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1. Motivation & Introduction

« Buildings constructed with adjacent stories having large differences in strength and stiffness can lead to the formation of a single-story mechanism during earthquake shaking. This type of
behavior is undesirable because inelastic deformation is concentrated in a few non-ductile components of a single story instead of being distributed along the height of the building, which can lead

to sideway collapse.

« Policy actions are often implemented to mitigate the effects soft-story vulnerabilities. A major challenge with developing such guidelines is being able to adequately capture the variations in
structural configurations and material properties of the affected structures. Furthermore, multiple sources of uncertainties (i.e. structure dimensions, construction quality) must be addressed when
developing retrofit techniques than can be generalized for a given portfolio. Furthermore, the tools, methods and guidelines that are currently available primarily designing retrofits to provide
adequate strength and inelastic deformation capacities. However, within the framework of performance-based seismic design (PBSD) (Moehle & Deierlein, 2004), little or no consideration is given

to earthquake-induced economic losses.

2. Building Prototype and Sample Analysis 3. Uncertainty Propagation: Surrogate Models

« Development and Verification Surrogate Models
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- Latin Hypercube Sampling Convergence Check

LHS provides with a way to propagate uncertainties, but the number of required samples cannot be 5. Conclusion
estimated before the analysis. Large number of samples should be first tried and convergence is checked.
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