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Wildland-Urban Interface (WUI) Fires
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Palisades Fire/Ethan Swope / AP

Palisades Fire/Robert Gauthier/Los Angeles Times Eaton Fire/Jeff Gritchen, Orange County Register/SCNG

Camp Fire/Hector Amezcua/Sac Bee



Coffey Park

Santa Rosa, CA
Tubbs Fire  

Modeling WUI Fires: 
A Huge Challenge



Pathways to Fire Spread

Radiation

Originally thought to be responsible for most/all 

ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Separation Distance

Height of 
Flames



Pathways to Fire Spread

Radiation

Originally thought to be responsible for most/all 

ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions



Pathways to Fire Spread

Radiation

Originally thought to be responsible for most/all 

ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions



Pathways to Fire Spread

Radiation

Originally thought to be responsible for most/all 

ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Nathan Trauernicht, UC Davis Fire @ Tamarack Fire



Mitigation: Defensible Space and Hardening

Hakes, Raquel SP, et al.." Fire technology 53 (2017): 475-515.
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Clear nearby fuels Prevent ignition from small flames/embers

Defensible Space Home Hardening



Part 1: Data- Driven WUI Risk to Structures

● Mitigation must be applied to reduce the risk of structure losses in 
the future

● Need methods to relate features/exposure to losses

● Previous analyses have several drawbacks: 

○ No quantitative data ranking one mitigation measure vs. 
another

○ Analysis of losses using only linear correlations or statistics (no 
interrelationships)

○ No exposure data (fire and embers) from wildland to structures
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Part 1: Data- Driven WUI Risk to Structures

- Create a WUI Dataset for Analysis and Model Validation: 

■ Using DINS (Ground Truth), remotely sensed data and modeled exposure

- Quantify Significance of WUI Features on 

Structure Destruction: 

■ Use SHAP Values and feature 

contributions

- Focus on 5 past fires in California:

WUI Fire Acres 

Burned

Destroyed 

Structures

2017 Tubbs 36,807 5,636

2017 Thomas 281,893 1,063

2018 Camp 153,336 18,804

2019 Kincade 77,758 374

2020 Glass 67,484 1,528

1
1
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CAL FIRE 

DINS  -
Damage 

INSpection

data

WUI data: 
values= 47,000
Unique data 
point= 45,947
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Undamaged structures
● Adding undamaged structures for past fires

(MS Footprints, OSM, Imagery)

Defensible Space

● Airborne LiDAR data for Sonoma County

○ 1 m. resolution raster for veg intensity

● Aerial and Street View Imagery

DINS
Collected 

Data

● Structure Features: Roof, siding, windows, vent, 

eaves, etc.

● Year Built

Combining and processing datasets

Missing 

Data

Ground Truth & RS 
Validation 

Data

● DINS

● MODIS , VIIRS, GOES

Structure Separation ● Calculated with MS Structure Footprints 

Flame and Embers
● Generated by reconstructing past fires  

● Models run with vegetation and limited urban spread -

extract fire intensity and ember cast



Defensible Space Assessment 

Defensible space is the buffer between a 
structure and the surrounding area.
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No defensible space Zone 0 and 1 clear

Zone 0: First five feet

Zone 1:Within 30 feet

Zone 2: Within 100 feet



Separation Distance
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Structure Separation Distance +

Unburned structures

MS Building Footprints - script analysis LIDAR (Sonoma County)

Vegetation Separation Distance



Exposure from Fire Modeling
Current 

Limitations

Underlying 
physics

Validation 
data

Structure-to-
structure spread

No inclusion of 
exposure from 

neighboring 

structures

Input data 
resolution

Wildfire 

model:

ELMFIRE

Inputs

• Vegetation

• Weather

• Topography

Models

• Surface fire

• Crown fire

• Ember

Outputs

• Spread rate

• Ember cast

• Flame length

Camp fire, 2018

Observation

Prediction

Raquel S. P. Hakes, Sara E. Caton, Michael J. Gollner, Daniel J. Gorham, "A Review of Pathways for Building Fire Spread 

in the Wildland Urban Interface Part II: Response of Components and Systems and Mitigation Strategies in the United 

States," Fire Technology, 53, 475–515, 2017. doi: 10.1007/s10694-016-0601-7

1
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WUI fire spread model: HAMADA + ELMFIRE
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Hamada, M. (1951). On the Rate of Fire Spread. Study of Disasters, 1.

Purnomo DM et al. (2024) Integrating an urban fire model into an operational wildland fire model to simulate one dimensional 

wildland–urban interface fires: a parametric study. International Journal of Wildland Fire 33, WF24102.doi:10.1071/WF24102



Kincade Fire, 2019

DINS Losses +
Observed fire perimeter: 
GeoMac-NIFC
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Fire Reconstruction: Kincade Fire 2019



DINS Losses +
Observed fire perimeter: 
GeoMac-NIFC

+

SIMULATION:
ELMFIRE + HAMADA 

=

Flame Length
Ember 
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Fire Reconstruction: Kincade Fire 2019
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Fire Reconstruction: Camp Fire 2018
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Extracting Significance of WUI Features 
• Features are inter-related so linear or statistical methods can’t capture their 

influence

• We attempt to fit the data to a machine learning (ML) model using regression and 
classification methods and extract the importance of individual features.

• It is important to first “clean/preprocess” the data and avoid biases, ensuring 
compatibility and enhancing the overall performance of the models:
• Imputation was explored due to the presence of numerous NaN values in the 

dataset.
• Standardized the numerical variables and Encoded categorical variables

21



Extracting Significance of WUI Features 
• We explore 4 models and use the “best fit”

○ Linear/Logistic regression 
○ Random Forest
○ Gradient Boosting/ XGBoost
○ CatBoost
○ XGBoost showed better results in overall accuracy . 

● We extract feature contributions through SHAP (SHapley Additive exPlanations) 
○ Interpreting machine learning models
○ Ensuring consistency and local accuracy
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Feature Contributions Using XGBoost and SHAP Values 

Stacked WUI data: 5 Past fires (2017-2022)
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Exterior Siding
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Flame Length
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Eaves
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Flame Length

Structure Separation

Year Built

Ember Deposited

Vegetation Separation

Eaves

Roof Construction

Window Pane

Vent Screen

Exterior Siding

Structure Separation

Flame Length

Year Built

Ember Deposited

Vegetation Separation

Vent Screen

Exterior Siding

Eaves

Roof Construction

Window Pane

Feature Contributions Using XGBoost and SHAP Values 

2017 Thomas Fire2017 Tubbs Fire
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Structure Separation

Flame Length

Year Built

Ember Deposited

Vegetation Separation

Exterior Siding

Vent Screen

Roof Construction

Window Pane

Eaves

Structure Separation

Flame Length

Year Built

Ember Deposited

Vegetation Separation

Vent Screen

Exterior Siding

Eaves

Roof Construction

Window Pane

2018 Camp Fire 2019 Kincade Fire

Feature Contributions Using XGBoost and SHAP Values 
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Structure Separation

Year Built

Flame Length

Ember Deposited

Exterior Siding

Vegetation Separation

Vent Screen

Roof Construction

Eaves

Window Pane

Feature Contributions Using XGBoost and SHAP Values 

2020 Glass Fire



Influence of Mitigation Factors

• ML model can be used as a 
predictive tool (~82% accuracy)

• Potential influence of different 
mitigation strategies tested

• Probability of surviving increases 
with hardening + defensible 
space

• Even without moving (spacing) 
structures, can drastically cut 
down on losses

• Does not incorporate dynamic 
(spread) or suppression effects

Hardening + Zone 0 

Hardening + Zone 0 + 1

Hardening Only 

No Mitigation
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PART II: New 
WU-E Model
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• Fuels (wildland)
• Weather

• Topography

Modeling tool

Key outputs

Geospatial inputs Submodels

• Rate of spread
• Heat flux
• Ember cast

Novel coupled WU-E1 modeling framework

• Direct flame contact
• Radiation

• Spotting (firebrands)

• Fuels (built)

1Purnomo, D., et al. Reconstructing modes of destruction in wildland-
urban interface fires using a semi-physical level-set model. Proceedings 
of the Combustion Institute. 

Wildland-Urban Extension fire model 

Model Benefits:

- Spreads through structures

- Incorporates effects of mitigation

- Links wildland-> structures -> wildland

- Integrates with existing management & risk frameworks

• Surface fire
• Crown fire

• Spotting (firebrands)



WU-E
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Purnomo DM et al. (2024) Integrating an urban fire model into an operational wildland fire model to 

simulate one dimensional wildland–urban interface fires: a parametric study. International Journal of 
Wildland Fire 33, WF24102.doi:10.1071/WF24102 



WU-E (cont’d)
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Purnomo, D. M. J., et. al.  (2024). Reconstructing modes of destruction in wildland–urban interface fires using a semi-physical level-set model. 

Proceedings of the Combustion Institute, 40(1–4), 105755. https://doi.org/10.1016/j.proci.2024.105755

https://doi.org/10.1016/j.proci.2024.105755
https://doi.org/10.1016/j.proci.2024.105755


WU-E (cont’d)

DFC radiation
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Purnomo, D. M. J., et. al.  (2024). Reconstructing modes of destruction in wildland–urban interface fires using a semi-physical level-set model. 

Proceedings of the Combustion Institute, 40(1–4), 105755. https://doi.org/10.1016/j.proci.2024.105755

https://doi.org/10.1016/j.proci.2024.105755
https://doi.org/10.1016/j.proci.2024.105755


WU-E (cont’d)

DFC radiation Ember
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Purnomo, D. M. J., et. al.  (2024). Reconstructing modes of destruction in wildland–urban interface fires using a semi-physical level-set model. 

Proceedings of the Combustion Institute, 40(1–4), 105755. https://doi.org/10.1016/j.proci.2024.105755

https://doi.org/10.1016/j.proci.2024.105755
https://doi.org/10.1016/j.proci.2024.105755


Thomas Fire (2017) 

With WUI Spread



Comparison of WUI models capabilities
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● Provide time of arrival outputs

● Provide ember cast outputs

● Provide fireline intensity outputs.

● Limited structural property variations

HAMADA WU-E

● Provide time of arrival outputs

● Provide ember cast outputs

● Provide fireline intensity outputs.

● Flexible structural property variations

● Provide fire incident intensity outputs

● Physical framework for improvement



● Significant factors leading to building destruction in the WUI:

○ Structure Separation Distance

■ Fire spread in the WUI often depends on building arrangement

○ Exposure : Fire intensity and firebrands/embers

■ Flame Length critical role in determining the intensity and spread of the fire across different landscapes

■ Ember exposure key because a wide area is impacted by embers

○ Building features (vents, siding, fences, decks, etc.) - Home Hardening

■ Importance varies depending on the fire and specific building construction

○ Defensible Space (Vegetation Separation Distance), particularly in Zone 0, plays a crucial role in mitigation.

○ Year built: Year that primary structure in parcel was constructed (confounding parameter)

○ Data-driven ML model useful for some predictions (e.g., response function) and impacts of mitigation

● New model, WU-E, improved previously-used model (HAMADA), by providing fire incident intensity outputs, 

flexible structural properties variations, and an adaptable physical framework for spread.

Preprint paper: https://doi.org/10.21203/rs.3.rs-5776626/v1; ELMFIRE Code: https://elmfire.io/
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Conclusions

https://doi.org/10.21203/rs.3.rs-5776626/v1
https://elmfire.io/
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https://www.sfpe.org/2025aisummit/



38

Thank you!

Work supported by Forest Health Grant 8GG21815
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