PEER Annual Meeting 2025

Mar 25-26, 2025

Stochastic Simulator-based Uncertainty Quantification for Seismic Responses of Bridges

Jungho KIM

Postdoc researcher, University of California Berkeley

Ziqi Wang

Assistant professor, University of California Berkeley

Marco Broccardo

Associate professor, University of Trento

PEER funded project (#NCTRZW)

- **Title**: Stochastic simulator-based uncertainty quantification for seismic responses of bridges
- **PI**: Ziqi Wang (UC Berkeley), **Co-PI**: Marco Broccardo (University of Trento)

Research goals

- The goal is to develop an efficient stochastic simulator-based approach for seismic UQ analysis of bridge responses
- Technical aims are:
 - > Develop stochastic surrogate models for the stochastic simulator
 - > Perform UQ analysis for seismic responses using stochastic surrogate models
 - > Analyze **sensitivity indices** leveraging stochastic surrogate models

Research overview

1. Development of stochastic surrogate model

Challenges in surrogate modeling

• **Dimensionality reduction** can be useful

Dimensionality reduction-based stochastic surrogate model

• Main idea: Perform dimensionality reduction in the input-output space

• "Extract" stochastic surrogate model from results of dimensionality reduction

Procedures of the proposed stochastic surrogate model

- Dimensionality reduction in the input-output space–construct $\mathcal{H}: \mathbf{z} \equiv (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n+m} \mapsto \boldsymbol{\psi}_{z} \in \mathbb{R}^{d}$
- Construct a conditional distribution $f_{\hat{Y}|\Psi_z}(\hat{y}|\psi_z)$ to predict y given ψ_z
- "Extract" a surrogate model $f_{\hat{Y}|X}(\hat{y}|x)$ from \mathcal{H} and $f_{\hat{Y}|\Psi_z}$

Dimensionality reduction

Condi. distribution

Original model

Procedures of the proposed stochastic surrogate model

- Dimensionality reduction in the input-output space–construct $\mathcal{H}: \mathbf{z} \equiv (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n+m} \mapsto \psi_z \in \mathbb{R}^d$
- Construct a conditional distribution $f_{\hat{Y}|\Psi_z}(\hat{y}|\psi_z)$ to predict y given ψ_z
- "Extract" a surrogate model $f_{\hat{Y}|X}(\hat{y}|x)$ from \mathcal{H} and $f_{\hat{Y}|\Psi_z}$

"Stationary" surrogate model:

$$f_{\widehat{Y}|X}^{(\infty)}(\widehat{y}|x) = \int \int f_{\widehat{Y}|\Psi_z}(\widehat{y}|\psi_z) f_{\Psi_z|XY}(\psi_z|x,y') f_{\widehat{Y}|X}^{(\infty)}(y'|x) d\psi_z dy$$

"approximate" surrogate

prediction stage

Transition kernel:

$$T(\widehat{\boldsymbol{y}}^{(t)}, \widehat{\boldsymbol{y}}^{(t+1)} | \boldsymbol{x}) = f_{\widehat{\boldsymbol{Y}} | \boldsymbol{\Psi}_{z}}(\widehat{\boldsymbol{y}}^{(t+1)} | \boldsymbol{\psi}_{z}) f_{\boldsymbol{\Psi}_{z} | \boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{\psi}_{z} | \boldsymbol{x}, \widehat{\boldsymbol{y}}^{(t)})$$

 \rightarrow Outputs: Stochastic surrogate model, $\hat{y}^{(t)} \sim f_{\hat{y}|x}(\hat{y}|x)$

Summary of the proposed stochastic surrogate model

$$X = [X_1, X_2 \dots, X_n] \qquad \qquad \mathcal{M}(X) \qquad \qquad Y = [Y_1, Y_2, \dots, Y_m]$$

where $n \gg 100$

- We "extract" a surrogate model from the results of dimensionality reduction
 - Surrogate model for high-dimensional system
- **Stochastic simulator**: Output predictions are probabilistic distributions
- Multi-output predictor: We can quantify interdependencies between multiple outputs

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. *arXiv preprint*:2402.04582.

2. Uncertainty quantification of seismic response

Sources of uncertainty

Randomly paired (structural parameter + ground motion) input

Structural model and uncertain parameters

• Auburn Ravine bridge: a PSC girder bridge featuring 6 spans and 2 piers per bent (Konaki & ADK, 2011)

Box-girder cross section

Structural uncertain parameters

 $X_s = \{\text{Damping, Material prop., Geo.}\} \in \mathbb{R}^{12}$

Modeling parameter	P_1	P_2	Distribution	
Rayleigh damping ratio, ξ	0.05	0.35	Lognormal	
Cross-sectional area of the girder, A_b (m ²)	4.50	8.50	Uniform	
Elastic modulus of the girder, E_b (GPa)	28.3	0.35	Lognormal	
Elastic modulus of pier reinforcing steel, E_s (GPa)	200	0.35	Lognormal	
Yield strength of pier reinforcing steel, f_s^y (MPa)	475	0.35	Lognormal	
Ultimate strength of pier reinforcing steel, f_s^u (MPa)	655	0.35	Lognormal	
Onset of strain hardening of pier reinforcing steel, ε_s	0.0115	0.30	Lognormal	
Elastic modulus of pier concrete, E_c (GPa)	27.6	0.30	Lognormal	
Compressive strength of pier concrete, f_c (MPa)	34.5	0.30	Lognormal	
Strain at compressive strength of pier concrete, ε_0	0.002	0.25	Lognormal	
Diameter of pier column, D_{col} (m)	0.90	1.90	Uniform	
Thickness of concrete cover, c_v (m)	0.02	0.08	Uniform	

Bridge EDPs

 $\begin{aligned} Y &= [\text{Pier drift ratios}] \in \mathbb{R}^{10} \\ Y &= [\text{Girder bending moments}] \in \mathbb{R}^{25} \end{aligned}$

Ground motions

(Baker & Lee, 2018)

- **2,000 ground motions** are selected from PEER NGA-West2 database
- The target spectrum is derived from a GMM (Boore et al., 2014) and spectral correlation model (Baker & Jayaram, 2008)

Seismic hazard parameters

Parameter	Value
М	6.5
R_{rup}	10 (km)
<i>V</i> _{s,30}	450 (m/s)
Fault	Normal
Region	California

Input: structural parameter + ground motion

$$X = [X_{GM}, X_S] \in \mathbb{R}^{\geq 1,000}$$

Output: bridge EDP

 $Y = [\text{Pier drift ratios}] \in \mathbb{R}^{10}$ $Y = [\text{Girder bending moments}] \in \mathbb{R}^{25}$

Baker, J.W. and Lee, C., 2018. An improved algorithm for selecting ground motions to match a conditional spectrum. *Journal of Earthquake Engineering*, 22(4), pp.708-723.

Baker, J. W., & Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground motion models. *Earthquake Spectra*, 24(1), 299-317.

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085.

Surrogate modeling of seismic response

• PDR prediction by stochastic simulator ($N_{Train} = 600, N_{Test} = 1400$)

• Outputs: $Y = [PDR_1, ..., PDR_{10}]$

• Mean peaks of PDRs

Discrepance NLRHA with OpenSees ($\times 10^{-3}$		Stochastic simulator ($\times 10^{-3}$)		Error (%)		
Fiel location	Left	Right	Left	Right	Left	Right
Bent 1	3.96	3.76	3.87	3.68	2.23	2.20
Bent 2	3.90	3.76	3.81	3.67	2.22	2.21
Bent 3	3.63	3.57	3.55	3.50	2.22	2.21
Bent 4	3.34	3.37	3.27	3.30	2.20	2.22
Bent 5	3.42	3.53	3.35	3.46	2.19	2.23

800

850

900

UQ for seismic response

• Girder moment prediction by stochastic simulator ($N_{Train} = 600, N_{Test} = 1400$)

• Inputs: $\mathbf{X} = [\mathbf{X}_{GM}, \mathbf{X}_{S}]$

• Outputs: $Y = [GM_1, ..., GM_{25}]$

15

Application to synthetic motions

Girder #4

Girder #7

Girder #10

Girder #13Girder #16

Girder #19Girder #22

1.5

 $\times 10^4$

 $imes 10^{-3}$

0.8

0.6

0.4

PDF

(a)

0.5

Moment M_y , kN·m

2,000 spectrum-compatible synthetic motions are generated by the ground motion generation algorithm (Yanni et al., 2024)

PDF

0

 $\times 10^{-4}$

Seismic UQ for girder moments under synthetic motions:

Longitudinal position of deck

The proposed method is effective to both synthetic and recorded motions

0.5

(b)

Reference (MCS)

1.5

Moment M_z , kN·m

Prediction

Moment M_y , kN·m

Moment M_z , kN·m

0.5

2.5

 $\times 10^4$

3. Sensitivity analysis of seismic response

Global sensitivity analysis of seismic response

Variance-based sensitivity analysis

• Sensitivity indices for each EDP with respect to each group of input uncertainties

- Inevitably *high-dimensional* integral (due to X_{GM})
- High computational complexity (Complexity = $d \times N^2$)

Stochastic simulator combined with MC sampling

Sensitivity indices of seismic response

- Inputs: $\mathbf{X} = [X_{GM}, X_S]$
- Outputs: $Y = [GM_1, ..., GM_{25}]$
- Sensitivity indices of girder responses w.r.t ground motion and structural parameter uncertainties
- Grouped indices (S_{GM}, S_S) and their interaction effect $(S_{S,GM} = 1 S_{GM} S_S)$

Application to synthetic motions

- Moment M_x Force F_r $S_{\mathbf{S}} \longrightarrow S_{\mathbf{GM}} \longrightarrow S_{\mathbf{S},\mathbf{GM}}$ Sensitivity index Sensitivity index 0.750.750.50.5**Relative contributions** 0.250.25(trends) are same Abutment Bent1 Bent2 Bent3 Bent4 Bent5 Abutment Abutment Bent1 Bent2 Bent3 Bent4 Bent5 Abutment with recorded motion Longitudinal position of deck Longitudinal position of deck case Force F_u Moment M_u Sensitivity index Sensitivity index 0.750.750.5 0.50.250.25Bent3 Abutment Bent2 Bent4 Abutment Bent1 Bent2 Bent3 Bent4 Bent5Abutment Bent1 Bent5 Abutment Longitudinal position of deck Longitudinal position of deck Error < 13%Force F_z Moment M_z Sensitivity index Sensitivity index 0.750.75 $S_{\rm GM} \ge 60\%$ $S_{\rm S} \le 20\%$ 0.50.250.25Bent1 Bent3 Bent4 Bent1 Bent2 Bent3 Bent5 Abutment Bent2 Bent5 Abutment Abutment Bent4 Abutment Longitudinal position of deck Longitudinal position of deck
- Applications to synthetic ground motions

Effectively quantify relative contributions of grouped (high-dimensional) input uncertainties

• Inputs: $\mathbf{X} = [X_{GM}, X_S]$

• Outputs: $Y = [GM_1, ..., GM_{25}]$

Summary

- The research goal is to develop an efficient stochastic simulator-based approach for seismic UQ analysis of structural systems
 - > Development of a surrogate model for the **stochastic simulator**
 - > **Uncertainty quantification** of seismic response using stochastic simulator
 - > Global sensitivity analysis of seismic response leveraging stochastic surrogate model

Reference

- Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. *arXiv preprint*:2402.04582.
- Kim, J., & Wang, Z. (2025). Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. *Earthquake Engineering & Structural Dynamics*, 54(2), 471-490.
- Kim, J., Su, M., Wang, Z., & Broccardo, M. (2025). Recorded versus synthetic ground motions: A comparative analysis of structural seismic responses. *arXiv preprint*:2502.19549.

Future Directions: Enhancing Seismic UQ with Neural Operators

- The proposed simulator predicts structural responses at vector scales, such as the EDP vector
 - Prediction of complete continuous structural response function remains limited
- Capturing the complete structural response function enables improved long-term maintenance planning, damage detection, and localization

Neural operator for describing continuous, infinite-dimensional response functions

Future Directions: Enhancing Seismic UQ with Neural Operators

• **Neural operators** aim to learn the underlying mathematical operator that governs the system rather than pointwise approximations: **Function-based learning**

Iterative kernel integrations \mathcal{K}_t : Encodes the mapping between features across layers

Future Directions: Enhancing Seismic UQ with Neural Operators

• Integrating **neural operators** into the stochastic simulator for predicting time-series displacement and velocity profiles, and full-field stress distribution under seismic excitation

Joint PDF for representing complex spatial and temporal patterns in structural response

Thanks for listening

