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Framework (BRA'LS) Codes and released BIM database can be found on GitHub: https:/github.com/NHERI-SimCenter/BRAILS
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1. Hurricane Testbed > SURF: Spatial Uncertainty Quantification & Data enhancement
We used BRAILS to create a building inventory database for: https://github.com/NHERI-SimCenter/surf

several coastal cities in New Jersey. Based on this database,:
we performed a loss assessment under a hurricane scenario. |
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Learning the hidden patterns of the built environment.
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We collected tax assessment records, which are scraped from

Distance between buildings

administrative websites. Building information found in the
records include number of stories, year of construction, structure | 2. Earthquake Testbed

type, occupancy. The second data source is satellite images, We used BRAILS for city-scale detection of soft-story (SS) buildings.

which can be download by calling Google Maps API. e I A SS building is the
W A -
Rt | Sateliie : a7 sl O \c/)vr;is?at sr;i?fieissmg
ve. ¥ s Images | 1 7 | ‘4 — :
R —0 O- [T Fa , == dramatically less than
g H\KH  H- ’ &% | other stories. SS
P - vl | Sepled buildings are prone to
re-traine = L n | ; . .
P AT @ Hiope collapse during major
/K/// D D_ . ) . - .
= - 4 earthquakes.
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING / (LATTEN CONNECTED SOFTMAX j
Roof shapes i Y
FEATURE LEARNING CLASSIFICATION

soft story?

g -~ M
é . non-SS

A
/ \

Resnet50/152 InceptionV3/V4
automatic AlexNet VGG

A pretrained ConvNet is used to classify roof types based on
satellite images.
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0 e Pipeline to Create a SS Building Classifier
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