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Relevance of Ground-Motion Simulations to
Earthquake Engineering Applications
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Seismic Hazard

O Constrain empirical models for scenarios lacking data
based on several simulations from a wide range of
seismic sources to obtain target spectra
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Structural Fragility

O Map the variability of seismic demand in the near field
where empirical data are limited, and ground motions
are shaped by the rupture details and coupling with the
local site conditions
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Q Inform the selection of ground motions to obtain realistic
infrastructure response distributions

O Enable true site-specific seismic design and assessment
procedures for a broad range of infrastructure




Suites of Region-Specific Earthquake Simulations

4 The data from such simulations are N 0 assess the expected demand (amplitude and variability) on a site-specific
invaluable for the earthquake research basis and for target hazard levels
community and engineers seeking to O understand the underlying causes for the observed GM intensities to
build and retrofit earthquake- inform the next-generation of design methodologies

resilient homes and infrastructure.
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Excerpt from a preliminary set of 25 realizations (M7 HF)
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Strong Motions for Critical Infrastructure Analysis

Forward directivity
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Ground-Motion Polarization at Near-Field Sites

Understand how these characteristics can affect structural
responses when following code compliant approaches —
ASCE 7 - RotD100 amplitude scaling (3-story RC building).
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Can we leverage suites of

simulated ground motions to
inform the selection of records

that target site-specific

amplitude and variability in

each component?
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Selecting Ground Motions for Component-Specific Target Spectral
Amplitude and Variability: Proposed Methodology

Determine the site-specific target spectrum for the
location and hazard level of interest for the RotD50
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Randomly select m sets of simulated ground motions; compute
the resultant normalized error (RNE). Sort the ground motion

sets based on min(RNE).
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Demonstration 1: 10-story 3D RC Building

25 realizations (case study) Building response
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Demonstration 2: 10-story 3D RC Building

25 realizations (case study)

Hazard disaggregation (USGS 2018):
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Concluding Remarks

0 Physics-based simulations can inform the selection of scenarios - rupture details
and initiation - that lead to low probability yet realistic strong motions for design
and assessment of critical infrastructure.

U Suites of validated site-specific simulated motions provide invaluable data to
update current ground-motion selection methods, allowing to target both median
and variability for the separate ground-motion components.

O Future simulation efforts should 1. be informed by hazard studies in the region of
interest to target the most relevant earthquake(s) to avoid amplitude scaling and
matching and 2. introduce uncorrelated rupture realizations.
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