

Using sets of realizations of kinematic slip distributions along the Marmara Sea fault to produce site-specific ground motion models for Istanbul

Roberto Paolucci & Marco Stupazzini

2024 PEER - LBNL Workshop Simulated Ground Motions for the San Francisco Bay Area January 18-19, 2024

Software for physics-based ground motion simulations (PBS): SPEED @PoliMI

SPEED MM	http://speed.mox.polimi.it/ SPI			SPEL	EED – SPectral Elements in Elastodynamics with Discontinuous Galerkin		
	People	The Project	Applications -	Publications	Download	Earthquake Web Repository	
OPEN-SOURCE	Computin	g News&Pre	ess Review Con	tact			

SPEED – SPectral Elements in Elastodynamics with Discontinuous Galerkin

SPEED is an open-source code designed with the aim of simulating large-scale seismic events in three-dimensional complex media: from far-field to near-field including soil-structure interaction effects.

SPEED combines the flexibility of discontinuous Galerkin methods to connect together, through a domain decomposition paradigm, Spectral Element blocks where high-order polynomials are used. SPEED heavily exploits parallelism in the framework of explicit time integration and features optimal scalability properties making use of the open-source libraries METIS and MPI for mesh partitioning and message passing.

SPEED is jointly developed at Politecnico di Milano by The Laboratory for Modeling and Scientific Computing MOX of the Department of Mathematics and by the Department of Civil and Environmental Engineering

Introduction of the Spectral Element Method enhanced by Discrete Galerkin approach

Features

> 3D unstructured conforming and non-conforming hexahedral meshes (e.g., between sub-domains $\Omega_{1,2}$, Ω_3 and Ω_4)

> Non uniform polynomial approximation orders (e.g., between sub-domains Ω_1 and Ω_2)

leap-frog FD time advancing scheme

visco-elastic and non-linear elastic soil behaviour

Kernel

➢ hybrid parallel programming based on MPI and Open-MP

- METIS software library to handle partitioning and load balancing
- designed for multi-core machines or large clusters
- optimized for HPC clusters (e.g., Leonardo@CINECA)

Soil modelling in SPEED

viscoelastic models

- Q = cost
- \checkmark Q = Q₀f
- Rayleigh damping

clay b) т тттний 111111 a contraction of the 1 1 1 11 11 1 1 1 1 1 1111 0.8 မို 111111 1 1 1 1 1 1 1 1 1 sand 111111 1 1 1 1 1 1 1 1 1 드니파비트 그는 더 파비트 0.2 1 1 1 1 11 11 11 1.1.1.111 1 F 1 1 1 1 F 10⁻¹⁰ 10⁻⁶ 10* 10 10 10^{°°} 10⁴ 10 10⁻² 10

Ymay

non-linear elasticity

Kinematic modeling of the seismic source

ANN2BB: BB ground motions using Artificial Neural Networks

Broadband Ground Motions from 3D Physics-Based Numerical Simulations Using Artificial Neural Networks

by Roberto Paolucci, Filippo Gatti, Maria Infantino, Chiara Smerzini, Ali Güney Özcebe, and Marco Stupazzini

Case studies of PBS by SPEED and validations against historical earthquakes

3D PBS ground motion scenarios Ground Motion in Istanbul from Earthquakes for PSHA in Istanbul (BSSA, 2020)

3D Physics-Based Numerical Simulations of along the Marmara Segment of the North Anatolian Fault

Maria Infantino*1, Ilario Mazzieri2, Ali Güney Özcebe3, Roberto Paolucci1, and Marco Stupazzini4

3D PBS scenarios in Istanbul: model construction

Digital elevation model and map of classes of $V_{s,30}$ implemented in SPEED

3D PBS scenarios in Istanbul: model construction

Spectral element numerical model of Istanbul (resolution: f_{max}= 1.5 Hz)

Horizontally stratified crustal model

Depth (km)	V_{s} (m/s)	Q(-)
0-5	Fig. 3	$V_S/10$
5-10	3490	350
10-20	3500	350
20-30	3920	400

companyation inclusion					
Hexahedral elements	2.257.482				
Degrees of freedom	~500 million				
Frequency range	0 to 1.5 Hz				
Element size range	180 m to 2 km				

Computational model

3D PBS in Istanbul: validation

Validation with records of 26 September 2019 $M_w 5.7$ Marmara Sea earthquake and numerical simulations. Data bandpass filtered between 0.05 and 1.5 Hz.

3D PBS scenarios in Istanbul: slip distributions

about 60 kinematic slip distributions (M7-7.4) were randomly generated according to Crempien and Archuleta (2015)

Velocity time histories for different scenarios

3D PBS scenarios in Istanbul: directivity effect

most slip distributions for the M7.4 earthquake implied forward directivity in at least some portions of Istanbul urban area

Comparison with GMMs

Comparison with GMMs

Bray&Rodriguez-Marek (SDEE, 2004) *Characterization of forward-directive ground motions in the near-fault region*

A general framework for PBS application into a PSHA

Note: PBS do not imply a deterministic approach to seismic hazard!

PBS-based GMM - Ayasofia

How many PBS realizations to obtain stable moments of the GMM distribution?

Are the results of PBS representing a realistic b-e and w-e variability?

How to exploit 3D PBS in the framework of PSHA?

How to exploit 3D PBS in the framework of PSHA?

Footprint-based approach: all realizations of the scenario earthquake are directly incorporated in the PSHA computations in a logic-tree framework, to preserve spatial correlation of ground motion

How to exploit 3D PBS in the framework of PSHA?

Footprint-based and GAF provide similar outcomes, bounded by on the lower side by the CHY014 and on the upper side by the FD ground motion model by Bray&Rodriguez-Marek (2004)

Concluding remarks

- ✓ 3D PBS may provide site-specific (or area-specific) probabilistic ground motion models that can be used as either complementary or alternative approach to ergodic empirical models within a PSHA framework
- ✓ to make results of 3D PBS meaningful for this purpose, the numerical simulations should span a range of uncertainty on the fault model sufficient to provide stable moments (mean, sigma) of the GMM probability distribution. In the Istanbul case, 10-15 simulations were found sufficient for this purpose for each Magnitude interval.
- ✓ 3D PBS may also support a footprint approach to PSHA, where, instead of using a GMM, all PBS scenarios are input in a logic-tree based PSHA framework, is also suitable to properly account for the spatial correlation of ground motion

Thanks for your attention!

see also the related presentations by:

Chiara Smerzini Marco Stupazzini