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Motivation

➢ Liquefaction routinely damages infrastructure, hinders post-event mobility and recovery, 

but is very challenging to predict at broad scales. 



Background

➢ Liquefaction models can be viewed as having 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).

  

Geologic/Geospatial Models
Tier 1



Background

For example, Rashidian & Baise (2020):

➢ Adopted by USGS for regional predictions in 

near-real-time and for future scenario events. 

➢ 5 variables: VS30, precipitation, depth to water, 

distance to water, PGV.

➢ Trained on global liquefaction observations.

➢ Similar models used internationally. 

[1] Rashidian, V., & Baise, L. G. (2020). Regional efficacy of a global geospatial liquefaction model. Engineering geology, 272, 105644.



Background

➢ Liquefaction models can be viewed as having 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).

➢ Tier 2: Requires in-situ geotechnical test data. Used at site scale. Most widely validated 

and commonly used model in engineering practice.

  

Geologic/Geospatial Models “Stress-Based” Models

Tier 1 Tier 2



➢ Several types of in-situ data can be used, but Cone Penetration Test (CPT)-based models 

are generally favored (~$3k-$10k per test):

Robertson & Wride 1998

Moss et al. 2006

Idriss & Boulanger 2008

Boulanger & Idriss 2014

Green et al 2019

Saye et al 2021

NGL models and others 

forthcoming…

Background

Triggering/Incidence Models

Prediction of soil response 

at discrete depth

Manifestation/Consequence Models

Prediction of profile/system response

Liquefaction Potential Index (LPI)

Ishihara Inspired LPI (LPIISH)

Liquefaction Severity Number (LSN)

Ishihara Inspired LSN (LSNISH)

NGL models and others 

forthcoming…
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Background

➢ Liquefaction models can be viewed as having 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).

➢ Tier 2: Requires in-situ geotechnical test data. Used at site scale. Most widely validated 

and commonly used model in engineering practice.

➢ Tier 3: Requires many soil and model parameters. Used at project scale. Can provide 

additional spatial/temporal insights. 

  

Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Excess Pore Pressure Ratio, ru

1

0

Tier 1 Tier 2 Tier 3



Background

➢ Liquefaction models can be viewed as having 3 tiers:

  

Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Excess Pore Pressure Ratio, ru

1

0

Tier 1 Tier 2 Tier 3

Our focus.

Tier-1 models have important uses but major limitations.

 How can Tier-2 data and models be used to improve them?
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➢ Current Tier 1 models have some major limitations:

1. They do not exploit the available geospatial information.

(accurate inference of subsurface conditions surely requires more than 4 variables)

2. They do not benefit from knowledge of  liquefaction mechanics developed over 50+ yrs.

     (models are trained only on observations, have no anchorage to mechanics)

3. They are not informed by, or anchored to, measurements of  subsurface conditions.

     (subsurface data is plentiful in many regions but is not used, often contradicts models) 

➢ Goal: A Tier-1 model that addresses these limitations by surrogating geotechnical models. 

Project Goal
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Modeling Concept & Demonstration: Step 1/5

➢ Step 1/5: Compile global subsurface geotechnical test data

CPT Data

~40,000 CPTs
(weighted by spatial density)

Most data

Data from 

48 States



Modeling Concept & Demonstration: Step 1/5

➢ Step 1/5: Compile global subsurface geotechnical test data (we’re using CPTs for now)

➢ Several thousand CPTs newly compiled from analog sources



➢ Step 2/5: Subject each CPT to a spectrum of seismic loading (PGAM)

 Predict liquefaction response (e.g., LPI) using state-of-practice models

                   Fit functional form to this computed response

➢ Performed for 3 manifestation models (LPI, LPIISH, LSN); models can be ensembled

➢ A & B become our modeling targets…

Modeling Concept & Demonstration: Step 2/5

Magnitude-scaled PGA

LP
I A describes the response at 

relatively high PGAM 

B describes the sensitivity of the 

response to PGAM (i.e., how fast the 

maximum is reached)

𝑳𝑷𝑰 = 𝑨 𝒕𝒂𝒏−𝟏 𝑩 ∗ 𝑷𝑮𝑨𝑴  − ൗ𝑨
𝑩

𝟐
∗ 𝟏𝟎𝟎

Increasing A



➢ Step 3/5: Compile geospatial features/predictors at CPT locations

Modeling Concept & Demonstration: Step 3/5

Starting Point: ~75 global datasets



➢ Step 3/5: Compile geospatial features/predictors at CPT locations

➢ Features trimmed to ~40 via domain knowledge, correlation structure, iterative testing, 

consideration of overfitting behavior.

➢ 2 sets of models trained: (i) global; and (ii) region-specific (New Zealand)

➢ New Zealand has region-specific variables (e.g., geology, soils, VS30), considerable data

➢ Provides a test of whether regional specificity is advantageous.

Modeling Concept & Demonstration: Step 3/5



Modeling Concept & Demonstration: Step 4/5

➢ Step 4/5: Train ML models to predict A & B, then run for 1.3 billion locations with HPC.



Modeling Concept & Demonstration: Step 4/5

➢ Expected liquefaction response is, in effect, precomputed & stored everywhere on earth.

➢ Permits rapid prediction of impacts (e.g., probability of ground failure, PGF).

A

B

PGAM

+

+

LPI

𝑳𝑷𝑰 = 𝑨 𝒕𝒂𝒏−𝟏 𝑩 ∗ 𝑷𝑮𝑨𝑴  − ൗ𝑨
𝑩

𝟐
∗ 𝟏𝟎𝟎



Modeling Concept & Demonstration: Step 4/5

➢ All models bagged decision trees (all common ML/AI architectures tried)

➢ Performance surrogating geotechnical models:

➢ Performance abstract until transformation to PGF via fragility function

Model

A B MI (e.g., LPI) PGF

MAE
Standard 

Deviation
MAE

Standard 

Deviation
MAE MSD MAE MSD

Global

LPI-ML 3.0 7.0 5.0 15.5 4.5 11.3 8% 22%

LPIISH-ML 3.0 6.8 6.0 17.1 4.6 11.1 6% 25%

LSN-ML 4.0 10.5 18.0 26.8 4.9 16.7 7% 22%
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Modeling Concept & Demonstration: Step 4/5

➢ All models bagged decision trees (all common ML/AI architectures tried)

➢ Performance surrogating geotechnical models:

➢ Performance abstract until transformation to PGF via fragility function

➢ Surrogating performance good, but doesn’t describe ability to predict liquefaction…

Model

A B MI (e.g., LPI) PGF

MAE
Standard 

Deviation
MAE

Standard 

Deviation
MAE MSD MAE MSD

Global

LPI-ML 3.0 7.0 5.0 15.5 4.5 11.3 8% 22%

LPIISH-ML 3.0 6.8 6.0 17.1 4.6 11.1 6% 25%

LSN-ML 4.0 10.5 18.0 26.8 4.9 16.7 7% 22%



Modeling Concept & Demonstration: Step 5/5

➢ Step 5/5: ML predictions are geostatistically updated by geotechnical data

Before local updating After local updating

𝑨𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = 𝒍𝒏
𝑨𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

𝑨𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅



Modeling Concept & Demonstration: Application Example

Rashidian & Baise (2020)

ML Ensemble (before updating)

Classified Geotech Influence

Feb 2011 M6.2 
Christchurch 
Earthquake

ML Ensemble (after updating)



Modeling Concept & Demonstration: Products

A & B Maps 
(models masked to limit extrapolation 

beyond parameter space)

Scripts to run on DesignSafe VM
(calls USGS ShakeMap URL)



Modeling Concept & Demonstration: Benefits

➢ Trains on subsurface measurements (vast training set), not on liquefaction case histories 

(small and slow to grow training set).

➢ Mechanics-informed (geotechnical backbone guides response and scaling).

➢ Geostatistical updating anchors ML to reality.

➢ Is very easy for end-users to implement, test, critique, etc.

➢ Will continuously improve with more data and better geotechnical models (inevitable)
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Performance Tests vs. Rashidian & Baise (2020) [RB20]

➢ One simple performance metric (among others) is Brier Score:

➢ 0 = perfect model, 0.5 = random guessing, 1 = perfectly useless model.

➢ To assess statistical significance, we compute confidence intervals, Kolmogorov-Smirnov 

(KS) stats, and Cohen’s d effect on BS samples.

➢ BS data resampled via agglomerative clustering to reduce autocorrelation effects (small).

𝑩𝒓𝒊𝒆𝒓 𝑺𝒄𝒐𝒓𝒆(𝑩𝑺) =
𝟏

𝑵
෍

𝒊=𝟏

𝑵

𝑷𝒊 − 𝑶𝒊
𝟐

Predicted probability of observation

Observation (0 or 1)



Model Performance Tests vs. Rashidian & Baise (2020) [RB20]

➢ Test 1: Does the model perform better in unbiased regions with zero geotechnical data?

➢ Test set = Events that postdate RB20 training set and where no geotech data is available.

➢ Inventories from 2019 Ridgecrest, 2019 Puerto Rico, and 2023 Turkey Earthquakes

➢ ML outperforms RB20 to significant degree (large improvements per KS, d)

Model Mean BS
99% Confidence 

Interval of Mean BS

Comparison Against RB20

KS Test Statistic Cohen’s d Effect

RB20 0.393 0.380 - 0.407 - -

LPI-ML 0.153 0.143 - 0.162 0.56 -1.51

LPIISH-ML 0.128 0.120 - 0.137 0.62 -1.62

LSN-ML 0.180 0.170 - 0.191 0.49 -1.46

Ensemble 0.146 0.138 - 0.155 0.57 -1.59



Model Performance Tests vs. Rashidian & Baise (2020) [RB20]

➢ Test 2: Does geostatistical updating improve the model’s performance?

➢ Test set = Inventories from 24 global events in areas with geotech data

➢ ML outperforms RB20 to significant degree (moderate-to-large improvements per KS, d)

➢ Local updating further improves performance

Model Mean BS
99% Confidence Interval 

of Mean BS

Comparison Against RB20

KS Test Statistic Cohen’s d Effect

RB20 0.299 0.292-0.305 - -

Before Updating

LPI-ML 0.231 0.226-0.237 0.24 -1.05

LPIISH-ML 0.228 0.223-0.233 0.22 -1.11

LSN-ML 0.234 0.228-0.241 0.19 -0.99

Ensemble 0.228 0.222-0.233 0.24 -1.09

After Updating

LPI-ML 0.226 0.220-0.232 0.25 -1.03

LPIISH-ML 0.209 0.205-0.214 0.23 -1.19

LSN-ML 0.226 0.220-0.233 0.26 -0.96

Ensemble 0.208 0.203-0.213 0.25 -1.10



Model Performance Tests vs. Rashidian & Baise (2020) [RB20]

➢ Test 3: Does model regionalization improve performance before updating?

➢ Test set = Applied global vs region-specific model to 3 events in Canterbury NZ 

➢ ML outperforms RB20 to significant degree (moderate-to-large improvements per KS, d)

➢ Regional model performs only marginally better

Model Mean BS
99% Confidence Interval 

of Mean BS

Comparison Against RB20

KS Test Statistic Cohen’s d Effect

RB20 0.204 0.200-0.207 - -

Global

LPI-ML 0.143 0.139-0.147 0.40 -1.20

LPIISH-ML 0.127 0.123-0.132 0.52 -1.08

LSN-ML 0.187 0.183-0.191 0.21 -1.30

Ensemble 0.146 0.142-0.149 0.40 -1.24

New Zealand

LPI-ML 0.142 0.138-0.146 0.42 -1.17

LPIISH-ML 0.134 0.129-0.138 0.45 -1.09

LSN-ML 0.161 0.156-0.166 0.37 -1.16

Ensemble 0.140 0.136-0.144 0.41 -1.18
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Ongoing Work

➢ Integration with SimCenter tools (R2D) and USGS information products

➢ PEER scenario events



➢ Integration with SimCenter tools (R2D) and USGS information products

➢ PEER scenario events

➢ Network modelling in scenario events

➢ Maps also permit PBEE analyses at national scale

Ongoing Work
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