PTA / ug), is plotted on the bottom graph of Figure 5.2 together with a linear

regression given by

aA(@) - 0.76(@- 1) (5.18)
H8 HE
with 7* = 0.80.

Figure 5.3 (top) also plots A = U, axwg / PTA as a function of the Intensity Measure

PTA / ug — 1 for the shake table tests performed on the three pieces of equipment; however, the
value of the coefficient of friction, i, is not that obtained by the slow pull tests but rather that
obtained by best-fitting numerical simulation time history results to results recorded during the
shake table experiments. The middle window of Figures 4.2 to 4.29 plots sliding displacement

time histories obtained for two numerical simulation models where the coefficient of friction u is
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Figure 5.2 Top: The Engineering Demand Parameter A=Umaxwp2/PTA as a function of the
Intensity Measure P7A/ug-1 for the shake table tests performed on the three
pieces of equipment. The value of u is that obtained by the slow pull tests. Bot-
tom: Standard deviation to the mean as a function of the Intensity Measure

PTA/ug-1.
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u from best fit with shake table test results
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Figure 5.3 Top: The Engineering Demand Parameter A=Umaxwp2/PTA as a function of the
Intensity Measure P7A/ug-1 for the shake table tests performed on the three
pieces of equipment. The value of u is obtained by best-fit of numerical simula-
tion results to shake table test results. Botfom: Standard deviation to the mean
as a function of the Intensity Measure PTA4/ug-1.

66



chosen so that the response approximates with better accuracy the experimental results (see Figs.
3.4 to 3.6 and Table 3.2). The displacement history plotted with a dashed black line is the
response of an elastoplastic model obtained by MATLAB, while the displacement history plotted
with a solid black line is the response of a Coulomb friction model obtained by Working Model.
Note that the Working Model analysis also permits rocking to occur. The uplift history obtained by
this model is plotted on the top window of Figures 4.2 to 4.29 together with the experimental
results. The linear regression of the data plotted with a solid line in Figure 5.3 (top) is

A(m) - O.67(P—TA _ 1) (5.19)

M8 Hg

with 72 = 0.19. This standard deviation, o, is plotted on the bottom graph of Figure 5.2 together
with a linear regression given by

aA(%) - 0.41(% - 1) (5.20)
with r* = 0.76.

5.4.2 The EDP as a Lognormally Distributed Random Variable

When a random variable expresses a mechanical system’s response that is necessarily positive
(A>0), it is common to assume that the variable is lognormally distributed. In this study we
hypothesize that the EDP, A, is lognormally distributed, and we test this hypothesis with the
experimental results. The reason behind the name lognormal is that the lognormally distributed
variable A is related to a normally distributed variable X by X = InA. Note that A attains only
positive values, 6 > 0, while the corresponding X wvariable is unrestricted, —co <x < co. The
two-parameter lognormally distributed variable A has the probability density function

fa(0) = lerwéexp[—%(lni_ A)z} §>0 (5.21)

where the two defining parameters A and w of the distribution are in fact the mean and standard

deviation of the corresponding normally distributed variable X (Crow and Shimizu 1988). The

cumulative distribution function of A is given by

Fy@) = [ Z ﬁw&exp[—%(ln‘i‘lﬂd& (5.22)
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Using the substitution u = (Ind'—A) / w, we obtain

Ind— A )
F\(6) = f @ %ﬂexp(—%)du
_ gn=2)
_q>( - (5.23)

where @ is the cumulative distribution function of a standard normal distribution (i.e., A = 0
and w = 1). The mean, A and standard deviation o, , of the lognormal variable A are related to

the mean, A, and standard deviation, w, of the normal variable X by

2 2
A = exp(k+%) and o, = exp(k+%)dexp((u2)—l (5.24)

or

A= lnﬁ—%ln[l+(%)zj and @ = /\/ln[1+(%)2} (5.25)

Note that for the problem at hand, the statistical estimation of A = A(PTA / ug) is given by
Equation (5.17) or by Equation (5.19), and that of o, = o ,(PTA / ug) is given by Equation
(5.18) or by Equation (5.20), depending on the choice for u (either obtained by the slow pull tests
or by the best-fit of numerical simulation results to the shake table test results). Correspondingly,
the mean and standard deviation of the normally distributed variable X are themselves functions
of the intensity measure—thatis A = A(PTA / ug) and w = w(PTA / ug).

In order to not reject the hypothesis that A has a lognormal distribution, a goodness-of-fit
test is to be performed. The Kolmogorov-Smirnov is such a statistical test; it compares the empir-
ical distribution function of a random sample with a hypothesized theoretical distribution function
(Scheaffer and McClave 1995). First we define the empirical cumulative distribution function
F(6). The shake table experiments provided a random sample of n realizations of A. It is con-
venient to order these J,’s so that §; <, < ... =6, . The empirical cumulative distribution func-
tion is given by

) =l s <6<,
Fx(d) = n (5.26)
1

if 6=,
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where i = 1,...,n and 6, = 0*. If the hypothesized distribution given by (5.22) or (5.23) is the
true distribution, then F Z(é ) and F,(6) should be close. The Kolmogorov-Smirnov test uses this
closeness as the metric by which the hypothesized distribution is evaluated. If the test fails, the
hypothesized distribution must be rejected. Figure 5.4 plots the empirical cumulative distribution
function. Together is plotted the cumulative distribution function of the hypothesized lognormally
distributed random variable A, where the coefficient of friction u is that obtained by the slow
pull tests. The Kolmogorov-Smirnov test is based on the maximum distance between F, () and

F(6). That is
S = m%x|FA(5)—F§(5)\ (5.27)
Now, since F Z (0) and F,(6) are nondecreasing and F Z (0) 1s constant between sample observa-

tions, the maximum distance between F (§) and F, () will occur either at one of the observa-

tion points or immediately to the left of one of these points. So

S = max(S*, §) (5.28)
where
S* = max [i—FA(di)} (5.29)
l<i=snlLn
and
S = max [FA(éi)—i—_—l} (5.30)
l<isn n

For a certain level of significance a, the hypothesis is rejected if S exceeds a critical value
of §.,. The value of S, depends on @ and the size of the sample, n. The shake table test sample
size of this study is n = 28. For the distribution functions presented in Figure 5.4 (1 from slow

pull tests), S = 0.133. Tables for the Kolmogorov-Smirnov test provide (Daniel 1990)

0.197, @=0.80
0.225, @=0.90

S, (@, n=28) = 1 0.250, @=0.95 (5.31)
0.279, @=0.98
0.300, @=0.99
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Figure 5.5 plots the empirical and hypothesized theoretical cumulative distribution func-
tions of the EDP A (u from slow pull tests) where the values of the friction coefficient u for the
equipment are not those obtained from the slow pull tests but rather those whereby u has been
reduced in order to obtain numerical simulation results that are close to the experimentally
observed response (last column of Table 3.2). For these F(6) and F,(6), S = 0.144. Since
§ < S, for both Figure 5.4 and 5.5, the hypothesis that A is lognormally distributed is not

rejected.

5.4.3 Fragility Curves

Fragility is broadly defined as a conditional probability of failure. For the problem at hand, where

we want to characterize the seismic response of heavy laboratory equipment in a probabilistic

framework, we define fragility as the probability P, that the Engineering Demand Parameter
max

A=U wf, / PTA for a piece of equipment will exceed a certain threshold (capacity) C, given
the intensity measure, IM = PTA / ug — 1. For the lognormally distributed random variable A,

InC - )

1—P(A<C|IM) = 1 -F,(6=C) = 1-@( »

P;= P(A > C|IM) (5.32)

where @ is the standard normal cumulative distribution function. Substituting (5.25) into (5.32)

and rearranging, gives the fragility function
o A(IM)\2
1l —€ /\/1+(_A( ))
A(IM) A(IM)
o\ (IM )) 2
Jh"‘[l +(3am) |

Regression Equations (5.17) and (5.18), or (5.19) and (5.20), provide the functional dependence

Pr=1-0 (5.33)

of A and o, on the intensity measure, IM = PTA / ug-1.

Figures 5.6 and 5.7 plot fragility curves for four values of capacity C. Note that each graph
includes two curves; one is the fragility curve that corresponds to values of u obtained from the
slow pull tests, while the other corresponds to values of u obtained by tailoring numerical simula-
tions to approximate shake table experiment results. The shaded area between the two curves pro-
vides an envelope for the fragility. Typically fragility curves are plotted against the EDP. In this

study, however, they are plotted against the /M, as this makes their use more direct.
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Fragility Curves for 50% in 50 Years and 10% in 50 Years Hazard Levels
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Figure 5.6 Fragility curves for C=0.5 (top) and C=1.0 (bottom). Two curves are plotted in
each graph. The top curve corresponds to values of u obtained by slow pull
tests, while the bottom curve corresponds to values of i obtained by best-fitting
numerical simulation results to shake table experiment results.
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Fragility Curves for 50% in 50 Years and 10% in 50 Years Hazard Levels
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Figure 5.7 Fragility curves for C=2.0 (top) and C=3.0 (bottom). Two curves are plotted in
each graph. The top curve corresponds to values of u obtained by slow pull
tests, while the bottom curve corresponds to values of i obtained by best-fitting
numerical simulation results to shake table experiment results.
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Once relationships between the mean of the EDP and the /M (such as Equations (5.17) and
(5.19)) and between the standard deviation to the mean of the EDP and the /M (such as Equations
(5.18) and (5.20)), fragility curves such as those presented in Figures 5.6 and 5.7 can be generated
by use of expression (5.33) for desired values of the threshold C. Given (or generating) a family
of such fragility curves, a practicing engineer who wants to evaluate the probability that a piece of

equipment will not exceed a threshold displacement could proceed as follows.

Example: How to Use a Fragility Curve

Suppose that an engineer is concerned with a piece of laboratory equipment that is located on the
6th floor of a hospital near an emergency exit. The design floor spectral acceleration is
S, = 1.4g and the expected period of vibration is about 7, = 0.8 sec (say, the first modal
period of the building). The engineer wants to estimate the probability that the piece of equipment
with u = 0.5 will exceed a displacement of 18 in., which will result in blocking an emergency
exit. The engineer would compute the intensity measure by Equation (5.6), obtaining

IM = PTA/ug-1=14g/05¢g-1 = 1.8
The capacity value C that corresponds to the above design parameters is

C = U,4w,/ PTA = 18in. (21 / 0.8sec)” / (1.4 - 386in./sec?) ~ 2

The engineer would then refer to a fragility curve generated for C = 2 and read off the value of
Py Figure 5.8 plots the generated fragility curve that corresponds to C = 2 (same as the top
graph of Fig. 5.7). With the computed Intensity Measure of /M = 1.8, a conservative-average

value of

w?/PTA>2) = P(U

max-—p max

P(U > 18 in.) ~ 0.4
is read.

If the value of C that the engineer computes falls between already-available fragility
curves—and the engineer does not want to generate a suitable fragility curve for the C in ques-

tion—interpolation between the curves could be used.
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Fragility Curves for 50% in 50 Years and 10% in 50 Years Hazard Levels
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Figure 5.8 Fragility curve for C=2.0. With PTA=1.4g and p=0.5, the Intensity Measure is
IM=PTA/pg-1=1.8 and the probability that U,,,,>18 in. for w,=2m/0.8 rad/sec is
roughly P(U,,,,,,*/PTA>2)=P(U,,,;,>18 in.)~0.4.
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6 Response Analysis of Freestanding
Equipment and Validation of Existing Software

For input motions resulting from seismic events with probability of exceedence of 50% and 10%
in 50 years, the shake table experiments presented in Chapter 4 of this report indicated that there
was no incidence of overturning due to excessive uplift (there was only one incidence of overturn-
ing, but it was due to failure of one of the equipment leg supports). Uplift rotations ranged from
very low (for the Kelvinator and ASP refrigerators), to moderate (for the FORMA incubator), but
never exceeding 50% of the equipment’s stockiness @ . For motions in that hazard level, the pri-
mary concern for the equipment tested was excessive sliding displacement, which reached up to 2
ft. The collected experimental data were used to construct sliding fragility curves that were pre-
sented in Chapter 5.

The horizontal displacement capacity of the shaking table at the Richmond Field Station
Earthquake Simulation Laboratory, UC Berkeley, is +6 in. Due to this constraint, it was not possi-
ble to run tests with table displacements equal to the large ground and floor displacements of
earthquakes that correspond to the 2% in 50 years hazard level. The predicted response of equip-
ment subjected to 2% in 50 years motions was done with the use of numerical tools. In this chap-
ter, we first review the dynamics of a piece of equipment resting on an accelerated base and then

present a validation of numerical tools that can be used to estimate the response.

6.1 DYNAMIC RESPONSE OF A PIECE OF EQUIPMENT

A piece of equipment resting on a horizontally accelerated base can slide, rock, or slide-rock.
Rocking, even if it does not result in overturning, is an undesirable mode of seismic response for
the laboratory equipment, since it can result in serious damage to sensitive contents or to the

equipment itself. In the following sections we review the possible modes of response for the



equipment. We present the pure rocking response and the pure sliding response of a rigid block,
and we demonstrate the ability of the commercially available software Working Model (2000) to
capture with high fidelity those two modes of response by testing it against in-house numerical
codes (in MATLARB) that the authors and former advisees of the second author have developed in
the past. Moreover, the response obtained by Working Model dynamic simulations is compared to
experimental observations from the shake table tests. The good predictions offered by Working
Model provide us with confidence in its ability to be used for analyzing the seismic response of

heavy laboratory equipment.

6.1.1 Pure, Planar Rocking Motion of a Rigid Block

First we review the pure, planar rocking response of a rigid block subjected to a base acceleration.
The assumption that the equipment can be modelled as rigid was confirmed during the shake table
experiments by attaching sensitive DCDT displacement transducers across the faces of the equip-
ment. The recorded displacements were indeed very small (the maximum recorded strain did not
exceed 0.0001).

A schematic diagram of the rocking block of interest is shown in Figure 6.1 (top). The block
has width I and height A. Under pure rocking, it is assumed that the frictional resistance of the
interface is large enough to prevent sliding. The block can pivot about the centers of rotation O
and O’ when it is set to rocking. Depending on the level and form of the ground excitation, the
block may translate with the ground, slide, rock, or slide-rock. Before 1996, the mode of rigid
body motion that prevailed was determined by comparing the available static friction to the
width-to-height ratio of the block, irrespective of the magnitude of the horizontal ground acceler-
ation. At about the same time, Scalia and Sumbatyan (1996) and, independently, Shenton (1996)
indicated that, in addition to pure sliding and pure rocking, there is a slide-rocking mode, and its
manifestation depends not only on the width-to-height ratio and the static friction coefficient but
also on the magnitude of the ground acceleration.

With no sliding occurring, under a positive horizontal acceleration that is sufficiently large,
a rigid block will initially rotate with a negative rotation, 6 < 0, and, if it does not overturn, it will
eventually assume a positive rotation; and so on. The equations of motion are obtained following

a Lagrangian approach. We utilize a right corotational basis {e, e,, e;} as shown in Figure 6.1.
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Figure 6.1 7op: Schematic of a rigid block in pure, planar rocking motion induced by base
acceleration ii,. Bottom: Schematic of a rigid block in pure sliding motion

induced by base acceleration ii,.
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When 6> 0 (i.e., the block pivoting about O), the position of the center of mass of the block is
given by r = r,+ (-We, + He,) /2, while when 6 <0 (i.e., the block pivots about O"), the
position of the center of mass of the block is given by r = r,, + (We, + He,) / 2. The position

of the center of mass of the block can be written more compactly as

, 1

r = rp+§[—sgn(6)We1 + He,] (6.1)
where r, is the position of the pivot, and sgn is the signum function

+1, if 6>0

sen(f) = { 1, if <0 6.2)

With the angular velocity of the block given by o = —9E3 = —9e3, the velocity of the center of

mass of the block is given by
_ 1 4
V=mX 5[—sgn(9)We1 + He,]| = E[He1 + sgn(0)We,| (6.3)

By Ko6nig’s decomposition theorem (Greenwood 1977), the kinetic energy can be expressed as the

sum of the translational kinetic energy and the rotational kinetic energy 7 = T+ T°,

T = %m?~?+%w-Jm (6.4)

where m is the mass of the block, and J is the inertia tensor about its center of mass. For the rect-
angular block in question, Je; = m(W? + H2)e3 /12, and using R?> = (W?+ H?) / 4, the total
kinetic energy is

242

T mR™60

wWIN

(6.5)

The force on the system is given by
F = (fx—miig)El + (fy—mg)E2 (6.6)
where f, and f, are, respectively, the horizontal and vertical components of the reaction force at

the pivot point. The moment about the center of mass of the block is
~ 1
M = —5[—sgn(9)We1 +Hey | X (fLE; +f,Ey) (6.7)

Based on the geometric viewpoint of Lagrangian dynamics, every motion of a rigid body in
two dimensions not subjected to any holonomic constraints can be represented by a particle mov-

ing on a three-dimensional configuration manifold. If the rigid body is subject to holonomic con-
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straints, then each holonomic constraint defines a hypersurface of dimension two in the three-
dimensional manifold. If the system is subject to k < 3 holonomic constraints, then the intersec-
tion of the £ hypersurfaces is a manifold of dimension n = 3 — k. This is the configuration mani-
fold of the body whose motion is constrained (Casey 1995; O’Reilly 2003). For the problem at
hand, since the pivoting corner of the block stays on the ground (i.e., r, - E, is constant), and the
block does not slip (i.e., r,-E is constant), the configuration manifold is of dimension
n = 3-2 = 1. Therefore the coordinate 6 fully describes the position of the body. Lagrange’s
equation can be expressed as

d (GT) oT

dr\og) "o = (©5)

where Q, is the generalized force along coordinate 6 given by

O 0o 90

[(f,~mii)E, + (f,-mg)E,] %[Hel + sgn(6) We,]

n {—%[—sgn(@)Wel + He,] x (f.E, +ny2)} - (—e)

= —mii,Rcos(a - 16]) — sgn(0)mgRsin(a —|0]) (6.9)
where @ = tan_l( W/ H) . Note that although the force due to gravity is a conservative force and
could therefore be expressed as a potential energy in Lagrange’s equation, we chose to subsume it
in F along with the remaining non-conservative forces. Furthermore, note that the horizontal, f,,
and vertical, f,, components of the reaction force at the stationary pivot point do not do any work
and therefore should not appear in the equation of motion. Substitution of Equations (6.5) and

(6.9) into (6.8) gives the equation of motion
i = —pz[sgn(H)sin(a—|0|)+Egcos(a—|6|)J (6.10)

where p=+/3g /4R is the frequency parameter of the block. The larger the block (larger R), the
smaller p. In his seminal work, Housner (1963) showed that the vibration frequency of a rigid
block under free vibration is not constant, since it depends on the vibration amplitude. Neverthe-
less, when two geometrically similar blocks (same «) of different size (different p) experience

free vibrations with the same initial conditions, 6(0) = 6, and 6(0) = 0, each response-cycle of
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the larger block (smaller p) is longer than the corresponding response-cycle of the smaller block
(larger p). Accordingly, the quantity p is a measure of the dynamic characteristics of the block. It
depends on the size of the block, R, and the intensity of the gravitational field, g. Equation (6.10)
is well known in the literature (Yim et al. 1980; Hogan 1989; Shenton 1996; Makris and Roussos
2000; among others) and is valid for arbitrary values of the stockiness angle @ .The solution of

Equation (6.10) is obtained numerically via a state-space formulation where the state vector x of

o
x =1, (6.11)
o

and the time-derivative vector f(x, t) is

the system is

x = f(x,1) = (6.12)

2 e toh + D o
p[sgn[@]sm(a 10]) + P cos(a IHI)}

Energy Lost during Impact

The numerical integration of (6.12) is performed with standard ODE solvers available in MAT-
LAB (2002). The solution of (6.10) is constructed by accounting for the energy lost at every
impact. Using the classical idea of a coefficient of restitution, e, the ratio of the angular speed of
the block immediately after impact to the angular speed immediately before impact is
e = 0—+ (6.13)
6.

where the + and - subscripts respectively denote “after impact” and “before impact.” Note that the

ratio of the kinetic energies immediately before and after impact is 91% /67 = ¢

, so that the
energy lost during an impact is 2(1 — ez)mRzé’_2 /3.

Now as an impact occurs, if the impact is such that there is no bouncing, the block smoothly
switches pivot points (say from O to O'), and angular momentum is conserved. Figure 6.2 shows a
schematic of the uniform-density, p, rigid block that pivots about point O and is about to impact

(i.e., switch pivots) at point O". We first consider the angular momentum of the block about point

O' before impact. An infinitesimal mass element dm located at a distance » from point O has
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Figure 6.2 Schematic diagram of a rocking block just before it impacts point O'.
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velocity v = ré_ey. The position of the mass element is u = WE, +re_, and therefore the

X

angular momentum of the block B about O’ before the impact is

HO = fuxv_dm
B

= (f(rz—Wrsingo)dm)é_ez
B

H W )
= (,off[rz_W(W—x)]dxdy]e_eZ
0 0

_ (ng2—2mstinza)9_eZ (6.14)

The position of the infinitesimal mass element dm immediately afier impact is u = re, and the
velocity is v, = r6?+ey.. Therefore, the angular momentum of the block B about O’ after the

impact is

HO fuxv+dm
B

([ rdm)ie.
B

4 2,
= ng 0,e, (6.15)

By conservation of angular momentum, HY = H?'. Equating expressions (6.14) and (6.15)

gives (Housner 1963)

(ng2—2mstin2a)9_ = ngzéJ, (6.16)

and using (6.13), we obtain

e = 1-3sin’a (6.17)

max 2

The value of e given by (6.17) depends only on the geometry of the block, and it is the maximum
value of the coefficient of restitution for which a block of stockiness @ will undergo rocking
motion. Since e,,, < 1, we see that the impacts have to be inelastic. In fact, the stockier a block,
the more energy has to be lost during impact in order to observe rocking motion. The stockiness

of a rocking block is therefore a measure of the minimum damping of the system. If additional
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energy is lost because of dissipation mechanisms, the value of the true coefficient of restitution
will be less than the value computed by (6.17) (Zhang and Makris 2001). An impact is perfectly
plastic when the coefficient of restitution is zero. Equation (6.17) provides the lower bound
W/ H = .J2 that corresponds to e,, . = 0; for a stockier block, e, , . is negative, which would
imply that upon impact the block will not uplift and the rocking motion will end (in reality, upon

impact the stocky block may slide for a short distance before its motion comes to a stop).

Condition for Sustaining Rocking Motion

Shenton (1996) and subsequently Pompei et al. (1998) demonstrated that the condition for a block
to enter rocking motion without slipping depends on the value of the acceleration amplitude i g at
the instant when rocking initiates. The minimum static coefficient of friction, u, of the interface

necessary to avoid slipping is

M - %cosasina(ﬂ — 1)
g "gtanaf (6.18)
1+ §sinza(M - 1)
4 gtana

1)
v

Equation (6.18) is valid for a finite ground acceleration that at the instant of impending uplift may
be equal or may exceed the minimum ground acceleration necessary to induce uplift (e.g., a con-
stant acceleration pulse of positive amplitude ii g = a,>gtana). Note that in the case of a
ground acceleration that builds up gradually, rocking will initiate when |u g| is exactly gtana, and

Equation (6.18) reduces to the well-known expression derived from statics
W
Mg = tana = i (6.19)

Equations (6.18) and (6.19) provide conditions for which slipping will not occur at the
instant when rocking initiates. Now we present a condition necessary for sliding not to occur dur-
ing the entire rocking motion of the block. This condition was first presented by Zhang and
Makris (2001). When a block is rocking, the horizontal, f,, and vertical, fy, components of the
reaction force at the pivot points O (for when 6 > 0) and O’ (for when 6 < 0) vary with time.

Dynamic equilibrium in their respective directions gives expressions for these forces

feo = m(x+ii,) (6.20)
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fy = mG+g) (6.21)
where x and y are the horizontal and vertical components of the acceleration of the center of
mass of the block. Expressions for these can be obtained by twice-differentiating the components
of the displacement of the center of mass, x = sgn(6)[W/2—-Rsin(a—|0])] and
y = Rcos(a—|6]), to obtain

X = ROcos(a—6)) + sgn(8)RO sin(a — |6]) (6.22)

y = sgn(0)ROsin(a — IGI)—Rézcos(a—IGI) (6.23)
Substituting Equation (6.10) for € into (6.22) and (6.23), and those in turn into (6.20) and (6.21),

gives expression for the horizontal and vertical components of the reaction force at the pivot. Slid-
ing is prevented during the entire rocking motion if ‘ f/ fy‘ < u, for all time. Substituting the
expressions derived for f; and f, into this inequality gives the minimum coefficient of friction
required to sustain pure rocking motion (Zhang and Makris 2001)

i )2
Eg[S —3cos2(a—10])] —3sgn(0)sin2(a—16]) + 6%sgn(9) sin(a —|6])
p

“ = (6.24)

3ii . 66>
5+ 3cos2(a—16]) - ?gsgn(e) sin2(a —6]) — =5 cos(a —6])
p

It can be verified that at the instant when rocking initiates due to a positive ground acceleration
ity > gtana (which implies @ = 0~ and § = 0), Equation (6.24) reduces to (6.18). If the ground

acceleration is i g = gtana, then (6.24) reduces to (6.19).

6.1.2 Pure Sliding Motion of a Rigid Block

We consider a rigid block of mass m resting on a horizontal plane which is subjected to a horizon-
tal base excitation i g(t) as it shown in Figure 6.1 (bottom). The interface has coefficient of static
friction u and kinetic friction y . Provided that the block does not uplift, the block will start slid-

ing once the force due the ground excitation overcomes the frictional resistance of the interface.

This is prescribed by the condition
|b'lg| > 118 (6.25)
While the block slides, the equation of motion is

ii+ugsgnlu] = —ii (6.26)

86



where u is the displacement of the mass relative to the ground. If &z becomes zero and the condi-
tion prescribed by Equation (6.25) is not satisfied, then the block sticks.
To solve Equation (6.26) numerically, the singularity is smoothened. This is achieved by

instead solving

i+ pgz = —i, (6.27)
where z(7) is a hysteretic dimensionless quantity with |z(7)| < 1 given by
wyz+ylilzlz" ="+ Bile " — i = 0 (6.28)

The model given by Equations (6.27) and (6.28) is a special case of the Bouc-Wen model (1975;
1976) suitable for elastoplastic behavior. The parameters 8 and y are dimensionless quantities
that control the shape of the hysteretic loop, while the parameter n controls the smoothness of the
transition from the elastic to the plastic region. To model the sharp corner of the rigid-plastic
behavior, n must be set to a high value (e.g., n > 20). In Equation (6.28), u,, is a yield displace-
ment that for the case of rigid-plastic behavior is set very small (e.g., u, = 1073 in.). However,
the great benefit of the Bouc-Wen formulation for modelling laboratory equipment is in fact that it
allows for the elasticity of the equipment leg supports. The value of u, can be set to the yield val-
ues of the equipment supports obtained from the slow-pull friction tests (see Figs. 3.4 to 3.6 and
Table 3.2). The disadvantage of the Bouc-Wen formulation is that it does not consider that the ini-
tiation of motion actually occurs when the forcing term ii o (1) overcomes the resistance provided
by of the static coefficient of friction u . In effect, for the Bouc-Wen model, u, = u.

The problem is cast in state-space with the state vector

u
X =13 Ut (6.29)
z
and its time-derivative vector f(7)
)
x = f(x, 1) = —ilg—H8T (6.30)

1 ) _ ) .
—[—ylilzlz]" =Btz + i]
I/ty

The solution is obtained with standard ODE solvers available in MATLAB (2002).
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6.1.3 Planar Slide-Rocking Motion of a Rigid Block

We observed from the experimental results presented in Chapter 4 that the rocking and sliding
modes are commonly coupled. We now relax the constraint that the rocking block of Figure 6.1
(top) is not allowed to slide. The slide-rocking problem is considerably more complex, and,
besides the work of Taniguchi (2002), it has not enjoyed the treatment that researchers have given
to the pure rocking problem. In this section we present a Lagrangian approach to formulating the
equations of motion.

The position of the center of mass of the block can be written more compactly as
F = 3B, + 3[-sgn(6)We, + He,] 6.31)

where x is the position of the pivot point O or O'. In the numerical solution, once impact occurs

(and the pivot point switches), x is modified by

x, = x_+sgn[0(t")]W (6.32)

+
where the + and - subscripts respectively indicate “after impact” and “before impact,” and ¢* indi-
cates the time when the impact occurs. With o = —9E3 = —9e3, the velocity of the center of
mass of the block is given by

¥ = i + o x 3[-sgn(6)We, + He,] = iE, - 81He —sen(0)We, (6.33)

The total kinetic energy 7 = T+ T° = (mv-V+ - -Jo) /2, where Jo = —mR29e3/3, is
given by

T = {%mxz + %mRzé2 + %m;’cé[HcosO + sgn(@)WsinG]} + émRzéz
(6.34)

%mxz + %mRzéz + mxORcos(a - |6])

Note that there is one constraint on the system: the pivoting corner of the block stays on the

ground (i.e., r,

n =3-1 = 2. The generalized coordinates x and 6 describe the position of the block.

-E, is constant), and therefore, the configuration manifold is of dimension

Lagrange’s equations are

S(9)-L =g, (6.35)
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and

d (GT) oT

e e I 6.36

anas) " ag - % (6.36)
The force on the system is F = (f,—mii JE +(fj-mg)E,, and the moment about the cen-

ter of mass of the block is M = —[—sgn(O)W / 2e, + H/ 2¢,] X (f.E,; +ny2). Therefore the

generalized force along coordinate x is

or ~rx 0w _ .
a_x +M- a = fx—mug (637)

Qx = F :
Note here that the horizontal component of the reaction force at the pivot, f,, appears in Equation
(6.37), since it does work when the block slides. The generalized force along coordinate 6 is the
same as for the pure-rocking case

0y = F-ZM-%2 - iz Reos(a - |6]) - sgn(9)mgRsin (@ - |6]) (6.38)

00 o0

Substitution of Equations (6.34) and (6.37) into Equation (6.35) gives the first equation of motion

3g

F+—=20cos(a—10) = —sgn(9)3—g292sin(a—|9|)+f—x—a (6.39)
4p 4p m

2 8

and substitution of Equations (6.34) and (6.38) into Equation (6.36) gives the second equation of

motion
2 . i
%Xcos(a—l@|)+0 = —p{sgn(@)sin(a—l@l)+fcos(a—|0l)} (6.40)

While no slipping occurs, Equations (6.39) and (6.40) reduce to Equation (6.10) that
describes pure rocking. The integration of (6.12) in association with the constraint described by
Equation (6.13) provide a solution. The block will start to slide if the condition expressed by
(6.24) is violated. While the block is sliding, the friction force that appears in Equation (6.39) is
given by

Jo = —sgn(®)ufy (6.41)
where p is the coefficient of kinetic friction. The normal force, f|, is expected to be non-negative

(Pompei et al. 1998). Substituting Equation (6.23) into (6.21), and that in turn into (6.41) gives

f, = —sgn(fc),umg{l + %[sgn(@)ésin(a— 16]) =6 cos (@ — |9|)]} (6.42)
p
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where we have used R = 3g / 4p”.The solution to the equations of slide-rocking motion
expressed by (6.39) and (6.40) is obtained numerically via a state-space formulation where the

state vector of the system x is

X
* (6.43)
X = .
0
0
and the ODE system is of the form that involves a “mass matrix” M
M(x, nx = f(x,1) (6.44)
In detail,
1 0 0 0
0 1 0 —% cos(a —16))
M(x, 1) = p (6.45)
0 0 1 0
2
0 L cos(a—16) 0 1
L 8 ]
and
X
- sgn(@)%ézsin(a — 1) G i
f(x, 1) = p " (6.46)

4

) | i, (1)
- [sgn(@)sm(a —10) + Tcos(a -6 )}
where f, is given by Equation (6.42). Note that the mass matrix M is never singular.

Energy Lost during Impact

The numerical integration of (6.46) can be performed with standard ODE solvers available in

MATLAB (2002). In the construction of the solution, the energy lost during impact has to some-
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how be accounted for. When dealing with pure-rocking motion, the friction of the interface is
assumed to not have an effect on the impact, since the velocities of the material points on the edge
of the block that impacts with the ground are orthogonal to the ground surface. In the case of
slide-rocking, however, the mechanics of the impact are considerably more complex. Since the
velocities of the material points that come in contact with the ground are not orthogonal to the sur-
face, the impact is not “frictionless.” If we assume that the impact occurs instantaneously and that
consequently, there is no energy lost due to the friction, we can employ the previous idea of sim-

ply reducing the angular velocity of the block immediately after the impact by using 0, = e6..

6.2 VALIDATION OF WORKING MODEL SOFTWARE

As this study is part of a comprehensive study that employs the PEER Center’s performance-
based earthquake engineering practical methodology, it was decided to utilize for the analysis a
commercial software; one that the practicing engineer could easily use to predict the response of
heavy laboratory equipment and other building contents alike. The shake table experiments pre-
sented in Chapter 4 indicated that the primary mode of response is sliding. However, this is not
grounds to exclude the possibility of rocking and possible overturning for interfaces with larger
coefficients of friction u and for equipment with more slender configurations (smaller « ). The
software of choice had to therefore be able to capture both sliding and rocking response. Working
Model 2D is a software that combines robust numerical techniques with sophisticated editing
capabilities. Its main attraction is its capability to compute the motion of mechanically interacting
rigid bodies under a variety of constraints and the action of time-varying forces. Sensitive dis-
placement transducers attached across the faces of the equipment during the shake table experi-
ments recorded extremely small displacements, which justifies the assumption that the equipment
can be modeled as rigid in Working Model. Figure 6.3 shows the working environment of the soft-
ware.

One of the most challenging tasks in the dynamic simulation of rigid bodies is the treatment
of the contact interfaces. In Working Model, the satisfaction of all imposed constraints at the con-
tact interfaces is enforced simultaneously during the numerical integration. In the tangential direc-
tion, the contact interface of adjacent bodies is modeled by static and kinetic Coulomb friction

(Working Model 2000). Regardless of whether there is sliding or not, the rigid body that models
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the equipment while engaging in rocking motion can impact the rigid body that models the
ground. During an integration step, two colliding bodies may overlap by a small amount. In Work-
ing Model, collisions are detected by finding intersections between the geometries of bodies.

Since the bodies are assumed rigid, for any two points of body B, |x; —X,|| = [X; - X,|, for all

time, where x is the one-to-one mapping x = x (X, 7), and X is the position in some reference
configuration. This implies that the position and orientation of the edges of a rigid body are
known for any time by tracking a master node. When intersection between edges is detected,
Working Model computes forces sufficient to “repel” the bodies. Working Model employs an
impulse-based collision model in which the coefficient of restitution is used (Working Model
2000).

The numerical integration of the equations of motion in conjunction with the satisfaction of
the constraint conditions (friction and restitution), is done using a robust Kutta-Merson method
(5th order Runge-Kutta). Integration error as well as model assembly and collision overlap toler-
ances can be set to achieve the desired precision. With the available variable timestep Kutta-Mer-
son scheme, near collision, the timestep is reduced appropriately to restrict the overlap between
bodies from exceeding the specified overlap tolerance. For all the simulations presented in this

report, the overlap error tolerance was set to 107 in.

6.2.1 Pure-Rocking Response Analysis

In this section, we present a comparison of results obtained with Working Model to results
obtained by numerically solving the pure-rocking equation of motion (6.10). The integration of
(6.12) in association with the constraint expressed by (6.13) yields time histories of the rotation
and angular velocity of a rocking block. Standard ODE solvers available in MATLAB (2002) and a
custom routine that detects impacts and imposes the reduction in angular velocity are used. Figure
6.4 plots the rotation and angular velocity histories of a rigid block with frequency parameter
p = 1.25 rad/sec and stockiness @ = 0.16 rad when subjected to two strong ground motions.
The solid line is the numerical solution of Equation (6.12) using MATLAB (pure-rocking). The
block survives the Rinaldi 228 motion (left) recorded during the 1994 Northridge, California,
earthquake yet topples when subjected to the TCUO52NS motion (right) recorded during the 1999
Chi-Chi, Taiwan, earthquake. The dashed line is the prediction of the software Working Model

93



*SUOIJOW PUNO.I3 SU0.I}S 0M) 0} PIJI[QNS pea 9] (= SSIUD[I0)S pue
J9s/ped ¢7'1=d 133oweaed Louanbaay yim )o0[q PISLI € Jo AJID0[IA Je[n3ue pue uonejoy $°9 IngIy

[08s] awin

14" cl (0] 8 8 9
|| 1opoy Bupjiopy, — —
avilvin —

14" cl (0] 8 8 9

14" cl (0] 8 9

SN2ZS0NJL 1Yd-1yD 6661

6] e

[oes] awn

14 cl ol 8 9 14 4 0

[opo Bunpiop — — |
aviLviN —

14 cl ol 8 9 14 4 0

82¢ Ipleuly :abpLIyLION 661

0/0

94



where the coefficient of friction has been set to a high value in order to avoid slipping. The solu-
tions obtained with the two numerical codes are in excellent agreement.

Figure 6.5 plots the minimum overturning acceleration spectrum of the same block when
subjected to a one-sine acceleration pulse (Type-A pulse) with acceleration amplitude a, and
duration T,=2n/w,. Notice the multivaluedness of a,/ ag that implies that a block can sur-
vive a pulse with acceleration amplitude larger than the minimum acceleration pulse necessary to
overturn it. This interesting fact was first exposed by Zhang and Makris (2001). The shaded area
in Figure 6.5 is the unsafe region (i.e., where overturning occurs), while the blank area is the safe
region (i.e., where overturning does not occur). Note that the software Working Model success-
fully predicts this multivalueness of the response where a safe cape appears above the minimum
overturning acceleration line. The overall performance of Working Model is very good, with only
minor degradation for shorter-period pulses (w,/ p > 10, or 7, < 0.5 sec) with large accelera-

tion amplitudes (a,/ ag>15,0ra,>24g).

6.2.2 Pure-Sliding Response Analysis

We consider again the sliding block of Figure 6.1 (bottom) subjected to a base excitation i g The
interface coefficient of friction is u. An in-depth study of the response of a sliding mass on a
moving base has been presented by Younis and Tadjbakhsh (1884). As discussed in Chapter 5, the
solution to a constant acceleration pulse with amplitude a

by Newmark (1965) is

, and duration 7, = 27/ w), presented

U w?
_max7p _ zﬂz(_aﬁ _ 1) (6.47)
a, 1g

Figure 5.1 plots with a solid line this dimensionless maximum relative displacement as a function
of the dimensionless strength ug / a,. The o and x points shown in Figure 5.1 plot the results
obtained with the software Working Model where various combinations of the values of a,, T,
and u have been used. It is shown that Working Model captures with high fidelity the closed-form
solution given by Equation (6.47), which is plotted with a solid line.

Figure 5.1 also plots with a solid line the solution U, .

wlz, / a, due to a Type-A (forward-

displacement) pulse with acceleration amplitude a, and duration T,=2n/w,asa function of

P
Mg/ a,. The solution is obtained by integrating numerically (in MATLAB) the system of first-
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Overturning Spectrum of Rigid Block (o=0.16rad, p=1.25rad/s)
Subjected to Type-A Pulse

40

— MATLAB
—<— Working Model

35

unsafe

oY)
3 2 1
CUQ
15 1
10 1
5 .
O 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
o/
b p

Figure 6.5 Overturning acceleration spectrum of a rigid block with frequency parameter
p=1.25 rad/sec and stockiness @=0.16 rad subjected to a one-sine (Type-A) pulse.
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order nonlinear ODE’s given by Equation (6.30) derived for the Bouc-Wen model. The values of
B=vy=05n=20,andu, = 107> in. were used to model the rigid-plastic behavior. The ©
and x points are the solutions obtained using Working Model for different combinations of a,, T,
and u. It is shown that the Working Model solution is in excellent agreement with the solution
obtained by numerical integration of (6.30) in MATLAB.

More evidence of the accuracy of the solutions obtained with Working Model is offered in
Figure 6.6 which plots the sliding response of a rigid mass subjected to three strong earthquakes.
Note that despite the large variability in the peak values of the sliding displacements, the solutions

obtained with Working Model are in excellent agreement with the MATLAB numerical solution.

6.2.3 Slide-Rocking Response Analysis

Testing the ability of Working Model to capture with accuracy the slide-rocking response of a
freestanding block requires the development of a numerical code that solves Equations (6.44)-
(6.46) in association with a constraint that imposes the energy lost during impact. The develop-
ment of such a code, and particularly the algorithm that tracks the impact, sticking, and slipping of
the block, is of considerable effort. It was therefore decided to limit the validation of Working
Model to pure-rocking and pure-sliding.

The ability of Working Model to predict the pure-rocking and pure-sliding response of the
mechanical systems shown in Figure 6.1 with high fidelity in association with its ability to pro-
vide numerical simulation results that are in fairly good agreement with experimental results
obtained from the shake table experiments (presented in Chapter 4; see Figs. 4.2 to 4.29) of this
study gives us confidence of its ability to analyze the response of laboratory equipment for

motions of various hazard levels.
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7 Shake Table Tests of Wooden Blocks

7.1 WOODEN BLOCK MODELS

Given the +6 in limitation in the horizontal displacement of the shaking table, it was not possible
to run tests with table displacements equal to the ground and floor displacements of earthquakes
that correspond to the 2% in 50 years hazard level. To address this challenge, we conducted shake
table tests on quarter-scale wooden block models of the full-scale equipment prototypes. A reduc-
tion in length by a factor of 4 corresponds to a reduction in time by a factor of /4 = 2. This can
be shown by dimensional analysis for both sliding (Makris and Black 2003) and rocking motions
(Makris and Konstantinidis 2003b). The sizes of the prototype equipment are given in Table 3.1.
Figure 7.1 is a photograph of the three wooden block models resting on the shaking table.

7.2 EVALUATION OF THE FRICTION COEFFICIENT OF THE WOODEN BLOCKS

Figure 7.2 shows results obtained from quasi-static pull tests on the wooden blocks which approx-
imate 1/4-scale models of the prototype equipment. The behavior of the contact interface between
the wooden blocks and the concrete surface of the shaking table atop which the blocks rested is
nearly rigid-plastic without exhibiting any difference between the static and kinetic values of the
frictional coefficient. The average value of the coefficient of friction from the quasi-static pull
tests on the three wooden blocks is about u, = u, = 0.68, and this value is used in the analyses

that follow.

7.3 SHAKE TABLE EXPERIMENTS ON WOODEN BLOCK MODELS

The compressed records that were used as input motions for the shake table tests of wooden
blocks are listed in Table 7.1. Since in most cases the wooden blocks overturned, it was decided

not to instrument the blocks but only to record whether the block survived the motion or over-



Figure 7.1 Quarter-scale wooden block models of the full-scale prototype equipment (pic-
tured in Fig. 3.1) resting on the shaking table at the Richmond Field Station
Earthquake Simulation Laboratory, UC Berkeley. The excitation of the table is
parallel to the more slender face of the models (labelled “SMALL «”).
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Test Specimen: wooden block model of FORMA incubator, Weight=21.6 Ib.

10F - . . . . . . . . . . . . . . B . . R

Lateral Load [Ib.]
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Test Specimen: wooden block model of KELVINATOR refrigerator, Weight=15.3 Ib.
14 T T T T T T T T T
12

—_
o

oo

Lateral Load [Ib.]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Test Specimen: wooden block model of ASP refrigerator, Weight=13.2 Ib.

12""""__'1

10 . : Y. P s b . 5 : ’ ’ ) ‘ = -
A ~ | ot g 3 : >

Lateral Load [Ib.]

-due to damage of the block’s corners

0.1 0.2 0.3 04 0.5 0.6 0.7
Displacement [in.]

Figure 7.2 Recorded load-displacement plots for the wooden block models obtained from
quasi-static pull tests. The wood-concrete interface exhibits a nearly perfect
rigid-plastic behavior.
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Table 7.1 Results of shake table tests on the wooden block models subjected to compressed
2% in 50 years earthquake motions. Listed are also the outcomes predicted by

Working Model simulations

corresponding uncompressed motions.

on full-scale prototypes

subjected to the

Equipment Compressed Earthquake Motion PTA  WoodenBlock Shake Table Working Model
Prototype [g] Model u Experimental Simulation
(slow pull) Outcome Outcome

FORMA Loma Prieta, Los Gatos PC, ground 0.54 0.68 overturn no overturn**
Loma Prieta, Los Gatos PC, ground 0.60 0.68 overturn overturn
Loma Prieta, Los Gatos PC FP, ground 0.57 0.68 overturn overturn
Loma Prieta, Corralitos, ground 0.84 0.68 overturn no overturn**
Loma Prieta, Corralitos, ground 0.83 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.59 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.58 0.68 overturn no overturn*
Loma Prieta, Gilroy Hist. Bldg., ground  0.59 0.68 overturn no overturn**
Loma Prieta, Gilroy Hist. Bldg., 6th floor 0.96 0.68 overturn overturn

Kelvinator =~ Loma Prieta, Los Gatos PC, ground 0.54 0.68 overturn overturn
Loma Prieta, Los Gatos PC, ground 0.60 0.68 overturn overturn
Loma Prieta, Los Gatos PC FP, ground 0.57 0.68 overturn overturn
Loma Prieta, Corralitos, ground 0.84 0.68 no overturn  no overturn
Loma Prieta, Corralitos, ground 0.83 0.68 no overturn  no overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.59 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.58 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.59 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., 6th floor 0.96 0.68 overturn overturn

ASP Loma Prieta, Los Gatos PC, ground 0.54 0.68 overturn no overturn
Loma Prieta, Los Gatos PC, ground 0.60 0.68 overturn overturn
Loma Prieta, Los Gatos PC FP, ground  0.57 0.68 overturn no overturn
Loma Prieta, Corralitos, ground 0.84 0.68 overturn no overturn
Loma Prieta, Corralitos, ground 0.83 0.68 overturn no overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.59 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.58 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., ground  0.59 0.68 overturn overturn
Loma Prieta, Gilroy Hist. Bldg., 6th floor 0.96 0.68 overturn overturn

* although the block does not overturn, 6, . nearly reaches « .

*E although the block does not overturn, 6

max

exceeds « .
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turned. The outcome of each experiment is also listed in Table 7.1. More than one experiment
were conducted for each 2% in 50 years hazard-level motion in an effort to examine the repeat-

ability of the outcome.

7.4 SIMULATION STUDIES ON EQUIPMENT PROTOTYPES

The results of the shake table experiments that were carried on the quarter-scale wooden block
models are of great value because they can validate the fidelity of results of numerical simulation
studies conducted on the full-scale prototype equipment. Since the friction coefficients of the
model-base interfaces were different from the friction coefficients of the prototype-base inter-
faces, two sets of simulation studies were conducted. First, the responses of the full-scale proto-
type equipment were computed with Working Model by using a coefficient of friction at the
sliding interface equal to p, = p;, = 0.68, the value obtained from the slow pull tests on the
wooden blocks. The results of this analysis demonstrated that the simulation program can capture
well the experimentally observed behavior. Then, once the fidelity of Working Model had been
validated, the response of the full-scale prototype equipment was computed with the actual fric-
tion coefficients of the sliding interface, as shown in Table 3.2.

The bottom plot on the left column of Figure 7.3 shows the time-compressed (by a factor of
2) acceleration history of the motion recorded at the Los Gatos Presentation Center during the
1989 Loma Prieta, California, earthquake. The plot above the acceleration history plots the result-
ing displacement history. This time-compressed motion was used as shake table input to test the
quarter-scale wooden block model of the FORMA incubator. The final outcome of the experiment
was that the wooden model overturned. The right-column plots of Figure 7.3 show the simulated
response computed with Working Model for the full-scale FORMA incubator prototype subjected
to the uncompressed motion. Note that the base displacement history of the uncompressed motion
is 22 = 4 times larger in amplitude than the table displacement history of the compressed
motion. The heavy solid lines of the top two windows on the right column of Figure 7.3 plot the
simulated sliding and uplift responses of the full-scale equipment with a coefficient of friction
u = 0.68, as obtained from the quasi-static pull tests on the wooden blocks. While the simulated
response predicts that the incubator does not overturn (as the experiment on the scaled model
showed), the negative rotation 6 of the equipment is so large that it in fact exceeds the stockiness

value a at around ¢ = 7.5 sec. Luckily, at the same time, the negative table acceleration which
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opposes the overturning of the equipment (see Fig. 6.1 for the definition of positive/negative 6)
marginally saves it from catastrophe.

This behavior whereby the equipment prototype marginally survives, while its correspond-
ing wooden model overturns, is observed for a few of the motions. As shown in Table 7.1, when
subjected to the Corralitos motion recorded during the 1989 Loma Prieta, California, earthquake,
the wooden block overturns. The full-scale FORMA incubator, on the other hand, survives the
motion. Figure 7.6 (right) which plots the response computed with Working Model, shows that
around ¢ = 5.5 sec the rotation 6 exceeds a, and the equipment hangs on the verge of overturn-
ing; yet the restoring base acceleration spares the equipment. When the experiment was repeated
on the shake table with the same motion but a slightly different Peak Ground Acceleration (0.83 g
instead of 0.84 g, due to imprecision of the shake table actuators), the wooden model again over-
turned. Interestingly, the Working Model simulation with this slightly different base motion did
result in overturning.

Figures 7.9 and 7.10, which plot the response due to the Gilroy Historic Building motion
recorded during and 1989 Loma Prieta, California, earthquake (2 tests), show that the wooden
model overturns, while the equipment prototype survives despite the fact that in one case the com-
puted rotation 6 nearly reaches «, and in the other it exceeds it. Except for these marginal cases,
Working Model manages to capture very well the overturning of the wooden models. It also pre-
dicts correctly the two cases when the wooden model of the Kelvinator incubator does not over-
turn (Figs. 7.15 and 7.16) for the Corralitos motion.

Although they are presented here for completeness, the Working Model simulations for the
ASP refrigerator (Table 7.1 and Figs. 7.21 to 7.29) cannot be compared to the shake table experi-
mental outcomes of the wooden model because the wooden model of the ASP refrigerator suf-
fered damage that reduced its seismic stability. Figure 7.2 (bottom) shows a photograph of the
damage on the corners of the wooden model and how this damage is also evident in the load-dis-
placement curve. The reduced base (and therefore stability) due to the damage of the block’s cor-
ners explains why, despite the large stockiness of the ASP refrigerator, the wooden model toppled
in all cases, while the Working Model simulation predicted that the prototype topples in only 5 out
of the 9 cases.

The above comparisons between experimental and computed results demonstrate Working

Model’s ability to capture the experimentally observed behavior. This provides us with confidence
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that the program can compute the seismic response of laboratory equipment for a wider range of

friction coefficients and hazard-level base motions.
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8 Regression Analysis and Fragility Curves for
2% in 50 Years Hazard Motions

8.1 SLIDING RESPONSE DUE TO 2% IN 50 YEARS HAZARD MOTIONS

The top two windows of the right columns in Figures 7.3 to 7.29 plot the computed (with Working
Model) response of the full-scale freestanding equipment subjected to the earthquake motions
with probability of exceedence 2% in 50 years used in this study. The solid lines plot the com-
puted response where the coefficient of friction used is that obtained from best-fitting the numeri-
cal results of Working Model simulations to the experimental results obtained from the shake table
tests for the 50% and 10% in 50 years hazard level motions (Figs. 3.4 to 3.6 and Table 3.2). The
dashed lines plot the computed response where the coefficient of friction used is that obtained
from the quasi-static pull tests described in Chapter 3. Note that the computed sliding and rocking
time histories plotted with dashed lines show a response that is contrary to the primarily sliding
response that was experimentally observed for the 10% and 50% in 50 years motions (presented
in Chapter 4). In particular, Figures 7.12 to 7.29 show that the Kelvinator and ASP refrigerators
experience large rotations—and even overturning in a few occasions. In light of the earlier obser-
vations where the Kelvinator and ASP refrigerators in fact experienced very small rotations, it
was concluded that the friction coefficients from the slow pull test are too large, and consequently
they cause the equipment to engage in rocking during the numerical simulations. Working Model
simulations with the best-fitted friction coefficient values result in the predominant sliding
response that is anticipated (plotted with solid black lines in Figs. 7.3 to 7.29). For this reason, the
analysis presented in this chapter uses the reduced, best-fitted friction coefficients listed in Table
3.2.

Table 8.1 lists the 2% in 50 years input motions used with the Working Model simulations

and the computed peak sliding displacement, U of the laboratory equipment. The third col-

max?
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umn of Table 8.1 lists the defining parameters (pulse type, pulse duration T,,and velocity ampli-
tude vy) of the trigonometric pulses that approximate the predominant distinguishable pulse of
the excitation motion. The acceleration and displacement histories of these pulses are plotted with
heavy grey lines on the bottom two windows of Figures 7.3 to 7.29 (right) together with their cor-
responding earthquake records (black lines). The last two columns plot the Intensity Measure

PTA / ug — 1 and Engineering Demand Parameter A = U w?/ PTA.

max~"p

8.2 FRAGILITY ANALYSIS FOR 2% IN 50 YEARS HAZARD LEVEL MOTIONS

8.2.1 Regression of the Experimental Data

Figure 8.1 (top) plots the Engineering Demand Parameter A = U, axa)f7 / PTA as a function of
the Intensity Measure PTA / ug — 1 obtained from the Working Model simulations on the three
pieces of equipment. The value of the coefficient of friction, u, is that obtained by best fit (see
Chapter 3). A least-squares linear regression of the data, plotted with a solid line, provides the
mean value A of the random variable A as a function of the intensity measure
B(P—TA) - 0.38(P—Té - 1) (8.1)
H8 H8
The coefficient of determination, #?, for this regression is equal to 0.32. The shaded bars on the
top graph of Figure 8.1 are statistical bins that are used to create a graph of the standard deviation
to the mean as a function of the Intensity Measure. This standard deviation, o\ (PTA / ug), is
plotted on the bottom graph of Figure 8.1 together with a linear regression given by
aA(P—TA) - 0.17(1—)@ _ 1) (8.2)
H8 H8
with 7> = 0.93.

8.2.1 The EDP as a Lognormally Distributed Random Variable

As discussed in Chapter 5, the random variable A is assumed to be lognormally distributed with

probability density function

fo(6) = 1(1“‘5‘7‘)2} §>0 (8.3)

1
exp [—
L2rws 2\ w
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Figure 8.1 7op: The Engineering Demand Parameter A=Umaxwp2/PTA as a function of the
Intensity Measure PTA/ug-1 for the Working Model simulations on the three
pieces of equipment. The value of u is obtained by best-fit of numerical simula-
tion results to shake table test results. Botfom: Standard deviation to the mean
as a function of the Intensity Measure PTA4/ug-1.
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where the two defining parameters 6 and w of the distribution are in fact the mean and standard
deviation of the corresponding normally distributed variable X (Crow and Shimizu 1988). The

cumulative distribution function of A is given by

FA@) = [ Z ﬁiwé'exp[—%(ln(z_ Aﬂd&' - @(1“‘1)‘ )‘) (8.4)

where ® is the cumulative distribution function of a standard normal distribution (i.e., A = 0
and w = 1). Presented in Chapter 5 and repeated here for convenience, the mean, A, and stan-
dard deviation, o, , of the lognormal variable A are related to the mean, A, and standard devia-

tion, w, of the normal variable X by

2 2
A= exp(?t + %) and o0, = exp(?t + %) Jexp(w?) -1 (8.5)

or

A = InA- lln[l + ((I—A)z} and w = ln[l + (O—:—A)ZJ (8.6)
2 A A
The statistical estimation of A = A(PTA /ug) is given by Equation (8.1), and that of
oy = 0A(PTA / ug) is given by Equation (8.2). The mean and standard deviation of the nor-
mally distributed variable X are themselves functions of the intensity measure—that is,
A = APTA/ ug) and w = w(PTA / ug).

In order to not reject the hypothesis that A has a lognormal distribution, the Kolmogorov-
Smirnov goodness-of-fit test is used as in Chapter 5. Figure 8.2 plots the empirical cumulative
distribution function, F,(§), for the 2% in 50 years motions. Together is plotted the cumulative
distribution function of the hypothesized lognormally distributed random variable A, F,(6). The

maximum distance between the distribution functions presented in Figure 8.2 is
S = m%x\FA((S)—F;(a)\ = max(S*,S) = 0.185 (8.7)

where §* and S~ are given by Equations (5.29) and (5.30).

For a certain level of significance «, the hypothesis is rejected if S exceeds a critical value
of §,,. The value of S, depends on a and the size of the sample, n. The sample size of this study
for the 2% in 50 years motions is n = 27. Tables for the Kolmogorov-Smirnov test provide

(Daniel 1990)
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0.200, @=0.80
0.229, @=0.90

S.(@,n=27) =3 0.254, @=0.95 (8.8)
0.284, @=0.98
0.305, @=0.99

Since S < S ., the hypothesis that A is lognormally distributed is not rejected.

cr?

8.2.2 Fragility Curves

Recall from Chapter 5 that fragility was defined as the probability P, that the Engineering

Demand Parameter A = U / PTA for a piece of equipment will exceed a certain threshold

2
maxwp
(capacity) C, given the intensity measure, IM = PTA / ug— 1. For the lognormally distributed

random variable A,

" [A(fmJ “ (ZA((I%))ZJ
[+ ]

Regression Equations (8.1) and (8.2) provide the functional dependence of A and o, on the

(8.9)

Pf= 1-9

intensity measure, IM = PTA / ug — 1. Figure 8.3 plots fragility curves that have been gener-

ated by use of expression (8.9) for four values of capacity C.
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9 Shake Table Tests of Anchored Laboratory
Equipment

9.1 ANCHORING OF LABORATORY EQUIPMENT

In order to simulate the conditions present in the UC Sciences laboratories a mock 12-ft-tall non-
structural wall was built (Figs. 4.1 and 9.1) onto which the equipment was anchored with chains.
The wall was built with light (20-gauge) steel studs and 5/8"-thick sheetrock. Figure 9.1 is a pho-
tograph of the ASP refrigerator anchored to the wall at a typical clearance distance of 8-10 in. The
chains which are attached to the top of the equipment are intended to restrain the equipment from
exhibiting excessive displacements or possible overturning during a seismic event. The top photo-
graph of Figure 9.2 shows the detail of the connection to the wall. The chains are connected on
one end to a light-gauge metal plate that is glued to the equipment surface with a urethane adhe-
sive. On the other end, the chains are connected to a metal anchor that is screwed into the light
steel framing of the wall. The chains are either cross-tied as shown in Figure 9.2 (top) or they go
from the equipment straight to the nearest wall anchor. Both anchoring configurations were tested
during the shake table tests.

No failure of the connection was observed in any of the shake table tests. Even after
repeated tests, the connection appeared in good condition. Only minor local damage was observed
in the relatively soft sheetrock. The bottom photograph of Figure 9.2 shows the condition of the
connection after the cross-chained ASP refrigerator was subjected to the very violent shaking
induced by the UC Science Building 6th Floor Motion for the Cholome Array #8 record of the
1966 Parkfield, California, earthquake. The slight depression which is evident in the sheetrock on
one side of the connection was caused by the eccentricity of the load in the cross-tied chains. The
connection held well for the remaining tests.

After completion of the shake table tests, static pull-out tests were performed in order to



Figure 9.1 The ASP refrigerator anchored to the mock non-structural wall that is nearly
identical to those present at the UC Science laboratories.
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Figure 9.2 The top photograph shows how the equipment is typically cross-chained to
anchors that are screwed into the light steel framing of the wall. The bottom
photograph shows the minor damage of the connection even under the very vio-
lent shaking induced by the UC Science Building 6th Floor Motion for the Cho-
lome Array #8 record of the 1966 Parkfield, California, earthquake.
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Table 9.1 Results of the static pull-out tests performed in order to determine the strength of
the connection. Tabulated is the force on the chain required to fail the connection
when the chain is (a) at a 15%°-angle from the wall (cross-chained) and (b)
perpendicular to the wall (straight-chained).

Cross-Chained Straight-Chained
Test Number | Strength [Ib.] Strength [1b.] —
1 680 565
2 720 585 L
3 690 695 :
4 750 Ly 625
5 715 ¢ 1 /&I) 595
6 680 620
Average 705 615
Std. Dev. 30 45

determine the strength of the connection. Table 9.1 lists the results of the tests which were per-

formed for the two configurations shown in the schematic diagrams.

9.2 SHAKE TABLE TESTS OF ANCHORED EQUIPMENT

The input motions used to test the freestanding equipment were also used to test the anchored
equipment. The FORMA incubator was not tested anchored due to the damage it sustained in the
earlier series of experiments. The Kelvinator refrigerator was tested with the chains cross-tied and
straight-tied to the wall, while the ASP refrigerator was tested only cross-tied. The motion of the
table was in the direction perpendicular to the wall.

The results of the shake table tests are presented in Table 9.2 which lists the recorded Peak
Equipment Accelerations (PE4, i.e., the peak value of the vectorial sum of horizontal and vertical
equipment acceleration histories) of the freestanding equipment from the tests presented in Chap-
ter 4 together with the corresponding values of the anchored equipment. These results are also
presented in Figure 9.3. The top bar plot of Figure 9.3 compares the recorded PEA of the Kelvina-
tor refrigerator tested in the freestanding, cross-chained, and straight-chained configurations,

while the bottom bar plot compares the recorded PEA of the ASP refrigerator tested in the free-
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Figure 9.3 Comparison between recorded Peak Equipment Acceleration (PEA) for the



standing and cross-chained configurations. The recorded values of PEA for the anchored equip-
ment were considerably higher in all instances but one. In fact, in several instances the PEA of the
restrained equipment exceeded 700% that of the freestanding equipment.

The left side of Figure 9.4 plots the horizontal and vertical acceleration histories of the free-
standing and anchored (cross-chained) Kelvinator refrigerator subjected to the OTE FP motion
recorded during the 1995 Aigion, Greece, earthquake. The PEA is more than three times larger
when the refrigerator is restrained (1.57g) than when it is freestanding (0.47g). The right side of
Figure 9.4, which plots the acceleration histories of the freestanding and anchored Kelvinator
refrigerator subjected to the to the Gilroy Array #6 FN motion of the 1979 Coyote Lake, Califor-
nia, earthquake, shows that the PEA of the anchored refrigerator is 3.22g, or 7.5 times larger than
the PEA of the freestanding equipment (0.43g). The time histories of the equipment horizontal
and vertical accelerations show the large acceleration spikes that develop when the chains become
taut. As aforementioned, these large accelerations may be very damaging to the sensitive contents
of the equipment. Figures 9.5 to 9.18 which plot side-by-side the response of the freestanding and
anchored equipment for the remaining motions used in this study demonstrate the significant

increase in equipment accelerations that results from restraining the equipment.
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10 Conclusions

In this study, a comprehensive experimental program investigating the seismic response of free-
standing and anchored laboratory equipment located in the UC Science Building laboratories
within several floor levels was undertaken. The study followed the approach of performance-
based earthquake engineering (PBEE) as it is proposed by the PEER Center.

The mechanical properties of the contact interface between the equipment of interest and
the laboratory floors was examined. Slow-pull tests provided load-displacement curves which
exhibited a pre-sliding elasticity which depended on the flexural resistance of the equipment legs,
a peak value when sliding initiates, and subsequently a relatively constant friction force during
sliding. Two idealized two-parameter mechanical contact models were then constructed; one was
an elastoplastic model defined by the yield displacement, Uy, (the displacement when sliding com-
mences), and the friction coefficient, u = u, = u, ; the other was the classical Coulomb friction
model where a static friction coefficient, y, and a kinetic friction coefficient, u, , were used.

In the sequel, experimental results of shake table tests on the freestanding equipment sub-
jected to ground and floor motions of 50% and 10% in 50 years hazard levels were presented. For
the equipment tested, although there was some rocking observed (particularly for the FORMA
incubator), sliding was the predominant mode of response, with sliding displacements reaching
up to 2 ft. The experimental results were then used to calibrate and validate numerical simulation
models. Numerical simulation studies with MATLAB (2002) on the sliding response of the equip-
ment using the elastoplastic model with the values of the friction coefficient u extracted from the
slow-pull tests yielded results that were in fair agreement with the experimental data. The pre-
dicted response of the equipment was appreciably improved when reduced values of their friction
coefficients were used. Numerical simulation studies with Working Model (2000) using the Cou-
lomb friction model also provided fair results that were considerably improved when the values of

u, and u;, were reduced.



In accordance with the PEER methodology, the intensity measure /M = PTA / ug—1 and
(random) engineering demand parameter A = U, ax“);z; / PTA were identified. The results of the
shake table tests were then used to test the hypothesized lognormal distribution of the random
variable A and to arrive at simple linear relationships for the mean A and standard deviation o,
in terms of the /M. Fragility curves, which give the probability that the EDP will exceed a speci-
fied threshold C as a function of the /M were generated, and an example was presented to illus-
trate how the fragility curves can be used.

Due to displacement limitations of the shake table, experiments could be performed only for
lower to medium hazard levels on the equipment. However, shake table tests for which stronger
motions (2% in 50 years hazard level) were applied were done on quarter-scale wooden models of
the equipment. This was achieved by halving the time-scale of the acceleration record input. The
interface friction coefficient for the wooden models was higher (1 = 0.68) than for the full scale
equipment, and therefore the models were more prone to overturn. The results obtained were used
to confirm the software Working Model’s ability to capture well the overturning potential for
equipment. With gained confidence on Working Model’s all-around capabilities, the software was
then used to analyze the response of equipment subjected to 2% in 50 years hazard level motions.
The results were used in the aforementioned procedure for the 50% and 10% in 50 years motions:
obtain relationships for A and o, in terms of the /M, and generate fragility curves for various
thresholds C.

Shake table experiments performed on the restrained equipment showed that the type of
connection typically used to restrain the equipment suffered minimal damage. The experiments
revealed large spikes in the equipment acceleration histories. It was concluded that the peak
equipment accelerations recorded are significantly larger than those recorded during the free-
standing equipment tests; in several occasions 7 or more times larger. Such high accelerations

may pose a threat to the sensitive contents of laboratory equipment.
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