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ABSTRACT

An accurate evaluation of the structural performance of reinforced concrete structural sys-

tems under seismic loading requires a probabilistic approach due to uncertainties in struc-

tural properties and the ground motion (referred to as basic uncertainties). The objective

of this study is to identify and rank significant sources of basic uncertainties and structural

components with respect to the seismic demand (referred to as the Engineering Demand

Parameters, EDP) of reinforced concrete structural systems. The methodology for accom-

plishing this objective consists of three phases. In the first phase, the propagation of basic

uncertainties to a structural system with respect to its EDPs is studied using the first-order

second-moment (FOSM) method and the tornado diagram analysis to identify and rank sig-

nificant sources of basic uncertainties. In the second phase, the propagation of basic uncer-

tainties to structural components with respect to their capacities is studied. For this purpose,

the stochastic fiber element model is developed to build probabilistic section models such as

the moment-curvature relationships at critical sections of the structural component. In the

third phase, the propagation of uncertainty in the capacities of structural components to the

structural system with respect to its EDPs is studied. Using the FOSM method combined

with probabilistic section models, EDP uncertainties induced by structural components are

estimated to identify and rank significant components. Several case studies demonstrate the

effectiveness and robustness of the developed procedure of propagating uncertainties.
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1 Introduction

1.1 GENERAL

The behavior of reinforced concrete (RC) structural members (or components), especially

the inelastic behavior, depends on various geometric and material parameters. Most of these

parameters are of a random nature, and consequently, uncertainty exists in the behavior

of the RC members in terms of the strength and ductility. Therefore, a realistic estimate

of the behavior of the RC structural system that is an assembly of a number of structural

components requires a probabilistic approach for an appropriate treatment of uncertain

structural properties, especially under seismic loading.

An accurate yet practical evaluation of the structural behavior due to seismic load-

ing is one of the critical issues of the emerging performance-based earthquake engineering

(PBEE) methodology. In particular, the estimation of the seismic loss and the correspond-

ing repair cost of the structural system depend on an accurate and realistic estimate of the

performance of the structural system. Uncertainty in the loss estimation of the structural

system, mainly due to uncertainties in the ground motion and structural properties, can be

costly because it is directly related to the repair cost. In that regard, it is important to

identify and rank both sources of uncertainty and structural components that are relatively

significant to the performance of the structural system.

The probabilistic analysis of RC structural components and systems has been the

focus of a number of research efforts. One of the earliest works is that of Shinozuka (1972),
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who investigated the effect of uncertain material properties on the strength of plain concrete

structures. Several studies were concentrated on RC members such as beams or columns.

Frangopol et al. (1996), Mirza and MacGregor (1989), and Grant et al. (1978) conducted

strength analyses of RC beam-column members by considering uncertainties in material

properties and cross-sectional dimensions. More recent research has focused on the proba-

bilistic evaluation of RC structural systems. Chryssanthopoulos et al. (2000), Ghobarah and

Aly (1998), and Singhal and Kiremidjian (1996) recently proposed systematic ways of evalu-

ating RC framed structures by considering the uncertainties in ground motions and material

properties. However, only a few studies were performed within the context of PBEE. Porter

et al. (2002), among those few studies, investigated the sensitivity of loss estimate of an RC

building to major uncertain parameters. Despite a large number of previous studies on prob-

abilistic evaluation of RC structures, efforts on identifying relative significance of different

sources of uncertainty and/or structural components with respect to the performance (or

demand) of the structural system are scarce.

1.2 OBJECTIVES AND SCOPE

This study has three objectives that eventually aim at the main goal of the present study:

to identify significant sources of basic uncertainties and structural components with respect

to the seismic demand (referred to as the Engineering Demand Parameter, EDP) of an RC

structural system. The following are specific objectives of this study:

• To understand the propagation of basic uncertainties to a structural system with re-

spect to its seismic demands.

• To understand the propagation of basic uncertainties to structural components that

form the structural system with respect to the strength and the deformation capacity

of the component.

• To understand the propagation of uncertainty in the capacity of structural components
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to the structural system with respect to its EDPs.

The basic uncertainty is an observable uncertainty, i.e., statistical information can be col-

lected for it. For example, material properties, member dimensions, and soil properties are

all basic uncertainties because one can physically test or measure them.

The methodology for accomplishing the objective of this study is developed for RC

framed structure within the framework of the PBEE methodology being developed by the

Pacific Earthquake Engineering Research (PEER) center. Two different modeling schemes

are used to analyze structural components and systems. The first is a fiber element mod-

eling, known for its accurate estimation of the inelastic structural response. The second

utilizes plastic-hinge modeling that is widely used in practice due to its simplicity. Different

probabilistic methods are used to understand propagation of uncertainties. Monte Carlo

simulation is used for evaluation of the strength and the deformation capacity of structural

components, while the first-order second-moment (FOSM) method and a method of deter-

ministic sensitivity analysis using a tornado diagram1 are used for evaluation of structural

systems.

1.3 OVERVIEW

This report consists of six chapters beginning with the introduction in Chapter 1 and con-

cluding with Chapter 6. Chapter 2 presents the background, literature review, and the

methodology to support the core chapters. The core chapters of this report are Chapters 3

to 5. Each core chapter presents works related to each of the three objectives discussed in

the previous section. There are three categories of uncertainty being discussed in this report,

namely basic uncertainty, uncertainty in the capacity of structural components, and EDP

uncertainty of structural systems. Each core chapter presents the relationship between two

1Tornado diagram, commonly used in decision analysis, consists of a set of horizontal bars (swings) where
the length of each bar represents the output sensitivity to a given input variable. These bars are displayed
in the descending order of the bar length from the top to the bottom. This wide-to-narrow arrangement of
the swings eventually resembles a tornado.
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components of these uncertainties in terms of their propagation and identifies (or ranks) the

relative significance of an individual random variable or a structural component. Fig. 1.1

shows an overview of the present study focusing on the three core chapters.

Basic uncertainties in

ground motion and

structural properties

Uncertainty in demand

of the structural system

response

Uncertainty in capacity

of structural components

Propagation of uncertainty

Chapter 3

Chapter 4 Chapter 5

Identifying (ranking) important uncertainties

Fig. 1.1 Overview.

In Chapter 2, the background of the present study is introduced including the review

of previous works. In particular, the PBEE methodology being developed by the PEER

center is summarized. General discussion of sources of uncertainty in the structural analysis

is presented. Literature on characterizing sources of uncertainties that are considered in

the present study is reviewed. Finally, a systematic procedure of probabilistic evaluation

of structural systems, which consists of component evaluation and system evaluation, is

described.

In Chapter 3, the propagation of basic uncertainties through a structural system

with respect to its EDP is discussed. Descriptions of the FOSM and the tornado diagram

methods, and the corresponding procedures of sensitivity analyses of a structural system are

presented. Propagation of uncertainty is demonstrated for a case-study building (referred to

as UCS) using both methods. Moreover, significant random variables to EDPs of UCS are

identified.

4



In Chapter 4, the propagation of basic uncertainties through structural components

with respect to their capacity is discussed. First, a newly developed stochastic fiber element

model is presented. This model combines the conventional fiber element model and one of

the random field representation methods (the mid-point method) along with Monte Carlo

simulation. Second, the model is used for a probabilistic evaluation of structural components

considering spatial variability of random variables where a study of strength variability of

an RC column due to uncertainties in structural properties is presented. Finally, structural

components of a ductile RC frame (referred to as VE) are evaluated to develop probabilistic

moment-curvature and shear force-distortion relationships at critical cross sections of the

structural components.

In Chapter 5, the propagations of uncertainties in the strength and the deformation

capacities of structural components through a structural system with respect to EDPs of the

structural system are discussed. First, the procedure is demonstrated by a ductile portal

frame to estimate the probability distribution of the lateral strength of the frame. Second,

the EDP sensitivities of VE to uncertainty in the capacity of structural components using

probabilistic component models developed in Chapter 4 are presented. Finally, significant

structural components to EDPs of VE are identified according to the FOSM method.

In Chapter 6, the summary and conclusion of the study are presented. Recommen-

dations for future extension of this study are also outlined.
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2 Propagation of Uncertainty

2.1 INTRODUCTION

Almost all input parameters in the structural analysis such as mass, damping, material

properties, boundary conditions, and applied load are uncertain. They are uncertain either

because of the inherent physical randomness (or variability) or because of our state of knowl-

edge. The former is called aleatory uncertainty and the latter is called epistemic uncertainty.

By definition, aleatory uncertainty is irreducible and epistemic uncertainty is reducible by

improving our state of knowledge. Regardless of the type of uncertainty, these uncertainties

make the corresponding structural response also uncertain. This process is viewed as prop-

agation of uncertainty in input parameters through the structural system. In this study,

the propagation of uncertainty is studied within the framework of performance-based earth-

quake engineering (PBEE) methodology. However, the presented methodology in this study

doesn’t have to be limited to a particular PBEE framework such as the one formulated within

the PEER center, as it can be equally applied to other structural performance evaluation

process.

This chapter introduces the definitions and the background of PBEE, together with

the PBEE methodology developed within the PEER center. Also discussed is how uncer-

tainty is treated in the PBEE methodology of this study. Finally, the scope of this study in

the context of the adopted ranges of uncertainty is discussed.
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2.2 PERFORMANCE-BASED EARTHQUAKE ENGINEERING

After the events of big earthquakes in the mid-1990s, namely the 1994 Northridge and

1995 Kobe earthquakes, the structural engineering community realized that the amount of

damage, the economic loss due to downtime (or loss of use), and repair cost of structures

were unacceptably high, even though those structures complied with applicable seismic codes

to satisfy only the life-safety performance objective. Accordingly, structural engineers and

researchers started to think about a new design philosophy. FEMA 273 (1997) and Vision

2000 by SEAOC (1995) are known as the publications that reflect the pioneering work to

formulate the PBEE methodologies.

The definition of PBEE is widespread in the literature (Bertero and Bertero 2002;

Ghobarah 2001; SEAOC 1995). PBEE is defined such that it consists of development of

conceptual, preliminary, evaluation, and final design; control of construction quality; and the

maintenance of the structure such that the stated performance objectives are achieved when

it is subjected to one of the stated levels of seismic hazard. The performance objectives may

be a level of stress not to be exceeded, a force or deformation limit state at a member level,

or a damage state at the system level. For example, Vision 2000 identifies performance levels

as fully operational, operational, life safe, and near collapse. The levels of seismic hazard

defined in Vision 2000 include frequent, occasional, rare, and very rare events. These events

reflect Poisson-arrival events with probability of exceedance stated as 50% in 30 years, 50%

in 50 years, 10% in 50 years, and 10% in 100 years, respectively. Figure 2.1 shows possible

combinations of performance objective and seismic hazard level that can be used as design

criteria.

2.3 PBEE METHODOLOGY DEVELOPED WITHIN PEER CENTER

The PEER Center, based at the University of California, Berkeley, is one of three federally

funded earthquake engineering research centers in the United States. PEER has focused on
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Fig. 2.1 Vision 2000 recommended seismic performance objectives for building,

after SEAOC (1995).

developing a PBEE methodology for the past 7 years as a part of a 10-year research program.

The key features of PEER’s PBEE methodology are: (1) explicit calculation of system

performance and (2) rigorous probabilistic calculation (http://www.peertestbeds.net). The

performance of the whole system is explicitly calculated and expressed in terms of the direct

interest of various stakeholder groups such as monetary values, downtimes, and injuries

and deaths. Unlike earlier PBEE methodologies, forces and deformations of components

are indicative of, but not the same as, the system performance. Rigorous probabilistic

calculation implies that the performance is calculated and expressed in a probabilistic manner

without relying on expert opinion. Uncertainties in earthquake intensity, ground motion

detail, structural response, physical damage, and economic and human loss are explicitly

considered in the methodology. While its overview is described by Porter (2003), PEER’s

PBEE methodology is summarized in this section as it provides a background of the present

study.

PEER’s PBEE methodology consists of four phases: hazard analysis, structural anal-
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ysis, damage analysis, and loss analysis, as illustrated in Figure 2.2 where p[X] refers to the

probability density of X and p[X|Y ] refers to the conditional probability density of X given

the event of Y = y. (2.1) is the mathematical expression of the methodology.

p[DV|O,D] =

∫∫∫

p[DV|DM]p[DM|EDP]p[EDP|IM]p[IM|O,D]dIMdEDPdDM (2.1)

where

O = Location of the structure

D = Design of the structure

IM = Intensity measure of earthquake site effects

EDP = Engineering demand parameter as a measure of structural response

DM = Measure of physical damage of various members

DV = Decision variable that is the performance parameter of interest such as

repair cost

Hazard Analysis In the hazard analysis phase, parameters related to the location and

design of the target structure are considered to develop the probabilistic seismic hazard,

p[IM|O,D]. These parameters include magnitude, mechanism, and distance of nearby faults

from the structure, and soil conditions of the site. Ground motion intensity is represented

by IM such as the damped elastic spectral acceleration at the fundamental period of the

structure. The probabilistic seismic hazard is usually expressed in the form of the annual

exceedance frequency of various levels of IM, given the location and design of the structure.

Structural Analysis In the structural analysis phase, a computational model of the struc-

ture is developed to estimate the structural responses in terms of selected EDPs, subjected

to a given IM (p[EDP|IM]). EDPs may include local parameters such as member forces or

10
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Fig. 2.2 PEER’s PBEE analysis methodology.

deformations, or global parameters such as floor acceleration and displacement, and inter-

story drift. Since IM is a random variable, EDP is also a random variable. In addition to

IM uncertainty, uncertainties in parameters defining the structural model can be considered

in the structural analysis phase. Uncertainties in the mass, damping, stiffness, and strength

of the structure are among those.

Damage Analysis In the damage analysis phase, a set of fragility functions of structural

and non-structural components of the target structure is developed to produce the proba-

bility of various damage levels in terms of DM, conditioned on the structural response given

in terms of EDP (p[DM|EDP]). Physical damage of a specific component is defined relative

to that of the undamaged state, considering the particular repair effort (or cost) required

to restore the component to its undamaged state. Structural and non-structural compo-
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nents may include beams, columns, non-structural partitions, window glasses, or building

contents such as laboratory equipment or computers. Fragility functions can be developed

by laboratory experiments or by mathematical models describing physical phenomena.

Loss Analysis The loss analysis phase is the last phase of the PEER’s PBEE methodology,

where all uncertainties in previous analysis phases are integrated to develop the probabilistic

estimation of structural performance in terms of DV, conditioned on DM (p[DV|DM). As

mentioned earlier, the system performance of the structure is expressed in terms of the direct

interest of stakeholder groups such as monetary values, downtimes, and injuries and deaths.

The final product of this phase is in the form of the exceedance frequency of various levels of

DV. Finally, decision-makers decide whether the current design and location are acceptable

or not based on this final product of the PBEE methodology.

2.4 UNCERTAINTY IN PEER’S PBEE

Uncertainty is considered at each analysis phase and it propagates to the next analysis phase.

In the hazard analysis phase, the exact location, magnitude, mechanism of nearby faults,

and soil properties of the site of the target structure are uncertain. Consequently, the levels

of seismic hazard intensity or IM that the designed structure will experience are uncertain.

The details of ground motion profiles given those IMs are also uncertain.

Uncertainty in the hazard analysis phase, expressed in terms of IM, propagates to the

structural analysis phase and causes EDP uncertainty even if a mathematical model of the

structure is deterministic. In addition, sources of uncertainty in the structural model itself

exist. They include mass, damping, material properties such as steel strength and modulus

of elasticity, concrete strength and initial modulus of elasticity, and construction geometry

such as beam and column dimensions, and location of reinforcing bars. Moreover, additional

uncertainty exists in the selection of the element type and other modeling assumptions,

which is often referred to as the modeling uncertainty.
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Similarly, in addition to the propagated uncertainty from the previous phases, the

damage analysis phase also has its own sources of uncertainty. They are experimental uncer-

tainty if a laboratory experiment is performed and modeling uncertainty if a computational

model is used to develop fragility function of a specific building content, or structural or

non-structural component. Uncertainty in the loss analysis phase can also be characterized

in a similar way.

There are several published works of PEER researchers related to uncertainty in

PEER’s PBEE methodology (Baker and Cornell 2003; Miranda and Aslani 2003; Porter

et al. 2002). Porter et al. (2002) studied the relative impact of uncertainties in so-called

major variables to the system performance of a non-ductile RC building, namely the Van

Nuys building in California, through the PEER’s PBEE analysis methodology. They con-

sidered uncertainty in the spectral acceleration as IM and details of ground motion (hazard

analysis phase), in building mass, viscous damping, and force-deformation behavior (struc-

tural analysis phase), in component fragility (damage analysis phase), and in unit repair

costs, and overhead and profit (loss analysis phase). Figure 2.3 illustrates the results of their

study showing the relative importance of random variables to system performance in terms

of the damage factor in this case. One of the deterministic sensitivity analysis methods,

using the so-called tornado diagram, is used in their study. The tornado diagram, as shown

in Figure 2.3, consists of a set of horizontal bars, one for each random variable. The length

of each bar (referred to as swing) represents the variation in the output due to the variation

in the respective random variable. Thus, a variable with larger effect on the output has a

larger swing than those with lesser effect.

Recently, Baker and Cornell (2003) developed an approach to calculate total uncer-

tainty of future repair costs of a structure using the first-order second moment (FOSM)

method. This proposed approach works within the framework of PEER’s PBEE methodol-

ogy. They estimated means and standard deviations of several conditional random variables,

namely, DV|DM and DM|EDP in (2.1), using the FOSM method to develop a single con-
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Fig. 2.3 Sensitivity of future repair cost to uncertain input parameters for Van

Nuys building, California, after Porter et al. (2002).

ditional random variable (total repair cost in this case) given IM. Subsequently, the ground

motion hazard is treated accurately using Monte Carlo simulation based on the assumption

that ground motion uncertainty is the dominant contributor to total uncertainty of future

repair cost.

2.5 UNCERTAINTY IN THIS REPORT

The focus of this study is on the structural analysis phase of PEER’s PBEE methodology,

in particular for RC structures. Accordingly, uncertainty of interest is related to this phase.

Initially, seismic hazard (or IM) uncertainty enters into the structural analysis phase as it

represents uncertainty in the hazard analysis phase performed prior to the structural analysis

phase. Then, the structural analysis phase has its own sources of uncertainty in modeling

assumptions such as material properties, boundary conditions and structural geometry. This

section summarizes findings of other researchers on uncertainties of various parameters in

structural analysis. Only those related to applications in this study are presented in this

section.
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2.5.1 Uncertainty in Hazard Analysis Phase

There are various ways of characterizing IM of an earthquake. The typical IMs are measured

peak ground motions and damped elastic responses in terms of acceleration, velocity, and

displacement. There have been efforts to define a proper IM of an earthquake in relation to

EDP (Taghavi and Miranda 2003; Cordova et al. 2001), where IM is strongly correlated to

EDP such that IM becomes an indicator of EDP.

Among those typical IMs, the damped elastic spectral acceleration at the fundamen-

tal period of the structure is commonly used because it is strongly correlated to various

EDPs and its probability function of occurrence is readily available. The Earthquake Haz-

ard Program in the U.S. Geological Survey (USGS) provides US national maps showing

earthquake ground motions that have a specified probability of being exceeded in 50 years

(http://eqhazmaps.usgs.gov). The peak ground acceleration and the damped elastic spectral

acceleration at the fundamental period of the structure are used as IMs in these maps.

Another type of uncertainty in seismic hazard is the ground motion profile (referred to

as details of ground motion by Porter et al. (2002)). Unlike any other uncertainty addressed

in this study, it is not straightforward to characterize the uncertainty in the ground motion

profiles using methods other than Monte Carlo simulations. In that regard, a large number

of ground motion profiles are used to obtain a set of outputs (e.g., EDP in this study)

to be subsequently post-processed for their statistics. The incremental dynamic analysis

(IDA) (Vamvatsikos and Cornell 2002) is one of the methods that can explicitly deal with

this uncertainty using a set of ground motion profiles. For such set, one may use either

recorded ground motions or simulated ones that are generated from a mathematical model.

Since the comparison between using recorded (and possibly scaled to modify IM) versus

simulated ground motion is still an on-going research in earthquake engineering, a set of

recorded ground motions is employed in the study presented in this report.
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2.5.2 Uncertainty in Structural Analysis Phase

Sources of uncertainty associated with the structural analysis phase include structural geome-

try, material properties, modeling assumptions, and construction errors. Structural geometry

includes, for example, beam and column dimensions, and locations and sizes of reinforcing

bars. Material properties include parameters defining individual material constitutive mod-

els such as concrete compressive strength and initial modulus of elasticity, or steel yield

strength, ultimate strength, and initial modulus of elasticity. Several research efforts have

been focused on studying the effect of uncertainty in material properties or structural geom-

etry on the behavior of structural components or systems (Chryssanthopoulos et al. 2000;

Singhal and Kiremidjian 1996; Frangopol et al. 1996; Grant et al. 1978; Knappe et al.

1975). Modeling assumptions include gravity load, mass, viscous damping, force and dis-

placement boundary conditions, time step integration scheme, soil-foundation interface, and

three-dimensional effects such as floor eccentricities between center of mass and center of

rigidity. Selection of element type is also a source of uncertainty, since different elements use

different assumptions and approximations in their element formulation.

2.5.2.1 Uncertainty in Concrete Properties

Mirza et al. (1979) proposed probability distributions of various static strength parameters

of concrete by regression analyses. Of interest among those are the compressive strength and

the initial modulus of elasticity. They suggested that the compressive strength of concrete

has normal distribution with the mean computed by

f̄ ′

c = 0.675f ′

c + 1, 100 ≤ 1.15f ′

c in psi unit (2.2)

where f ′

c is the design compressive strength of concrete and f̄ ′

c is the mean of the compressive

strength. Dispersions of the distribution are suggested as coefficients of variations (COV)

of 10%, 15%, and 20% for excellent, average, and poor quality control, respectively, for

strength levels below 4,000 psi. For concrete with an average strength above 4,000 psi,
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standard deviations are suggested as 400 psi, 600 psi, and 800 psi also for excellent, average,

and poor quality control. On the other hand, the initial tangent modulus of elasticity is

suggested to have normal distribution with the mean computed by a regression equation

Ēc = 60, 400
√

f ′

c in psi unit (2.3)

and COV = 8%. They also realized that a strong correlation between compressive strength

and the initial modulus of elasticity exists as indicated by a high correlation coefficient in

the range of 0.88 to 0.91 as the results of various regression analyses. It should be noted

that the suggestions Mirza et al. (1979) discussed above do not include long term effects on

concrete such as creep and shrinkage.

Kappos et al. (1999) studied uncertainty in the ductility of confined RC members and

suggested COV = 32–36% for ultimate strain of confined concrete where ultimate strain is

defined by the strain corresponding to 85% of the compressive strength of the corresponding

unconfined concrete along the descending branch of the stress-strain relationship.

2.5.2.2 Uncertainty in Reinforcing Steel Properties

Mirza and MacGregor (1979a) proposed probability distributions of various mechanical prop-

erties of reinforcing bars. In particular, yield strength, ultimate strength, and modulus of

elasticity of reinforcing steel are of interest. They suggested the lognormal distributions for

yield and ultimate strengths. Suggested values of means and COVs for yield strength are

respectively 48.8 ksi and 10.7% for Grade 40 bars and 71.0 ksi and 9.3% for Grade 60 bars.

They observed that an increase in mean ultimate strength of reinforcing steel over the yield

strength is on the order of 55% with COV remaining approximately unchanged. For exam-

ple, the suggested mean and standard deviation of ultimate strength is 110.1 ksi and 10.2

ksi (COV = 9.3%), respectively, for Grade 60 bars. It is also suggested that the probability

distribution of the modulus of elasticity of Grade 40 or 60 reinforcing steel is normal with

the mean 29,200 ksi and COV = 3.3%.
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The Joint Committee for Structural Safety (JCSS) (1996) proposed probability distri-

butions of yield strength, ultimate strength, and ultimate strain of reinforcing steel. Normal

distribution is suggested for all three properties. It is suggested that for yield strength, mean

is computed by

f̄y = fy + 2σ (2.4)

where f̄y and fy are mean and nominal yield strengths, respectively, and σ is the standard

deviation that is assumed as 30 MPa (4.4 ksi). Similar to the suggestions of Mirza and

MacGregor, JCSS suggested that mean of ultimate strength is 50% higher than that of yield

strength while the standard deviation of the ultimate strength is assumed as 40 MPa (5.8

ksi). The correlation coefficient between yield strength and ultimate strength is assumed

to be 0.85. For ultimate strain of reinforcing steel, JCSS suggested COV = 9% while any

suggestion on the mean of ultimate strain is not found in (Joint Committee for Structural

Safety 1996). The correlation coefficient between ultimate strain and yield strength, and

ultimate strain and ultimate strength are suggested as -0.50 and -0.55, respectively. These

suggestions imply that an increase of either yield strength or ultimate strength of reinforcing

steel may lead to a reduction in ultimate strain. It is noted that Mirza and Skrabek (1991)

suggested using normal distribution with mean = 15% and COV = 20% for ultimate strain

of reinforcing steel.

2.5.2.3 Uncertainty in Member Geometry

Mirza and MacGregor (1979b) studied variation in the geometry of RC members such as

beam and column cross-section dimensions, bar location, and slab thickness. Of interest in

this study is uncertainty in reinforcing steel placement of RC columns. In that respect, the

location of longitudinal reinforcing bars is dictated by the cover thickness of concrete. Based

on measurement of steel placement errors in 232 rectangular columns of 12 in-situ concrete

buildings of various size in the Toronto-Hamilton area in Canada, they suggested that the
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cover thickness can be described by a normal distribution with a mean given by

t̄ = tsp + 0.25 + 0.004h in inch (2.5)

where t̄, tsp, and h are the mean and specified cover thickness, and the dimension of the long

side of the column cross section, respectively, and standard deviation of 0.166 inch.

2.5.2.4 Uncertainty in Modeling Assumptions

Quantification of building mass in a dynamic structural analysis depends on several factors,

namely materials used in construction, structural dimensions, locations of non-structural

elements, and a numerical model of the structure such as choice of its nodal coordinates.

Uncertainty in structural mass is an integration of uncertainties in those factors. Ellingwood

et al. (1980) suggested that the probability distribution of dead load is normal with a mean

value equal to the nominal dead load and COV = 10%. In this study, the probability

distribution of building mass is assumed to be normal with a mean value equal to mass

computed from the nominal self weight and the superimposed dead load.

A comprehensive discussion of uncertainty in the viscous damping ratio is presented

by Porter et al. (2002) including a summary of earlier experimental studies by Taoko (2003),

Camelo et al. (2001), and McVerry (1979). Based on these experimental studies, Porter et

al. (2002) suggested a reasonable estimate of COV of the damping ratio in the range of 30%

to 40%, while the mean of damping ratio is reported in the range of 1.1% to 11%. In this

study, the mean and COV of damping ratio are assumed to be 5% and 40%, respectively.

2.5.2.5 Excluded Uncertainty

Not all possible uncertainties are considered in this study. Among excluded ones are those due

to soil-foundation interface modeling, three-dimensional effect, non-structural components,

and gravity load including its role in P-∆ effect, all of which may significantly affect EDP

uncertainty. The propagation of these uncertainties should be studied in the future extension
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of the presented study. Some other sources of uncertainties whose effects on EDPs are

assumed to be small such as the tensile strength of concrete are considered as deterministic

at their best estimate such as the mean or the median.

2.5.2.6 Spatial Variability

Specified uncertainties in the structural analysis phase should, in general, spatially vary. This

is commonly referred to as the spatial variability of uncertainty. Lee and Mosalam (2004)

pointed out the importance of considering the spatial variability of material and geometrical

properties in estimating the strength of RC columns. In this report, the spatial variability

of structural properties is only considered in Chapter 4 for the evaluation of structural

components, as it is not practical to consider it in the evaluation of structural systems due

to the expected high computational effort.

2.6 METHODOLOGY OF PROPAGATING UNCERTAINTY IN THIS STUDY

This section describes a systematic method for propagating uncertainty, in particular, from

the basic uncertainty to uncertainties in the capacity of structural components and from that

to EDP uncertainty of a structural system. These two types of propagation of uncertainty

are covered in Chapters 4 and 5, respectively.

2.6.1 Overview

By definition, a structural system consists of a number of structural components. In fact,

almost all structural systems consist of a few repeatedly used structural components (referred

to as typical components) such as typical columns and beams. If each of these typical

structural components is investigated separately, the result can be portable to many types

of structural systems, as if the generic structural components were tested in the laboratory

and the results are subsequently used in estimating the behavior of structural systems. Once
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the understanding of the expected level of damage for different sets of boundary conditions

is established for typical structural components, the damage of an entire structural system

can be estimated in a systematic manner. Accordingly, the methodology of evaluating the

propagation of basic uncertainties to the structural system with respect to EDP consists of

two phases: (1) component evaluation phase where the propagation of basic uncertainties to

structural components with respect to their capacity is evaluated and (2) system evaluation

phase where the propagation of uncertainty in the capacity of structural components to the

structural system with respect to EDP is evaluated.

2.6.2 Component Evaluation

2.6.2.1 Identifying Typical Structural Components

The first step in the methodology is to identify typical structural components of a given

structural system using the conventional definitions of beam and column. For example, the

length of a typical beam is defined by the distance between two column centerlines, while

the height of a typical column is defined by the distance between the centerlines of slabs

or beams, whichever the column meets, at both ends of the column. The strength and the

deformation capacities of a typical structural component are defined and evaluated at given

force boundary conditions that can be identified by a linear elastic analysis of the entire

structural system. The gravity load and a properly distributed lateral load such as the one

that resembles the shape of the first vibrational mode of the structural system along its

height are applied in this analysis. Figure 2.4 depicts the process of identifying typical struc-

tural components. It should be noted that structural components with identical dimensions

could be subjected to different force boundary conditions depending on the location of the

structural components in the structural system.

Displacement boundary conditions of a typical structural component (modeled as a

planar beam element) are defined such that all three degrees of freedom, namely translations
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Fig. 2.4 Process of identifying typical structural components by elastic analysis.
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in lateral and vertical directions and the rotation about the out-of-plane axis, are fixed at one

end, while only the rotational degree of freedom is fixed at the other end of the component.

Force boundary conditions are defined at free degrees of freedom only, as depicted in Fig-

ure 2.4, where force boundary conditions for some of the typical structural components are

identified as axial loads and lateral loads whose directions are perpendicular to the length of

the component. The axial load at each typical structural component consists of two parts:

one is due to the gravity load and the other is due to lateral loads applied to the structural

system. The former is referred to as Pai, i = 1, 2, and 3, and the latter is referred to as

αjPlj, j = 1, 2, and 3, in Figure 2.4 where αj and Plj are the constant of proportionality

and the lateral load, respectively. In other words, αj is the ratio of the axial force in the

component induced by applied lateral loads to the structural system to the shear force in

the component. It should be noted that lateral loads are applied to the structural system

such that approximately αj = 0 in all beams, as depicted in Figure 2.4. In this way, the

force boundary conditions in structural components under the ground shaking can be better

described by eliminating the effect of being pushed.

The forces applied to a typical structural component are determined such that they

can closely reproduce the axial force, shear force, and bending moment diagrams of the

corresponding component based on the linear elastic analysis of the structural system. It is

noted that the assumed displacement and force boundary conditions of the typical structural

component are based on anti-symmetric bending moments at both ends of the component

with the inflection point in the middle of the component length. Even though the bending

moments at both ends of the component based on the linear elastic analysis of the struc-

tural system are not necessarily anti-symmetric, they are usually close to anti-symmetric for

regular framed structures under lateral loads when no distributed load along the length of

the structural component is applied. This specific setup of displacement and force boundary

conditions makes it possible to estimate correlations between two end cross sections in terms

of parameters describing force-deformation relationships.
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Using an elastic analysis as a basis of identifying typical structural components of the

structural system is one of the many possible ways of defining the force boundary conditions

of structural components. It is selected in this study because it is both simple and efficient

to address variation in the axial load of the typical structural component due to applied

lateral load to the structural system. However, a possible influence of nonlinear behavior,

such as load redistribution due to damage of structural components, on changing the force

boundary conditions of typical structural components is not considered. Nevertheless, an

elastic analysis is the choice of this study because its objective is to demonstrate a system-

atic approach of understanding propagation of basic uncertainties to the structural system.

Moreover, this specific way of identifying typical structural components can be replaced by

other working approaches without affecting the developed general methodology. A possible

solution for this issue is suggested in Section 2.6.4.

2.6.2.2 Stochastic Fiber Element Model

Each identified typical structural component is evaluated to develop probabilistic section

models that describe the probability distribution of a force-deformation relationship of a

typical structural component such as the moment-curvature relationship or the shear force-

distortion relationship at critical cross sections of the component. In general, a critical cross

section is defined as the one with the largest force (e.g., bending moment) or deformation

(e.g., curvature) demand. In that regard, both end cross sections of a structural component

are defined as critical cross sections in this study because their moment or curvature demands

are the largest when no distributed load along the length of the structural component is

applied, which is assumed to be the case in this study. It is noted that one of the two critical

cross sections represents a cross section under a positive bending while the other one is under

a negative bending. For the process of developing probabilistic section models, the stochastic

fiber element model is developed in this study, such that spatial variability of the material

and geometrical properties in the structural model is accounted for in the conventional
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(deterministic) fiber element model. This model is developed in the framework of Monte

Carlo simulation using a random field representation method as discussed in Chapter 4.

2.6.2.3 Probabilistic Moment-Curvature Relationship

Among force boundary conditions of each typical structural component, the lateral load

is monotonically increased (the part of the axial load proportional to the lateral load is

increased accordingly), while the constant part of the axial load due to the gravity load

is applied simultaneously until the ultimate deformation capacity is reached at the critical

cross section of the typical structural component. The moment-curvature relationship at this

cross section is idealized as a multilinear relationship defined by several moment-curvature

pairs. Figure 2.5 shows a trilinear moment-curvature relationship defined by three critical

points, namely the yielding point, the peak point, and the ultimate point. The yielding point

(ϕy, My) is defined by the moment and curvature corresponding to the first yielding of any

longitudinal reinforcing bar. The peak point (ϕp, Mp) is defined by the maximum moment

and its corresponding curvature. The ultimate point (ϕu, Mu) is defined by the moment and

curvature corresponding to the ultimate compressive strain of a confined concrete fiber or

the fracture strain of a steel fiber whichever occurs first (cf. Section 4.2.3).
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(ϕy, My)

(ϕp, Mp)

(ϕu, Mu)

Fig. 2.5 Idealization of a moment-curvature curve.
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Monte Carlo simulation produces random samples for each of the six parameters

defining the trilinear moment-curvature relationship, and the probabilistic distributions of

these parameters can be estimated using simple statistics. In this study, the means, variances,

and covariances of the six parameters are estimated by sample means, sample variances, and

sample covariances, respectively. Let X = [X1, X2, . . . , X6]
T = [My, Mp, Mu, ϕy, ϕp, ϕu]

T be

a vector containing the six random variables, i.e., the six parameters, having mean µi and

variance σ2
i , i = 1, . . . , 6. The sample mean X̄i and sample variance S2

i of Xi are given by

X̄i =
1

N

N
∑

k=1

Xik (2.6)

S2
i =

1

N − 1

N
∑

k=1

(

Xik − X̄i

)2
(2.7)

where Xik is the kth sample of random variable Xi and N is the sample size. Sample

covariance Sij of Xi and Xj is given by

Sij =
1

N − 1

N
∑

k=1

[

(Xik − X̄i)(Xjk − X̄j)
]

(2.8)

where Xik and Xjk are the kth samples of random variables Xi and Xj, respectively. It

should be noted that X̄i, S2
i , and Sij are unbiased estimates of the true means, variances,

and covariances with Xj of Xi, respectively. The final step of developing the probabilistic

moment-curvature relationship is estimating the distribution type (e.g., normal distribution)

to each of the six parameters. Rational judgment based on, e.g., a histogram or a q-q plot1

is required for this process. The process of developing a probabilistic moment-curvature

relationship is illustrated in Figure 2.6.

1The quantile-quantile (q-q) plot is a graphical technique for determining if two sets come from populations
with a common distribution.
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2.6.2.4 Probabilistic Shear Force-Distortion Relationship

The conventional fiber element model (including the stochastic fiber element model de-

veloped in this study) does not consider either the axial force-shear force or the bending

moment-shear force interactions at the critical cross sections of the structural components.

Therefore, probabilistic shear force-distortion relationships at the critical cross section of a

typical structural component is developed using Response 2000 (2000) software based on

the modified compression field theory (Vecchio and Collins 1986) instead of the stochastic

fiber element model. Due to the limitation of Response 2000, Monte Carlo simulation is not

appropriate for developing a probabilistic shear force-distortion relationship. Instead, the

FOSM method (cf. Section 3.2.1) is adopted.

Similar to the idealized moment-curvature relationship (cf. Figure 2.5), a computed

shear force-distortion curve is idealized as a trilinear relationship. Three points defining the

idealized shear force-distortion curve are the cracking point, the peak point, and the ultimate

point. The cracking point (γc, Vc) corresponds to the initiation of the shear crack. The peak

point (γp, Vp) is defined by the maximum shear force and its corresponding distortion. The

ultimate point (γu, Vu) corresponds to the fracture of the transverse steel. The means,

standard deviations, and correlation coefficient matrices of parameters defining the cracking,

peak, and ultimate points are estimated using the FOSM method to develop a probabilistic
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shear force-distortion relationship.

2.6.3 System Evaluation

Although the stochastic fiber element model can be used for probabilistic evaluation of any

framed structure, it is not practical to use it for a complete structural system due to the large

computational demand of Monte Carlo simulation combined with the fiber element model.

Instead, a plastic hinge model (or a lumped plasticity model) (D’Ambrisi and Filippou

1999) is used to develop a computational model of the structural system. The behavior

of the plastic hinge model is defined by probabilistic moment-curvature and shear force-

distortion relationships obtained from the component evaluation phase. Moreover, instead

of Monte Carlo simulations, the FOSM method can be used to compute EDP uncertainty of

the structural system to avoid the need for a large computational effort. Figure 2.7 illustrates

the procedure of the system evaluation using probabilistic section models of typical structural

components in the context of the FOSM method to estimate EDP uncertainty.

In the process of propagating uncertainty from the typical structural component ca-

pacity in terms of critical section behavior to the system EDP, a practical approach can be

followed. In that regard, one should note that EDP uncertainty induced by uncertainty in

one of the structural components is a measure of sensitivity of EDP to the corresponding

component. For example, in Figure 2.7, uncertainties in the peak displacement induced by

uncertainties in Column 1 and in Beam 4 can be estimated using the FOSM method and the

corresponding measures of sensitivity such as COV can be computed. From these measures,

the relative significance of each component to the system EDP can be identified and ranked

accordingly.

2.6.4 Suggested Iterative Evaluations of Structural Components and System

As discussed in Section 2.6.2.1, the procedure of identifying typical structural components

based on the linear elastic analysis of the structural system cannot consider an influence of
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nonlinear behavior due to damage of structural components. Possible errors caused by this

simplification will propagate to the system evaluation phase and affect the uncertainty esti-

mation of the structural system. One way of reducing the possible errors and overcoming this

drawback is to use an iterative process of the component and system evaluations such that,

for example, the methodology described in Sections 2.6.2 and 2.6.3 is considered as the first

iterative process. In this hypothetical case, information regarding forces and deformations

of the structural system at the end of the system evaluation phase will be used to modify the

boundary conditions of typical structural components in the beginning of the component

evaluation phase for the second iteration. Moreover, structural components identified as

insignificant to the selected EDPs in the previous iteration can be treated as deterministic

structural component. This iterative process is schematically described in Figure 2.8. It

should be noted that the suggested iterative approach is not pursued in this report because

it is not within the scope of the present study.
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2.7 CONCLUDING REMARKS

The propagation of basic uncertainties to the structural system with respect to its EDP is

evaluated within a general framework of the PBEE method. In this chapter, the PEER’s

PBEE methodology and the treatment of uncertainty in this methodology are introduced

as the background of the present study. The focus of this study is on the hazard analysis

and the structural analysis phases, as two important phases of several ones forming PEER’s

PBEE methodology. Accordingly, the corresponding sources of uncertainties are identified
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and characterized based on the previous literatures.

An overview of the methodology of evaluating the propagation of basic uncertainties

to the structural system with respect to EDP is presented. This methodology consists of

two phases, namely the component evaluation and the system evaluation. In the component

evaluation phase, typical structural components that form the structural system are eval-

uated using the stochastic fiber element model to obtain probabilistic section models such

as the probabilistic moment-curvature relationship at critical cross sections of the structural

component. In the system evaluation phase, the structural system is evaluated using the

probabilistic section models developed in the component evaluation phase to estimate EDP

uncertainty of the system. EDP sensitivity to each structural component can be used to

identify and rank relatively significant structural component to a specific EDP.
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3 EDP Sensitivity Induced by Basic

Uncertainty

3.1 INTRODUCTION

Probabilistic evaluation of structural performance subjected to seismic loading is an impor-

tant procedure for damage and loss estimation in PBEE. Recently, several researchers studied

propagation of uncertainty within the framework of PEER’s PBEE methodology (Baker and

Cornell 2003; Miranda and Aslani 2003; Porter et al. 2002). Porter et al. (2002) investigated

sensitivity of loss estimate of an RC building to major uncertain parameters in PBEE, such

as ground motion intensity, structural properties, member fragility, and unit repair cost.

Baker and Cornell (2003) proposed a procedure for estimating total uncertainty in the re-

pair cost of a structure using the FOSM method. Miranda and Aslani (2003) developed a

methodology to evaluate the expected annual loss in buildings under seismic loadings using

a component-based approach. However, research efforts focusing on the EDP sensitivity

is rare. Such investigation can identify sources of uncertainty whose further investigation

might reduce total uncertainty in EDP. On the other hand, one may ignore uncertainties of

relatively insignificant variables by treating them as deterministic ones fixing their values at

the best estimate, such as the mean or the median to reduce computational effort.

Various methods can be used for computing EDP uncertainty, e.g., Monte Carlo

simulation and the FOSM method. Monte Carlo simulation can estimate the probabilistic

distribution of EDP with good accuracy. However, this method might be computationally
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demanding, especially for a structural model consisting of a large number of degrees of

freedom, a nonlinear time history analysis, or a large number of simulations. One of the

challenges in the probabilistic evaluation of a structural system performance is the relatively

high computational cost compared to a deterministic analysis of a structural system or a

probabilistic analysis of a structural component. On the other hand, the FOSM method can

be used as an approximate approach to estimate the mean and the standard deviation of an

EDP. Due to its simplicity and efficiency, the FOSM method is useful for sensitivity study

in situations where Monte Carlo simulation is not practical from a computational point of

view.

The objective of this chapter is to study how basic uncertainties propagate through

a structural system to affect EDP uncertainties, and to identify relatively important sources

of uncertainty to a given EDP. The procedure of such identification is illustrated using a

case study of an RC shear-wall building. In this application, relatively important random

variables to both global and local EDPs of the building are identified. Although the FOSM

method is used throughout this procedure, EDP uncertainty due to uncertainty in ground

motion profile (or record-to-record variability) is computed by Monte Carlo simulation be-

cause the FOSM method is not applicable to this type of uncertainty.

3.2 METHODS OF SENSITIVITY ANALYSIS

Two different methods are used for sensitivity analysis of EDP in this chapter. One uses the

FOSM method and the other uses a tornado diagram. These two methods are discussed in

the following two sections.

3.2.1 First-Order Second-Moment Method

Let’s consider the function Y = g(X) of a single random variable X having the mean µX and

variance σ2
X . Provided that the derivatives of g(X) with respect to x exist, the first-order
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approximation of g(X) using Taylor series expansion evaluated at x0 is given as

Y ≈ g0 +

(

dg

dx

)

0

(X − x0) (3.1)

where ( )0 denotes a function evaluated at x0. The first moment of Y , i.e., the mean µY , can

be derived from (3.1) as

µY = E[g(X)] (3.2)

≈ E

[

g0 +

(

dg

dx

)

0

(X − x0)

]

(3.3)

≈ E[g0] +

(

dg

dx

)

0

E [(X − x0)] (3.4)

≈ g0 +

(

dg

dx

)

0

(µX − x0) (3.5)

Especially when x0 = µX (this is a typical choice of FOSM method), µY can be given as

µY ≈ g(µX) (3.6)

The second moment of Y , i.e., variance σ2
Y , can be derived from (3.1) as

σ2
Y = E

[

g2(X)
]

− µ2
Y (3.7)

≈ E

[

g2
0 +

{(

dg

dx

)

0

(X − x0)

}2

+ 2g0

(

dg

dx

)

0

(X − x0)

]

− µ2
Y (3.8)

≈ g2
0 +

(

dg

dx

)2

0

E
[

(X − x0)
2
]

+ 2g0

(

dg

dx

)

0

(µX − x0) − µ2
Y (3.9)

≈ g2
0 +

(

dg

dx

)2

0

σ2
X + 2g0

(

dg

dx

)

0

(µX − x0) − µ2
Y (3.10)

For x0 = µX , (3.10) is given as

σ2
Y ≈

(

dg

dx

)2

0

σ2
X (3.11)

The approximations in (3.6) and (3.11) are called the first-order second-moment (FOSM)

method (Melchers 1999). It should be noted that in (3.11), the approximate σY is propor-

tional to σX and |(dg/dx)0| represents a measure of sensitivity of the function to the variation

in X.
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Now let’s consider a random vector X = [X1, X2, · · · , Xn]T having the mean vector

µXµXµX = [µ1, µ2, · · · , µn]
T and variance-covariance matrix VC[X]. Let’s consider the func-

tions Y = g(X), Y1 = g(X1, µ2, µ3, · · · , µn), Y2 = g(µ1, X2, µ3, · · · , µn), · · · , and Yn =

g(µ1, µ2, · · · , µn−1, Xn). The first and the second moment approximations of Y , Y1, Y2, · · · ,
Yn by the FOSM method are

µY = µYi
≈ g(µ1, µ2, · · · , µn) = g(µXµXµX), i = 1, 2, · · · , n (3.12)

σ2
Y ≈ ∇T g(X) VC[X]∇g(X) (3.13)

σ2
Yi

≈
(

∂g

∂xi

)2

0

σ2
i , i = 1, 2, · · · , n (3.14)

where ∇g(X) = [∂g/∂x1, ∂g/∂x2, · · · , ∂g/∂xn]T , the gradient vector of g(X) with respect to

X and diag(VC[X]) = [σ2
1 , σ

2
2, · · · , σ2

n]T . σ2
Yi

can be interpreted as a measure of sensitivity

of Y with respect to Xi. Using these quantities, one can compare the effect of different

random variables to the output of the function. In that regard, σ2
Y is a comparable measure

of sensitivity of Y with respect to X. Note that σ2
Y and σ2

Yi
are all scalar quantities where

only σ2
Y takes into account the correlations between the components of the random vector

X.

In this study, a finite element model (FEM) is used as the method to develop the

function g in the above derivation to evaluate the EDPs. Moreover, the gradients of g are

numerically evaluated using the finite difference approach, i.e.,

∂g

∂xi

=
g(µi + ∆xi) − g(µi − ∆xi)

2∆xi

, i = 1, 2, · · · , n (3.15)

where it is assumed that ∆xi = apσi, σi is the standard deviation of the ith random variable,

and ap is a coefficient of proportionality that is determined by a convergence test. Let’s

assume that the mean of the modulus of elasticity of reinforcing steel is 29,000 ksi, while

that of its yield strain is 0.002. A fixed perturbation, e.g., ∆xi = 10, might be reasonable for

the random variable representing the modulus of elasticity, but it is not acceptable for that

of the yield strain. In this way, a fraction of σi is used as the perturbation ∆xi in (3.15) to
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handle different scales of random variables. Further discussion on the convergence test for

determining ap is presented in Section 3.4.5.

3.2.2 Tornado Diagram Analysis

The tornado diagram, commonly used in decision analysis (Clemen 1996), has been recently

used in sensitivity analysis in earthquake engineering (Porter et al. 2002). This tornado

diagram consists of a set of horizontal bars, referred to as swings, one for each random

variable. The length of each swing represents the variation in the output due to the variation

in the respective random variable. Thus, a variable with larger effect on the output has

larger swing than those with lesser effect. In a tornado diagram, swings are displayed in

the descending order of the swing size from the top to the bottom. This wide-to-narrow

arrangement of swings eventually resembles a tornado.

In this study, the output (EDP in this case) is assumed to be a known determinis-

tic function (developed using FEM) of a set of input random variables whose probability

distributions are assumed by the analyst. For each input variable, two extreme values cor-

responding to pre-defined upper and lower bounds of its probability distribution (e.g., 10th

and 90th percentiles) are selected. For each input random variable, the deterministic func-

tion is evaluated twice, using the two extreme values of the selected input random variable,

while the other input random variables are set to their best estimates such as the medians.

Figure 3.1 schematically shows a procedure of developing a swing. This process yields two

bounding values of the output for each input random variable. The absolute difference of

these two values is the swing of the output corresponding to the selected input random vari-

able. This process is repeated for all other input random variables to compute the swings

of the output. Finally one builds the tornado diagram by arranging the obtained swings in

a descending order as mentioned above. The procedure of developing a tornado diagram is

illustrated in Figure 3.2.
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Fig. 3.1 Procedure of developing a swing in tornado diagram.

3.3 UC SCIENCE BUILDING

The presented methods for the sensitivity analysis in the previous section are applied to a

laboratory (science) building located on the campus of the University of California, Berkeley

(referred to as the UCS building in this study). This building represents one of two build-

ing test-beds, namely the UCS building and the Van Nuys building, for the PBEE design

methodology developed by the PEER Center. The Van Nuys building, a seven-story build-

ing whose structural system is a RC moment-frame with flat-plate slabs, was built in 1966

at San Fernando Valley, California, and was strongly shaken and damaged in the 1971 San

Fernando and 1994 Northridge earthquakes. PEER researchers working on the Van Nuys

building are focusing on estimating structural and architectural damage, collapse potential,

repair cost, and repair duration. On the other hand, the UCS building, a seven-story RC

38



X
1

X
2

X
3

...

X
n-1

X
n

Swing Tornado diagramRandom
variable

X
2
, ..., X

n
 at medians

Structural
analysis

Sorting

X
1
, X

3
,...,X

n
 at medians

X
1
, X

2
, X

4
, ..., X

n
 at medians

X
1
, ..., X

n-2
, X

n
 at medians

X
1
, ..., X

n-1
 at medians

EDP corresponding

to medians of all

random variables

Fig. 3.2 Procedure of developing a tornado diagram.

shear-wall building, is built in 1988 to provide high-technology research laboratories for or-

ganic biology. The focus of this test-bed is on estimating contents and equipment damage,

and the life safety and operational consequences of such damage.

3.3.1 UCS Building Description

The UCS building is designed to meet the 1982 Uniform Building Code (International Confer-

ence of Building Officials (ICBO) 1982) for research laboratories, offices, and related support

spaces. A RC space frame carries the gravity load of the building, and coupled shear-walls

and perforated shear-walls resist lateral loads in the transverse and the longitudinal direc-

tion, respectively, as shown in Figure 3.3. The floors consist of waffle slab systems with

solid parts acting as integral beams between the columns. The waffle slab is composed of

a 4.5 inch-thick RC slab supported on 20 inch-deep joists in each direction. The founda-

tion consists of a 38 inch-thick mat foundation. According to the design specifications, the

concrete of the shear-walls (including the boundary columns) and the coupling beams has
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Fig. 3.3 Plan view of the UCS building.

nominal 28-day compressive strength f ′

c = 5 ksi, while that of all other columns and the waf-

fle slab systems has f ′

c = 3 ksi. The reinforcing steel is scheduled as ASTM A-615 Grade 40

for #4 and smaller bars and Grade 60 for #5 and larger bars. The middle frame in the

transverse direction (labeled 8 in Figure 3.3 and referred to as Frame 8) is analyzed in the

present study. Figure 3.4(a) presents the structural elevation view of Frame 8 and indicates

the story heights and the labels of the building levels. The cross sections of the shear-walls

and coupling beams, together with their reinforcement schedules of Frame 8 are shown in

Tables 3.1 and 3.2, respectively.

3.3.2 Structural Modeling

The computational model of the UCS building is developed using the modeling capabilities

of the open system for earthquake engineering simulation (OpenSees) software (McKenna

and Fenves 2001). Two-dimensional (2D) idealization is considered in the modeling. It is

noted that the longitudinal shear-walls are not considered as integrated parts of Frame 8.

The complete OpenSees model of Frame 8 is illustrated in Figures 3.4(b).
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Fig. 3.4 Elevation view and OpenSees structural model of Frame 8 of the UCS
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Table 3.1 Geometrical properties and reinforcement schedule of shear-wall cross

sections of Frame 8 of the UCS building.

Column Wall
Story Depth (in.) Longitudinal reinf. Transverse

b1 b2 b3 WC1 WC2 WC3 reinf.
t (in.) Reinf.∗

6th 24 25 24 8#8 8#8 8#8 #4@8′′ 14 #5@6′′

5th 24 25 24 8#8 8#8 8#8 #4@8′′ 14 #5@6′′

4th 24 31 24 8#8 12#8 8#8 #4@8′′ 14 #6@6′′

3rd 24 37 24 8#8 12#9 8#8 #4@8′′ 14 #6@6′′

2nd 24 44 24 8#8 16#10 8#8 #4@8′′ 16 #7@6′′

1st 33 49 30 12#9 22#10 12#9 #4@4′′ 18 #7@6′′

Basement 33 49 30 14#11 26#11 12#9 #4@4′′ 18 #7@6′′

∗ Same reinforcement in both the horizontal and vertical directions.

t t
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WC2 WC2
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Table 3.2 Geometrical properties and reinforcement schedule of coupling beam

cross sections of Frame 8 of the UCS building.

Level Type “a” Type “b”

48"

20"

4.5"

24.5"

Type "a"

Type "b"

Roof 9#10 top and bottom 3#7 each face
6 9#10 top and bottom 3#7 each face
5 10#11 top and bottom 3#8 each face
4 10#11 top and bottom 3#8 each face
3 11#11 top and bottom 3#8 each face
2 10#11 top and bottom 3#8 each face
1 10#11 top and bottom 3#8 each face

42



3.3.2.1 Element Types

Most elements in the building model are based on flexibility formulation of beam-column

elements (referred to as nonlinearBeamColumn in the OpenSees element library). Each

beam-column element has two nodes with two translations and one rotation per node. The

beam-column element has four monitoring sections with fiber element discretization. In this

discretization, a distinction is made between the constitutive model of the reinforcing bars,

unconfined concrete, and confined concrete.

Shear-wall members of Frame 8 are modeled using beam-column elements aligned with

the centerline of the shear-wall (Chaallal and Ghlamallah 1996). For proper idealization of

the geometry, the node at the shear-wall centerline and the node at the boundary of the

shear-wall (representing one end of a coupling beam) are connected by rigid elements, as

shown in Figure 3.5. It should be noted that one element per story for columns and shear-

walls, and one element per span for beams are used in the model illustrated in Figure 3.4(b).

Shear-wall

Column

Beam

Beam-column element
Rigid element

Fig. 3.5 Modeling of shear-walls.
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Figure 3.6 shows the shear force-distortion relationship of the coupling beam section

at the sixth floor indicating the shear force capacity as well as the shear force demand due to

KB-kobj. The shear force-distortion relationship is computed by the modified compression

field theory using the software Response-2000 (Bentz 2000). It should be noted that the shear

distortion in Figure 3.6 represents an average strain of concrete and steel reinforcement over

the cross section. Considering the intensity level of KB-kobj (Sa = 2.4g), it is concluded that

the shear force demand is well below their shear capacity of the cross section. Knowing that

the shear force demands on the other cross sections are also below the capacities, it is decided

that shear failure is not expected prior to flexural failure at the critical sections. Therefore,

conventional fiber element modeling (Spacone, Filippou, and Taucer 1996) is considered for

the UCS building.
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Fig. 3.6 Shear capacity (based on the modified compression field theory by

Response-2000 (Bentz 2000)) and demand (due to KB-kobj) of the cou-

pling beam at the sixth floor (Element 55 in Figure 3.4(b)) of Frame 8

(refer to Table 3.2 for its design parameters).
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3.3.2.2 Constitutive Models

In OpenSees, steel and concrete are modeled using uniaxial stress-strain relationships. In this

study, cover and core concrete materials are defined separately using the model Concrete01

that is based on the modified Kent-Park stress-strain relationship (Scott et al. 1982) with

degraded linear unloading/reloading stiffness according to the work of Karsan-Jirsa (1969)

and no tensile strength as shown in Figure 3.7(a). The behavior of the ascending branch of

the model is expressed as

fc = fo

[

2ε

ε0
−
(

ε

ε0

)2
]

for ε ≤ ε0 (3.16)

where fc is the stress, ε is the corresponding strain, fo is the compressive strength of the

concrete expressed as fcc and fco for confined and unconfined concrete, respectively, in Fig-

ure 3.7(a), and ε0 is the strain corresponding to fo expressed as εcc and εco for confined and

unconfined concrete, respectively, in Figure 3.7(a). The expression in (3.16) is valid up to

the peak strength, beyond which the stress-strain relationships are approximated as linear

functions. A residual stress of the confined concrete, f resid
cc , is assumed as 0.2fcc, while it is

assumed zero for the unconfined concrete. The compressive strength and the correspond-

Stress

Strain  3

fcc

fco

εcuεcoεccεco

fcc

resid

Confined concrete

Unconfined
concrete

(a) Concrete

Stress

Strain

fy

Es

αEs

(b) Steel

Fig. 3.7 Stress-strain relationships of concrete and steel adopted from the

OpenSees material library.
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ing strain, and the ultimate strain of confined concrete (fcc, εcc, and εcu, respectively) are

estimated using the Mander’s model (Mander et al. 1988).

Steel reinforcing bars are modeled using a bilinear stress-strain relationship (referred

to as Steel01 in the OpenSees material library) as shown in Figure 3.7(b) with a schematic

cyclic behavior. Parameters defining this relationship are the yield strength fy, the modulus

of elasticity Es, and the hardening ratio α. In this study, all material parameters for concrete

and steel are defined in Section 3.4.1 as random variables, except for α which is specialized

as 0.01.

3.3.2.3 Gravity Load and Mass Idealization

The dead load accounts for the self-weight of the waffle slab system and the supporting

elements, i.e., shear-walls and columns. The assumed unit weight of the concrete is 145 pcf.

Accordingly, the computed dead load is 183 psf, which is a relatively high value due to the

large depth of the waffle slab system. Moreover, 25 psf representing building contents are

included as a superimposed dead load. The live load of 100 psf is assumed according to the

original design of the building. The mass of the building is modeled using lumped masses

at the nodes. Nodal masses are directly computed from the total dead load including the

self-weight and the superimposed dead load. The 2D model of Frame 8 has a tributary area

with 101′-6′′ width as shown in Figure 3.3.

3.3.2.4 Viscous Damping Idealization

The damping characteristics of the building are modeled using mass and stiffness proportional

damping with 5% of the critical damping for the first two modes of vibration. The periods

of these two modes estimated from the eigen solution using the initial elastic stiffness matrix

are 0.38 and 0.15 seconds.
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3.3.2.5 Boundary Conditions

A flexible soil-structure interface at the foundation level is modeled using spring-type ele-

ments (referred to as zeroLength in the OpenSees element library) in the vertical direction.

These elements represent soil with a modulus of subgrade reaction of 100 lb/in.3 obtained

using the soil properties described in Section 3.4.2.2 and the procedure presented in FEMA

273 (Applied Technology Council (ATC) 1997). The same tributary areas as those of build-

ing mass are used to consider the flexible supports of the 2D model of Frame 8. To simulate

the characteristics of soil behavior, ENT material in the OpenSees material library is adopted.

An element with ENT material has elastic properties in compression and zero tensile strength

as shown in Figure 3.8.

Modulus of
subgrade reaction

Deformation

Stress

Tension

Compression

Fig. 3.8 Constitutive model for the soil spring.

3.3.2.6 Solution Strategy

The Newmark β-method is used as the time integrator with typical coefficients γ = 0.50 and

β = 0.25. In general, a time step of 1/2 the ground motion time discretization (0.0025 to 0.01

seconds for the considered ground motions, refer to Section 3.4.2) is used for the analyses

in the present study. The modified Newton-Raphson solution algorithm that updates the
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stiffness matrix at the beginning of each time step only is utilized for solving the nonlinear

equilibrium equations.

3.4 EDP SENSITIVITY OF THE UCS BUILDING

3.4.1 Uncertainties in Structural Properties

Sources of uncertainties considered in this part of the study are mass, viscous damping,

stiffness, and strength representing uncertainties in the structural properties. Assumed sta-

tistical data related to uncertainties in structural properties are summarized in Table 3.3.

These data are mainly adopted from various literatures as discussed in Section 2.5 due to

the lack of data specifically related to the variability of the structural properties of the UCS

building. It is noted that the nominal compressive strength of the shear-walls and the cou-

pling beams is 5 ksi, while that of all interior columns and waffle slab is 3 ksi. However, all

elements of Frame 8 of the UCS building have a nominal compressive strength of 5 ksi as

listed in Table 3.3. It should be also noted that some random variables representing material

parameters discussed in Section 3.3.2.2, e.g., fcc, are not explicitly defined, but derived from

another random variable such as Fc and Ec using, e.g., the Mander model (Mander et al.

1988).

Table 3.3 Statistical data of the structural properties treated as random vari-

ables for Frame 8 of the UCS building.

Source of uncertainty Variable Dist’n Mean COV (%)
Mass (per unit floor area) Ms Normal 0.27b lb/ft2 10.0
Damping ratio Dp Normal 0.05 40.0
Compressive strength of concrete Fca Normal 5 ksi 17.5
Yield strength of steel Fy Logn’l 60 ksi 10.0
Initial modulus of elasticity, concrete Eca Normal 4,271 ksi 8.0
Initial modulus of elasticity, steel Es Normal 29,000 ksi 3.3
a Correlation coefficient of Fc and Ec is 0.8.
b Computed from the self-weight and the superimposed dead load.
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3.4.2 Uncertainties in Ground Motion

The intensity measure and the profile of ground motion are considered as two sources of

uncertainties in ground motion. This section describes information related to the chosen

seismic hazard of the UCS building site to be used for the definition of the intensity measure.

Moreover, selected different ground motions to address uncertainties in the ground motion

profile are discussed.

3.4.2.1 Seismic Hazard Curve

Frankel and Leyendecker (2001) provide a seismic hazard curve in terms of the mean annual

exceedance frequency (λ) of a specified spectral acceleration Sa for the location of the UCS

building, at the fundamental period (T1) of 0.2, 0.3, and 0.5 seconds, and B-C soil boundary

as defined by the International Building Code (International Code Council 2000). The

seismic hazard curve for Frame 8 (T1 = 0.38 second) is interpolated from those of T1 = 0.3

and 0.5 seconds without any modification for the site class. The seismic hazard curves for

Frame 8 is shown in Figure 3.9.

The temporal occurrence of an earthquake is most commonly described by a Pois-

son model (Kramer 1996). According to the Poisson assumption, the probability that no

earthquake with a spectral acceleration in excess of Sa will occur in period t is

P0 = e−λt = e−H(Sa)t (3.17)

where λ = H(Sa) denotes the mean rate of exceeding Sa (as given in Figure 3.9). From (3.17),

one can compute percentiles of Sa for a given t, e.g., the 10th, 50th (i.e., the median), and

90th percentiles of Sa for t = 50 years are indicated by circles in Figure 3.9 and by numerical

values in Table 3.4 where Sa is the random variable representing uncertainty in Sa. These

three percentiles are used in developing tornado diagrams as discussed in Sections 3.4.4.

For the FOSM method, the mean and the standard deviation of a random variable

are required rather than its percentiles. Therefore, the probability distribution of Sa is
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Fig. 3.9 UCS building site seismic hazard curve for Frame 8.

Table 3.4 Percentiles of Sa used in the tornado diagrams of the UCS building.

Percentile 10th 50th (median) 90th
Sa (g) 0.18 0.47 1.39

estimated by fitting the relationship between P0 and Sa in (3.17). The random variable

Sa is assumed to have a lognormal distribution. For t = 50 years, (3.17) is well-fitted by

the lognormal assumption of Sa with the mean of 0.633g and standard deviation of 0.526g

(COV=83%) as shown in Figure 3.9. These values of the mean and standard deviation of

Sa for Frame 8 are used for the FOSM method in Section 3.4.5.

3.4.2.2 Selected Ground Motions

The UCS building is located at a site consisting of stiff soil of thickness in the range of

20′ to 52′ (6 to 16 m), with an estimated average of about 39′ (12 m) above Franciscan

bedrock assumed to be not pervasively sheared and assumed to have a shear wave velocity

of about 2953 ft/sec (900 m/sec). Older alluvium overlies the Franciscan rocks at the site.
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The alluvium typically comprises very stiff sandy clay, with average standard penetration

resistance values of 50 or greater and estimated shear wave velocity of about 1214 ft/sec (370

m/sec). The site is thus classified as NEHRP category SC according to the site classification

scheme in the NEHRP provision reproduced in Table 3.5.

Table 3.5 NEHRP site categories, after Dobry et al. (2000).

NEHRP Mean shear wave
Category

Description
velocity to 30ma

A Hard rock > 1500 m/sec.
B Firm to hard rock 760 – 1500 m/sec.
C Dense soil, soft rock 180 – 360 m/sec.
D Stiff soil < 180 m/sec.
E Special study soils, e.g., liquefiable soils,

sensitive clays, organic soils, soft clays
> 36 m thick

a Mean shear wave velocity from the surface to 30m depth of the ground.
Note: 1 m = 3.28 ft.

The Hayward Fault, a strike-slip fault, traverses the campus of the University of

California, Berkeley, with a trace within 2900 ft (900 m) of the UCS building. The PEER

Testbeds Program (http://peertestbeds.net) provides a set of 20 recorded ground acceler-

ations to be used for the site of the UCS building. These ground motions are selected to

satisfy the distance and soil conditions of the building site for a strike-slip earthquake on

the NEHRP category SC site. Selected ground motion recordings are listed in Table 3.6.

In general, it is not easy to satisfy the intended distance and soil condition requirements.

However, these 20 ground motion records satisfy the requirements to the possible extent. For

example, all records are within about 6.2 miles (10 km) from the fault (all strike-slip fault),

and all but a few are from the SC site. Response spectra of these 20 ground accelerations

with 5% damping are plotted as well as the median response spectrum in Figure 3.10. Spec-

tral acceleration values of each of the 20 ground accelerations at the fundamental period of

Frame 8 of the UCS building are listed in Table 3.7 together with the median value.
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Table 3.6 Ground motion recordings selected for the UCS building case study.

Earthquake Mwa Station name Dist.b Sitec Name
Coyote Lake Coyote Lake Dam abutment 4.0 C CL-clyd
Jun 8, 1979

5.7
Gilroy #6 1.2 C CL-gil6
Temblor 4.4 C PF-temb

Parkerfield
6.0 Array #5 3.7 D PF-cs05

Jun 27, 1966
Array #8 8.0 D PF-cs08

Livermore Fagundes Ranch 4.1 D LV-fgnr
Jan 27, 1980

5.5
Morgan Territory Park 8.1 C LV-mgnp
Coyote Lake Dam abutment 0.1 C MH-clyd

Morgan Hill
6.2 Anderson Dam Downstream 4.5 C MH-andd

Apr 24, 1984
Halls Valley 2.5 C MH-hall
Los Gatos Presentation Ctr. 3.5 C LP-lgpc
Saratoga Aloha Ave 8.3 C LP-srtg

Loma Prieta Corralitos 3.4 C LP-cor
Oct 17, 1989

7.0
Gavilan College 9.5 C LP-gav
Gilroy historic N/A C LP-gilb
Lexington Dam abutment 6.3 C LP-lex

Kobe, Japan
Jan 17, 1995

6.9 Kobe JMA 0.5 C KB-kobj

Tottori, Japan Kofu 10.0 C TO-ttr007
Oct 6, 2000

6.6
Hino 1.0 C TO-ttrh02

Erzincan, Turkey
Mar 13, 1992

6.7 Erzincan 1.8 C EZ-erzi

a The moment magnitude (Mw) is a measure that characterizes the relative size of an

earthquake, that is based on measurement of the maximum motion records by a

seismograph.
b Distance in km (1 km = 0.621 mile).
c NEHRP site category (cf. Table 3.5).
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Table 3.7 Spectral accelerations at the fundamental period of Frame 8 of the

UCS building.

Ground motion record Sa(T1 = 0.38 sec.), g
CL-clyd 0.79
CL-gil6 1.17
EZ-erzi 0.78
KB-kobj 2.45
LP-cor 0.97
LP-gav 1.14
LP-gilb 0.62
LP-lex 0.85
LP-lgpc 1.49
LP-srtg 0.73
LV-fgnr 0.60

LV-mgnp 0.26
MH-andd 0.82
MH-clyd 1.63
MH-hall 0.49
PF-cs05 1.14
PF-cs08 0.25
PF-temb 1.18
TO-ttr007 1.56
TO-ttrh02 2.15
Median 0.91
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Fig. 3.10 Response spectra of the 20 selected earthquake records for the UCS

building analyses.

3.4.3 Selected EDPs

In general, laboratory buildings contain heavy and/or sensitive equipments, and valuable

contents. Therefore, in addition to the common interest in the seismic response of structural

components, the response of non-structural components and building contents in laboratory

building, e.g., the UCS building, is of particular interest. In that regard, the peak absolute

floor acceleration and displacement, and the peak inter-story drift ratio (IDR) are selected as

the global EDPs. Here, the absolute response is the relative response to the fixed base alge-

braically added to the ground motion. The peak absolute floor acceleration and displacement

provide a basis for estimating damage to acceleration-sensitive and displacement-sensitive

building contents such as computers on bench-tops and shelves, hazardous chemicals on

shelves, and large refrigerators that are important in terms of value and life safety. More-
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over, IDR at each story provides a way to estimate the damage to structural components

and some of the non-structural components such as windows and claddings. Among global

EDPs, only the peak absolute roof acceleration (referred to as PRA), the peak absolute roof

displacement (referred to as PRD), and the maximum IDR (referred to as MIDR) among

the seven stories of the UCS building are presented in this report.

In addition to the global EDPs, the rotational demands of each structural component

are selected as the local EDPs. However, monitoring the response history of all structural

components may not be feasible depending on the size of the computational model and

the type of the adopted finite elements to represent these components. Therefore, only

relatively important structural components, determined such that their deformations sig-

nificantly contribute to the global displacement of the building are selected for the current

sensitivity study. For this purpose, a deterministic transient analysis of the UCS building

with all random variables assigned their mean values is performed first. In this analysis, the

loading is the unscaled ground acceleration record denoted as KB-kobj in Table 3.6 with

Sa = 2.4g as the fundamental period of Frame 8 (0.38 sec.) of the UCS building.

To determine the contribution of each component to the floor displacement, moment-

curvature relationships at both ends of all components are monitored (solid lines in Fig-

ure 3.11) and compared with those obtained from section analyses under monotonically

increasing curvature (dashed lines in Figure 3.11). From Figures 3.11(a) and (c), the bot-

tom of the shear-wall in the first story shows severe nonlinear behavior including significant

deformation, while shear-walls in the other stories remain in the elastic range. On the other

hand, from Figures 3.11(b) and (d), severe nonlinear behavior is observed in all coupling

beams. Accordingly, the three shear-walls in the first story and the coupling beams in all

floors are considered as important components with respect to the floor displacement. There-

fore, in the presented sensitivity study, the curvatures of the critical cross sections where the

curvature is largest are monitored as local EDPs.
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Fig. 3.11 Moment-curvature relationships at various cross sections of Frame 8

subjected to KB-kobj (solid lines) and from monotonic section anal-

yses (dashed lines); (a) the bottom of element 47; (b) the left of

element 55; (c) the bottom of element 2; (d) the left of element 8.

Element numbers are designated in Figure 3.4(b).
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3.4.4 Tornado Diagram Analysis

Tornado diagrams of different EDPs are developed according to the procedure described in

Section 3.2.2. Unlike the other sources of uncertainties, uncertainty in ground motion profile

cannot be explicitly expressed as a random variable defined by a probability distribution.

In other words, one cannot define the 10th, 50th, and 90th percentiles of ground motion

profile. Therefore, the following procedure is developed to determine medians and bounds

of the ground motion profile with respect to the EDP of interest.

1. Compute the elastic spectral acceleration Sai at the fundamental period of the structure

with 5% viscous damping ratio (recall that this is the adopted definition of the IM of

a particular earthquake profile) for the ith ground motion profile.

2. Determine the scale factor (αi) by αi = target Sa/Sai where the target Sa is the median

Sa obtained from the seismic hazard curve.

3. Perform a nonlinear time history analysis of the structure using the ith scaled ground

motion (αi times the original ground motion profile) to obtain EDP corresponding to

the ith ground motion, EDPi.

4. Repeat steps 1, 2, and 3 above for another ground motion profile and sort the ground

motion profiles by their EDPs.

5. Find the 10th, 50th, and 90th percentiles of EDP from the set of EDPs obtained from

step 4 above. The corresponding ground motion profiles are respectively the 10th,

50th, and 90th percentiles of the ground motion profile.

Random variables Fc and Fy in Table 3.3 are combined to represent the strength,

and Ec and Es are also combined to represent the stiffness such that each pair of random

variables is perfectly dependent. In other words, if Ec increases by one unit, Es also increases

by one unit. This assumption is adopted to investigate the combined effect of the concrete
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and reinforcement in terms of the stiffness and strength of the RC building, not the effect of

individual materials. In this chapter, this is the case unless otherwise noted.

Figure 3.12 shows tornado diagrams of different EDPs. The vertical lines in the

middle of these tornado diagrams indicate EDPs corresponding to the median values of all

random variables. Line-type plots are the results of using the FOSM method described in

the following section. According to this figure, Sa is the most significant random variable for

PRA, PRD, and MIDR of Frame 8 of the UCS building in a probabilistic sense. Moreover,

one can observe that uncertainty in EDPs is more sensitive to uncertainty in ground motion

(Sa and GM) than that in structural properties (Ms, Dp, Stiffness and Strength). This

implies that a better understanding of characteristics of ground motion profiles and hazard

information will greatly reduce uncertainty of the seismic demand of buildings such as the

UCS building. On the contrary, the rankings of random variables in structural properties

are different for different EDPs.
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Fig. 3.12 Tornado diagrams and FOSM results of Frame 8 of the UCS building.

These tornado diagrams also suggest skew of the EDP distributions. Especially, from

swings of PRA induced by GM , PRD induced by Sa and GM , and MIDR induced by Sa,

one can estimate rather strong skewness of probability distributions of the considered EDPs.

Skewness of PRD and MIDR distributions is partly caused by skew of the Sa distribution

itself, since the probability distribution of Sa can be estimated by lognormal as discussed in

Section 3.4.2.1. This suggests that the relationship between each of PRD and MIDR, and
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Sa is close to linear. On the other hand, the swing of PRA induced by Sa does not show

a strong skewness. This suggests that the relationship between PRA and Sa is not linear.

Further investigation into the relationship between EDP and IM is not conducted in this

report because it is not within the scope of the present study. Such investigation can be

pursued by, for example, IDA (Vamvatsikos and Cornell 2002).

3.4.5 Analysis Using FOSM Method

Using the means and COVs of random variables given in Table 3.3, sensitivity of each EDP to

a random variable is estimated. To determine the perturbation size for the finite difference

approach (3.15) discussed in Section 3.2.1, sensitivity estimates of each EDP in terms of

COV are obtained using different perturbation sizes as summarized in Table 3.8. In this

table, the median ground motion profile denotes the ground motion profile that produces

the median EDP among the considered 20 ground motion profiles discussed in Section 3.4.2.

It should be noted that these ground motions are individually scaled to achieve the mean

Sa (Sa = 0.633g) according to the lognormal fit of the seismic hazard curve of the UCS

building site (Figure 3.9). The median ground motion profiles are used to estimate the

sensitivity of EDPs to any other random variable than GM that denotes the random variable

representing uncertainty in the ground motion profile itself. Table 3.8 clearly shows that the

finite difference approach adopted in this study using ap = 0.001 guarantees convergence of

the results by the FOSM method.

EDP sensitivity to combined uncertainties in structural properties in Table 3.3 are

estimated for each of the 20 ground motion profiles at the median IM level (0.91g according

to Table 3.7) using different perturbation sizes, namely ap = 1.0 and 0.001. Consequently,

20 COV values are computed for each EDP and each perturbation size. Statistics of each

of these 20 COV values, namely the mean and the COV, are compared in Table 3.9. The

difference in the levels of scatter (in terms of COV) for the different perturbation sizes is

negligible. This is another justification of the selected perturbation size, i.e., for ap = 0.001.

59



Table 3.8 COV (%) of EDPs corresponding to the individual random variables

of Frame 8 of the UCS building.

Random PRA PRD MIDR
variable ∗ ∗∗ ∗∗∗ ∗ ∗∗ ∗∗∗ ∗ ∗∗ ∗∗∗

∂g/∂xi

Sa 36.4 53.0 53.0 67.3 67.3 67.3 81.6 80.3 80.3 +ve
GM 14.7 64.0 9.5 N/Aa

Dp 9.0 11.7 11.7 8.0 8.0 8.0 5.8 5.4 5.4 −ve
Ms 10.5 7.3 7.3 6.8 6.3 6.3 8.2 7.5 7.5 +ve

Strength 4.5 4.4 4.4 3.3 3.3 3.3 2.7 4.7 4.7 −ve
Stiffness 1.8 1.8 1.8 1.9 1.9 1.9 3.1 2.8 2.8 −ve

Median GMP TO-ttrh02 TO-ttrh02 CL-clyd
∗, ∗∗, and ∗∗∗ for ap = 1.0, 0.1, and 0.001, respectively. Refer to Section 3.2.1 for ap.
a Monte Carlo simulation is used.

Table 3.9 Statistics of measure of EDP sensitivities to combined uncertainties

in structural properties using different perturbation sizes.

COV of PRA COV of PRD COV of MIDR
Statistics

∗ ∗∗ ∗ ∗∗ ∗ ∗∗

Median (%) 16.5 16.6 12.0 12.6 19.5 19.4
COV (%) 34.7 30.9 37.2 38.3 49.0 41.2

∗ and ∗∗ for ap = 1.0 and 0.001, respectively.

From Table 3.8, one observes that the effect of Sa on variability of the selected three

global EDPs is the dominant one amongst all considered random variables. However, this

result is not surprising because the variability of Sa itself (COV = 83% as discussed in

Section 3.4.2) is even larger than any of the EDP variability. It is also observed that random

variables in ground motion (Sa and GM) are more significant than those in the structural

properties.

It is noted that a random variable shows different effects on different EDPs. For

example, COVs of PRA and PRD due to the random variable Dp are 11.7% and 8.0%,

respectively. This is attributed to the fact that the selected EDPs are all peak responses and

they do not necessarily occur simultaneously. For example, Figure 3.13 shows time histories
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of absolute and relative accelerations, and absolute and relative displacements at the roof,

as well as the respective peak responses (including PRA and PRD) that are indicated by

circles due to TO-ttrh02 scaled to the mean Sa, i.e., 0.633g. Clearly, PRA and PRD do not

occur simultaneously. Moreover, uncertainty in a peak absolute response due to a random

variable depends on contributions from the relative response and the ground motion. In

general, the contribution of the relative response (e.g., displacement) to the corresponding

peak absolute response does not necessarily agree with that of another relative response (e.g.,

acceleration). For example, in Figure 3.13, the contribution of ground acceleration to PRA

is very small, while that of ground displacement to PRD is much more significant. Both
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Fig. 3.13 Time histories of various EDPs due to TO-ttrh02.
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the non-simultaneous occurrence of different EDPs and different contributions by different

relative responses to the corresponding peak absolute responses depend on the specific choice

of the ground motion profile.

COVs of EDPs due to GM are obtained using Monte Carlo simulation. In this case,

all random variables are assigned their mean values to obtain 20 samples (due to 20 ground

motions that are individually scaled to the mean Sa, i.e., 0.633g) for each EDP. It is notable

that COV of PRD is considerably larger than those of PRA and MIDR (refer to Table 3.8).

This is mostly due to uncertainty in the ground displacement itself. In fact, the COV of

the 20 peak ground displacements is 84%. On the other hand, COV of the 20 peak ground

accelerations is 40%, and its effect on PRA is less significant than that of uncertainty in the

ground displacement on PRD.

It is worth mentioning that the sign of the gradient of an EDP with respect to a

random variable (expressed as ∂g/∂xi in (3.15)) reflects if the random variable is a demand

variable or a capacity variable. Note that the output of the FOSM method is in terms of

statistics of the “demand” of the structural system in this study. In this context, a random

variable with a positive gradient of an EDP can be viewed as a “demand” variable. On

the other hand, a random variable with a negative gradient of an EDP can be viewed as a

“capacity” variable. In this study and according to Table 3.8, gradients with respect to Sa

and Ms are positive, which suggests that those are demand variables. However, gradients

with respect to the other random variables are negative, suggesting that they are capacity

variables.

3.4.6 Comparison of Analyses Using Tornado Diagram and FOSM Method, and

Suggested New Approach

It is not straightforward to compare the tornado diagram and the result of the FOSM method

directly, because a tornado diagram does not contain any statistical information on EDP

(unless EDP is a linear function of random variables), while the only outcome of the FOSM
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method is EDP statistics. One way of comparing the tornado diagram and the result of

the FOSM method is to compare the order of importance of random variables to each EDP.

For a “better” comparison than just listing random variables in an order, the results of the

FOSM method are presented in the same format as the tornado diagram. For this purpose,

the EDPs are assumed in most cases to have the same distributions as the corresponding

random variables with estimated means and standard deviations obtained from the FOSM

method. For example, lognormal distribution is assumed for EDP distributions induced by

Sa because Sa has lognormal distribution. However, lognormal distribution is assumed for

EDP distribution induced by GM because skewness of the EDP distributions is observed

from tornado diagrams in Figure 3.12. Assumed EDP distributions corresponding to random

variables and bases of assumptions are listed in Table 3.10.

Table 3.10 Assumed EDP distributions and bases of assumptions.

Random variable Assumed EDP distribution Basis of assumption
Sa Lognormal Sa distribution
GM Lognormal Tornado diagram
Ms Normal Ms distribution
Dp Normal Dp distribution

Stiffness Normal Tornado diagram
Strength Normal Tornado diagram

Then, the 10th and 90th percentiles of each EDP are computed for each random

variable and plotted on the same tornado diagram as shown in Figure 3.12. If an EDP is

a linear function of random variables, the envelopes obtained by the FOSM method should

exactly match the outlines of the tornado diagram because in this hypothetical case (1) the

EDPs corresponding to the 10th and 90th percentiles of a random variable are exactly the

10th and 90th percentiles of the EDP distribution; (2) the FOSM method gives the exact

solutions of the mean and standard deviation of the EDP; and (3) the distribution type of

EDP is identical to that of the random variable. However, if the function is nonlinear, none

of the above is true, and the 10th and 90th percentiles of an EDP by the FOSM method do

not have to match their counterparts of the tornado diagram. However, Figure 3.12 shows
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a reasonable match between the tornado diagrams and envelopes obtained by the FOSM

method for the rankings of random variables. Note that these rankings are slightly different

between the tornado diagram and the outcome of the FOSM method. This is particularly

the case for the structural properties that have small effect (small swings) on the variability

of the EDPs anyway.

As simple methods (in comparison to Monte Carlo simulation) for the sensitivity

study, the tornado diagram analysis and the FOSM method are compared in a general sense.

A tornado diagram does not provide any statistics on EDP. However, one can have a rough

idea of the skew of the EDP distribution. For example, Figures 3.12(b) and (c) suggest strong

skew of PRD and MIDR distributions induced by Sa, respectively, while the distribution

of PRA induced by Sa shows weaker skew. The FOSM method estimates the two most

important statistics of EDP, namely the mean and standard deviation. Unlike the tornado

diagram analysis, the sensitivity of an EDP to a combination of correlated random variables

can be investigated by the FOSM method. This feature is explicitly utilized in Chapter

5 where EDP uncertainty induced by correlated uncertain parameters in the capacity of

a structural component is estimated, while no strong correlation is considered in the case

study of the UCS building in this chapter. However, the FOSM method does not take into

account the distribution type of the random variable and, consequently, no information on

the distribution type of the EDP can be inferred from the results of the FOSM method.

Knowing the pros and cons of both the tornado diagram and the FOSM methods, one

may think of combining these two methods so that one benefits from both merits. Obviously,

a combined method should be able to estimate the means and standard deviations of EDP

with an idea of the skewness of its probability distribution. One possible way of achieving

this is to compute the gradient of an EDP with respect to a random variable (required

for the FOSM method) using its corresponding swing from the tornado diagram analysis.

For example, if the swing of an EDP is obtained by the mean ± standard deviation of

the corresponding random variable (X), the gradient of the EDP with respect to the given
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random variable (X) can be estimated by

dEDP

dx
≈ Swing of EDP

2 × Standard deviation
. (3.18)

Note that (3.18) is equivalent to (3.15) with ap = 1.0. The outcome of this approach is a

tornado diagram with estimated mean and standard deviations (obtained from FOSM with

the help of (3.18)) of EDP. Figure 3.14 illustrates the suggested new approach of combining

the tornado diagram and the FOSM method for estimating EDP uncertainty.
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Fig. 3.14 Suggested new approach of combining the tornado diagram and the

FOSM method.
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3.4.7 Sensitivity of Local EDPs by FOSM Method

Sensitivity of the local EDPs is studied by the FOSM method in terms of the peak curvature

at critical cross sections to individual random variables described in Table 3.3. Only the

FOSM method is used here assuming the sensitivities of the local EDPs estimated by both

the FOSM method and the tornado diagram analysis are close to each other as is the case

for the global EDPs. Unlike the sensitivity study of global EDPs, random variables Fc,

Fy, Ec, and Es are considered independently. Moreover, the results are presented in an

analogous format to the FOSM envelopes of the tornado diagrams in Figure 3.12. The

median ground motion profile for PRA and PRD, namely TO-ttrh02 as given in Table 3.8,

is used for sensitivity of the local EDPs to all random variables but GM . Figure 3.15 shows

the results for some critical cross sections of Frame 8 of the UCS building using the FOSM

method. Similar to the results of global EDPs, Sa is the dominant random variable for all

critical cross sections. The second significant random variable is Dp for all cross sections

where a relatively large COV (40%) assigned to Dp may have led to this high ranking of Dp.

The subsequent significant random variables differ from one cross section to the other.

3.4.8 Conditional Sensitivity of EDP Given IM by FOSM Method

In Sections 3.4.4 through 3.4.7, a measure of EDP sensitivities by the tornado diagram

analysis or analysis using the FOSM method is estimated at only one IM level, i.e., the

median or mean Sa, respectively. However, from the perspective of PBEE, it is desirable to

investigate the propagation of uncertainty at various levels of earthquake hazard. In that

regard, the conditional sensitivity of EDPs to random variables given IM is investigated

where Sa is treated as a deterministic variable at different levels. Nine levels of IM in terms

of Sa are selected for this purpose, namely the 10th, 20th, . . . , and 90th percentiles of Sa

according to (3.17) as listed in Table 3.11. The range of Sa, bounded by the 10th and the 90th

percentiles, is indicated in Figure 3.9. In this part of the study, all 20 ground motion profiles,
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Fig. 3.15 Sensitivity of the peak curvatures at critical cross sections of Frame 8

of the UCS building; (a) the bottom of element 1; (b) the left of

element 8; (c) the bottom of element 2; (d) the left of element 55.

Element numbers are designated in Figure 3.4(b).

not only the median ground motion profile as was conducted in Sections 3.4.4 through 3.4.7,

are used to estimate EDPs sensitivity to each random variable at each IM level. It is to be

noted that all results in this section are presented with respect to Sa on a semi-log scale due

to the wide range of the considered Sa (0.18g to 1.39g).

3.4.8.1 Global EDPs

For each IM level, a deterministic analysis where all random variables are kept at their mean

values is conducted for each ground motion that is individually scaled to achieve a given IM.
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Table 3.11 Various percentiles of Sa for sensitivity of EDP given IM for Frame 8

of the UCS building.

Percentile 10th 20th 30th 40th 50th 60th 70th 80th 90th
Sa (g) 0.18 0.25 0.32 0.39 0.47 0.57 0.71 0.90 1.39

Figure 3.16 shows scatters of global EDPs reflecting the uncertainty in GM . In this figure,

the solid lines represent the median EDPs. It is observed that these medians tend to increase

as the IM level increases.
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Fig. 3.16 Scatters of global EDPs induced by the uncertainty in GM for Frame 8

of the UCS building.

Uncertainties of global EDPs induced by those in structural properties are estimated

by using the FOSM method and presented in Figure 3.17 in terms of COV. In this figure,

each circle represents the COV of the EDP induced by uncertainties in all structural prop-

erties namely, mass, viscous damping, strength, and stiffness for a specific ground motion

profile and IM level. The variance is obtained according to (3.13) considering correlations of

random variables to derive the COV. Figure 3.17(d) is for the peak relative roof displacement

(PRRD) that is the peak roof displacement relative to the fixed base to compare with PRD

(Figure 3.17(b)). Note that the scatter of COV values at each IM level is induced by the

inherent record-to-record variability of ground motions.

The COVs of global EDPs due to GM only (obtained from the data of Figure 3.16)
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Fig. 3.17 Comparison of uncertainties in global EDPs for Frame 8 of the UCS

building induced by the uncertainty in GM only (solid line) and in

structural properties (dashed line, median quantity).

are also plotted in Figure 3.17 as solid lines for comparison. Dashed lines in Figure 3.17

connect median COVs (the median of 20 COV values from the scaled 20 records for a

certain IM in terms of Sa) at each IM level induced by combined uncertainties in structural

properties. From Figures 3.17(a) and (c), at lower IM levels, uncertainty in structural

properties is more significant than that in GM on PRA and MIDR, while at higher IM

levels, the opposite is true. However, PRD uncertainty is primarily dependent on GM . This

is mostly due to the uncertainty of ground displacement itself because the COV of the 20

peak ground displacements is 84% as mentioned in Section 3.4.5. On the other hand, GM

does not dominate the PRRD uncertainty (Figure 3.17(d)) where the uncertainty of ground

displacement is canceled by the definition of PRRD. Instead, GM becomes more significant
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than the other random variables of structural properties only at much higher IM levels.

Finally, one observes that the COV of an EDP induced by GM increases as the IM level

increases, while that induced by structural properties does not have an obvious trend.

3.4.8.2 Local EDPs

Similar to the previous section, EDP uncertainty induced by GM only is investigated first.

Figure 3.18 shows scatters of the peak curvature reflecting the uncertainty in GM only where

the solid lines represent the median EDPs. Similar to global EDPs, the medians of the peak

curvatures at all critical cross sections tend to increase as the IM level increases.

Sensitivity of the local EDPs conditioned on IM induced by uncertainties in structural

properties is studied in terms of the peak curvature demands at critical cross sections, as

shown in Figure 3.19. As in the previous section, COVs of EDPs induced by uncertainties

in all structural properties are derived from variances of EDPs obtained according to (3.13).

Similar to that of global EDPs, the scatter of COV values at each IM level is due to the

inherent record-to-record variability of ground motions. Moreover, uncertainty of the peak

curvatures depends more on uncertainty in structural properties at lower IM levels and on

uncertainty in GM at higher IM levels for all critical cross sections.

3.5 CONCLUDING REMARKS

The propagation of basic uncertainty to the structural system with respect to its seismic

demand (referred to as EDP) due to possible future earthquakes is studied in this chapter.

An approach of estimating uncertainties in EDP and identifying significant sources of basic

uncertainties is demonstrated using a case study RC shear-wall building (referred to as the

UCS building). Sensitivity of EDP to uncertainties in structural properties and ground

motion is estimated using the tornado diagram analysis and the FOSM method. From the

sensitivity measure of an EDP, the relative significance of each basic uncertainty to the given

EDP is identified and ranked.
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Fig. 3.18 Scatters of the peak curvature at critical cross sections of Frame 8 of

the UCS building induced by the uncertainty in GM ; (a) the bottom

of element 1; (b) the left of element 8; (c) the bottom of element

2; (d) the left of element 55. Element numbers are designated in

Figure 3.4(b).
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Fig. 3.19 Comparison of local EDPs uncertainty induced by the uncertainty in

GM only (solid line) and in structural properties (dashed line, median

quantity) at critical cross sections of Frame 8 of the UCS building; (a)

the bottom of element 1; (b) the left of element 8; (c) the bottom of

element 2; (d) the left of element 55. Element numbers are designated

in Figure 3.4(b).
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The FOSM method estimates the mean and the standard deviation of an EDP given

means and standard deviations of various random variables. The estimated standard devia-

tion of an EDP is its measure of sensitivity to a given random variable. The FOSM method

is simple and efficient in estimating EDP sensitivity, in comparison with Monte Carlo simula-

tions in terms of computing the mean and standard deviation of EDP. The tornado diagram

analysis, one of the methods of the deterministic sensitivity study, is also simple and efficient

in identifying and ranking relatively significant random variables to EDPs. The pros and

cons of tornado diagram analysis and the FOSM method are discussed in a general sense,

and an approach of combining the two methods is suggested. The peak absolute roof ac-

celeration (PRA), peak absolute roof displacement (PRD), and maximum inter-story drift

ratio (MIDR) are selected as global EDPs, while the peak curvatures at critical cross sections

are selected as local EDPs. Moreover, several random variables representing uncertainty in

ground motion and structural properties are considered.

Sensitivity of global EDPs indicates that the intensity measure of earthquakes is the

dominant source of uncertainty to all global EDPs. Moreover, uncertainties in ground motion

are more significant than those in structural properties. A sensitivity of local EDPs indicates

that the intensity measure of earthquakes is the dominant source of uncertainty to all local

EDPs, while the second significant source of uncertainty is the viscous damping where a

relatively large COV (40%) assigned to the probability distribution of viscous damping may

have been responsible for its high ranking.

The conditional sensitivity of EDPs to random variables given IM is investigated

considering uncertainty in the ground motion profile and the combined effect of all uncer-

tainties on structural properties. For all local and global EDPs but PRD, uncertainty in the

ground motion profile is more significant than that on structural properties at higher levels

of earthquake intensity but less significant at lower levels of earthquake intensity. For PRD,

uncertainty in the ground motion profile is dominant, regardless of the level of earthquake

intensity.
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4 Uncertainty in the Capacity of Structural

Components

4.1 INTRODUCTION

The quantification of uncertainty in the response of RC structural components in terms of the

deformation and strength capacity is necessary for the implementation of the PBEE design

methodology. The probabilistic analysis of RC structural components has been the focus of

a number of research efforts. One of the earliest works is that of Shinozuka (1972) where he

pointed out the importance of considering the spatial variability of the material properties

in estimating the strength of plain concrete structures. Several studies were concentrated on

RC frame members such as columns or beams using computational approaches such as the

Monte Carlo simulation. Knappe et al. (1975) studied the reliability of a RC beam. Grant

et al. (1978), Mirza and MacGregor (1989), and Frangopol et al. (1996) conducted strength

analyses of RC beam-column members by considering the uncertainty of material properties

and of cross-sectional dimensions. However, few research efforts considered the spatial vari-

ability of random variables of the RC frame members, which requires the discretization of

the random field and the identification of the correlation characteristics of random variables.

Because of the nature of RC construction, the spatial variability of material and geometrical

properties should be considered for reliable estimates of the nonlinear structural behavior.

In this chapter, a computational model for structural analysis considering the spatial

variability of material and geometrical properties of the RC structural members using the
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Monte Carlo simulation method is developed. This model combines the conventional fiber

element formulation and one of the random field representation methods. The fiber element

model is selected for computing the structural response because it is a powerful tool in

estimating the inelastic behavior of RC framed structures. Among various random field

representation methods, the midpoint method (Der Kiureghian and Ke 1988) is selected in

the present study. Assumptions and formulations of the adopted fiber element model are

described in the next section. Subsequently, the stochastic fiber element model including

the random field representation method is presented. The stochastic fiber element model is

applied to several structural components to develop probabilistic section models, namely the

probabilistic axial force-bending moment diagram and the probabilistic moment-curvature

relationship.

As a part of demonstrating the systematic procedure of evaluating a structural system,

namely component evaluation phase (cf. Section 2.6.1), typical structural components of a

ductile RC frame are identified and evaluated to develop their probabilistic section models.

The procedure of the system evaluation phase using these probabilistic section models of

typical structural components is demonstrated in Chapter 5.

The main objective of the developed computational model is the probabilistic evalu-

ation of RC structural members such as columns and beams. Although the developed com-

putational procedure can be applied for probabilistic evaluation of any framed structure, it

is not practical to use it for a complete structural system due to the large computational

demand of the Monte Carlo simulation method combined with the fiber element model.

A demonstration of a systematic approach for the probabilistic evaluation of a structural

system using various probabilistic section models is presented in Chapter 5.

4.2 FIBER ELEMENT MODEL

Material nonlinearity in a frame element is commonly described by either a lumped (D’Ambrisi

and Filippou 1999) or distributed (Spacone et al. 1996) plasticity model. In the lumped
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plasticity model, a frame element consists of two zero-length nonlinear rotational spring

elements and an elastic element connecting them. The nonlinear behavior of a structure

is captured by the nonlinear moment-rotation relationships of these spring elements. Due

to the simplicity of the formulation, the lumped plasticity model is widely used when the

computational cost of the analysis is high, e.g., in the case of nonlinear time-history analysis

of a large structure. An example of a structural model using the concentrated plasticity

formulation is discussed in Section 5.3.1. On the other hand, material nonlinearity of a

structure can develop anywhere in the element using the distributed plasticity model. Due

to its capacity for describing nonlinear structural behavior, the distributed plasticity model

is widely used for more accurate estimation of the structural response. In this chapter,

only the distributed plasticity model is employed for the nonlinear frame element with the

fiber section discretization. It is one of the best models to accommodate random fields of

structural properties of RC frame members.

The formulation of a nonlinear frame element is categorized by the flexibility (force-

based) method or the stiffness (displacement-based) method. The flexibility method uses

assumed force interpolation functions along the element, and a smaller number of elements

than that of the stiffness method may be required. The stiffness method uses assumed

displacement interpolation functions along the element, and this feature requires the use

of a sufficient number of elements for a member to model an accurate structural response.

The element formulation in the flexibility method is more complex than that of the stiffness

method, because material constitutive models are usually given in the form σ = σ(ε), where

σ and ε are stress and strain measures, respectively, which is suitable for the stiffness method.

On the other hand, the element formulation in the stiffness method is more straightforward

and widely used in conventional finite element methods.

In this chapter, the stiffness method is used to formulate the distributed plasticity

under the assumptions of the Bernoulli beam theory. An element is represented by several

cross sections located at the numerical integration points. Each section is subdivided into
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a number of fibers where each fiber is under a uniaxial state of stress. This discretization

process is shown in Figure 4.1 for the special case of an RC structural member.

Element Section

Monitoring sections

z

y

x

z

y

Concrete fiberSteel fiber

Fig. 4.1 Element and section discretization.

4.2.1 Element Formulation

Force and deformation variables at the element and section levels are shown in Figure 4.2.

From this figure, the element force and deformation vectors are given by

Force ≡ p = [p1, p2, . . . , p6]
T (4.1)

Deformation ≡ u = [u1, u2, . . . , u6]
T (4.2)

On the other hand, the section force and deformation vectors are given by

Element Section

u2, p2

u4, p4u1, p1

u5, p5

u3, p3

u6, p6
M(x), ϕ(x)

N(x), ε0(x)

x

Fig. 4.2 Force and deformation variables at the element and section levels.
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Force ≡ q(x) = [N(x), M(x)]T (4.3)

Deformation ≡ vs(x) = [ε0(x), ϕ(x)]T (4.4)

The normal force N , bending moment M , axial strain at the reference axis ε0, and curvature

ϕ are functions of the section position x.

The strain increment in the ith fiber is defined by

dεi = dε0(x) − yidϕ(x)

= as(y)dvs(x)
(4.5)

where as(y) = [1, −yi], dvs(x) = [dε0(x), dϕ(x)]T , and yi is the distance between the ith

fiber and the reference axis. Section deformations vs(x) are determined from the strain-

deformation relationship such that

vs(x) =

[

B(x) +
1

2
G(x)

]

un+1 (4.6)

where un+1 = un +∆u is the element deformation vector at the load step n+1, B(x) is the

first-order strain-deformation transformation matrix which consists of the well-known first

and second derivatives of the displacement interpolation matrix assuming small deformations,

and G(x) is another strain-deformation transformation matrix such that 1
2
G(x) represents

the second-order term of the strain-deformation relationship. G(x) can be expressed as

G(x) =





1

0



 {C(x)un+1}T C(x) (4.7)

where C(x) is a strain-deformation transformation matrix which consists of the first deriva-

tives of displacement interpolation matrix. Explicit forms of B(x) and C(x) are provided in

Section A.1 of Appendix A.

Tangent modulus Eti and stress σi are determined from the strain εi using a particular

constitutive relationship for the material of the ith fiber. In this way, the section stiffness
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ks(x) and resisting force rs(x) are determined using the principle of virtual work such that

ks(x) =

∫

A(x)

as
T (y)Et(x, y)as(y)dA (4.8)

rs(x) =

∫

A(x)

as
T (y)Et(x, y)dA (4.9)

These integrals are evaluated by the midpoint rule with n fibers. Thus, ks(x) and rs(x) are

numerically obtained as follows

ks(x) =

n
∑

i=1

as
T
i Etiasiai (4.10)

rs(x) =
n
∑

i=1

as
T
i Etiai (4.11)

where the cross-sectional area A(x) =
n
∑

i=1

ai.

For nonlinear analysis, the force-displacement relationship at the element level is

commonly expressed in an incremental form such that ∆p = ke∆u where ke is the element

tangent stiffness matrix. Once vs(x) is determined, the section stiffness ks(x) and resisting

forces rs(x) are evaluated. Subsequently, the element stiffness ke and resisting forces re are

derived from the principle of virtual work and can be expressed as follows

ke =

∫

L

TT (x)ks(x)T(x)dx +

∫

L

CT (x)C(x)Ns(x)dx (4.12)

re =

∫

L

TT (x)rs(x)dx (4.13)

where T(x) = B(x) + G(x), Ns(x) is a component of rs(x) representing the axial force

resultant and L is the element length. Derivation of this element stiffness matrix is provided

in Section A.1 of Appendix A. In the present study, the Gauss-Lobatto integration scheme

is adopted to evaluate these integrations. Four integration points per element are used in

this study. Thus, x’s are selected at the Gauss integration points. The element stiffness

and resisting forces are then assembled by the conventional finite element method procedure

to determine the global stiffness and resisting forces. For nonlinear conditions, equilibrium
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between the applied forces and the resisting forces is usually not satisfied in one iteration.

Therefore, an incremental-iterative numerical technique should be utilized to enforce the

equilibrium conditions. The adopted nonlinear iterative solution scheme is described in the

following section.

4.2.2 Nonlinear Analysis Procedure

An incremental-iterative solution procedure is utilized to solve the nonlinear equilibrium

equations obtained from the fiber element model. By the conventional Newton-type analysis

method, it is not possible to capture the post-critical response of the structure, which is

essential for the performance-based design of an RC structure. This drawback is due to the

numerical feature that holds the load parameter constant throughout the iterations within

each load step. Passing limit points is therefore impossible due to the singular nature of

the tangent stiffness matrix in the vicinity of a limit point. Various techniques to overcome

this drawback have been developed. A detailed description and summary of these schemes

are found in reference (Clarke and Hancock 1990). Among these methods, the minimum

unbalanced displacement norm method is selected in the present study and described in the

subsequent paragraphs.

In the incremental-iterative solution method, each load step starts with the applica-

tion of a load increment and subsequent iterations for equilibrium. In the following, subscript

k is used to denote the load step number, while superscript i is used to denote the iteration

number within each load step.

4.2.2.1 First Iteration

At the first iteration of each load step, the “tangent” displacement Utk is computed by

KkUtk = Pref (4.14)
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where Kk is the tangent stiffness matrix of the structure at the end of the previous load

step and Pref is the reference external force vector. Next, the incremental displacement is

evaluated by

∆U1
k = ∆λ1

kUtk (4.15)

where ∆λ1
k is a load step parameter for the first iteration of the kth load step, which can be

determined by the following procedure.

lk = lk−1

(

Jd

Jk−1

)γ

(4.16)

∆λ1
k =

±lk
√

Ut
T
k Ut

(4.17)

where Jd is the desired iteration number for convergence, typically 3 to 5, Jk−1 is the actual

iteration number for convergence in the previous load step, and l1 = ∆λ1
1

√

Ut
T
1 Ut1. The

exponent γ typically lies between 0.5 to 1.0 (Clarke and Hancock 1990). In (4.17), the sign

follows that of the determinant of the stiffness matrix. Then, the total displacement and

load parameter are updated from the previous load step by

U1
k = Uk−1 + ∆U1

k (4.18)

λ1
k = λk−1 + ∆λ1

k (4.19)

4.2.2.2 Equilibrium Iterative Cycles

The incremental change in the displacements can be written as the solution of

Kk∆Ui
k = ∆λi

kPref −Pu
i−1
k (4.20)

where Pu denotes the vector of the unbalanced forces. Since the modified-Newton-Raphson

method is adopted in this study, Kk doesn’t have superscript i, i.e., it is not updated at each

iteration. In the above equation,

Pu
i−1
k = Pi−1

k − Pr
i−1
k (4.21)
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where Pi−1
k = λi−1

k Pref and Pr
i−1
k is the resisting force vector obtained by the assembly

of relem vectors given in the previous section. From the above equations, the incremental

displacement vector ∆Ui
k can be obtained by

∆Ui
k = ∆λi

kUt
i−1
k + ∆Ur

i
k (4.22)

where ∆Ur
i
k is the residual displacement vector obtained by solving

Kk∆Ur
i
k = Pr

i−1
k (4.23)

Determination of the incremental load parameter ∆λi
k is discussed in the next section. The

total displacement vector and load parameter are updated from the previous iteration by

Ui
k = Ui−1

k + ∆Ui
k (4.24)

λi
k = λi−1

k + ∆λi
k (4.25)

Iterations are continued until a convergence criterion is satisfied. In this study, L2 norm of

the unbalanced force vector (Pu
i−1
k ) normalized by that of the total force vector (Pi−1

k ) is

used for the convergence criterion and the tolerance is set to 10−4. If divergence is detected

or convergence is not achieved within a specified number of iterations (typically selected as

10 iterations), the iterative procedure for the current load step restarts with a reduced initial

load increment.

4.2.2.3 Iterative Scheme

The incremental load parameter ∆λi
k can be obtained by various constraint equtions. In

this study, the minimun unbalanced displacement norm method is selected. Among various

iterative schemes such as arc-length method, this method is simple to implement and is

verified to work well (Clarke and Hancock 1990).

The constraint equation involving ∆λi
k is

∂ ‖ ∆Ui
k ‖

∂∆λi
k

= 0 (4.26)

83



which guarantees a minimum value for the unbalanced displacement norm in each iteration.

Accordingly,

∆λi
k = −Ut

T
k Ur

i
k

Ut
T
k Utk

(4.27)

4.2.3 Constitutive Models

In the fiber element analysis, the behavior of each fiber is governed by a specific uniaxial

stress-strain relationship. For RC members, three constitutive models are necessary: (1) an

unconfined concrete model for cover concrete, (2) a confined concrete model for core concrete,

i.e., concrete inside the transverse reinforcement, and (3) a steel model for longitudinal

reinforcing bars.

Figure 4.3 depicts typical stress-strain relationships for confined and unconfined con-

crete. Relevant parameters in the compression regime are the compressive strength fcc, the

corresponding strain εcc, and the ultimate strain εcu of confined concrete, and the compressive

strength fco and the corresponding strain εco of unconfined concrete. The tension regime is

defined by the tensile strength f ′

t and the ultimate tensile strain εtu. Initial tangent stiffness

Ec is usually assumed to be the same for both the compression and the tension regimes.

In this study, the model proposed by Hoshikuma et al. (1997) is employed for the

confined concrete. This model is expressed as

Ascending branch: fc = Ecεc

[

1 − 1

n

(

εc

εcc

)n−1
]

(4.28)

Descending branch: fc = fcc − Edes (εc − εcc) ≥ f resid
cc (4.29)

where fc and εc are stress and corresponding strain in the confined concrete and Edes is the

slope of the descending branch. The model parameters n and Edes are given by

n =
Ecεcc

Ecεcc − fcc

(4.30)

Edes =
fcc − f resid

cc

εcu − εcc

(4.31)
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Fig. 4.3 Concrete constitutive models.

where εcu can be given by

εcu = 0.004 +
1.4ρshfyhεsuh

fcc

(4.32)

according to Mander’s model (Mander et al. 1988) where ρsh, εsuh, and fyh are respectively

the volumetric ratio, the ultimate strain, and the yield strength of the transverse reinforce-

ment. Other material parameters are expressed as

fcc = fco + 3.8αρshfyh (4.33)

εcc = 0.002 + 0.033β
ρshfyh

fco

(4.34)

where α and β are cross-sectional shape factors. For a circular cross section, α = β = 1.0

and for a square cross section, α = 0.2 and β = 0.4. To avoid numerical difficulties in the

present study, 0.2fcc is assumed as a residual value of the confined concrete strength f resid
cc .

The constitutive model of the unconfined concrete in compression consists of a non-

linear ascending branch and a linearly descending branch (Figure 4.3). The expressions for

these two branches are the same as those of the confined concrete model (Equations 4.28

to 4.30), except for the following: fcc and εcc are substituted by fco and εco, respectively, and

Edes is expressed as Edes = fco/2εco. In the present study fco is taken as 0.85f ′

c where f ′

c is

the compressive strength of concrete from the standard compressive test, and εco is taken
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as 0.002. It is assumed that the strength is zero when εc ≥ 3εco to represent spalling of the

cover concrete.

A bilinear constitutive model is adopted for the confined and unconfined concrete

in tension as shown in Figure 4.3. The tensile strength f ′

t is computed by f ′

t = 6
√

f ′

c in

psi units. The ultimate tensile strain εtu is assumed to equal 10εt, where εt is obtained by

εt = f ′

t/Ec. It is assumed that a fiber with its tensile strain ≥ 10εt is fully cracked and has

completely lost its tensile strength.

The constitutive model of the reinforcing steel consists of a bilinear elastic-plastic

portion followed by a strain hardening region calculated by the following expression:

fs = fu − (fu − fy)

(

εsu − εs

εsu − εsh

)2

, εsh < εs < εsu (4.35)

where fs is the steel stress corresponding to the steel strain εs, fy is the yield stress, fu is the

ultimate stress, εsh is the strain at the onset of hardening, and εsu is the ultimate strain as

shown in Figure 4.4. Stress is assumed to be zero beyond the ultimate strain. For simplicity,

this constitutive model is adopted in both the tension and the compression regimes. Note

that only envelopes of the three constitutive models are adopted because only monotonic

loading is considered in this chapter.

Stress

Strain
εsuεsh

εy

fu

fy

Es

Fig. 4.4 Reinforcing steel constitutive model.
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4.2.4 Verification Examples

A nonlinear static analysis Matlab program (Hanselman and Littlefield 1998) for RC struc-

tures is developed based on the nonlinear fiber element formulation described in the previous

section. This program is numerically verified using three sets of experiments. The first set of

experiments conducted by Mosalam (2002) at the University of California, Berkeley, includes

eight identical, simply supported ductile RC beams (referred to as MB) under four-point

bending. The second set, also conducted by Mosalam (2002) at the University of California,

Berkeley, includes seven identical RC columns (referred to as MC) having square cross sec-

tion under the effect of axial load. Figures 4.5 and 4.6 show the design parameters of MB

P/2 P/2

24" 24" 24"

72"

3/4" clear cover

     (Typical)

3/16" wire @ 3"

10.5"

5"

2-#4 bars

2-#4 bars

2 - 3/16" wires as stirrup hangers

Fig. 4.5 The applied loads and the design parameters of MB.

#2 wire @ 1.5"

4-#4 bars

6.5"

6.5"
24"

P

3/4" clear cover
(Typical)

Fig. 4.6 The applied load and the design parameters of MC.
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and MC, respectively. The third set includes the column designated A1 that was tested by

Kunnath et al. (1997) under constant axial load and monotonically increasing lateral load at

the tip of the column. In the present study, this column is referred to as KC where Figure 4.7

shows its design parameters. The KC specimen was designed such that failure due to flexure

preceded that due to shear with ample margin (Kunnath et al. 1997). Nominal values of

material properties of MB, MC, and KC are given in Table 4.1.

0.57"
12.0"

21-#3

0.16" spirals
@ 0.75"

Pl

54.02"

Pa

Fig. 4.7 The applied loads and the design parameters of KC.

Table 4.1 Material properties of MB, MC, and KC.

Material property MB MC KC
Compressive strength of concrete, psi 4,216 5,192 5,149
Yield stress of longitudinal steel, ksi 71 71 65
Ultimate stress of longitudinal steel, ksi 100 100 100
Strain at on-set of hardening of longitudinal steel 0.01 0.01 0.01
Yield stress of transverse steel, ksi 71 71 65
Modulus of elasticity of steel, ksi 29,000 29,000 29,000

Figure 4.8(a) compares load-displacement relationships from the analysis with the

experimental results for MB. Load is the sum of the applied two point loads and displacement

is measured at mid-span. The analytical results show good agreement with the experimental

results. It is interesting to note that the experimental results for the tested eight beams are
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scattered even though these beams were identical. This can be explained by the variability

of material and geometric properties of the beams, which motivated the present study.

The results from the column tests of MC are compared in Figure 4.8(b). These

results are presented in terms of load-displacement relationships in the axial direction of the

column. From the comparison, excellent agreement with the experimental results up to the

displacement of 0.2 inch is clear. Beyond that the analysis reasonably match the experimental

trend. It should be noted that the experiments were conducted under load control where it

was rather difficult to control the descending branch of the load-displacement relationship.

Similar to the tests of MB, experimental results of MC are scattered in spite of their identical

designs and construction.
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Fig. 4.8 Load-displacement relationships; (a) MB; (b) MC.

Figure 4.9 shows load-displacement relationships obtained by analysis and experiment

of KC. These relationships are for the response in the lateral direction at the column tip.

The comparison is shown for two types of analyses. In the first, the effect of P -∆ is ignored

(dotted line). This analysis did not capture the experimentally recorded descending branch.

The second analysis invoked the P -∆ capability of the program where an excellent agreement
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Fig. 4.9 Load-displacement relationships of KC

with the experiment is observed (dashed line). It should be noted that in the experiment of

KC, small initial loading cycles were applied which are not included in the analysis. Due to

this simplification, minor adjusting of the material properties was necessary for good match

with the experiments at the initial stage of loading. This was conducted by 10% reduction of

the concrete compressive strength and the steel yield strength from their specified nominal

values.

Figures 4.8 and 4.9 show the capability of the program developed in this study in

estimating the softening behavior of RC structural members. The comparisons in Figures 4.8

and 4.9 imply good match between the analytical predictions and the experimental data.

Accordingly, the developed computational tool is an accurate one for deterministic nonlinear

analysis of RC structures. This tool is subsequently extended to account for the variabilities

of material and geometrical properties as discussed in the following section.

It should be noted that shear deformation is ignored in the present fiber element

formulation. Accordingly, shear failure is assumed not to occur prior to flexure failure,

which is the case in most of the examples presented in this chapter.
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4.3 STOCHASTIC FIBER ELEMENT MODEL

In general, stochastic finite element method (SFEM) refers to the finite element method

that accounts for spatial variability in the material properties, geometry of the structure, or

applied loads. In this context, the stochastic fiber element model is developed in this study,

such that spatial variability of the material and geometrical properties in the structural

model is accounted for in the conventional (deterministic) fiber element model.

4.3.1 Monte Carlo Simulation

Monte Carlo simulation (Rubinstein 1981) is one of the methods widely used to analyze

random problems. In a random problem, random outputs are obtained in probabilistic or

statistical forms using random inputs. In Monte Carlo simulation, random inputs are rep-

resented by sets of deterministic values, often called samples. Then, a random problem is

transformed into a set of deterministic problems that can be solved using conventional tools

such as the finite element method. From each set of deterministic inputs, one can generate

a set of deterministic outputs. Finally, one can construct probabilistic or statistical forms

of outputs from the sets of deterministic outputs. Because of its simplicity and robust-

ness, Monte Carlo simulation is frequently used to analyze random problems in engineering

applications and to validate other probabilistic analysis methods.

4.3.2 Random Field Representation

In most of SFEM, it is necessary to represent a random field in terms of random variables.

This process is usually called representation of the random field. Several methods for rep-

resentation of random fields have been proposed. These include the midpoint method (Der

Kiureghian and Ke 1988), the spatial averaging method (Vanmarcke and Grigoriu 1983),

the shape function method (Liu et al. 1986), and the series expansion method (Ghanem

and Spanos 1991; Lawrence 1987; Li and Der Kiureghian 1993; Spanos and Ghanem 1989;
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Zhang and Ellingwood 1994). In this section, existing methods for random field generation

are reviewed and issues on random field mesh size are discussed.

Let v(x),x ∈ Ω, denote a multidimensional Gaussian random field defined in the

domain Ω. This field is completely described by its mean function µ(x), variance function

σ2(x), and autocorrelation coefficient function ρ(x,x′) between the two random variables x

and x′.

4.3.2.1 Midpoint Method

The simplest method of discretization is the midpoint method applied to the stochastic

problem by Der Kiureghian and Ke (1988). In this method, the random field is represented

by a constant value over each element. A representing value for each element is the one

evaluated at the centroid xc of the element, i.e.,

v̂(x) = v(xc); x ∈ Ωe (4.36)

where v̂(x) is an approximation of v(x), and Ωe is an element domain. Mean µ and covariance

matrix Σvv of v = {v(x1
c), . . . , v(xne

c )} are obtained from µ(x), σ2(x), and ρ(x,x′) of v(·)
evaluated at centroids of all elements having the number ne. It has been shown that this

method tends to over-represent the variability of the random field within each element (Der

Kiureghian and Ke 1988).

4.3.2.2 Spatial Averaging Method

In this method proposed by Vanmarcke and Grigoriu (1983), the random field is also repre-

sented by a constant value over each element. A representing value is the spatial average of

the field over the element. Mathematically, this can be written as

v̂(x) =

∫

Ωe

v(x)dΩ
∫

Ωe

dΩ
= v̄e; x ∈ Ωe (4.37)
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The mean and covariance matrix of v are obtained from µ(x), σ2(x), and ρ(x,x′) of v(·) as

integrals over the domain Ωe. This averaging process allows us to expect a better estimate

on the random field than the midpoint method. Matthies et al. (1997) pointed out the

difficulties involved in this method as follows:

• the approximations of the non-rectangular elements may lead to a non-positive definite

covariance matrix.

• this method is practically limited to cases where the random field is Gaussian because

the distribution function of each random variable vi is almost impossible to obtain

except for Gaussian random fields.

Moreover, this method is known to under-represent the local variance of the random field (Der

Kiureghian and Ke 1988).

4.3.2.3 Shape Function Method

The shape function method, proposed by Liu et al. (1986), uses sets of nodal values and

corresponding shape functions to describe the random field, i.e.,

v̂(x) =
nn
∑

i=1

Ni(x)v(xi); x ∈ Ωe (4.38)

where nn is the number of nodes in the element, Ni is the ith shape function, and xi is the

ith nodal coordinates. The mean and covariance are approximated by the following:

E[v̂(x)] =
nn
∑

i=1

Ni(x)µ(xi) (4.39)

Cov[v̂(x), v̂(x′)] =

nn
∑

i,j=1

Ni(x)Nj(x
′)Cov[v(xi), v(xj)] (4.40)

Here, the random field is described by a continuous function, while the aforementioned two

methods use discontinuous functions.

93



4.3.2.4 Optimal Linear Estimation

In the optimal linear estimation (OLE) method, presented by Li and Der Kiureghian (1993),

the random field is estimated by a linear estimator v̂ expressed as

v̂(x) = a(x) +
nn
∑

i=1

bi(x)v(xi)

= a(x) + bT (x)v; x ∈ Ω

(4.41)

where, nn is the number of nodes in the domain, v = [v(xi)] is the nodal vector. Using the

linear estimation theory, we determine a(x) and b(x) such that the variance of the error

v(x) − v̂(x) is minimized, where v̂(x) is an unbiased estimator of v(x), i.e.,

minimize Var[v(x) − v̂(x)] (4.42)

subject to E[v(x) − v̂(x)] = 0; x ∈ Ω (4.43)

According to Li and Der Kiureghian (1993) after finding the solution of this problem, v̂(x)

can be rewritten as

v̂(x) = µ(x) + ΣT
v(x)vΣ

−1
vv

(v − µ); x ∈ Ω (4.44)

where Σv(x)v is the vector containing the covariance of v(x) with the elements of v, and µ

and Σvv are the mean vector and variance-covariance matrix of v. It is notable that this

method always under-represents the variance of the actual random field v(x) (Li and Der

Kiureghian 1993).

4.3.2.5 Karhunen-Loeve Expansion

In the Karhunen-Loeve expansion (KL) method (Spanos and Ghanem 1989), the random

field is expressed in terms of its spectral decomposition. The random field can be written as

v(x) = µ(x) +

∞
∑

i=1

ξi

√

λi φi(x); x ∈ Ω (4.45)
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where ξi is statically independent standard normal variables, and λi and φi are eigenvalues

and eigenfunctions of ρ(x,x′) such that
∫

Ω

ρ(x,x′)φi(x
′)dx′ = λiφi(x) (4.46)

and

∫

Ω

φi(x)φj(x)dx = δij (Kronecker delta) (4.47)

However, usually only a few of the terms with the largest eigenvalues are important in

the spectral decomposition. Thus, by truncating insignificant terms with relatively small

eigenvalues, (4.45) can be approximated by

v̂(x) = µ(x) +

r
∑

i=1

ξi

√

λi φi(x); x ∈ Ω (4.48)

where r is the number of terms included in the series. Some of the interesting properties of

this method can be found in (Li and Der Kiureghian 1993; Matthies et al. 1997; Sudret and

Der Kiureghian 2000) and briefly summarized here.

• The set of random variables {ξi, i = 1, 2, . . .} is orthonormal in the sense that

E[ξiξj] = δij (4.49)

• {ξi, i = 1, 2, . . .} form a set of independent standard normal random variables.

• This method always under-represents the true variance of the random field.

Provided that the exact solution of the eigenvalue problem given by (4.47), this

method is very efficient for simulating a random field, since it requires small number of

random variables to describe the random field with a given level of accuracy. However, the

eigenvalue problem seldom has an exact solution except for some special cases as discussed

by Spanos and Ghanem (1989), and an approximation method should be used. Ghanem

and Spanos (1991) suggested a Galerkin-type procedure where the eigenfunctions φi are

approximated by a set of basis functions and a corresponding set of coefficients. Subsequently,

the integral eigenvalue problem in (4.46) and (4.47) is converted into a discrete (matrix)

eigenvalue problem.
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4.3.2.6 Orthogonal Series Expansion

The orthogonal series expansion method is proposed by Zhang and Ellingwood (1994). This

method avoids solving the eigenvalue problem in (4.46 and 4.47) by selecting a proper set

of orthogonal functions instead of the eigenfunctions. A random field v(x) with its mean

function µ(x) and correlation function ρ(x,x′) can be expressed as

v(x) = µ(x) +
∞
∑

i=1

χihi(x) (4.50)

where hi(x) are orthogonal functions and χi are correlated random variables. It should be

noted that Lawrence (1987) proposed a similar method to the orthogonal series expansion

called the basis random variable expansion. Using the orthogonality of hi’s and some basic

algebra, it can be shown that

χi =

∫

Ω

[v(x) − µ(x)]hi(x)dΩ (4.51)

(Σvv)ij ≡ E[χiχj] =

∫

Ω

∫

Ω

ρ(x,x′)hi(x)hj(x
′)dΩdΩ (4.52)

For Gaussian v(x), (4.51) proves that χi’s are zero-mean random variables. A random field

in (4.50) can be approximated by selecting a set of proper orthogonal functions and a finite

number of terms used in the expression, i.e.,

v̂(x) = µ(x) +
r
∑

i=1

χihi(x) (4.53)

where r is the number of terms included.

4.3.2.7 Expansion Optimal Linear Estimation

The expansion optimal linear estimation (EOLE) method, proposed by Li and Der Ki-

ureghian (1993), uses a spectral decomposition of the random field vector v of size N in

OLE method. If v(x) is assumed to be Gaussian random variable, the spectral decomposi-
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tion of its covariance matrix Σvv is expressed as

v(x) = µ(x) +
N
∑

i=1

√

λi ξiφi (4.54)

where ξi’s are independent standard normal variables, and λi and φi are the eigenvalues and

eigenvectors of Σvv, such that

Σvvφi = λiφi (4.55)

Substituting (4.54) into (4.44) gives

v̂(x) = µ(x) +
N
∑

i=1

ξi√
λi

φT
i Σv(x)v (4.56)

The second term on the right-hand side of (4.56) can be approximated by using only r terms

which have significant eigenvalues, i.e.,

v̂(x) = µ(x) +

r
∑

i=1

ξi√
λi

φT
i Σv(x)v, r < N (4.57)

This expression is optimal in the sense that it minimizes the error in the variance. It is to be

noted that EOLE always under-represents the true variance (Li and Der Kiureghian 1993).

Comparison between the above methods mentioned in this chapter for random field

representation is presented by Sudret and Der Kiureghian (2000). Even though the midpoint

method may exhibit relatively poor performance for representing a given random field, this

method is adopted in this study for its simplicity. However, replacing this simple method by

a more sophisticated method should neither pose a major difficulty nor alter the conclusions

of the present study.

4.3.2.8 Nataf Model

In general, v(x) is a non-Gaussian random field. In this case, v(x) = [v1, . . . , vne] is

a vector of dependent non-Gaussian random variables whose joint distribution function is

not known and only the marginal distribution and correlation coefficient matrix (R = {ρij},
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i, j = 1, . . . , ne) are available in many applications. In this general case, the Nataf model (Liu

et al. 1986) can be used to simulate v(x). Using the marginal transformation of vi, a standard

normal random vector Z = [Z1, . . . , Zne] is defined by

Zi = Φ−1[Fvi
(vi)], i = 1, 2, . . . , ne (4.58)

where Φ(·) is the standard normal cumulative distribution function and Fvi
(vi) is the marginal

cumulative distribution function of vi. Nataf’s distribution of v(x) is obtained by assuming

Z is jointly normal with the correlation coefficient matrix R0 = {ρ0,ij}, i, j = 1, . . . , ne.

Approximate relations of ρ0,ij(ρij) for a large number of distribution types are given by Liu

and Der Kiureghian (1986). In Monte Carlo simulation, the procedure of simulating v(x) is

summarized as follows:

1. Generate a vector U of size ne, whose components are independent standard normal

random samples.

2. Compute Z = L0U where L0 is a lower triangle matrix of R0 such that R0 = L0L
T
0 .

3. Compute vi = F−1
vi

[Φ(Zi)] to simulate v(x).

4.3.2.9 Issues on Random Field Mesh Size

One of the important issues in SFEM is selecting the mesh sizes. While the finite element

mesh size is governed by the geometry and the expected gradient of the stress field, the

random field mesh size is controlled by the rate of fluctuation of the random field. This fact

implies that two independent mesh discretizations are acceptable: one for the finite element

and the other for the random field.

The rate of fluctuation of the random field is usually measured by the so-called cor-

relation length θ which is defined as a measure of the distance over which significant loss of

correlation occurs. Mathematically, this correlation length can be written as

θ =

∫

∞

0

ρ(∆x)d∆x (4.59)
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where ∆x =‖ x − x′ ‖ is the Euclidian distance between x and x′, vectors defining the

locations of two random variables, for a random field. In random field discretization, the

distance between two adjacent random variables has to be short enough to capture the

essential features of the random field. For this, Der Kiureghian and Ke (1988) examined the

influence of θ on reliability analysis and recommended the use of the random field element

size as one quarter to one half of the correlation length. This recommendation has been

generally accepted by the SFEM community. It should be noted that the use of excessively

fine mesh discretization of a random field produces highly correlated random variables. In

addition to the high computational cost, the correlation matrix becomes nearly singular

causing numerical difficulties.

4.3.3 Stochastic Fiber Element Model for RC Elements

Unlike three-dimensional finite element methods, there is flexibility in the discretization of

the cross section in the fiber element method as shown in Figure 4.10. This is one of the

motivations of developing the stochastic fiber element method in this investigation. This

flexibility is essential in the present study to practically account for construction variability.

As shown in Figure 4.10, the material variability in this study distinguishes between uncon-

fined concrete (cover outside the transverse reinforcement), confined concrete (core inside the

transverse reinforcement) and reinforcing steel properties. The location of the longitudinal

reinforcing bars dictated by the size of the closed transverse reinforcement is also treated as

a random variable as an example of the geometrical variability.

Stochastic fiber element analysis is described in the flowchart in Figure 4.11. This

procedure starts with characterizing the random fields and the deterministic parameters in

the structural model. In this procedure, a random field is defined by a specified distribution

with its autocorrelation function. Correlations between two random fields are also defined.

Subsequently, a random field mesh is generated for each of the random fields. Once random

field meshes are defined, samples of random fields are represented using the midpoint method
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Fig. 4.10 Random fields and fiber element meshes.

where samples of material properties are assigned to the proper fiber element. Defining

boundary conditions completes the model. Using a nonlinear analysis algorithm, structural

responses of interest are obtained and added to the database of the simulation output.

This procedure is repeated for the required number (sample size) of simulations such that

the variation of the output of interest is less than a specified tolerance for convergence.

The sample size and the selected convergence criteria are discussed in Section 4.4.2 using

numerical examples.
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Fig. 4.11 Analysis procedure using the stochastic fiber element model.

4.3.3.1 Variability of Material Properties

Let C(x) denote the random field representing one of the concrete properties, e.g., com-

pressive strength. Let µC(x), σ2
C(x), and ρCC(ξij) denote the mean, variance, and auto-

correlation coefficient function of C(x), respectively. The separation vector ξij is given by

ξij =
[

ξij
x ξij

y ξij
z

]T
= xi − xj where xi and xj are the position vectors of random variables i

and j, respectively. Amongst the commonly used autocorrelation coefficient functions found

in Li and Der Kiureghian (1993), the author adopts the following,

ρCC(ξij) = exp






−

√

√

√

√

(

ξij
p

θp

)2

+

(

ξij
z

θz

)2





(4.60)
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where ξij
p =

√

(ξij
x )2 + (ξij

y )2 and ξij
z are, respectively, in-plane distance and distance along

the length of the element between the two random variables. Using the midpoint method,

the random variables are associated with the centroids of the fiber elements as shown in Fig-

ure 4.10. The scale parameters θp and θz are related to the scale of fluctuation of the random

field within the cross section and along the longitudinal axis of the structural component,

respectively. Distinction is necessary between θp and θz because it is expected that there is

a significant difference between the size of the random field mesh within the cross section

and along the length of the structural component.

Let S(x) denote the random field representing one of the reinforcing steel properties,

e.g., yield strength. Let µS(x), σ2
S(x), and ρSS(xi,xj) denote the mean, variance, and

autocorrelation coefficient function of S(x), respectively. We assume the autocorrelation

coefficient function as

ρSS(xi,xj) = 1, i = j and ρSS(xi,xj) = ρS, i 6= j (4.61)

where ρS is a constant correlation coefficient. It should be noted that unlike ρCC(ξij),

ρSS(xi,xj) is not a function of the separation vector ξij. This implies that the correlation

between any two reinforcing bars is constant regardless of their locations.

Figures 4.12(a) and (b) show schematic views of probabilistic constitutive models of

unconfined and confined concrete, and reinforcing steel, respectively. In Figure 4.12(a), the

random variables are fco and fcc, while the random variable in Figure 4.12(b) is fy. In these

figures, upper and lower bounds of the constitutive model are schematically shown as well

as the mean model.

4.3.3.2 Variability of Construction Geometry

The variability of the location of the longitudinal reinforcement is accounted for as a variabil-

ity of construction geometry. For a circular structural component, for example, the location

of the longitudinal reinforcement is dictated by the size of the circle representing the trans-
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Fig. 4.12 Probabilistic constitutive models; (a) Concrete; (b) Steel.

verse reinforcement, or by the thickness of the concrete cover. In the present study, the

cover thickness is treated as a random variable that is assumed to remain constant along the

length of the structural component. In other words, spatial variability of the cover thickness

is not considered. Before each simulation, a sample of the cover thickness is generated from

a particular distribution function. This sample is used as an input parameter to define the

fiber element mesh and the corresponding random field meshes as illustrated in Figure 4.11.

4.4 STRENGTH ANALYSIS OF RC COLUMNS

As an example of the probabilistic analysis procedure developed in the present study, a

probabilistic strength analysis of an RC column is conducted. The strength of the RC column

is affected by the strength properties of the concrete and the steel and the construction

geometry such as cross-sectional dimensions and locations of the reinforcing bars. Therefore,

variation in the overall strength of the RC column depends on variations in those variables

of the material properties and the construction geometry. The specimen selected for the

probabilistic strength analysis is one of the specimens used for the verification examples,

referred to as KC in Section 4.2.4. The variability of the strength of KC is investigated in

terms of the axial load-bending moment (P-M) interaction at the column base.
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4.4.1 Probabilistic Models and Discretization of Random Fields

In this study, only variables that are considered to have significant effect on the strength of

the RC column are selected as random fields. Selected variables are compressive strength

and initial modulus of elasticity for material variability of concrete, yield strength and initial

modulus of elasticity for material variability of reinforcing steel, and concrete cover thickness

to account for variability of construction geometry. Statistical properties of random fields

are given in Table 4.2. These parameters are adopted from the works of Mirza et al. (1979,

1979a, 1979b) as discussed in Section 2.5.2. The correlation between Fc and Ec is assumed

to be 0.8 (Mirza and MacGregor 1979b), while any other random fields are assumed to be

uncorrelated.

Table 4.2 Statistical properties of variables.

Source of uncertainty Variable Dist’n Mean COV (%)
Compressive strength of concrete Fc Normal 3.5 ksi 17.5
Initial modulus of elasticity of concrete Ec Normal 3,375 ksi 12.0
Yield strength of steel Fy Logn’l 71 ksi 9.3
Initial modulus of elasticity of steel Es Normal 29,000 ksi 3.3
Cover thickness Tc Normal 0.8 in. 14.5
Note: Correlation coefficient of Fc and Ec is 0.8

Random field mesh for Fc and Ec is identical to the fiber element mesh along the

length of the column. However, within the cross section, the random field element size for

concrete properties is taken as four times the fiber element size. The scale parameters θp and

θz in (4.60) are taken as the length of one random field element and the distance between

two adjacent random field fibers within the cross section, respectively. For each of the two

random fields of Fy and Es, one random variable is used along the length of the column,

while within the cross section, different random variables are used for different reinforcing

bars. It is assumed that ρS = 0.8 in (4.61) for both Fy and Es.

It should be noted that a non-positive sample of Fc, Ec, or Es is rejected to avoid

an unrealistic realization. Sample rejection is not recommended when using Monte Carlo
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simulation because the sample distribution can statistically differ from the assumed one.

Nevertheless, the normal distribution assumption with a sample rejection is adopted in this

analysis for simplicity. However, the sample rejection rarely occurs in the actual analysis of

this study due to the specific values of means and standard deviations. Thus, the distortion

of the sample distributions can be ignored. The distribution of Tc is also truncated at the

mean ± two standard deviations for the same reason.

4.4.2 Analysis Procedure

The process of developing the probabilistic P-M interaction diagram is described in Fig-

ure 4.13. At first, random fields are defined and the corresponding random variables are

generated using the midpoint method. Incremental axial load (Pa) and lateral load (Pl)

are applied at the tip of the column simultaneously (Figure 4.7) until the extreme con-

crete fiber strain exceeds a specified value. In each analysis, the Pl/Pa ratio is kept con-

stant such that the base moment is proportional to the axial load. Nine different ratios of

Pl/Pa = 0, 0.01, 0.02, 0.04, 0.07, 0.1, 0.2, 0.3, and ∞ are considered, where the ratio of

0 represents zero lateral load and the ratio of ∞ corresponds to zero axial load. Then, nine

pairs of the maximum axial load and the corresponding bending moment at the base of the

column corresponding to a specified limit state in terms of the strain at the extreme fibers

are obtained to form a P-M interaction diagram as shown in Figure 4.14. This process is

repeated up to the required sample size to guarantee the convergence of the estimated quan-

tities, namely, the mean and the standard deviation of axial loads and bending moments.

In this study, 2000 sets of random variables are generated for each of the random

fields, e.g., compressive strength of concrete and yield strength of steel. The nine cases

with different Pl/Pa ratios are considered for each of the random field sets. Consequently,

18,000 pairs of maximum axial load and bending moment are obtained at the end of the

simulations. Subsequently, nine different means and standard deviations of axial loads and
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Fig. 4.13 Procedure of developing a probabilistic P-M interaction diagram.

bending moments corresponding to Pl/Pa ratios are computed. The minimum required

sample size is determined according to a selected tolerance. Figure 4.15 shows the result

of a convergence test of the mean and the standard deviation of the column strength for

Pl/Pa = 0.02. Figure 4.15(a) shows the convergence with respect to the sample size of the

mean and the standard deviation of axial loads corresponding to extreme (outmost) concrete

fiber strain of 0.005. In this plot, mean and standard deviations are respectively normalized

by the mean and standard deviation of the simulated 2000 axial loads. Figure 4.15(b) shows

the COVs corresponding to the results in Figure 4.15(a). It is evident that the sample size

of 2000 is large enough to satisfy the selected tolerance of convergence, namely a COV of

5%. The convergence test is conducted for the other Pl/Pa ratios and the selected sample

size of 2000 is determined to be satisfactory.
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Fig. 4.15 The convergence test result of the mean and standard deviation of the

column strength for Pl/Pa = 0.02: (a) normalized mean and standard

deviation; (b) COV of the mean and standard deviation.
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4.4.3 Strength Variability

For generating P-M interaction diagrams, three different limit states (LS) in terms of the

strain of the concrete extreme fiber (εc,ext) are considered: (1) LS 1: εc,ext = 0.003, (2) LS 2:

εc,ext = 0.004, and (3) LS 3: εc,ext = 0.005. Figure 4.16 shows mean P-M interaction diagrams

for these three cases of LS. Axial forces and bending moments are normalized by the mean

pure axial capacity and the mean pure bending moment capacity, respectively, for LS 1. It

is noted that the P-M interaction diagram expands as LS increases. This is because while

the strength of unconfined concrete, where the extreme concrete fiber is located, decreases

as the strain increases from 0.003 to 0.005, the strength of confined concrete and reinforcing

bars increase as can be shown in Figures 4.3 and 4.4 when introducing the numerical values

of Table 4.1 for the KC specimen. To demonstrate the expansion and contraction of the P-M

interaction diagram, higher cases of LS are investigated. For example, Figure 4.17(a) clearly
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Fig. 4.16 Mean P-M interaction diagrams for different cases of LS.
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shows changes of the deterministic P-M interaction diagrams depending on the adopted LS.

The base bending moment-tip displacement relationship shown in Figure 4.17(b) corresponds

to the deterministic P-M interaction diagrams shown in Figure 4.17(a) for Pl/Pa = 0.015

where the corresponding limiting points are marked.

0 400 800 1200
0

200

400

600

Bending moment, kip-in

A
x

ia
l 

fo
rc

e,
 k

ip

εc,ext = 0.003

P
l/P

a
 =

 0
.0

15

εc,ext = 0.009
εc,ext = 0.015
εc,ext = 0.020

(a)

0 1 2 3
0

50

100

150

200

250

300

350

400

Tip displacement, in.

B
as

e 
b

en
d

in
g

 m
o

m
en

t,
 k

ip
-i

n

εc,ext= 0.003
εc,ext= 0.009

εc,ext= 0.020
εc,ext= 0.015

(b)

Fig. 4.17 Changes of P-M interaction diagram; (a) Deterministic P-M interac-

tion diagrams for various cases of LS; (b) Base bending moment-tip

displacement relationship for Pl/Pa = 0.015.

COVs of column strength for different cases of LS are plotted in Figure 4.18. It is

observed that variability of the column strength is higher when Pl/Pa ≤ 0.01 and Pl/Pa ≥
0.2. This result agrees with that of Mirza and MacGregor (1989) where they investigated the

strength variability of slender RC columns without considering spatial variability of random

variables. One can also observe that the COV increases as the LS increases. When only the

axial load is applied to the column, the strength variability of the column depends only on

the combination of variability of random fields. As the Pl/Pa ratio increases, the strength

variability begins to be dependent on the geometry of the cross section as well because the

curvature is introduced to the cross section due to the applied bending moment. Once the

curvature is introduced, the strains in fibers within the cross section become different from
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Fig. 4.18 COV of column strength for different cases of LS.

one fiber to the other. As Figure 4.12 shows, variability of stress changes as the strain

level does. This fact causes the changes of strength variability from one Pl/Pa ratio to the

other, and also from one LS to the other. These arguments are theoretically discussed in

Section A.2 of Appendix A.

The sensitivity of the column strength to an individual random field is investigated

for Fc, Fy, and Tc. The effect of each of these random fields is studied keeping all other

variables at their mean values. In this analysis, only three Pl/Pa ratios are considered,

namely 0.01, 0.05, and 0.3 spanning different failure modes from compression to tension as

shown in Figures 4.14 and 4.16. COVs of column strength for each sensitivity analysis are

summarized in Table 4.3. For the sensitivity of Fc, the variation of the column strength in

the compression-failure region (Pl/Pa = 0.01 and 0.05) is larger than that in the tension-

failure region. Conversely, for the sensitivity of Fy, it is obvious that the variation in the

tension-failure region is larger than that in the compression-failure region. The strength

variability due to variability of the cover thickness is not significant relative to the other
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sources of variability.

Table 4.3 Sensitivity of the column strength in terms of COV (%).

Random field Fc Fy Tc
Pl/Pa 0.01 0.05 0.3 0.01 0.05 0.3 0.01 0.05 0.3
LS 1 3.7 3.4 2.4 2.1 1.1 3.9 0.8 0.2 0.1
LS 2 3.3 3.4 2.4 2.7 2.4 5.1 1.4 0.8 0.5
LS 3 3.0 3.3 2.3 2.7 2.3 5.5 1.8 1.5 0.7

4.4.4 The Effect of Spatial Variability

The effect of the spatial variability of Fc on the column strength is studied in this section.

For this purpose, the sensitivity analysis of Fc is conducted with and without considering

the spatial variability of Fc while keeping all other random variables at their mean values.

COVs of the column strength without spatial variability of Fc are significantly larger than

those considering spatial variability of Fc, as shown in Figure 4.19. This result justifies the

importance (to avoid overestimating COVs when spatial variability is ignored) of considering

spatial variability of random variables in the probabilistic evaluation of RC structures.

4.5 PROBABILISTIC EVALUATION OF STRUCTURAL COMPONENTS

OF AN RC FRAME

This section presents the probabilistic evaluation of typical structural components of a duc-

tile RC frame (referred to as VE), representing the structural system in the present study,

according to the methodology discussed in Section 2.6. A description of the VE frame is pre-

sented, followed by the presentation of a process of identifying typical structural components.

Probabilistic moment-curvature relationships of typical components of the VE frame are de-

veloped using the stochastic fiber element model and OpenSees. Finally, probabilistic shear

force-distortion relationships of these components are developed using Response 2000 (Bentz

2000), based on the modified compression field theory, and the FOSM method.

111



0 0.05 0.1 0.15 0.2 0.25 0.3

0.02

0.04

0.06

0.08

0.1

0.12

C
O

V

Without spatial variability, dashed lines

With spatial variability, solid lines 

o   

+  

x

εc,ext= 0.003
εc,ext= 0.004
εc,ext= 0.005

Pl/Pa ratio
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4.5.1 Description of the Frame VE

The VE frame was experimentally tested by Vecchio and Emara (1992). It is a two-story,

one-bay RC frame which consists of beams and columns with rectangular cross sections, as

shown in Figure 4.20. It was designed with a center-to-center span of 137.8 inches (3,500

mm), a story height of 78.7 inches (2,000 mm) and an overall height of 181.1 inches (4,600

mm) including an integrally constructed large heavily reinforced concrete base beam. All

frame members were 11.8-inches (300 mm) wide by 15.7-inches (400 mm) deep and reinforced

with four No. 20M deformed bars on both sides of the cross section. The transverse steel

reinforcement consists of No. 10M deformed bars in the form of closed stirrups or ties spaced

at 4.9 inches (125 mm). Note that the nominal cross-sectional areas of No. 10M and No. 20M

bars are 0.166 in.2 (75 mm2) and 0.465 in.2 (300 mm2), respectively. The testing sequence

involved initial application of a total axial load of 157.5 kips (700 kN) to each column, which

was maintained through the test. The lateral load was then monotonically applied until

the ultimate capacity of the frame was achieved. The failure mechanism involved ductile
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Fig. 4.20 Design details of the VE test frame (Vecchio and Emara 1992).

hinging at the ends of the beams and at the bases of the columns. The material properties of

concrete, and longitudinal and transverse reinforcing steel bars are listed in Table 4.4. The

same material properties are used for all beams and columns.

4.5.2 Typical Structural Components

According to the methodology proposed in the present study (cf. Section 2.6), a linear

elastic analysis of the VE frame is performed to obtain the bending moment, shear force,

and axial force diagrams. Following the procedure discussed in Section 2.6, force boundary

conditions of all six structural components (referred to as C1, C2, C3, C4, B1, and B2 as

shown in Figure 4.21(a)) are identified where the force boundary condition is defined by a

constant axial load (Pa), monotonic lateral load (Pl), and monotonic axial load (αPl) that

is proportional to Pl with the constant of proportionality α as shown in Figure 4.21(b).

Parameters defining force boundary conditions of all six components are listed in part (a) of

Table 4.5.
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Table 4.4 Material properties of the VE test frame.

Property Nominal value
(a) Concrete

Compressive strength 4,350 psi (30 MPa)
(b) Longitudinal steel (No. 20M)

Yield strength 61 ksi (418 MPa)
Ultimate strength 86 ksi (596 MPa)
Modulus of elasticity 27,900 ksi (192 GPa)
Strain at the onset of hardening 9.5 × 10−3

Modulus of strain hardening 450 ksi (3,100 MPa)
Ultimate strain 0.07

(c) Transverse steel (No. 10M)
Yield strength 66 ksi (454 MPa)
Ultimate strength 93 ksi (640 MPa)
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Fig. 4.21 Identifying the typical structural components by a linear elastic anal-

ysis of the VE frame.
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Table 4.5 Analysis parameters for structural components of the VE frame.

Component Pa (kips) αa Length (in.)
(a) All six components

C1 157.5 -1.46 78.7
C2 157.5 1.46 78.7
C3 157.5 -0.63 78.7
C4 157.5 0.63 78.7
B1 0.0 0.0b 137.8
B2 0.0 0.0b 137.8

(b) Typical components
CN 157.5 1.0 78.7
CS 157.5 -1.0 78.7
BM 0.0 0.0 137.8

a Negative indicates tension.
b Refer to Section 2.6.2.1 for approximation.

For simplicity, three typical components are identified by grouping components in

part (a) of Table 4.5 with similar boundary conditions and modifying analysis parameters.

Part (b) of Table 4.5 shows analysis parameters of the identified typical structural compo-

nents. CN represents north columns (C2 and C4) subjected to an incremental axial load in

compression with α = −1.0, an average of C2 and C4. On the other hand, CS represents

south columns (C1 and C3) subjected to an incremental axial load in tension with α = 1.0,

an average of C1 and C3. BM represents beam components (B1 and B2) without any applied

axial load.

4.5.3 Random Fields

Random fields of the VE frame are defined based on design parameters as given in Table 4.4

and summarized in Table 4.6. Assumed statistical data related to these random fields are

mainly adopted from various literatures as discussed in Section 2.5 due to the lack of data

specifically related to the variability of the structural properties of the VE frame. It should

be noted that properties of some random fields, e.g., initial modulus of elasticity of concrete,

are derived from those of another random fields, e.g., compressive strength of concrete.
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Table 4.6 Probability distributions of basic random variables.

Uncertain source Distribution Mean COV (%)
(a) Concrete

Compressive strengtha Normal 4,036 psi 15
Initial modulus of elasticityb Normal 3,984 ksic 8

(b) Longitudinal reinforcing steel
Yield strengthd Lognormal 60.61 ksi 9
Ultimate strengthe Lognormal 86.42 ksi 9
Young’s modulus Normal 27,900 ksi 3.3
Fracture strainf Normal 0.07 20

(c) Transverse reinforcing steel
Yield strengthd Lognormal 65.83 ksi 9
Ultimate strengthe Lognormal 93.86 ksi 9
Young’s modulus Normal 27,900 ksi 3.3
Fracture strainf Normal 0.07 20
Correlation coefficient of a and b, d and f , and e and f are

0.8, -0.5, and -0.55, respectively (cf. Sections 2.5.2.1 and 2.5.2.2).
c Computed by (2.3) given in Section 2.5.2.1.

Uncertainty in concrete cover thickness is ignored, assuming that its effect on moment-

curvature relationships at critical cross sections of the VE frame’s components is negligible

according to one of the observations in Section 4.4.3. As discussed in Section 4.4.1, non-

positive samples of a normal random variable are rejected to avoid an unrealistic realization

in Monte Carlo simulation. However, the sample rejection rarely occurs in the actual analysis

of this study due to the specific values of means and standard deviations. Thus, the distortion

of the sample distributions can be ignored.

4.5.4 Probabilistic Moment-Curvature Relationship

A series of pushover analysis is performed to develop probabilistic moment-curvature re-

lationships at critical cross sections of each typical structural component using OpenSees

(McKenna and Fenves 2001) and the stochastic fiber element model described in Section 4.3.

OpenSees has its own reliability toolbox that is mainly aimed at estimating the failure

probability of a structure for a given limit-state function, rather than EDP statistics. Con-
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sequently, the stochastic fiber element model developed in this study is used to generate

OpenSees inputs for Monte Carlo simulation considering various random fields to estimate

EDP statistics.

4.5.4.1 Modeling Assumptions

Random fields of concrete properties along the length of a component are modeled by four

random field elements. Within the cross section, random fields are described by sixteen

identical rectangular patches (each side of the cross section is divided into four). The scale

parameters θz and θp, refer to (4.60), are taken as the length of one random field element

and the length of the long side of the cross section (15.7 in.), respectively. For each of the

random fields of steel properties, one random variable is used along the length of the column,

while within the cross section, different random variables are used for different reinforcing

bars. It is assumed that ρS = 0.8, refer to (4.61), for random fields of steel properties.

To model a typical component, four nonlinearBeamColumn elements are used along

the length of the component. Since nonlinearBeamColumn is formulated by a flexibility

method (refer to Section 4.2), only one element is sufficient to capture the nonlinear response

of the typical component given force boundary conditions. However, the finite element mesh

is dictated by the random field mesh for concrete properties in this case.

Among many constitutive models in OpenSees material library, Steel01 is used for

the reinforcement. As for the concrete, Concrete01 material model based on the modified

Kent-Park stress-strain relationship (Scott et al. 1982) is used for both confined and uncon-

fined concrete fibers (with zero tensile strength). Refer to Section 3.3.2.2 for descriptions of

these material models of OpenSees.

4.5.4.2 Probabilistic Moment-Curvature Relationship

Moment-curvature relationships at two critical cross sections (both ends of the component as

shown in Figure 4.21(b)) are monitored during the pushover analysis. For each component,
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Monte Carlo simulation is performed with the sample size of 1500 to obtain a set of 1500

moment-curvature curves at each critical cross section. Each of the 1500 moment-curvature

curves at the cross section close to the fixed base in Figure 4.21(b) (referred to as Cross

section 1, while the cross section at the other end of the typical component is referred to as

Cross section 2) are idealized as a trilinear moment-curvature relationship according to the

procedure described in Section 2.6.2.3.

A convergence test with respect to the sample size of Monte Carlo simulation is

necessary to guarantee the accuracy of the estimated quantity as discussed in Section 4.4.2.

Figure 4.22 shows the result of a convergence test of the means and the standard deviations

of the six moment-curvature parameters of the CS typical component; refer to part (b) of

Table 4.5. It is evident that the sample size of 1500 is large enough to satisfy the selected

tolerance of convergence, namely a COV of 5%. The convergence test is conducted for

all parameters of CN and BM, and the selected sample size of 1500 is determined to be

satisfactory.

Figure 4.23 shows the means of the idealized moment-curvature relationships of the

three typical components of the VE frame. CN shows softening behaviors in the moment-

curvature relationship, while BM and CS show hardening behavior in an average sense.

Generated moment-curvature relationships of BM by Monte Carlo simulation are idealized

by bilinear relationships because no distinctive peak points are observed. Therefore, the

means and standard deviations of only four, instead of six for CN and CS, parameters,

namely My, Mu, ϕy, and ϕu (cf. Section 2.6.2.3) are estimated for BM. It is noted that

definitions of the four parameters remain unchanged.

Estimated means, standard deviations, and correlation coefficients of the moment-

curvature parameters for the three typical components of the VE frame are listed in Table 4.7.

It is observed that uncertainties related to the yielding point are smaller than those related

to the peak or the ultimate points. This can be explained by the fact that uncertainties

in the yielding point are only strongly related to the uncertainty in the yield strength of
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Fig. 4.22 Convergence test of the means and standard deviations of the six

moment-curvature parameters of CS typical component of the VE

frame.

reinforcing steel. On the contrary, uncertainties of the peak and the ultimate points are

related to all sources of uncertainties. It is also observed that COVs of curvature parameters

(ϕy, ϕp, and ϕu) are larger than those of moment parameters (My, Mp, and Mu). This is an

expected observation because deformation uncertainty is often larger than force uncertainty

according to the stress-strain behavior. For example, uncertainty in the strain corresponding

to the compressive strength of concrete is related to both uncertainties of the compressive

strength and the initial modulus of elasticity of concrete (cf. Table 4.6), and it also affects

uncertainty in the ultimate strain of concrete as shown in Figure 4.3.

From correlation matrices in Table 4.7, one can notice that only negative correlation

coefficients are those related to ϕu. This is mostly due to the assigned correlation coefficient

to random variables representing yield strength, ultimate strength, and fracture strain of

longitudinal reinforcing steel as given in Table 4.6.
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tions of the typical components of the VE frame.

To estimate the distribution type of each moment-curvature parameter, histograms

of all parameters are drawn as shown in Figures 4.24, 4.25, and 4.26 for CN, CS, and

BM, respectively. Observing these histograms, it is assumed that the distribution types of

moment-curvature parameters of the typical components are all normal distributions. To

check this normality assumption of each parameter, normal probability plots are shown in

Figures 4.27, 4.28, and 4.29, for CN, CS, and BM, respectively. From these plots, it was

decided that the normality assumption is reasonable for all moment-curvature parameters of

the three typical components.

Finally, the correlation of the two critical cross sections, namely 1 and 2, of the same

component is estimated in terms of moment-curvature parameters. This piece of informa-

tion is useful when probabilistic section models are used in a system evaluation to enrich

the probabilistic description of a given structural component by correlating two spatially

separated critical cross sections.
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Table 4.7 Estimates of means, standard deviations, and correlation coefficient

matrices of moment-curvature parameters for typical components of

the VE frame.
Correlation coefficients

Parameter Mean SD COV
My Mp Mu ϕy ϕp ϕu

(a) CN
My 2536 132 5.2% 1
Mp 2638 143 5.4% 0.92 1
Mu 2107 173 8.2% 0.77 0.85 1
ϕy 0.317 0.031 9.9% 0.62 0.36 0.27 1
ϕp 0.474 0.071 14.9% 0.44 0.60 0.54 0.13 1
ϕu 3.233 0.436 13.5% -0.30 -0.24 -0.18 -0.31 -0.04 1

(b) CS
My 1964 102 5.2% 1
Mp 2176 125 5.7% 0.92 1
Mu 2274 183 8.1% 0.78 0.88 1
ϕy 0.263 0.022 8.5% 0.87 0.69 0.60 1
ϕp 1.562 0.310 19.8% 0.30 0.51 0.40 0.00 1
ϕu 6.237 0.748 12.0% -0.18 -0.25 -0.22 -0.19 -0.17 1

(c) BM
My 1360 112 8.2% 1 - -
Mu 2320 190 8.2% 0.73 - 1 -
ϕy 0.234 0.023 9.7% 0.91 - 0.63 1 -
ϕu 12.964 2.379 18.3% -0.43 - -0.45 -0.37 - 1

Note: moment in kip-in. and curvature in 10−3/in. for means and SDs.
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Fig. 4.24 Histograms of moment-curvature parameters for CN typical compo-

nent of the VE frame.
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Fig. 4.27 The normality check of the moment-curvature parameters of CN

typical component of the VE frame.
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Fig. 4.28 The normality check of the moment-curvature parameters of CS

typical component of the VE frame.
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Fig. 4.29 The normality check of the moment-curvature parameters of BM

typical component of the VE frame.
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Table 4.8 shows the correlation coefficient matrices of the two end cross sections for

CN, CS, and BM typical components of the VE frame. Overall trends of CN, CS, and BM

are almost the same. For example, three moment parameters, namely My, Mp, and Mu

are strongly correlated to each other with the mean correlation coefficient = 0.75, involving

all 22 (9 for CN, 9 for CS, and 4 for BM) correlation coefficients related to these three

moment parameters for CN, CS, and BM. Correlation coefficients related to ϕu are almost

all negative. As discussed earlier in this section, this negative correlation is attributed to the

assigned correlation coefficients to random variables representing yield strength, ultimate

strength, and fracture strain of the longitudinal steel.

Table 4.8 Estimates of correlation coefficient matrices of moment-curvature

parameters at different cross sections for typical components of the

VE frame.
Cross section 2

Cross section 1
My Mp Mu ϕy ϕp ϕu

(a) CN
My 0.79 0.80 0.65 0.69 0.41 -0.16
Mp 0.71 0.75 0.56 0.59 0.43 -0.19
Mu 0.62 0.63 0.47 0.55 0.34 -0.28
ϕy 0.62 0.57 0.58 0.63 0.26 0.01
ϕp 0.42 0.49 0.32 0.34 0.45 -0.15
ϕu -0.38 -0.41 -0.55 -0.32 -0.22 -0.11

(b) CS
My 0.87 0.86 0.75 0.77 0.34 0.19
Mp 0.82 0.84 0.79 0.72 0.31 0.09
Mu 0.77 0.82 0.79 0.67 0.26 -0.05
ϕy 0.75 0.74 0.65 0.75 0.30 0.13
ϕp 0.23 0.19 0.16 0.21 0.07 -0.02
ϕu -0.21 -0.37 -0.48 -0.19 -0.15 0.17

(c) BM
My 0.85 - 0.75 0.78 - -0.35
Mu 0.75 - 0.77 0.65 - -0.58
ϕy 0.78 - 0.65 0.72 - -0.32
ϕu -0.39 - -0.69 -0.34 - 0.67
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4.5.5 Probabilistic Shear Force-Distortion Relationship

Similar to the moment-curvature relationship, probabilistic shear force-distortion relation-

ships at critical cross sections of the typical components of the VE frame are developed

considering uncertainties in structural properties as given in Table 4.6. To compute the

shear force-distortion relationship at a given critical cross section, Response 2000 (Bentz

2000), software based on the modified compression field theory (Vecchio and Collins 1986),

is used. Since Response 2000 is only for a deterministic computation, Monte Carlo simu-

lation is not appropriate for developing a probabilistic shear force-distortion relationship.

Instead, it is decided to use the FOSM method (cf. Section 3.2.1) to estimate uncertainties

in the shear force-distortion relationship.

The mean shear force-distortion relationships of all typical structural components of

the VE frame are shown in Figure 4.30. It is to be noted that the incremental axial load

(αPl as given in Table 4.5) is not considered due to the capability of Response 2000, while

the constant axial load is considered. Consequently, CN and CS are identical in terms of the

shear force-distortion relationship.

Estimated means and standard deviations of shear force-distortion parameters for the

three typical components of the VE frames are given in Table 4.9. Similar to the observation

of moment-curvature COVs, force parameters are less sensitive to basic uncertainties than

deformation parameters. As previously mentioned, this can be attributed to the fact that

the deformation uncertainty is often larger than the force uncertainty at the stress-strain

level.

Compared to statistical data for the moment-curvature relationship provided in Sec-

tion 4.5.4.2, those for the shear force-distortion relationship presented in this section lack

sufficient information. For example, estimations of distribution types and correlations of

shear force-distortion parameters are not provided. This is attributed to the fact that the

FOSM method estimates only the mean and the standard deviation of the output as dis-

cussed in Section 3.2.1, while Monte Carlo simulation, used to estimate moment-curvature
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ponents of the VE frame.

parameters in Section 4.5.4.2, provides the basis of estimating all parameters of the prob-

ability distribution of the output. In Chapter 5, probabilistic section models developed in

this section will be used in estimating EDP sensitivity of the VE frame using the FOSM

method. It should be noted that all shear force-distortion parameters will be arbitrarily

assumed to be uncorrelated due to lack of information. However, the focus of Chapter 5 is

on the demonstration of the methodology of propagating basic uncertainties to structural

systems.

4.6 CONCLUDING REMARKS

The propagation of basic uncertainties to the capacity of structural components is investi-

gated in this chapter. An effort is made to consider the effect of basic uncertainties including
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Table 4.9 Estimates of means and standard deviations of shear force-distortion

parameters for typical components of the VE frame.

(a) CN and CS (b) BM
Parameter

Mean SD COV Mean SD COV
Vc 55.9 2.29 4.1% 29.2 0.93 3.2%
Vp 105.5 5.47 5.2% 98.1 5.70 5.8%
Vu 99.9 3.06 3.1% 65.3 7.84 12.0%
γc 0.318 0.037 11.6% 0.187 0.038 20.6%
γp 4.514 0.292 6.5% 8.417 0.547 6.5%
γu 9.177 0.616 6.7% 15.161 1.802 11.9%

Note: shear force in kip and distortion in 10−3.

their spatial variability and the nonlinear behavior of RC members in the most accurate and

realistic way to the possible extent. For this, a computational tool for probabilistic evalu-

ation of RC structural components is developed using stochastic fiber element formulation.

This formulation accounts for the spatial variability of material and geometrical properties of

RC components using Monte Carlo simulation. In this stochastic fiber element formulation,

conventional fiber element model and the midpoint method for representing random fields

are combined. Assumptions and formulations of the fiber element model adopted in this

study are described. The verification examples show that the deterministic capability of the

developed program for estimating structural behaviors of different experimental studies.

A probabilistic strength analysis of a RC column subjected to combined axial load

(Pa) and lateral load (Pl) is conducted in terms of the axial load-bending moment (P-M)

interaction. For generating P-M interaction diagrams, different limit states in terms of the

strain of the concrete at the extreme fiber (εc,ext) are considered. The coefficient of variation

of column strength ranges from 3.7% to 7.2% depending on the limit state and the Pl/Pa

ratio. Variability of the column strength is higher when Pl/Pa ≤ 0.01 and Pl/Pa ≥ 0.2.

Variability increases as εc,ext increases except for the compression-failure region where change

of variability with the Pl/Pa ratio is insignificant.

According to sensitivity analyses, the variation of the compressive strength of concrete
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controls the variation of the column strength in the compression-failure region, while the

variation of the steel strength controls that in the tension-failure region. The importance of

considering spatial variability of a random variable is also investigated. It is observed that

neglecting the spatial variability of concrete strength can lead to overestimating the strength

variation of a RC component.

Due to the computational demand, the use of the stochastic fiber element method

using Monte Carlo simulation is practically limited to RC structural components. An exam-

ple of a probabilistic evaluation of a RC structural system using the developed probabilistic

P-M interaction diagram will be presented in Chapter 5.

The typical structural components of a ductile case study RC frame (referred to

as VE) are identified and evaluated to develop their probabilistic section models. This is

conducted as a demonstration of the first phase, namely the component evaluation phase, of

the systematic procedure of evaluating a structural system as discussed in Section 2.6.1.

The typical structural components of the VE frame are evaluated using the stochas-

tic fiber element model and OpenSees software to develop probabilistic moment-curvature

relationships at critical cross sections of the typical components. On the other hands, prob-

abilistic shear force-distortion relationships at critical cross sections of the typical compo-

nents are developed using the FOSM method and software Response 2000. Each of the

moment-curvature and shear force-distortion relationships are idealized by either a trilinear

relationship defined by six parameters (three force and three deformation parameters) or

a bilinear curve defined by four parameters (two force and two deformation parameters).

Therefore, each of the probabilistic component models is defined by means, standard devi-

ations, and correlation coefficient matrices of these parameters. These probabilistic section

models will be used in estimating EDP sensitivity of the VE frame using the FOSM method

in Chapter 5.

Normal distributions can be assumed for all parameters defining a multilinear moment-

curvature relationship. Variability of curvature parameters at the critical cross section of

129



RC structural components is larger than those of moment parameters because deformation

uncertainty is often larger than force uncertainty according to the stress-strain behavior.
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5 EDP Sensitivity Induced by Component

Uncertainty

5.1 INTRODUCTION

Identifying critical structural components to a specific EDP of the structural system is an

important component of a PBEE methodology. This identification provides an insight of

how the structural system behaves under the seismic loading in terms of a specific EDP.

The quantification of the importance of structural components should consider the location

of each individual component in the system, the stiffness contribution of each component,

and the probabilistic distribution of the strength and deformation capacities of each struc-

tural component. This identification can be also useful for the decision-making process, in

particular, for the rehabilitation of an existing structure within the framework of the PBEE.

In spite of a large number of publications on the probabilistic evaluation of struc-

tural systems (Baker and Cornell 2003; Chryssanthopoulos et al. 2000; Ghobarah and Aly

1998; Singhal and Kiremidjian 1996), the effort of assessing the importance of structural

components on the system performance is very rare. Gharaibeh et al. (2002) studied the

relative importance of structural members using reliability methods. They used the conven-

tional system reliability formulation for the mixed series-parallel system where the system

reliability is an explicit function of a set of known component reliability corresponding to

a specified limit-state function that distinguishes the failure and safety of the component.

Due to this failure-or-not nature of the description of components, the conventional system
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reliability method can only be applicable to few types of structures, e.g., truss structures. In

addition, the conventional system reliability method requires the identification of all possible

cutsets1. However, this process tends to be very difficult when the static indeterminacy of

the structure is high or the number of structural components is large, because the number

of cutsets is large in any of these cases.

In this chapter, the propagation of uncertainty in the strength and deformation capac-

ities of structural components to their structural system with respect to its EDP is investi-

gated. First, a probabilistic strength analysis of a portal frame is performed to demonstrate

an application of probabilistic component models to the system evaluation. Then, EDP

sensitivity to individual components of the VE frame discussed in Chapter 4 is estimated

using the FOSM method. EDP uncertainty induced by uncertainty in each structural com-

ponent is used to identify significant structural components of these case study frames for

a specific EDP. The significance of a structural component is defined in terms of the EDP

sensitivity where a more significant component corresponds to a higher EDP sensitivity for

this particular component.

5.2 PORTAL FRAME APPLICATION

The example presented in this section shows an application of using the stochastic fiber

element method (cf. Section 4.3) to evaluate a RC structural system. Rather than selecting

a real structural system, a relatively simple one is chosen to demonstrate the methodology.

The same approach can be easily extended to more complex structures.

Consider a portal frame consisting of an elastic beam and two inelastic circular

columns subjected to two gravity loads (N) and a lateral load (H) as shown in Figure 5.1(a).

In this application, the statistics of the failure lateral load (Hf in Figure 5.1(b)) for fixed

gravity loads is determined. It is assumed that the design of the two columns is identical to

1Cutset is a mixed series-parallel sub-system that is defined such that the system fails when any of the
cutsets occurs.
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Fig. 5.1 A portal frame subjected to fixed gravity loads and an increasing lateral

load; (a) Configurations of the frame; (b) Failure mechanism.

that of the KC specimen in Section 4.4.

The columns are modeled using lumped plasticity with the expected failure mecha-

nism consisting of plastic hinges located at the tops of the columns as shown in Figure 5.1(b).

The behavior of each plastic hinge is controlled by the predefined probabilistic P-M curve,

i.e., the plastic hinge forms when the axial force and bending moment pair at the section is

on the P-M curve.

Various levels of gravity load are considered ranging from N = 0 to N = 400 kips.

For each level of gravity load, the lateral load H is incrementally increased until the first

plastic hinge forms at one of the two critical sections (Figure 5.1(b)) and axial forces in the

two columns are computed. The bending moment at this first plastic hinge is obtained such

that the bending moment and axial force pair is located on the P-M curve. Subsequently,

the bending moment at the other critical section is computed to satisfy equilibrium. This

process is continued with increasing H until the second plastic hinge forms and a failure

mechanism (corresponding to failure load Hf) is obtained.
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5.2.1 Uncertainty in the Strength of the Portal Frame

Using Monte Carlo simulation, 4000 samples of P-M curves are generated for each column

and the procedure described in the previous section is repeated for each P-M curve. It should

be noted that P-M random curves for these two columns are assumed to be uncorrelated.

El-Tawil and Deierlein (2001) suggested an expression of P-M curve for RC columns where

the bending moment capacity M corresponding to the axial force P at a section is obtained

by

M = Mb

{

1 −
(

δP

∆P

)a}

(5.1)

where Mb is the balanced bending moment, δP = |P − Pb|, and ∆P = Pc − Pb if P ≥ Pb

and ∆P = Pb − Pt if P < Pb. Strength parameters Pb, Pc, and Pt are the balanced axial

force, crushing strength, and tensile strength, respectively. Parameter a controls the shape

of the curve and is determined by calibration. In this study, it is determined that a = 1.8

for P ≥ Pb and, a = 1.9 for P < Pb for the mean P-M curve of LS 3 (corresponding to

εc,ext = 0.005) in Section 4.4. Pc, Pb, Pt, and Mb are selected as random variables, and their

statistical properties (mean, COV, and correlation coefficient) are obtained from the results

of Section 4.4 as listed in Table 5.1. Figure 5.2 shows the mean P-M curve of LS 3 and

the calibrated one where the top bar of a symbol indicates the mean of the random variable

represented by this symbol.

Table 5.1 Statistical properties of random variables for the P-M relationship.

Correlation coefficient
Parameter Dist’n Mean COV

Pc Pb Pt Mb

Pc Normal 507 kips 5.0% 1.0 0.7 -0.04 0.7
Pb Normal 115 kips 5.0% 1.0 -0.03 0.9
Pt Normal -220 kips 5.0% 1.0 -0.03
Mb Normal 955 kip-in 5.0% Symmetric 1.0

Figure 5.3(a) shows the mean values of Hf (solid line) at different gravity load levels

(N). In this figure, Hf is normalized by the shear capacity of the two columns, i.e., 2Vn

where Vn is the nominal shear capacity of the circular column section (estimated according
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Fig. 5.2 Calibration of the analytical P-M curve to the mean P-M curve of

LS 3.

to ACI 318-02 (2002) as 42.3 kips), and N is normalized by Pc. It is obvious that the mean

values of Hf are far below the shear capacity of the frame, which verifies the assumed failure

mechanism. Accordingly, Hf is determined by the bending moment capacity of sections,

and the shape of the N -Hf interaction curve is similar to that of P-M interaction curve

as shown in Figure 5.3(a). Moreover, figure 5.3(a) shows the mean±2 standard deviation

curves (dashed lines) to show the dispersion of Hf/2Vn. Figure 5.3(b) shows COV of Hf

(solid line labeled as “Total”). Note that the other two curves labeled KC1 and KC2 are

explained in the next section. From this figure, one observes that the variability of Hf

increases as N increases for N/Pc > 0.1. In other words, Hf is more sensitive to uncertainty

of structural properties when the gravity load level is high. This is because Hf depends only

on the bending moment capacity of the sections, and the variability of the bending moment

capacity is high when the axial load level is high. This can be shown from (5.1) by taking

the variance of M numerically.
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COV due to uncertainty in KC1 (dashed line), in KC2 (dotted line), or

in both of them (solid line).

5.2.2 Relative Significance of Columns

The sensitivity of Hf to the strength uncertainty of an individual column is estimated. When

KC1 is considered as the column with uncertain strength, KC2 is considered as deterministic

whose P-M curve is described as the mean P-M curve, and vice versa. The dashed line

and the dotted line in Figure 5.3(b) show variability of Hf (in terms of COV) induced by

uncertainty in the strength of KC1 and KC2, respectively. The contributions of each column

to Hf variability are different from one to another and they vary depending on the applied

level of axial load. The contribution of KC2 to Hf variability is larger than that of KC1

when N/Pc > 0.1. In other words, KC2 is more significant to Hf variability than KC1

when N/Pc > 0.1. However, the difference in the relative significance of these two columns

decreases as N/Pc increases and one can ignore the difference in the relative significance of

the two columns for N/Pc > 0.7.
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5.3 DUCTILE RC FRAME: VE

The method of evaluating the propagation of uncertainty in the strength and deformation

capacities of structural components to the structural system and identifying significant struc-

tural components with respect to EDP is demonstrated using a ductile RC frame, VE, as

introduced in Section 4.5. The FOSM method is used to estimate the mean and standard

deviation of an EDP due to the given uncertainty in the capacity of each typical structural

component. Uncertainty in the capacity of the structural component is described by the

probabilistic moment-curvature relationship or the probabilistic shear force-distortion rela-

tionship as discussed in Sections 4.5.4 and 4.5.5, respectively. COV is used as a measure

of sensitivity of EDP to individual structural components. A structural component with

larger corresponding COV of EDP is considered as more significant than that with smaller

corresponding COV of EDP. The peak absolute floor acceleration (PFA), the peak absolute

floor displacement (PFD), and the peak inter-story drift ratio (IDR) are selected as EDPs in

this study because they are commonly used EDPs of structures in earthquake engineering.

5.3.1 Structural Modeling

The description of the VE frame is presented in Section 4.5.1 including material properties,

dimensions, and reinforcement of beams and columns. The 2D computational model of the

VE frame is developed using OpenSees as illustrated in Figure 5.4.

5.3.1.1 Element Type

All structural components in the VE frame are modeled by a plastic hinge model (referred

to as beamWithHinges element in the OpenSees element library). Figure 5.5 illustrates

the configuration of the beamWithHinges element. Each element has two nodes with two

translations and one rotation per node. The beamWithHinges element consists of one elastic

beam and two plastic hinge regions at both ends of the elastic beam as shown in Figure 5.5.
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Fig. 5.4 The OpenSees model of the VE frame.

Each plastic hinge region has one monitoring section whose behavior is dictated by the

assigned moment-curvature relationship and/or shear force-distortion relationship to capture

a possible nonlinear behavior of the section and eventually a nonlinear behavior of the

element. The monitoring section is located at the center of the plastic hinge region for

performing the required numerical integration along the length of the plastic hinge region.

The lengths of the two plastic hinge regions (hi and hj in Figure 5.5) are not necessarily

identical. According to the evaluation of the components of the VE frame using the fiber

element model (cf. Section 4.5.4.2), it is decided that 1/8 of the total element length is used

as the plastic hinge length on each side of the element. They are 62% and 110% of the

depth of the cross section (15.7 inches), respectively, for the column and the beam. It should

be noted that the plastic hinge length is not considered as a random variable in this study

because modeling uncertainty is not within the scope of this study. Certainly, this plastic

hinge length is an important candidate to address modeling uncertainty in a future study.
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5.3.1.2 Mass and Viscous Damping

Mass is derived from the applied gravity loads for the pushover test and lumped at each node.

Accordingly, 203 lb of mass is assigned to each node in each translational direction. The

damping characteristics of the VE frame are modeled using mass and stiffness proportional

damping with 5% of the critical damping for the first two models of vibration. The periods

of these two modes estimated from the eigen solution using the initial elastic stiffness matrix

are 0.55 and 0.15 seconds.

5.3.1.3 Solution Strategy

The Newmark β-method with typical coefficients γ = 0.50 and β = 0.25 is used as the time

integrator. A half the ground motion time discretization is used for the analysis time step.

Nonlinear equilibrium equations are solved using the modified Newton-Raphson solution

algorithm.

5.3.2 Ground Motions

It is assumed that the VE frame is located at the same site as the UCS building, the case

study building in Chapter 3. This assumption is made for convenience because the seismic
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hazard curve and a set of ground motion profiles are readily available. The seismic hazard

curves for the fundamental period (T1) of 0.3 and 0.5 seconds, provided by Frankel and

Leyendecker (2001), are used to obtain the seismic hazard curve for T1 = 0.55 second for

the VE frame. Figure 5.6 shows the seismic hazard curve for the VE frame in terms of the

mean annual exceedance frequency of a specified spectral acceleration Sa. Assuming the

Poisson occurrence of an earthquake and lognormal distribution of the random variable Sa

denoting uncertainty in Sa, the mean and the standard deviation of Sa are estimated as 0.54g

and 0.50g (COV=93%). The seismic hazard curve derived from the assumed distribution of

Sa fits well with the seismic hazard curve given by Frankel and Leyendecker, as shown in

Figure 5.6.
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Fig. 5.6 Seismic hazard curve for the VE frame.

5.3.3 Verification Analyses

In this section, the developed plastic hinge computational model of the VE frame is verified.

For the first verification, another computational model of the VE frame is developed using
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the fiber element model and nominal material properties as given in Table 4.4. Pushover

analyses with applied gravity loads of 157 kips (700 kN) at each column are performed by

both the fiber model and the plastic hinge model. The relationships between the lateral

load and the lateral displacement at Level 2 (Figure 5.4) obtained by the experiment, the

fiber model, and the plastic hinge model are compared in Figure 5.7. The load-displacement

relationship of the fiber model shows an excellent agreement with the experiment, while that

of the plastic hinge model shows some disagreement with the experiment particularly in the

displacement range of 1 to 2 inches. However, the estimations of the initial stiffness and

the shear strength are considered accurate enough considering the simplicity of the element

formulation of the plastic hinge model. Moreover, both the fiber model and the plastic hinge

model successfully identify the experimentally identified failure mechanism that involves

plastic hinges at both ends of the two beams and the two column bases.

The second verification is performed by the fiber model and the plastic hinge model
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Fig. 5.7 Comparison of load-displacement relationships at Level 2 of the VE

frame by the experiment (Vecchio and Emara 1992) and present anal-

yses.
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under a seismic loading. Figure 5.8 shows the time histories of the relative floor displacement

at Level 2 with respect to the base due to the TO-ttrh02 earthquake scaled such that Sa =

0.54g for the VE frame by the fiber model (solid line) and by the plastic hinge model (dashed

line). It is clear that the two time histories show a good overall agreement except for the

prediction of the residual displacement. However, predictions of the peak displacement,

which is of major interest, by the two models are very close as indicated by the circle in

Figure 5.8 (2.42 inches and 2.52 inches by the plastic hinge model and the fiber model,

respectively).
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Fig. 5.8 Comparison of floor displacement time histories at Level 2 of the VE

frame due to the TO-ttrh02 earthquake scaled to Sa = 0.54g.

5.3.4 Convergence Test for FOSM Method

Since the finite difference approach is used in computing the gradient of EDP for the FOSM

method, the convergence test with respect to the perturbation size is necessary to obtain

a stable and reliable solution. According to Section 3.2.1, the perturbation size ∆xi is
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expressed as ∆xi = apσi where σi is the standard deviation of the random variable and ap

is the coefficient of proportionality that is to be determined by the convergence test. In

this study, ap = 1.0, 0.1, 0.01, and 0.001 are considered in the convergence test where the

convergence of COV of EDPs induced by individual random variables is tested. Among 20

ground motion profiles (cf. Table 3.6), TO-ttrh02 scaled to correspond to the mean IM level

(Sa = 0.54g) is chosen for this convergence test.

Figure 5.9 shows COVs of PFA and PFD at Level 2 (referred to as PFA2 and PFD2,

respectively), and IDR at the second story (referred to as IDR2). It is noted that the data

labeled as ET represent the uncertainty in EDPs induced by uncertainty in the capacity of

all structural components. From Figure 5.9, it is observed that COVs of all EDPs due to Sa,

Dp, and Ms converge when ap ≤ 0.1. On the other hand, COVs of all EDPs for the ET case

start to diverge from ap = 0.01 and smaller. This divergence is attributed to a numerical

error, e.g., round-off error, caused by using an unnecessarily small perturbation size with

respect to the solution (the EDP gradient with respect to a random variable in this case) in

the finite difference approach. Based on these observations, it is decided to use ap = 0.1 to

compute the perturbation size for the subsequent analyses.
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Fig. 5.9 Convergence of COV of various EDPs of the VE frame.
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5.3.5 Significant Components

In this section, only sensitivity of EDPs to the strength and deformation capacity of different

structural components is studied. Each structural component is considered as a random

variable and COVs of an EDP induced by each random variable are compared to identify

the relative importance of each random variable or each structural component. The relative

importance of a structural component is expressed as the ratio of its contribution due to EDP

uncertainty to the contribution of all components due to EDP uncertainty. This investigation

is conducted excluding the effects of the random variables Ms, Dp, and Sa. Mathematically,

the contribution of ith structural component is σ2
i /σ

2
T where σ2

T =
n
∑

j=1

σ2
j and n is the number

of structural components that is specialized to six in this study. However, the effect of

uncertainty in the ground motion profile is accounted for in identifying rankings of structural

components using Monte Carlo simulation. Figure 5.10 shows the relative contributions of

different structural components to uncertainty in PFA2 for 20 different earthquakes. In this

figure, structural components are plotted in a descending order of relative significance to

PFA2, similar to the tornado diagram. It is notable that rankings of structural components

and their corresponding contributions are different for different earthquakes. For example,

the beam on Level 2 (referred to as Element 6 in Figure 5.4) is the most significant component

to PFA2 among all six components of the VE frame for 13 out of 20 earthquakes, while the

beam on Level 1 (referred to as Element 3 in Figure 5.4) is the most significant component

to PFA2 for 6 out of 20 earthquakes.

To take into account the effect of uncertainty in the ground motion profile, the contri-

butions of each structural component to EDP uncertainty are compared in an average sense.

Figure 5.11 shows mean relative contributions from the 20 earthquakes of different structural

components to uncertainties in various EDPs. It is observed that the two columns in the

second story (referred to as Elements 4 and 5 in Figure 5.4) have the least contribution to

all EDPs. It is clear that Element 6 is the most significant structural component for PFA

at Level 1 (referred to as PFA1) and PFA2. Element 3 is also significant to PFA2, while its

144



0 0.5 1

3
5
4
2
1
6

0 0.5 1

5
4
1
2
3
6

0 0.5 1

4
5
3
2
1
6

0 0.5 1

5
4
2
1
3
6

0 0.5 1

4
5
6
1
2
3

0 0.5 1

5
4
2
1
3
6

0 0.5 1

4
5
2
1
3
6

0 0.5 1

4
5
1
2
6
3

0 0.5 1

5
4
1
2
3
6

0 0.5 1

4
5
3
2
1
6

0 0.5 1

5
4
3
1
2
6

0 0.5 1

1
5
4
2
3
6

0 0.5 1

6
5
4
2
1
3

0 0.5 1

4
1
5
2
3
6

0 0.5 1

6
5
4
2
1
3

0 0.5 1

5
4
2
1
3
6

0 0.5 1

4
1
5
6
3
2

0 0.5 1

4
5
1
2
6
3

0 0.5 1

5
4
2
1
3
6

0 0.5 1

4
5
6
2
1
3

C
o
m

p
o
n
en

t

Relative contribution to PRA
2
 uncertainty

CL-clyd CL-gil6 EZerzi KB-jobj LP-cor

LP-gav LP-gilb LP-lex1 LP-lgpc LP-srtg

LV-fgnr LV-mgnp MH-andd MH-clyd MH-hall

PF-cs05 PF-cs08 PF-temb TO-ttr007 TO-ttrh02

Fig. 5.10 Relative contributions of components of the VE frame to uncertainty

in PFA2 for various earthquakes.

contribution to PFA1 is not that significant. Contributions of structural components with

respect to PFD at Level 1 (referred to as PFD1) and PFD2 are similar even though their

rankings are slightly different. Elements 3 and 6, and the two columns in the first story

(referred to as Elements 1 and 2 in Figure 5.4) are almost equally significant to PFD1 and

PFD2. Elements 1, 6, 2, and 3 are almost equally significant to IDR at the first story (re-

ferred to as IDR1), while Elements 3, 2, and 1 are almost equally significant to IDR2 where

their contributions to IDR2 is next to that of Element 6. Figure 5.11 suggests that structural

145



0 0.5 1

4

5

2

1

3

6

0 0.5 1

5

4

6

2

1

3

0 0.5 1

5

4

1

2

3

6

0 0.5 1

5

4

2

3

1

6

0 0.5 1

5

4

6

3

1

2

0 0.5 1

5

4

3

2

6

1

PFA
2

PFA
1

PFD
1

PFD
2 IDR

2

IDR
1

C
o
m

p
o
n
en

t
C

o
m

p
o
n
en

t

Relative contribution to EDP uncertainty

Fig. 5.11 Mean relative contributions of components of the VE frame to EDPs

uncertainty.

components that are involved in the failure mechanism (identified through the experiment)

are more significant than the other components.

5.3.6 Important Cross Sections

The contribution of a structural component is a combination of the contributions of the

two cross sections of the component accounting for their correlation. Accordingly, it is

important to investigate the relative significance of each cross section to different EDPs.

Figure 5.12 shows the relative contributions of different cross sections to PFA2 uncertainty

for the considered 20 earthquakes. In this figure, the section label Sij denotes the Section
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Fig. 5.12 Relative contributions of cross sections of different components in the

VE frame to uncertainty in PFA2 for various earthquakes.

j of component i (cf. Figure 5.4). It is notable that rankings of cross sections and their

corresponding contributions to PFA2 are different for different earthquakes.

To take into account the effect of uncertainty in the ground motion profile, the con-

tributions of each cross section to EDP uncertainty are compared in an average sense. Fig-

ure 5.13 shows mean relative contributions from the 20 earthquakes of different cross sections

to uncertainties in various EDPs. It is observed that the six least significant ones among the

12 cross sections to all EDPs are the four cross sections of Elements 4 and 5 (referred to as
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Fig. 5.13 Mean relative contributions of cross sections of the VE frame to EDP

uncertainty.

S41, S42, S51, and S52), and the upper cross sections of Elements 1 and 2 (referred to as

S12 and S22). Moreover, the contributions of these 6 cross sections are distinctively smaller

than those of the other 6 cross sections (S11, S21, S31, S32, S61, and S62) for all EDPs.

This observation confirms the failure mechanism of the VE frame reported by Vecchio and

Emara (1992).

It is noted that rankings of cross sections with respect to PFA1 are different from those

with respect to PFA2. On the other hand, rankings of cross sections with respect to PFD1

are identical to those with respect to PFD2, and those with respect to IDR1 are identical to
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those with respect to IDR2. In particular, S11 and S21 are the two most significant cross

sections with respect to PFD1, PFD2, IDR1, and IDR2 with distinctive contributions to

these EDPs. It is interesting to note that PFD2 and IDR2 are most sensitive to S11 and S21

even though the locations of these cross sections are far from Level 2 or the second story.

This is partly attributed to the fact that the relative floor displacement at Level 2 implicitly

includes that at Level 1 and the relative floor displacement at Level 1 is obviously sensitive

to sections S11 and S21.

5.3.7 Conditional Sensitivity of EDPs Given IM

Similar to the conditional sensitivity study discussed in Section 3.4.8, the conditional sensi-

tivity of EDPs of the VE frame to random variables given IM is investigated in this section.

Selected IM levels in this section, bounded by the 10th and the 90th percentiles as shown in

Figure 5.6, are listed in Table 5.2. All 20 ground motion profiles are used to estimate EDP

sensitivity to each random variable at each IM level. As before, all results in this section are

presented as semi-log plots due to the wide range of the considered Sa (0.14g to 1.10g).

Table 5.2 Various percentiles of Sa for sensitivity of EDP of the VE frame given

IM.
Percentile 10th 20th 30th 40th 50th 60th 70th 80th 90th

Sa (g) 0.14 0.20 0.25 0.32 0.39 0.48 0.59 0.77 1.10

5.3.7.1 Significant Components

The procedure of identifying significant components described in Section 5.3.5 is repeated,

but at various IM levels. Figure 5.14 shows mean relative contributions from the 20 earth-

quakes of different structural components to uncertainties in various EDPs at various IM

levels.

It is observed that the relative contribution of each structural component to an EDP

varies depending on the IM level. The significance of Elements 4 and 5 is the least among all
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Fig. 5.14 Mean contributions of components of the VE frame to uncertainty in

various EDPs.

components to all EDPs at almost all IM levels. It is interesting to note that the significance

of Element 6 to PFA1 and PFA2 increases from the least to the most as IM level increases.

On the other hand, the significance of Element 6 to PFD1, PFD2, IDR1, and IDR2 increases

as IM level increases up to Sa = 0.5g, and then decreases as IM level increases thereafter.

In general, contributions of components to PFA1 and PFA2 vary with IM level more than

those to the other EDPs.
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5.3.7.2 Significant Cross Sections

The significance of each cross section to various EDPs at various IM levels is investigated in

this section. Figures 5.15 to 5.20 show mean relative contributions from the 20 earthquakes

of different cross sections to uncertainties in PFA, PFD, and IDR.

From Figure 5.15, it is observed that S11 and S21 are the most significant cross

sections to PFA1 when Sa ≤ 0.39g. The significance of S61 and S62 increases as the IM level

increases, while that of S31 and S32 stays at relatively low level as the IM level increases.

From Figure 5.16, it is observed that S11 and S21 are the most significant cross sections to

PFA2 when Sa ≤ 0.25g. Similar to PFA1, the significance of S61 and S62 increases as the

IM level increases. Unlike PFA1, the significance of S31 and S32 to PFA2 is not negligible

and varies with the IM level.

Overall observations of Figures 5.17 and 5.18 are almost identical. For all IM levels,

S11 and S21 are the most significant cross sections to PFD uncertainty, while S31 and S32

are the next significant ones, except for the case when Sa = 0.48g where S61 and S62 are

equally significant as S31 and S32.

From Figures 5.19 and 5.20, it is observed that S11 and S21 are the most significant

cross sections to IDR uncertainty for all IM levels. The significance of S31 and S32 to IDR

uncertainty does not change appreciably as the IM level increases. Moreover, S31 and S32

are the second significant cross sections to IDR1 for all IM levels. The significance of S61

and S62 to IDR uncertainty increases as the IM level increases up to Sa = 0.48g and then

decreases thereafter.

5.3.7.3 Discussions

Several conclusions can be drawn from observations related to the conditional sensitivity of

EDPs to individual components or cross sections of the VE frame. These conclusions can be

summarized as follows:
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Fig. 5.15 Mean contributions of cross sections of the VE frame to PFA1 uncer-

tainty.
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Fig. 5.16 Mean contributions of cross sections of the VE frame to PFA2 uncer-

tainty.
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Fig. 5.17 Mean contributions of cross sections of the VE frame to PFD1 uncer-

tainty.
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Fig. 5.18 Mean contributions of cross sections of the VE frame to PFD2 uncer-

tainty.
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Fig. 5.19 Mean contributions of cross sections of the VE frame to IDR1 uncer-

tainty.
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Fig. 5.20 Mean contributions of cross sections of the VE frame to IDR2 uncer-

tainty.
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• The sensitivity of EDP to cross sections provides clearer trends than the sensitivity of

EDP to structural components.

• For a wide range of IM levels, upper story columns are negligible in terms of their

contributions to uncertainties of all EDPs.

• The significance of structural components to all EDPs varies depending on the IM

level. In particular, contributions of the top level beam to all EDPs vary within the

widest range of all structural components.

• At lower IM levels (i.e., Sa ≤ 0.2g), only first story columns and first floor beam are

significant to all EDPs implying that the first yielding may occur in one or some of

these structural components.

• The significance of the top level beam to all EDPs at low IM levels is negligible. This

implies that such component only yields at high level of earthquake intensity.

• Both end-sections of the two beams and the bases of the first story columns are signif-

icant cross sections to all EDPs at all IM levels. This confirms the failure mechanism

of the VE frame reported by Vecchio and Emara (1992).

• The bases of the first story columns are the most significant cross sections to all EDPs

at all IM levels except for PFA at higher IM levels where the contributions of the two

cross sections of the top level beam are also significant.

5.4 CONCLUDING REMARKS

The quantification of the propagation of basic uncertainty in structural components to the

structural system with respect to its EDP is an important component of PBEE methodology.

In this chapter, the propagation of uncertainty in the capacities of structural components

to the structural system with respect to its EDP is investigated. First, an example of
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a probabilistic evaluation of an RC portal frame using the probabilistic P-M interaction

diagram is presented. It demonstrates an application of probabilistic component models to

the evaluation of the structural system.

A systematic approach of identifying significant structural component or cross sections

using the FOSM method is demonstrated by a ductile RC frame (referred to as VE). Sen-

sitivity of EDPs (i.e., the peak absolute floor acceleration and displacement, and the peak

inter-story drift ratio) to individual structural components is estimated using the FOSM

method. Uncertainty in the strength and deformation capacities of the component is ex-

pressed as probabilistic moment-curvature and shear force-distortion relationships at critical

cross sections of the component located at its ends. EDP uncertainty induced by each

structural component is used to determine which components are most significant to the

corresponding EDP. To consider the effect of uncertainty in the ground motion profile, a set

of 20 ground motion records are selected and scaled according to specified IM levels.

The significance of an individual structural component or a cross section to EDP un-

certainty is different for different earthquakes. Therefore, contributions of different structural

components to EDP uncertainty are compared in an average sense to identify significant com-

ponents. A conditional sensitivity of EDPs to uncertainty in the capacity of the structural

component is estimated where the sensitivity study is performed at specified IM levels.

For the VE frame, the two beams and the two first-story columns are significant to

EDPs at almost all IM levels. In particular, the beam at Level 1 and the two first-story

columns are more significant than any other structural components to all EDPs at lower IM

levels implying that the first yielding may occur in one or more of these three components.

Both end-sections of the two beams and the first-story column bases are significant cross

sections to all EDPs at all IM levels.

As an extension of the present study, it is recommended to consider uncertainties in

the mass and the viscous damping at each element, not at the system level where only a single

random variable for each of the two variables is considered for a whole structural system. In
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this way, more realistic evaluation of the significance of each structural component to EDP

uncertainties can be achieved. Investigations on generic structural systems with another

modes of failure such as non-ductile frame are also recommended for completeness.
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6 Summary, Conclusions, and Future

Extensions

6.1 SUMMARY

A systematic way of understanding propagation of uncertainties in ground motion and struc-

tural properties (referred to as basic uncertainties) to the structural system, and identifying

significant sources of basic uncertainties and structural components with respect to seismic

demand (referred to as engineering demand parameter, EDP) of a RC structural system is

developed. A structural system is defined as an assembly of a number of typical structural

components such as beams and columns. The developed procedure consists of three phases.

The details of each of these phases are described in a separate chapter of this report where

the method is demonstrated using case study structures. Procedures and observations of

these case studies of each phase are summarized in this section.

6.1.1 EDP Uncertainty Induced by Basic Uncertainty

The propagation of basic uncertainty to the structural system with respect to its EDPs

due to possible future earthquakes is investigated using a case study RC shear-wall building

(referred to as the UCS building). The peak absolute roof acceleration, peak absolute roof

displacement, and maximum inter-story drift ratio are selected as global EDPs, while the

peak curvatures at critical cross sections are selected as local EDPs. On the other hand,

159



several random variables representing uncertainty in ground motion and structural properties

are considered.

At first, sensitivity of global and local EDPs to the basic uncertainties is estimated

by a FOSM method and a tornado diagram analysis at the mean and the median IM levels,

respectively. The pros and cons of the FOSM method and the tornado diagram analysis are

discussed and an approach of combining the two methods is suggested. Then, conditional

sensitivity of EDPs to the basic uncertainties except for the random variable representing

IM is estimated using the FOSM method at a wide range of IM levels. From the sensitivity

measure of an EDP, relative significance of each basic uncertainty to the given EDP is

identified.

6.1.2 Uncertainty in the Capacity of Structural Components

The propagation of basic uncertainties to structural components with respect to their strength

and deformation capacities is investigated. For this purpose, a computational tool for prob-

abilistic evaluation of RC structural components is developed using stochastic fiber element

formulation. This formulation accounts for the spatial variability of material and geometri-

cal properties of RC members using the midpoint method within the framework of Monte

Carlo simulation. Assumptions and formulations of the adopted fiber element model are de-

scribed. The verification examples show the capability of the developed computer program

to estimate the structural behaviors of several tested specimens.

A probabilistic strength analysis of a RC column, referred to as the KC column,

subjected to combined axial load (Pa) and lateral load (Pl) is conducted in terms of the

axial load-bending moment (P-M) interaction. For generating P-M interaction diagrams,

different limit states in terms of the strain of the concrete at the extreme fiber (εc,ext) are

considered. The sensitivity of the column strength to an individual random field is investi-

gated for concrete compressive strength, steel yield strength, and concrete cover thickness.

The importance of considering the spatial variability of a random variable is also investigated.
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The typical structural components of a ductile RC frame (referred to as VE) are

identified and evaluated using the stochastic fiber element model and OpenSees software. In

this way, probabilistic moment-curvature relationships at critical cross sections of the typ-

ical components are developed. Probabilistic shear force-distortion relationships at critical

cross sections of the typical components are also developed using the FOSM method and

Response 2000 software. These probabilistic section models of typical structural components

of the VE frames are used in estimating EDP sensitivity of these frames in the third phase

of the developed methodology using the FOSM method.

6.1.3 EDP Uncertainty Induced by Component Uncertainty

The propagation of uncertainty in the strength and the deformation capacities of structural

components to the structural system with respect to its EDP is investigated. In this case,

the peak absolute horizontal acceleration and displacement at each floor, and the maximum

inter-story drift ratio of each story are selected as EDPs. First, a probabilistic evaluation

of a RC portal frame using the probabilistic P-M interaction diagram is presented. This

example demonstrates an application of probabilistic component models to the evaluation

of a simple structural system.

Sensitivity of EDPs to individual structural components and cross sections of the VE

frames is estimated using the FOSM method where EDP uncertainty is used to determine

which component is most significant to the corresponding EDP. Conditional sensitivity of

EDPs at various IM levels is also estimated.

6.2 CONCLUSIONS

Several conclusions can be drawn from the three chapters where the developed procedure of

propagating basic uncertainties to the structural system is demonstrated. These conclusions

can be summarized as follows:
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• The FOSM method and the tornado diagram analysis are simple and efficient in iden-

tifying and ranking significant sources of basic uncertainties with respect to EDP of

the structural system.

• A new approach where the tornado diagram analysis is used in conjunction with the

FOSM method is suggested to better characterize EDP uncertainties induced by basic

uncertainties. In this approach, the tornado diagram facilitates assuming the EDP

distribution based on the swings and their skew, while the FOSM method is used to

assess the EDP statistics.

• The intensity measure (IM) of the earthquakes is the dominant source of uncertainty

to all global and local EDPs of the UCS building. Moreover, uncertainties in ground

motion are more significant than those in structural properties to global EDPs.

• For most EDPs of the UCS building, uncertainty in the ground motion profile is more

significant than those in structural properties at higher IM levels but less significant

at lower IM levels.

• The developed stochastic fiber element model combining Monte Carlo simulation and

fiber element model is robust and accurate in estimating the probabilistic distributions

of the strength and deformation capacities of structural components.

• The strength uncertainty of the KC column varies depending on the limit state and

the Pl/Pa ratio. Moreover, uncertainty of the compressive strength of concrete controls

uncertainty of the column strength in the compression-failure region, while uncertainty

of the steel strength controls that in the tension-failure region.

• Neglecting the spatial variability of concrete strength can lead to overestimating the

strength uncertainty of a RC member.

• Uncertainties of curvature parameters at the critical cross section of structural com-

ponents of the VE frame are larger than those of moment parameters because defor-
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mation uncertainty is often larger than force uncertainty according to the stress-strain

behavior. Moreover, normal distributions can be assumed for all parameters defining

a multilinear moment-curvature relationship.

• The developed procedure of identifying and ranking significant structural components

with respect to the EDP of the structural system using the FOSM method is simple,

yet efficient and robust.

• For the VE frame, the level of significance of each of the structural components and

cross sections to an EDP changes as the IM level does. Moreover, significant structural

components and cross sections identified by the developed procedure at a given IM

level indicate the failure mechanism of the structural system at the IM level.

6.3 FUTURE EXTENSIONS

During the course of the present study, several issues are determined to be worthy of future

investigations. These issues are summarized in the following sections.

Uncertainty Several sources of basic uncertainties considered as significant to selected

EDPs are selected and taken into account in the course of the present study. Among excluded

sources of uncertainties are soil-foundation interface modeling, three-dimensional effect, and

non-structural components. These excluded ones may affect uncertainties in the selected

EDPs significantly. Moreover, the spatial distribution of structural properties may affect

uncertainties in the EDPs of the structural system. Therefore, it is recommended to examine

the effect of these aforementioned uncertainties and the spatial distribution of structural

properties to EDPs.

In the procedure of identifying significant structural components to a given EDP, the

dynamic properties of structural components, namely mass and viscous damping are not

taken into account in this study. As an extension of the present study, it is recommended
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to consider uncertainties in the mass and the viscous damping at each element, not at the

system level where only a single random variable for each of the two variables is considered

for a whole structural system. In this way, more realistic evaluation of the significance of

each structural component to EDP uncertainties can be achieved.

Class of Structures This study adopts several case study structural components and

systems to demonstrate the procedure of propagating uncertainties and identifying significant

sources of uncertainties to a given EDP in the structural analysis. Specially, a seven-story

ductile shear-wall building and a two-story ductile frame are used as the main case study

structural systems in this study. Consequently, conclusions drawn from the investigation

of these structures should be evaluated for other classes of structures. It is recommended

to examine other generic types of structures to confirm the generality of the conclusions

discussed in Section 6.1.

Structural Modeling Most of the fiber element formulations including the stochastic fiber

element model developed in this study and the formulations of nonlinear beam-column ele-

ments in OpenSees do not have the capability of describing the axial force-bending moment-

shear force interaction at the monitoring cross section of the beam-column element. It is

recommended to develop and implement a beam-column element with such a capability in

software such as OpenSees for a more accurate and realistic evaluation of structural compo-

nents to eventually develop probabilistic component models. Moreover, modeling reinforcing

bar buckling in the framework of the fiber element model is recommended for a possible in-

clusion in a stochastic setting, eventually.

Most of the lumped plasticity elements including beam with hinges element in OpenSees

do not have the capability of describing the interaction between the axial force and the bend-

ing moment at the plastic hinge of the beam-column element. The formulation of a nonlinear

beam-column element using a bounding surface plasticity model as in reference (El-Tawil and

Deierlein 2001) can be adopted. A stress-resultant bounding surface plasticity model, anal-
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ogous to yield surface plasticity model, describes the interaction between the axial force

and the bending moment. This type of strength model defined at the section level of the

element can be useful for more accurate evaluation of structures using the lumped plasticity

elements.
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A Derivations

A.1 ELEMENT STIFFNESS

Consider the element displacement vector u, element force vector p, section deformations

ε(x) and ϕ(x), and section force resultants N(x) and M(x) as specified in Section 4.2.1.

Here ε(x) is the axial strain considering the second order effect, such that ε(x) = ε0(x) +

1
2
v(x)′2 = u(x)′ + 1

2
v(x)′2 where u(x) and v(x) are the axial and transverse displacements at

x, respectively, and ′ denotes a partial derivative with respect to the coordinate x. In the

subsequent derivations, the argument x will be dropped for convenience. The principle of

virtual work implies

δuT p =

∫

L

[

δε δϕ
]





N

M



 dx (A.1)

where L is the element length. Since δε = δu′ + v′δv′, (A.1) can be rewritten as

δuTp =

∫

L

[

δu′ + v′δv′ δϕ
]





N

M



 dx

=

∫

L

[

δu′ δϕ
]





N

M



 dx +

∫

L

v′δv′Ndx

(A.2)

Now consider two interpolation functions

B(x) =





− 1
L

0 0 1
L

0 0

0 −6 1
L2 + 12 x

L3

(

−4 1
L2 + 6 x

L3

)

L 0 6 1
L2 − 12 x

L3

(

−2 1
L2 + 6 x

L3

)

L



 (A.3)

175



and

C(x) =





0 0 0 0 0 0

0 −6 x
L2 + 6 x2

L3

(

1
L
− 4 x

L2 + 3 x2

L3

)

L 0 6 x
L2 − 6 x2

L3

(

−2 x
L2 + 3 x2

L3

)

L



 (A.4)

such that





u′

ϕ



 = Bu and





0

v′



 = Cu. Substituting variational forms of these equations

into (A.2) gives

δuTp =

∫

L

(Bδu)T





N

M



 dx +

∫

L

(Cδu)T CuNdx (A.5)

Then we get the weak form of equilibrium as

p =

∫

L

BTqdx +

∫

L

CTCuNdx (A.6)

where q = q(x) =
[

N M
]T

. To obtain the element stiffness matrix ke, take the derivative

of p with respect to u as

ke =
∂p

∂u
=

∫

L

BT ∂q

∂u
dx +

∫

L

CTCu
∂N

∂u
dx +

∫

L

CTCNdx (A.7)

From the section equilibrium,

q = ks





ε

ϕ



 = ks





u′ + 1
2
v′2

ϕ





= ks







B +
1

2





1

0



 (Cu)TC







u

(A.8)

where ks = ks(x) is the section stiffness matrix. Therefore,

∂q

∂u
= ks







B +





1

0



 (Cu)TC







= ks (B + G)

(A.9)
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where G =





1

0



 (Cu)TC. Moreover,

∂N

∂u
= [1 0]ks (B + G) (A.10)

Consequently,

ke =

∫

L

BTks(B + G)dx +

∫

L

CTCu[1 0]ks(B + G)dx +

∫

L

CTCNdx

=

∫

L

BTks(B + G)dx +

∫

L

GT ks(B + G)dx +

∫

L

CTCNdx

=

∫

L

(B + G)Tks(B + G)dx +

∫

L

CTCNdx

=

∫

L

TTksTdx +

∫

L

CTCNdx

(A.11)

where T = B + G.

A.2 VARIATIONS IN THE STRENGTH OF RC COLUMN

A.2.1 Model Assumptions

Consider a RC component with a rectangular cross section. As shown in Figure A.1, this

cross section is discretized into nb×nh concrete fibers and ns steel fibers. The area of a steel

fiber is as and that of a concrete fiber is ac. Let nc = nb×nh be the total number of concrete

fibers. It is assumed that all concrete fibers have the identical probabilistic constitutive

model dictated by the distribution of the compressive strength f ′

c. The correlation coefficient

between the ith and the jth concrete fibers is ρij , which is a function of the distance between

the two fibers such that ρij decreases as the distance increases. It is assumed that all steel

fibers have the identical probabilistic constitutive model dictated by the distribution of the

yield strength fy. The correlation coefficient between the ith and the jth steel fibers is

constant, ρs. It is assumed that f ′

c and fy are uncorrelated.

Let σc be the standard deviation of f ′

c and σci be that of fci, where fci is the stress

in the ith concrete fiber at any strain level. Similarly, let σs be the standard deviation of fy
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Fig. A.1 Discretization of the cross section.
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Fig. A.2 Distributions of elastic constitutive models.

and σsi be that of fsi, where fsi is the stress in the ith steel fiber at any strain level. In the

elastic case of concrete and steel, σc1 < σc2 < σc and σs1 < σs2 < σs hold for fc1 < fc2 < f ′

c

and fs1 < fs2 < fy, respectively, as shown in Figure A.2.
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A.2.2 Variance of Axial Force

The axial force P at the cross section can be written as

P =
nc
∑

i=1

acfci +
ns
∑

i=1

asfsi

= ac

nc
∑

i=1

fci + as

ns
∑

i=1

fsi

(A.12)

Then the variance of the axial force is

Var[P ] = a2
cVar

[

nc
∑

i=1

fci

]

+ a2
sVar

[

ns
∑

i=1

fsi

]

(A.13)

It can be shown that

Var

[

nc
∑

i=1

fci

]

=

nc
∑

i=1

σ2
ci + 2

nc−1
∑

i=1

nc
∑

j=i+1

ρijσciσcj (A.14)

and similarly,

Var

[

ns
∑

i=1

fsi

]

=

ns
∑

i=1

σ2
si + 2ρs

ns−1
∑

i=1

ns
∑

j=i+1

σsiσsj (A.15)

Thus,

Var[P ] = a2
c

[

nc
∑

i=1

σ2
ci + 2

nc−1
∑

i=1

nc
∑

j=i+1

ρijσciσcj

]

+ a2
s

[

ns
∑

i=1

σ2
si + 2ρs

ns−1
∑

i=1

ns
∑

j=i+1

σsiσsj

]

(A.16)

From (A.16), it is obvious that the variance of the axial force increases as the limit state

increases in the elastic case.

If ρij = ρs = 1, the variance of the axial force becomes

Var[P ] = a2
c

[

nc
∑

i=1

σ2
ci + 2

nc−1
∑

i=1

nc
∑

j=i+1

σciσcj

]

+ a2
s

[

ns
∑

i=1

σ2
si + 2

ns−1
∑

i=1

ns
∑

j=i+1

σsiσsj

]

(A.17)

This is the maximum variance of the axial force since 0 ≤ ρij , ρs ≤ 1. This is the case when

the spatial variability of random variables is not considered. Consequently, the variance of

the axial force with no spatial variability of random variables is always greater than that

with spatial variability of random variables.
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If only the axial load is applied, all fibers have the same stress levels, in the cross

section,

σc1 = σc2 = . . . = σcnc
and σs1 = σs2 = . . . = σsns

(A.18)

Accordingly, the variance of the axial force becomes

Var[P ] = a2
cσ

2
c1

[

nc + 2

nc−1
∑

i=1

nc
∑

j=i+1

ρij

]

+ a2
sσ

2
s1

[

ns + 2ρs

ns−1
∑

i=1

ns
∑

j=i+1

1

]

= a2
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2
c1
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nc−1
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∑
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2
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2
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[
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nc
∑

j=i+1

ρij

]

+ a2
sσ

2
s1

[

ρsn
2
s + (1 − ρs)ns

]

(A.19)

If ρij = ρs = 1 under the pure axial load condition, the variance of the axial force becomes

Var[P ] = a2
cn

2
cσ

2
c1 + a2

sn
2
sσ

2
s1 (A.20)

A.2.3 Variance of Bending Moment

The bending moment M at the cross section can be written as

M =
nc
∑

i=1

acfciyci +
ns
∑

i=1

asfsiysi

= ac

nc
∑

i=1

fciyci + as

ns
∑

i=1

fsiysi

(A.21)

It can be shown that
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and similarly,
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Thus,

Var[M ] = a2
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From (A.24), it is obvious that variance of the bending moment increases as the limit state

increases in the elastic case.

If ρij = ρs = 1, the variance of the axial force becomes

Var[M ] = a2
c

[

nc
∑

i=1

y2
ciσ

2
ci + 2
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∑

i=1

nc
∑
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]
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[
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2
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∑
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∑
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] (A.25)

This value is also the maximum variance of the bending moment. Consequently, the variance

of the bending moment with no spatial variability of random variables is always greater than

that with spatial variability of random variables.
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