Isolating the Primary Drivers of Fire Risk to Structures in California

Michael Gollner, Associate Professor

Maryam Zamanialaei, Dwi Marhaendro Jati Purnomo, Maria Theodori Department of Mechanical Engineering, University of California, Berkeley

Daniel San Martin

Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso

Ali Tohidi, Yiren Qin, Arnaud Trouvé

Department of Fire Protection Engineering, University of Maryland, College Park.

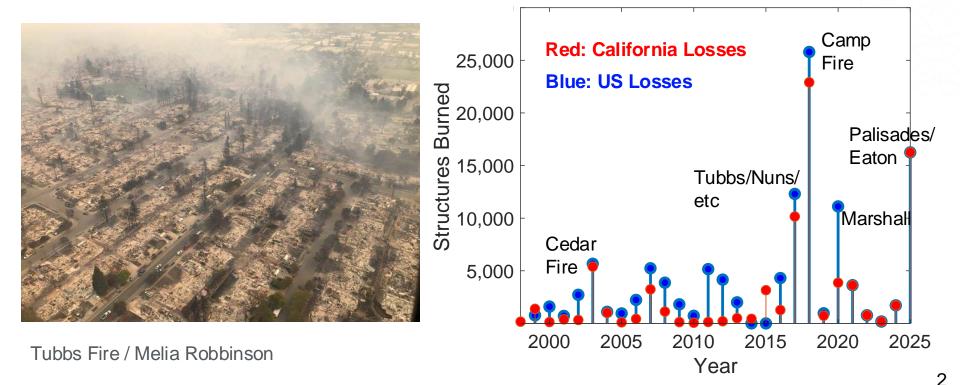
Chris Lautenberger

CloudFire, Inc.

Primary Project Support from Forest Health Grant 8GG21815

Photo Credit: Melia Robbinson

Wildland-Urban Interface (WUI) Fires



Berkeley Fire Research Lab

Data: CA (CAL FIRE), US (NIFC)

Palisades Fire/Robert Gauthier/Los Angeles Times

Palisades Fire/Ethan Swope / AP

Camp Fire/Hector Amezcua/Sac Bee

Eaton Fue/Jeff Gritchen, Orange County Register/SCNG

Modeling WUI Fires: A Huge Challenge

Coffey Park Santa Rosa, CA Tubbs Fire

Radiation

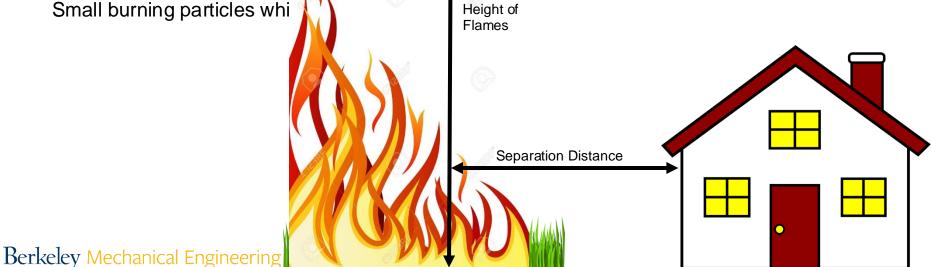
Originally thought to be responsible for most/all ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles whi



Radiation

Originally thought to be responsible for most/all ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Berkeley Mechanical Engineering

Radiation

Originally thought to be responsible for most/all ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Radiation

Originally thought to be responsible for most/all ignitions

Direct Flame Contact

Smaller flames from nearby sources

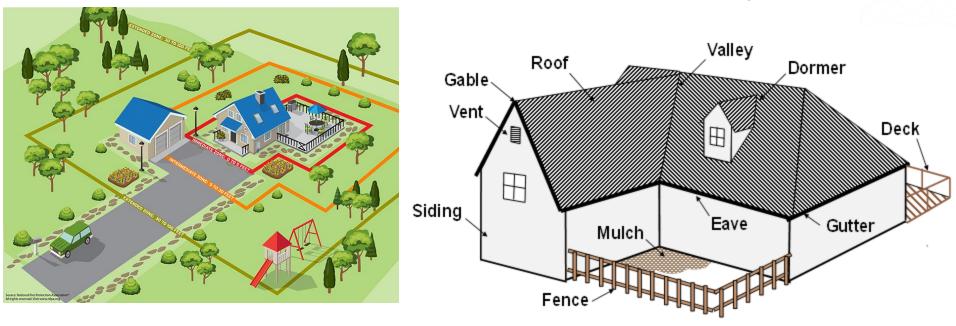
Embers or Firebrands

Small burning particles which cause spot ignitions

Mitigation: Defensible Space and Hardening

Defensible Space

Home Hardening



Hakes, Raquel SP, et al.." Fire technology 53 (2017): 475-515.

Clear nearby fuels

Berkeley Fire Research Lab Prevent ignition from small flames/embers

Part 1: Data- Driven WUI Risk to Structures

- Mitigation must be applied to reduce the risk of structure losses in the future
- Need methods to relate features/exposure to losses
- Previous analyses have several drawbacks:
 - No quantitative data ranking one mitigation measure vs. another
 - Analysis of losses using only linear correlations or statistics (no interrelationships)
 - No exposure data (fire and embers) from wildland to structures

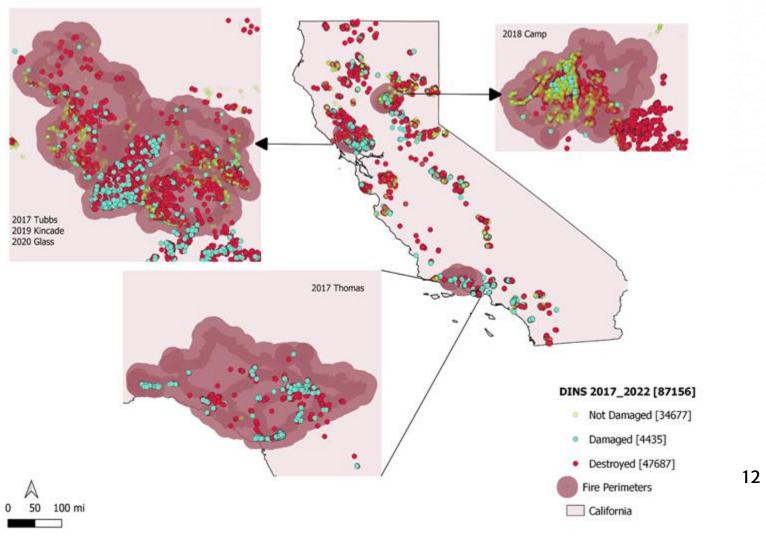
Part 1: Data- Driven WUI Risk to Structures

- Create a WUI Dataset for Analysis and Model Validation:
 - Using DINS (Ground Truth), remotely sensed data and modeled exposure
- Quantify Significance of WUI Features on Structure Destruction:
 - Use SHAP Values and feature contributions
- Focus on 5 past fires in California:

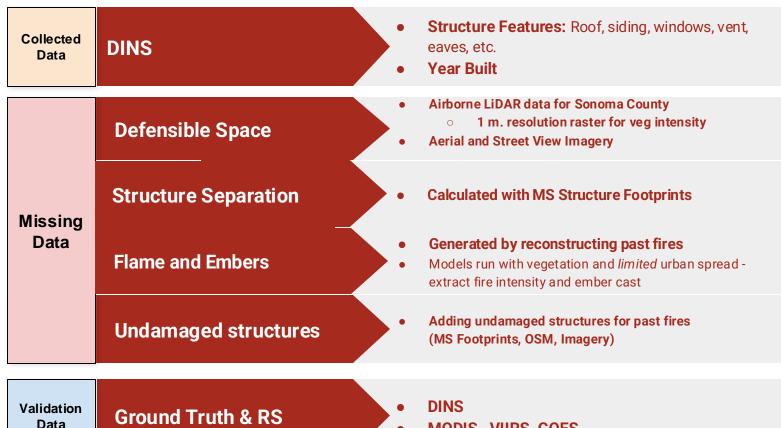
WUI Fire	Acres Burned	Destroyed Structures
2017 Tubbs	36,807	5,636
2017 Thomas	281,893	1,063
2018 Camp	153,336	18,804
2019 Kincade	77,758	374
2020 Glass	67,484	1,528

CAL FIRE DINS -Damage INSpection data

WUI data: values= 47,000 Unique data point= 45,947



Combining and processing datasets



MODIS, VIIRS, GOES

Defensible Space Assessment

No defensible space

Zone 0 and 1 clear

Defensible space is the buffer between a structure and the surrounding area.

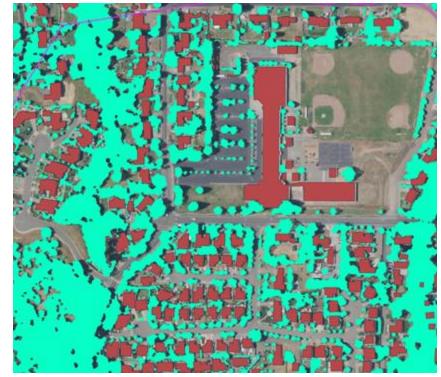
Zone 0: First five feet Zone 1:Within 30 feet Zone 2: Within 100 feet

Separation Distance

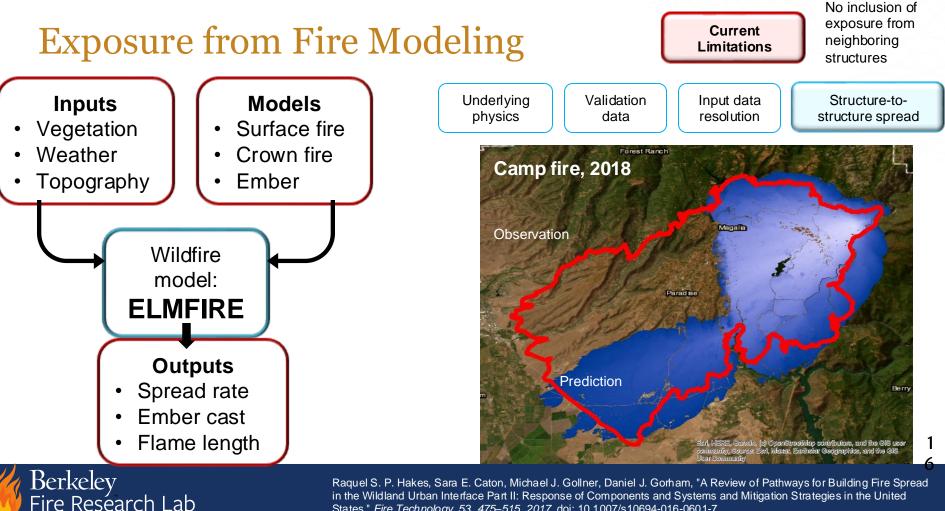
Structure Separation Distance + Unburned structures

MS Building Footprints - script analysis

Vegetation Separation Distance



LIDAR (Sonoma County)



in the Wildland Urban Interface Part II: Response of Components and Systems and Mitigation Strategies in the United States," Fire Technology, 53, 475-515, 2017. doi: 10.1007/s10694-016-0601-7

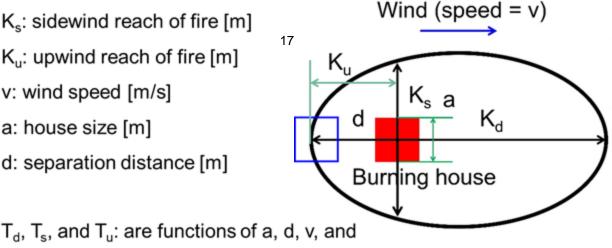
WUI fire spread model: HAMADA + ELMFIRE

- K_d: downwind reach of fire [m] K_s: sidewind reach of fire [m] K_u: upwind reach of fire [m] v: wind speed [m/s] a: house size [m]
- d: separation distance [m]

fire resistant buildings

Berkeley

Fire Reséarch Lab



$$K_d = \left[\frac{(a+d)}{T_d}\right](t)$$
$$K_s = \left(\frac{a}{2} + d\right) + \left\{\left[\frac{(a+d)}{T_s}\right](t - T_s)\right\}$$

$$K_u = \left(\frac{a}{2} + d\right) + \left\{ \left[\frac{(a+d)}{T_u}\right] (t - T_u) \right\}$$

T_d: downwind propagation time [min] T_s: sidewind propagation time [min] T_u: upwind propagation time [min] t: characteristic time [min] e.g., 120 min

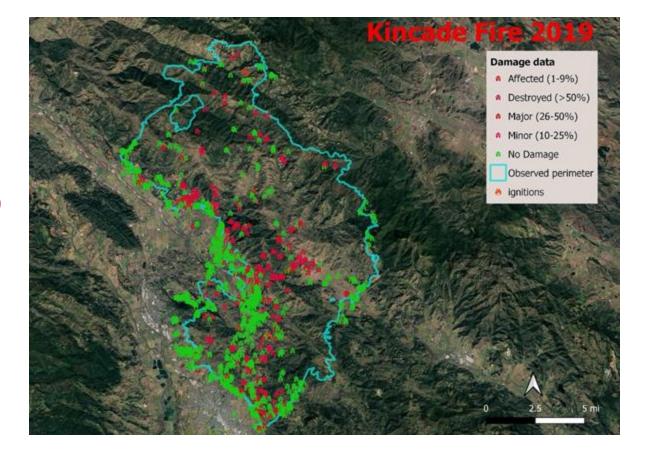
Hamada, M. (1951). On the Rate of Fire Spread. Study of Disasters, 1.

Purnomo DM et al. (2024) Integrating an urban fire model into an operational wildland fire model to simulate one dimensional wildland–urban interface fires: a parametric study. International Journal of Wildland Fire 33, WF24102.doi:10.1071/WF24102

Fire Reconstruction: Kincade Fire 2019

Kincade Fire, 2019

DINS Losses + Observed fire perimeter: GeoMac-NIFC

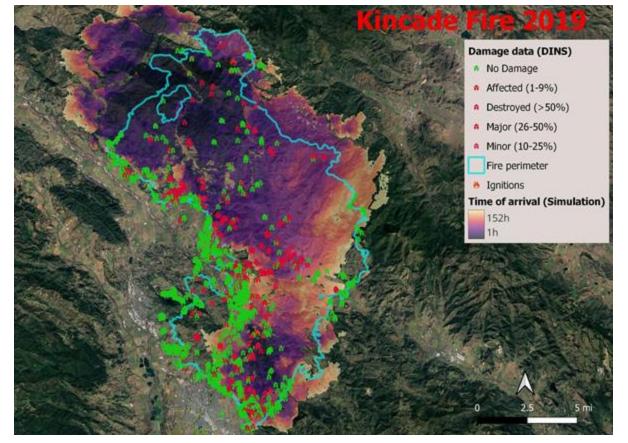


Fire Reconstruction: Kincade Fire 2019

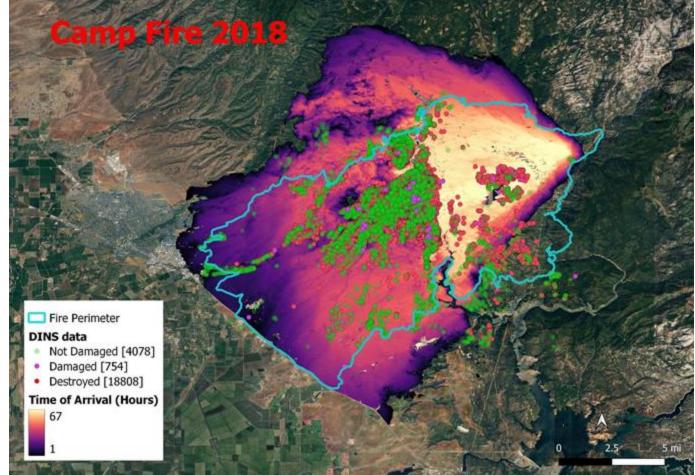
DINS Losses + Observed fire perimeter: GeoMac-NIFC

+ SIMULATION: ELMFIRE + HAMADA

= Flame Length Ember



Fire Reconstruction: Camp Fire 2018



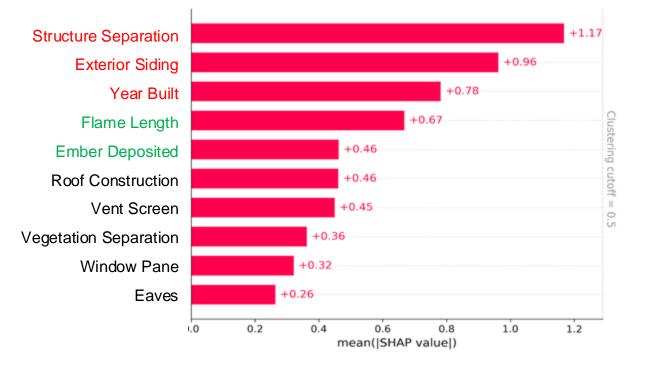
Extracting Significance of WUI Features

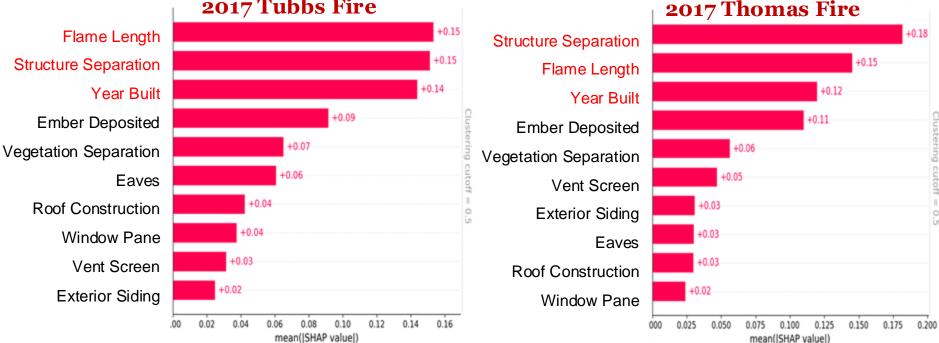
- Features are inter-related so linear or statistical methods can't capture their influence
- We attempt to fit the data to a machine learning (ML) model using *regression and classification methods* and extract the importance of individual features.
- It is important to first "clean/preprocess" the data and avoid biases, ensuring compatibility and enhancing the overall performance of the models:
 - Imputation was explored due to the presence of numerous NaN values in the dataset.
 - **Standardized** the numerical variables and **Encoded** categorical variables

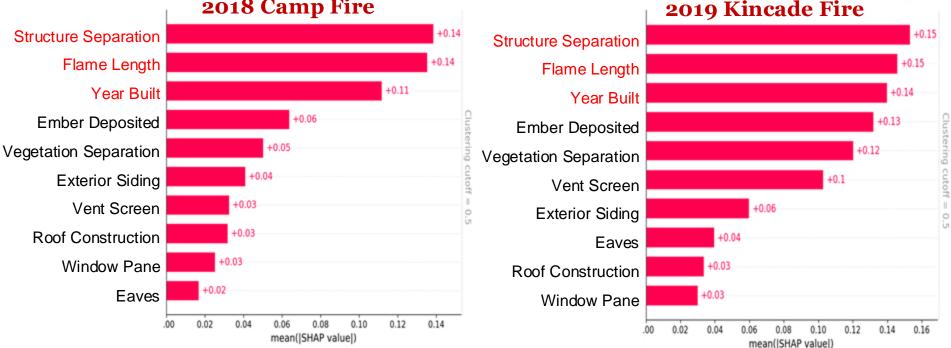
Extracting Significance of WUI Features

- We explore 4 models and use the "best fit"
 - Linear/Logistic regression
 - Random Forest
 - Gradient Boosting/XGBoost
 - CatBoost
 - XGBoost showed better results in overall accuracy.
- We extract feature contributions through SHAP (SHapley Additive exPlanations)
 - Interpreting machine learning models
 - Ensuring consistency and local accuracy

Stacked WUI data: 5 Past fires (2017-2022)

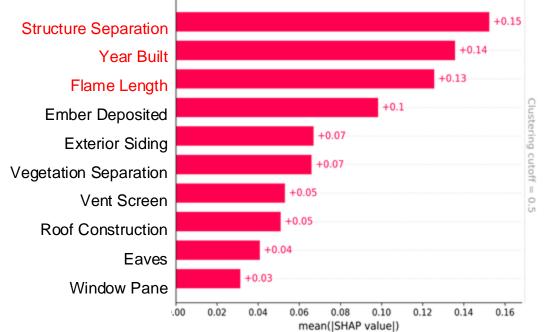






2018 Camp Fire

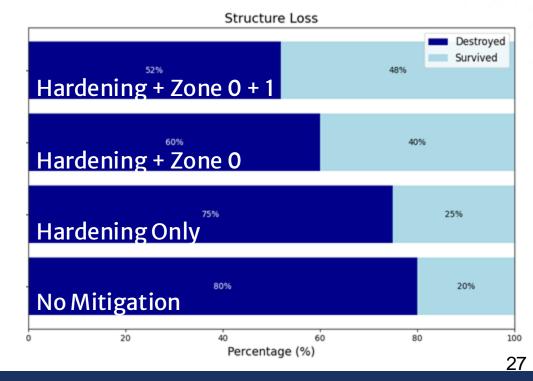
0.5



2020 Glass Fire

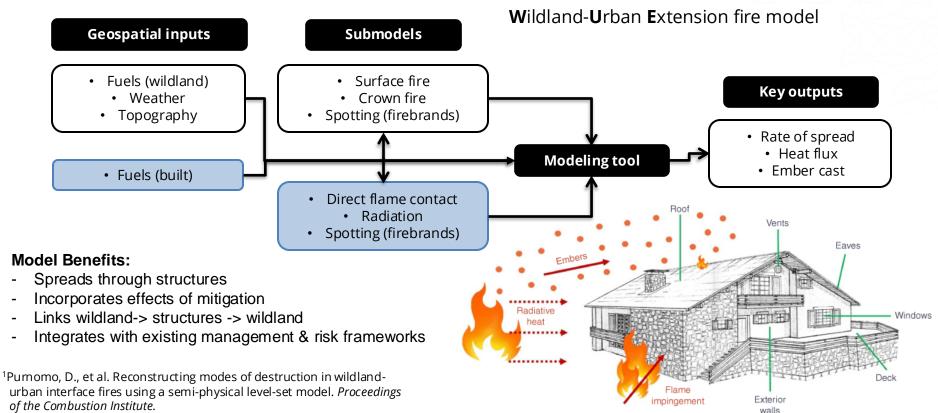
Influence of Mitigation Factors

- ML model can be used as a predictive tool (~82% accuracy)
- Potential influence of different mitigation strategies tested
- Probability of surviving increases with hardening + defensible space
- Even without moving (spacing) structures, can drastically cut down on losses
- Does not incorporate dynamic (spread) or suppression effects



PART II: New WU-E Model

Novel coupled WU-E¹ modeling framework

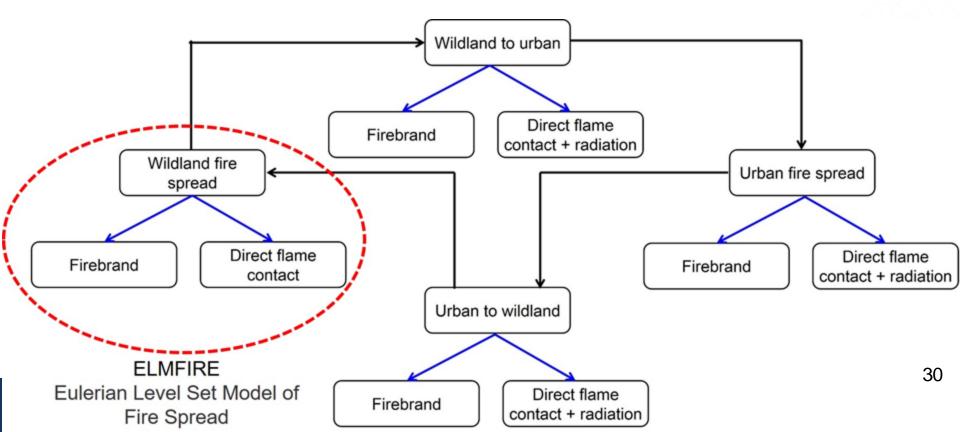


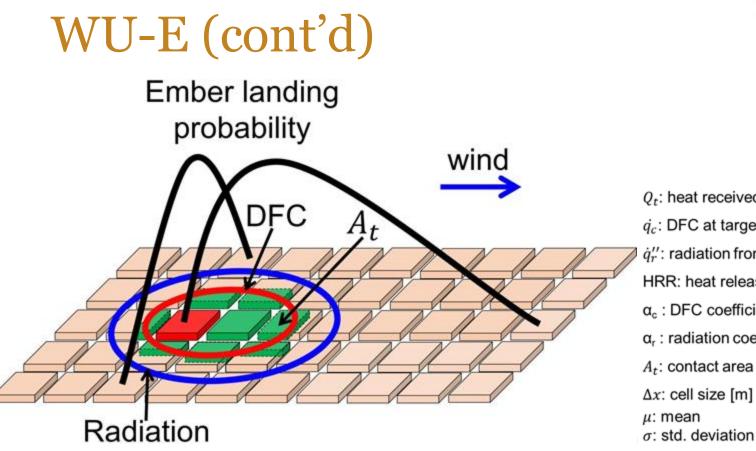
Berkeley

Fire Reséarch Lab

Purnomo DM et al. (2024) Integrating an urban fire model into an operational wildland fire model to simulate one dimensional wildland–urban interface fires: a parametric study. International Journal of Wildland Fire 33, WF24102.doi:10.1071/WF24102

WU-E





Q_t: heat received by target [kW] q_c : DFC at target cell [kW] \dot{q}_r'' : radiation from source [kW/m²] HRR: heat release rate [kW] α_c : DFC coefficient α_r : radiation coefficient A_t : contact area with flame [m²] Δx : cell size [m]

31

Purnomo, D. M. J., et. al. (2024). Reconstructing modes of destruction in wildland-urban interface fires using a semi-physical level-set model. Proceedings of the Combustion Institute, 40(1–4), 105755. <u>https://doi.org/10.1016/j.proci.2024.105755</u>

DFC radiation $Q_t = \alpha_c \dot{q_c} + \alpha_r \dot{q}_r'' A_t$ WU-E (cont'd) $\dot{q_c}(x,y) = \frac{HRR \cdot A_t}{\Delta x^2}$ $\dot{q}_r''(r) = \frac{0.35 HRR}{4\pi R^2}$ Ember landing probability wind Q_t: heat received by target [kW] DFC *q_c*: DFC at target cell [kW] \dot{q}_r'' : radiation from source [kW/m²] HRR: heat release rate [kW] α_c : DFC coefficient α_r : radiation coefficient A_t : contact area with flame [m²] Δx : cell size [m] μ: mean Radiation σ : std. deviation

Purnomo, D. M. J., et. al. (2024). Reconstructing modes of destruction in wildland–urban interface fires using a semi-physical level-set model. *Proceedings of the Combustion Institute, 40*(1–4), 105755. <u>https://doi.org/10.1016/j.proci.2024.105755</u>

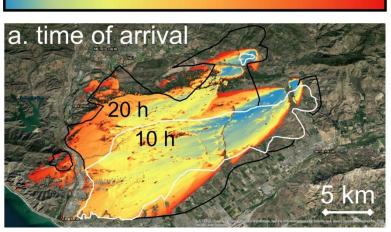
32

DFC radiation lognormal $Q_t = \alpha_c \dot{q_c} + \alpha_r \dot{q}_r'' A_t$ $\dot{q_c} (x, y) = \frac{HRR \cdot A_t}{\Delta x^2}$ WU-E (cont'd) $\mathsf{P}(\mathsf{x}) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right).$ $\dot{q}_r''(r) = \frac{0.35HRR}{4\pi R^2}$ Ember landing normal probability $\mathsf{P}(\mathsf{y}) = rac{1}{\sigma\sqrt{2\pi}} e^{-rac{1}{2}\left(rac{\mathsf{y}-\mu}{\sigma} ight)^2}$ wind Qt: heat received by target [KW] DFC *q_c*: DFC at target cell [kW] \dot{q}_r'' : radiation from source [kW/m²] HRR: heat release rate [kW] α_c : DFC coefficient α_r : radiation coefficient A_t : contact area with flame [m²] Δx : cell size [m] μ: mean Radiation 33 σ : std. deviation

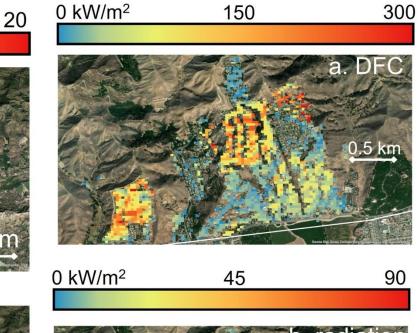
Purnomo, D. M. J., et. al. (2024). Reconstructing modes of destruction in wildland-urban interface fires using a semi-physical level-set model. Proceedings of the Combustion Institute, 40(1–4), 105755. https://doi.org/10.1016/j.proci.2024.105755

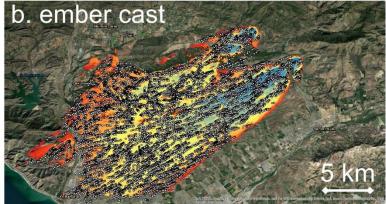
Ember

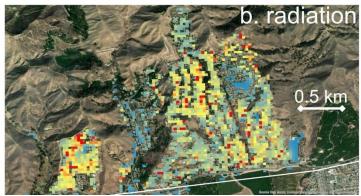
Thomas Fire (2017) 1 h With WUI Spread



10







Comparison of WUI models capabilities

HAMADA

- Provide time of arrival outputs
- Provide ember cast outputs
- Provide fireline intensity outputs.
- Limited structural property variations

WU-E

- Provide time of arrival outputs
- Provide **ember cast** outputs
- Provide fireline intensity outputs.
- Flexible structural property variations
- Provide fire incident intensity outputs
- Physical framework for improvement 35

Conclusions

- Significant factors leading to building destruction in the WUI:
 - Structure Separation Distance
 - Fire spread in the WUI often depends on building arrangement
 - Exposure : Fire intensity and firebrands/embers
 - Flame Length critical role in determining the intensity and spread of the fire across different landscapes
 - Ember exposure key because a wide area is impacted by embers
 - Building features (vents, siding, fences, decks, etc.) *Home Hardening*
 - Importance varies depending on the fire and specific building construction
 - Defensible Space (Vegetation Separation Distance), particularly in Zone 0, plays a crucial role in mitigation
 - Year built: Year that primary structure in parcel was constructed (confounding parameter)
 - Data-driven ML model useful for some predictions (e.g., response function) and impacts of mitigation
- New model, WU-E, improved previously-used model (HAMADA), by providing fire incident intensity outputs, flexible structural properties variations, and an adaptable physical framework for spread.
 Preprint paper: https://doi.org/10.21203/rs.3.rs-5776626/v1; ELMFIRE Code: https://elmfire.io/

https://www.sfpe.org/2025aisummit/

Thank you!

Work supported by Forest Health Grant 8GG21815

