Advanced Guidelines for Stability Design of Slender Reinforced Concrete Bridge Columns

Michael H. Scott (PI), Oregon State University

and Mark D. Denavit (Co-PI), University of Tennessee, Knoxville

> PEER Annual Meeting August 25, 2023

Project Overview

- Develop guidelines for the efficient design of RC bridge columns
 - Approximate method (moment magnification)
 - Refined method (second-order analysis)
- AASHTO method adopted from building codes (e.g., ACI 318)
 - Some analogies carry over from buildings to bridges
 - Engineers make conservative assumptions to fill in gaps
- Primarily analysis-based project to achieve the objective
 - Period of Performance: June 1, 2021 November 30, 2023
 - PEER-Bridge TO4

Project Overview

- Task 1: Literature review (behavior, analysis, and design)
- Task 2: Model selection and identification of parameter ranges
- Task 3: Develop and validate refined second-order analysis method
- Task 4: Evaluate current methods
- Task 5: Develop and verify modifications to design guidance
 - 5A Establish member effective stiffness (*EI*)
 - 5B Establish effective length factor (K)
 - 5C Validate AASHTO slenderness ratio limits
 - 5D Establish bridge responses as a function of *KL/r*
 - 5E Bridge modeling guidelines for second-order analysis
- Task 6: Develop final recommendations and validate CSiBridge

Develop and Validate Second-Order Analysis

- Second-order inelastic analysis as a "best guess" of true behavior against which current and trial design methods can be benchmarked.
- OpenSees with mostly "off-the-shelf" components
- Short-term loading
 - Concrete stress-strain relationship based on Mander et al. 1988
 - Elastic perfectly plastic steel stress-strain relationship
- Long-term loading
 - TDConcrete models in OpenSees (Knaack, Tosic, Kurama Notre Dame)
- Single column models and simplified whole bridge models

Validation Results (Short-Term)

- Database of 432 short-term loaded proportionally loaded rectangular RC beamcolumns
- Strength ratio
 - Mean = 1.004
 - St. Dev. = 0.141

Validation Results (Long-Term)

Ρ

- Jenkins and Frosch (2015) tested pairs of specimens.
- Difference (i.e., reduction) in strength due to long-term effects captured well by the analysis model.

Design Method Evaluation

- Run second-order inelastic analyses in OpenSees to determine the applied loads that cause failure.
- First analysis with axial load only then several analysis with constant axial plus bending moment.

GMNIA = Geometrically and materially nonlinear analysis with imperfections included

Design Method Evaluation

- Run design calculations (moment magnifier) to determine maximum permitted applied loads.
- Different maximum permitted applied load for different options in design (e.g., *EI*).

Design Method Evaluation

Compare th

conservative error applied load when using either determine constant El elastic analysis

Region of

and the

 maximum permitted applied loads per the design method

to identify regions of conservative and unconservative error.

GMNIA = Geometrically and materially nonlinear analysis with imperfections included

Parameter Set

- Automate these procedures to enable a broad evaluation
- Circular and obround (x- and y-axis bending) cross-sections
- Different diameters (D = 16, 48, and 72 in.) but always 2 in. cover
- Different steel ratios ($A_s/A_q = 1, 2, 3, and 4\%$)
- Different columns lengths (L/D = 5, 10, 15, 20, 25, 30, 35, and 40)
- Sway and non-sway with different boundary conditions (11 cases)
- Always f'_c = 4 ksi and f_y = 60 ksi
- 3,168 single column cases

Evaluation Results

• Maximum and minimum errors using the AASHTO moment magnifier approach with $EI = 0.4E_cI_g$

ρ=	Error	Slenderness (<i>KL /r</i>)					
A_s/A_g		≤ 22	22-50	50-75	75-100	100-125	≥ 125
0.01	Min	-3.7%	-8.7%	-15.9%	-23.7%	-25.4%	-28.4%
	Max	29.5%	28.5%	32.8%	59.4%	63.5%	65.3%
0.02	Min	-1.5%	-4.2%	-9.0%	-14.8%	-16.4%	-18.1%
	Max	28.3%	27.4%	27.1%	53.7%	58.1%	59.9%
0.03	Min	-1.1%	-3.0%	-6.5%	-11.0%	-13.7%	-15.7%
	Max	27.4%	26.5%	24.2%	50.1%	54.5%	56.2%
0.04	Min	0.3%	-2.0%	-4.8%	-9.3%	-10.8%	-12.9%
	Max	26.6%	25.8%	21.5%	46.2%	50.6%	52.2%

Effective Length Factor

Preliminary OpenSees analyses of bridges helped identify where typical Caltrans practice for determining effective length factors is conservative.

Base assumptions:

- Consider superstructure stiffness
- Neglect lateral restraint of abutments

Effective Length Factor From Solution of Governing Differential Equation (Three Span Bridge)

$$v_1''' + k^2 v_1'' = 0$$
 $v_2''' + k^2 v_2'' = 0$ $k^2 = \frac{1}{EI}$

Fixed base $v_i(0) = 0$ Translation(no rotation $v'_i(0) = 0$ at top free $v''_i'(L_{column}) + k^2 v'_i(L_{column}) = 0$ or translation) $v'_i(0) = 0$ at top free $v''_i''(L_{column}) + k^2 v'_i(L_{column}) = 0$

Rotation at top restrained by torsional stiffness of superstructure

$$v_{1}^{\prime\prime}(L_{column}) + \frac{g}{\gamma L_{column}} v_{1}^{\prime}(L_{column}) + \frac{g}{L_{column}} \left[v_{1}^{\prime}(L_{column}) - v_{2}^{\prime}(L_{column}) \right] = 0$$
$$v_{2}^{\prime\prime}(L_{column}) + \frac{g}{\gamma L_{column}} v_{2}^{\prime}(L_{column}) + \frac{g}{L_{column}} \left[v_{2}^{\prime}(L_{column}) - v_{1}^{\prime}(L_{column}) \right] = 0$$

 \boldsymbol{D}

Comparison of Spans

Ongoing Work

- Further development and finalization of design recommendations
 - Effective flexural rigidity, *EI*
 - Variable with *P* and *M*
 - Long-term effects
 - Tools for practical implementation of recommended effective length factor
 - Validate AASHTO slenderness ratio limits
 - At what value of *KL/r* is consideration of second-order effects necessary?
 - At what value of *KL/r* is a refined analysis necessary?
 - Heuristics (rules-of-thumb) for preliminary design
 - Recommendations for refined analysis
- Validate recommendations with CSiBridge

Outcomes

- Thorough evaluation of current design method for slender RC bridge columns.
- Identification and quantification of errors due to simplifications in the design method.
- Rigorously justified and practical recommendations to reduce error in design.

Engineers able to make more confident, accurate decisions when designing slender RC columns.

A 2.1

Thank you!

Image from Sharon Yen, Caltrans