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PEER funded project (#NCTRZW)

● The goal is to develop an efficient stochastic simulator-based approach for seismic UQ 

analysis of bridge responses

● Technical aims are:

➢ Develop stochastic surrogate models for the stochastic simulator 

➢ Perform UQ analysis for seismic responses using stochastic surrogate models

➢ Analyze sensitivity indices leveraging stochastic surrogate models

● Title: Stochastic simulator-based uncertainty quantification for seismic responses of bridges

● PI: Ziqi Wang (UC Berkeley), Co-PI: Marco Broccardo (University of Trento)

Research goals
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Research overview

Stochastic Simulator

𝒀 = ℳ 𝑋1, 𝑋2, … , 𝑋𝑛

Seismic Response

෡𝒀 = ෡ℳ 𝑋1, 𝑋2, … , 𝑋𝑛
𝑓෡𝒀|𝑿

𝑀
𝑅

Seismic 

scenario

Ground motions

Uncertain parameters FEM deterministic 

model

Ground Motion Variability

Structural Model Uncertainty

𝜎𝑦, 𝜉, 𝐴
PDF

Step 3. 

Sensitivity analysis

Step 2. 

Forward UQ analysis Step 1. 

Stochastic simulator
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1. Development of stochastic surrogate model
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Challenges in surrogate modeling

Stochastic Simulator

𝒀 = ℳ 𝑋1, 𝑋2, … , 𝑋𝑛

Seismic Response

෡𝒀 = ෡ℳ 𝑋1, 𝑋2, … , 𝑋𝑛
𝑓෡𝒀|𝑿

𝑀
𝑅

Seismic 

scenario

Ground motions

Uncertain parameters FEM deterministic 

model

Ground Motion Variability

Structural Model Uncertainty

𝜎𝑦, 𝜉, 𝐴
PDF

Uncertainty Propagation

Stochastic surrogate model

● Surrogate modeling can be challenging due to the

complex & high-dimensional input uncertainties

Dimensionality reduction can be useful
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Dimensionality reduction-based stochastic surrogate model

𝒀 = ℳ 𝑿

Physical model

Low-dimensional representation via working 

with 𝒙, 𝒚 ∈ ℝ𝑛+𝑚: 𝒚 −ℳ 𝒙 = 0

High-dimensional input 𝑿

𝐀 ሷ𝐘 𝑿, 𝑡 + 𝐑𝐘 𝑿, 𝑡 = 𝑞

Constrained by 

physical laws

ℋ: 𝒛 ≡ 𝒙, 𝒚 ↦ 𝝍𝑧 ∶

● Main idea: Perform dimensionality reduction in the input-output space

“Extract” stochastic surrogate model from results of dimensionality reduction

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.



7

Procedures of the proposed stochastic surrogate model

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.

▪ Dimensionality reduction in the input-output space–construct ℋ: 𝒛 ≡ 𝒙, 𝒚 ∈ ℝ𝑛+𝑚 ↦ 𝝍𝑧 ∈ ℝ
𝑑

▪ Construct a conditional distribution 𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z to predict 𝒚 given 𝝍z

▪ “Extract” a surrogate model 𝑓෡𝒀|𝑿 ෝ𝒚 𝒙 from ℋ and 𝑓෡𝒀|𝚿𝐳

training stage

𝑓෡𝒀|𝑿 ෝ𝒚 𝒙 = නන𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z 𝑓𝚿𝐳|𝑿𝒀 𝝍z 𝒙, 𝒚 𝑓
𝒀|𝑿

𝒚 𝒙 𝑑𝝍z𝑑𝒚

Dimensionality reduction Original model Condi. distribution

“True” surrogate model:



▪ Dimensionality reduction in the input-output space–construct ℋ: 𝒛 ≡ 𝒙, 𝒚 ∈ ℝ𝑛+𝑚 ↦ 𝝍𝑧 ∈ ℝ
𝑑

▪ Construct a conditional distribution 𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z to predict 𝒚 given 𝝍z

▪ “Extract” a surrogate model 𝑓෡𝒀|𝑿 ෝ𝒚 𝒙 from ℋ and 𝑓෡𝒀|𝚿𝐳

prediction stage

𝑓෡𝒀|𝑿
(∞)

ෝ𝒚 𝒙 = නන𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z 𝑓𝚿𝐳|𝑿𝒀 𝝍z 𝒙, 𝒚′ 𝑓෡𝒀|𝑿
(∞)

𝒚′ 𝒙 𝑑𝝍z𝑑𝒚′

“approximate” surrogate

𝑇 ෝ𝒚(𝑡), ෝ𝒚(𝑡+1)|𝒙 = 𝑓෡𝒀|𝚿𝐳 ෝ𝒚
(𝑡+1) 𝝍z 𝑓𝚿𝐳|𝑿𝒀 𝝍z 𝒙, ෝ𝒚

(𝑡)

“Stationary” surrogate model:

Transition kernel:

→ ෝ𝒚′~𝑓෡𝒀|𝑿 ෝ𝒚 𝒙

8
Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.

ෝ𝒚(𝑡) ~ 𝑓෡𝒀|𝑿 ො𝒚 𝒙→ Outputs: Stochastic surrogate model,

Procedures of the proposed stochastic surrogate model
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Summary of the proposed stochastic surrogate model

● We “extract” a surrogate model from the results of dimensionality reduction

➢ Surrogate model for high-dimensional system

● Stochastic simulator: Output predictions are probabilistic distributions

● Multi-output predictor: We can quantify interdependencies between multiple outputs

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model 

for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.

𝑿 = 𝑿1, 𝑿2… ,𝑿𝑛 𝒀 = 𝑌1, 𝑌2, … , 𝑌𝑚ℳ 𝑿

where 𝑛 ≫ 100
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2. Uncertainty quantification of seismic response
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Sources of uncertainty

𝒀 = ℳ 𝑿

{Synthetic motions by SGMM

or Recorded motions from database}

Structural parameters 𝑿𝐬

{Material properties, Damping, …}

Ground motion acceleration

time-history 𝑿𝐆𝐌
Seismic responses 𝒀

{Pier drift ratio, Girder bending moment,…}

Nonlinear response

history analysis

𝑿 = 𝑿𝐆𝐌, 𝑿𝐬

𝜎𝑦, 𝜉, 𝐴 Stochastic simulator

𝒀 = ෡ℳ𝑠 𝑿𝐆𝐌, 𝑿𝐬
𝑿S = {𝜎𝑖 , 𝐴𝑖 , 𝜉, … }

𝑿GM = {𝑎𝑔(𝑡), 𝑡 = 0, Δ𝑡, … , 𝑛Δ𝑡}

𝑛 ≥ 1,000

Randomly paired (structural parameter + ground motion) input
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Structural model and uncertain parameters

Konakli, K., & Der Kiureghian, A. (2011). Stochastic Dynamic Analysis of Bridges Subjected to Spatially Varying Ground Motions, PEER Report 2011/105.

𝑿𝑠 = Damping,Material prop. , Geo. ∈ ℝ12

Structural uncertain parameters

● Auburn Ravine bridge: a PSC girder bridge featuring 6 spans and 2 piers per bent (Konaki & ADK, 2011)

Elevation

Box-girder cross section 

166.4 m

𝑧

𝑥

𝑦

𝑥

• 10 piers

• 25 girder elements

Pushover

𝒀 = Pier drift ratios ∈ ℝ10

𝒀 = Girder bending moments ∈ ℝ25

Bridge EDPs
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Ground motions

Baker, J.W. and Lee, C., 2018. An improved algorithm for selecting ground motions to match a conditional spectrum. Journal of Earthquake Engineering, 22(4), pp.708-723.

Baker, J. W., & Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground motion models. Earthquake Spectra, 24(1), 299-317.

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085.

𝑿 = 𝑿𝐺𝑀, 𝑿𝑆 ∈ ℝ≥1,000 𝒀 = Pier drift ratios ∈ ℝ10

𝒀 = Girder bending moments ∈ ℝ25

● 2,000 ground motions are selected from PEER NGA-West2 database

● The target spectrum is derived from a GMM (Boore et al., 2014) and 

spectral correlation model (Baker & Jayaram, 2008) 

Parameter Value

𝑀 6.5

𝑅𝑟𝑢𝑝 10 (km)

𝑉𝑠,30 450 (m/s)

Fault Normal

Region California

Seismic hazard parameters

Input: structural parameter + ground motion Output: bridge EDP

(Baker & Lee, 2018)
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Surrogate modeling of seismic response

● PDR prediction by stochastic simulator (𝑁𝑇𝑟𝑎𝑖𝑛 = 600, 𝑁𝑇𝑒𝑠𝑡 = 1400)

▪ Inputs: 𝐗 = 𝑿𝐺𝑀 , 𝑿𝑆

▪ Outputs: 𝒀 = PDR1, … , PDR10

● Mean peaks of PDRs

Pier 1 (RMSE=0.168) Pier 3 (RMSE=0.167) Pier 5 (RMSE=0.168)

Error < 3%

SD intervals



15

UQ for seismic response

● Marginal response PDFs

● Correlation matrix

Reference (MCS)

Prediction

▪ Inputs: 𝐗 = 𝑿𝐺𝑀 , 𝑿𝑆

▪ Outputs: 𝒀 = GM1, … , GM25

● Girder moment prediction by stochastic simulator (𝑁𝑇𝑟𝑎𝑖𝑛 = 600, 𝑁𝑇𝑒𝑠𝑡 = 1400)
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Application to synthetic motions

Yanni, H., Fragiadakis, M., & Mitseas, I. P. (2024). Probabilistic generation of hazard‐consistent suites of fully non‐stationary seismic records. EESD, 53(10), 3140-3164.

● 2,000 spectrum-compatible synthetic motions are generated by 

the ground motion generation algorithm (Yanni et al., 2024)

● Seismic UQ for girder moments under synthetic motions:

Error < 5%

Response spectra of 

generated motions

The proposed method is effective to both synthetic and recorded motions

Reference (MCS)

Prediction
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3. Sensitivity analysis of seismic response
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Global sensitivity analysis of seismic response

Stochastic Simulator

𝒀 = ℳ 𝑋1, 𝑋2, … , 𝑋𝑛

Seismic Response

෡𝒀 = ෡ℳ 𝑋1, 𝑋2, … , 𝑋𝑛
𝑓෡𝒀|𝑿

𝑀
𝑅

Seismic 

scenario

Ground motions

Uncertain parameters FEM deterministic 

model

Ground Motion Variability

Structural Model Uncertainty

𝜎𝑦, 𝜉, 𝐴
PDF

Step 3. 

Sensitivity analysis
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Variance-based sensitivity analysis

𝒀 = 𝐸𝐷𝑃1, … , 𝐸𝐷𝑃𝑚

● Sensitivity indices for each EDP with respect to each group of input uncertainties

→ 𝑆𝐮
𝑘 =

𝕍ar𝑿𝐮 𝔼𝑿~𝐮 𝐸𝐷𝑃𝑘 𝑿𝐮

𝕍ar 𝐸𝐷𝑃𝑘

𝑿 = 𝑿𝐺𝑀, 𝑿𝑠

Two “groups” of uncertainties

● Inevitably high-dimensional integral (due to 𝑿𝐺𝑀)

● High computational complexity (𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑑 × 𝑁2)

𝑿𝐺𝑀

𝑿𝑆

𝐸𝐷𝑃1

𝐸𝐷𝑃𝑚

…ℳ 𝑿

Stochastic simulator

combined with MC sampling

● “Grouped” sensitivity index:

𝑿S = {𝜎𝑖 , 𝐴𝑖 , 𝜉, … }
Decomposition 

of variance
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Sensitivity indices of seismic response

95% CI on

sensitivity indices

● Sensitivity indices of girder responses w.r.t ground motion and structural parameter uncertainties

● Grouped indices (𝑆𝐆𝐌, 𝑆𝐒) and their interaction effect (𝑆𝐒,𝐆𝐌 = 1 − 𝑆𝐆𝐌 − 𝑆𝐒)

• Error < 10%

• 𝑆𝐆𝐌 ≥ 60%
• 𝑆𝐒 ≤ 20%

▪ Inputs: 𝐗 = 𝑿𝐺𝑀 , 𝑿𝑆

▪ Outputs: 𝒀 = GM𝟏, … , GM25

Reference

Prediction
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Application to synthetic motions

● Applications to synthetic ground motions

Effectively quantify relative contributions of grouped (high-dimensional) input uncertainties

Relative contributions 

(trends) are same

with recorded motion 

case

• Error < 13%

• 𝑆𝐆𝐌 ≥ 60%
• 𝑆𝐒 ≤ 20%

▪ Inputs: 𝐗 = 𝑿𝐺𝑀 , 𝑿𝑆

▪ Outputs: 𝒀 = GM𝟏, … , GM25
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Summary

● The research goal is to develop an efficient stochastic simulator-based approach for seismic UQ 

analysis of structural systems

➢ Development of a surrogate model for the stochastic simulator

➢ Uncertainty quantification of seismic response using stochastic simulator

➢ Global sensitivity analysis of seismic response leveraging stochastic surrogate model

• Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional 

forward uncertainty quantification. arXiv preprint:2402.04582.

• Kim, J., & Wang, Z. (2025). Uncertainty quantification for seismic response using dimensionality reduction‐based 

stochastic simulator. Earthquake Engineering & Structural Dynamics, 54(2), 471-490.

• Kim, J., Su, M., Wang, Z., & Broccardo, M. (2025). Recorded versus synthetic ground motions: A comparative analysis 

of structural seismic responses. arXiv preprint:2502.19549.

● Reference
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Future Directions: Enhancing Seismic UQ with Neural Operators

● The proposed simulator predicts structural responses at vector scales, such as the EDP vector

➢ Prediction of complete continuous structural response function remains limited

● Capturing the complete structural response function enables improved long-term maintenance planning, 

damage detection, and localization

Infinite-dimensional

: Response function to ground motion

Neural operator for describing continuous, infinite-dimensional response functions
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Future Directions: Enhancing Seismic UQ with Neural Operators

● Neural operators aim to learn the underlying mathematical operator that governs the system rather 

than pointwise approximations: Function-based learning

𝒢: 𝒜 → 𝒰 :𝒜,𝒰 are infinite-dimensional function spaces

𝒢 𝑎 = 𝑢

𝒢𝜃: = 𝒬 ∘ 𝜎 𝒦𝑇 +𝑊𝑇 + 𝑏𝑇 ∘ ⋯∘ 𝜎 𝒦1 +𝑊1 + 𝑏1 ∘ 𝒫

“Lifting” from input to 

higher dimensional space

“Projection” from 

intermediate to output

Layer 𝑡 = 1, … , 𝑇, acting on functions

“Convolution” of kernel operator Zhang et al. (2024)

Zhang, T., et al. (2024). Emulator of PR‐DNS: Accelerating dynamical fields with neural operators in particle‐resolved direct numerical simulation. J. of Adv. Mod. Earth. Sys., 16(2).

● Iterative kernel integrations 𝓚𝒕: Encodes the mapping between features across layers
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Future Directions: Enhancing Seismic UQ with Neural Operators

Physical model

Joint PDF for representing complex spatial and temporal patterns in structural response 

GM (input)

Constrained by 

physical laws

𝒢 𝑎 = 𝑢

Input function 𝑎 𝑡

Output function 𝑢 𝑡
𝒢 𝑎 = 𝑢

● Integrating neural operators into the stochastic simulator for predicting time-series displacement and 

velocity profiles, and full-field stress distribution under seismic excitation



Thanks for listening
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