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Motivation

» Liquefaction routinely damages infrastructure, hinders post-event mobility and recovery,

but is very challenging to predict at broad scales.




Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1
Geologic/Geospatial Models

(km)

E 0-15
6-10.5

» Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of
complexities, but all are limited by lack of subsurface data (e.g., HAZUS).



Background

For example, Rashidian & Baise (2020):

>

>

YV VY

Adopted by USGS for regional predictions in
near-real-time and for future scenario events.

5 variables: V¢,,, precipitation, depth to water,
distance to water, PGV.

Trained on global liquefaction observations.

Similar models used internationally.

M 7.1 - Ridgecrest Earthquake Sequence
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Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1 Tier 2
Geologic/Geospatial Models “Stress-Based” Models

Dist. to river
(km)

0-15

6-10.5

» Tier 2: Requires in-situ geotechnical test data. Used at site scale. Most widely validated
and commonly used model in engineering practice.



Background

» Several types of in-situ data can be used, but Cone Penetration Test (CPT)-based models
are generally favored (~53k-S10k per test):
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Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1 Tier 2 Tier 3
Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Dist. to river
(km)
0-1.5

|1
I

6-10.5 i il R

Excess Pore Pressure Ratio, r,

» Tier 3: Requires many soil and model parameters. Used at project scale. Can provide
additional spatial /temporal insights.



Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1 Tier 2 Tier 3
Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Dist. to river
(km)

E 0-15
6-10.5

1o

Excess Pore Pressure Ratio, r,

i1

Ovur focus.
Tier-1 models have important uses but major limitations.
How can Tier-2 data and models be used to improve them?
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Project Goal

» Current Tier 1 models have some major limitations:

1. They do not exploit the available geospatial information.
(accurate inference of subsurface conditions surely requires more than 4 variables)

2. They do not benefit from knowledge of liquefaction mechanics developed over 50+ yrs.
(models are trained only on observations, have no anchorage to mechanics)

3. They are not informed by, or anchored to, measurements of subsurface conditions.
(subsurface data is plentiful in many regions but is not used, often contradicts models)

» Goal: A Tier-1 model that addresses these limitations by surrogating geotechnical models.
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Modeling Concept & Demonstration: Step 1/5

CPT Data
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Modeling Concept & Demonstration: Step 1/5

» Step 1/5: Compile global subsurface geotechnical test data (we're using CPTs for now)

» Several thousand CPTs newly compiled from analog sources

PRJ-5668 | A Database of Cone Penetration Tests from North America

i Download Dataset

Cite This Data: . .
Sanger, M., M. Geyin, A. Shin, B. Maurer (2024). A Database of Cone Penetratit PRJ-4?26 | A Database Df Cone Penetration Tests from thE‘ Cascadla
America. DesignSafe-Cl. https://doi.org/10.17603/ds2-gqm-t836 Subduction Zone

Download Citation: DataCite XML | RIS | BibTeX 3 Download Dataset

36 Downloads 166 Views 0 Citations Details

Authaors Sanger, Morgan; Geyin, Mertcan; Shin, Andy Cite This Data:
Rasanen, R.. M. Geyin, M. 5anger, B. Maurer (2024). A Database of Cone Penetration Tests from the

Data Typels) Dataset
Cascadia Subduction Zone. Design5afe-Cl. https://doi.org/10.17603/ds2-snvw-jv27

Download Citation: DataCite XML | RIS | BibTeX
39 Downloads 241 Views 0 Citations Details

Authors Rasanen, Ryan; Geyin, Mertcan; Sanger, Morgan; Maurer, Brett

Data Type(s) Dataset




Modeling Concept & Demonstration: Step 2/5

> Step 2/5: Subject each CPT to a spectrum of seismic loading (PGA,,)
Predict liquefaction response (e.g., LPI) using state-of-practice models
Fit functional form to this computed response

Y LPI = Atan™? (B «(PGAy — (A/B))Z) +100

100 p—mm7m -
Increasing A
80 |
A describes the response at

o~ 60 _ .
= W W relatively high PGA,,

40

20 B describes the sensitivity of the

0

response to PGA,, (i.e., how fast the

0 0.5 1 1.5 2 . ) hed
Magnitude-scaled PGA maximum is reached)

» Performed for 3 manifestation models (LPI, LPl,,,, LSN); models can be ensembled
» A & B become our modeling targets...



Modeling Concept & Demonstration: Step 3/5

» Step 3/5: Compile geospatial features/predictors at CPT locations

Variable Description
Convergence A classifying measure of convergent areas as channels and divergent areas as ridges.
Compound topographic index A proxy of long-term soil moisture availability, also topographic wetness index.
Depth to bedrock Interpolated depth to bedrock.
Distance to coast Minimum distance to coast.
Distance to river Minimum distance to river computed for different Strahler orders.
Elevation deviation A measu
Geologic unit Geology
Geomorphon Classifie br depression.
Groundwater depth Interpold
Height above nearest drainage A topog hinage network.
Landform entropy A texturd ndow.
Landform uniformity A texturd
Major landform The land indow.
Maximum multiscale deviation The diffd n of the window.
Maximum multiscale roughness The sphd ' ruggedness.
Pfafstetter level The 'Pfaf basins.
Precipitation Mean an
Profile curvature A measu flow.
Roughness The largs ding cells.
Scale of MMD See Max
Scale of MMR See Max
Shannon index A diversi _ DW.
Soil depth Qualitati . .
Soil dra;gaqe qQualitati  Otarting Point: ~75 global datasets
Soil order Soil clasdreorcroreororrrer e e oo oo oo
Tangential curvature The rate of change perpendicular to a slope gradient; relates to sediment accumulation.
Terrain ruggedness index A measure of the ruggedness and topographic complexity (elevation variability) of landscapes.
Topographic position index The difference of elevation of a cell and the mean of its 8 surrounding cells.
Topographic slope The rate of change of elevation in the direction of the water flow line.
Vector ruggedness measure Quantifies ruggedness via variation in sine and cosine of the slope in three dimensions.
Vs30 Average shear wave velocity of uppermost 30m.




Modeling Concept & Demonstration: Step 3/5

» Step 3/5: Compile geospatial features/predictors at CPT locations

» Features trimmed to ~40 via domain knowledge, correlation structure, iterative testing,
consideration of overfitting behavior.

» 2 sets of models trained: (i) global; and (ii) region-specific (New Zealand)

» New Zealand has region-specific variables (e.g., geology, soils, V,,), considerable data
» Provides a test of whether regional specificity is advantageous.



Modeling Concept & Demonstration: Step 4/5

> Step 4/5: Train ML models to predict A & B, then run for 1.3 billion locations with HPC.




Modeling Concept & Demonstration: Step 4/5

» Expected liquefaction response is, in effect, precomputed & stored everywhere on earth.

.o e T R A
R e, - g <

PGF (%)
B 0-20
T - 20 -
0.8 - 40 -
w 0.6 A
& 0.4 .
0.2
0 1 | 1
0 50 100
— > LPI

2
LPI = Atan™1 (B * (PGAM - (A/B)) ) x 100

—

» Permits rapid prediction of impacts (e.g., probability of ground failure, PGF).



Modeling Concept & Demonstration: Step 4/5

» All models bagged decision trees (all common ML/AI architectures tried)
» Performance surrogating geotechnical models:

A B MI (e.g., LPI) PGF
Model
Deviation beviation | MAE | MSD | MAE | MsD
Global
LPI-ML 7.0 5.0 15.5 4.5 11.3 8% 22%
LPI,,-ML 6.8 6.0 17.1 4.6 11.1 6% 25%
LSN-ML 10.5 26.8 4.9 16.7 7% 22%

» Performance abstract until transformation to PGF via fragility function




Modeling Concept & Demonstration: Step 4/5

» All models bagged decision trees (all common ML/AI architectures tried)
» Performance surrogating geotechnical models:

4 B MI (e.g., LPI) PGF
Model Mag | Standard |, g | Standard § o v | Msp | MAE | MsD
Deviation Deviation
Global
LPI-ML 3.0 7.0 5.0 15.5 8% 229%
LPLg-ML 3.0 6.8 6.0 17.1 6% 25%
LSN-ML 4.0 10.5 18.0 26.8 7% 229%

» Performance abstract until transformation to PGF via fragility function



Modeling Concept & Demonstration: Step 4/5

» All models bagged decision trees (all common ML/AI architectures tried)
» Performance surrogating geotechnical models:

A B MI (e.g., LPI)
Model MAE Stalfdzfrd MAE Stiﬂ}di}l’d MAE MSD
Deviation Deviation
Global
LPI-ML 3.0 7.0 5.0 15.5 4.5 11.3
LPI,g;-ML 3.0 6.8 6.0 17.1 4.6 11.1
LSN-ML 4.0 10.5 18.0 26.8 4.9 16.7

» Performance abstract until transformation to PGF via fragility function

» Surrogating performance good, but doesn’t describe ability to predict liquefaction...




Modeling Concept & Demonstration: Step 5/5

> Step 5/5: ML predictions are geostatistically updated by geotechnical data

Apoci =In
Residual A

Aobserved

predicted

Residuals

W 20

Before local updating

LPIA

After local updating



Modeling Concept & Demonstration: Application Example

Feb 2011 M6.2
Christchurch
Earthquake

PGF (%)
. 0-10

. 10-20

30 -40
40-50
50 - &80
G0-70
TO-80
[ B - 80
. 80 - 100

W 20-30 |

Rashidian & Baise (2020)

ML Ensemble (before updating)



Modeling Concept & Demonsiration: Products

PRJ-5732 | Mechanics-informed machine learning for geospatial modeling
of soil liquefaction: global model map products for LPI, LPlish, and LSN A & B Maps

(models masked to limit extrapolation

beyond parameter space)

Cite This Data:
sanger, M., M. Geyin, B. Maurer (2024). Mechanics-informed machine learning for geospatial modeling of
soil liguefaction: global model map products for LPI, LPlish, and LSN [Version 2]. Design5afe-Cl.

https://doi.org/10.17603/ds2-c0z7-hc12

PRJ-5745 | Mechanics-informed machine learning for geospatial modeling
of soll liquefaction: example model implementation in Jupyter Notebook and
Matlab

Authors Sanger, Morgan; Geyin, Mertcan; Maure| [ S Vg Srn

Data Type(s) Model

Download Citation: DataCite XML | RIS | BibTeX
25 Downloads 79 Views 0 Citations Details

Cite This Data:

Sanger, M., M. Geyin, B. Maurer (2024). Mechanics-informed machine learning for geospatial modeling of

S cr ipfS fO run on D es ignsafe VM soil liquefaction: example model implementation in Jupyter Notebook and Matlab [Version 2]. DesignSafe-
Cl. https://doi.org/10.17603/ds2-sp3e-dp21
(calls USGS ShakeMap URL)

Download Citation: DataCite XML | RIS | BibTeX
20 Downloads 113 Views 0 Citations Details

Authars Sanger, Morgan; Geyin, Mertcan; Maurer, Brett

Data Typels) Jupyter Notebook




Modeling Concept & Demonsiration: Benefits

» Trains on subsurface measurements (vast training set), not on liquefaction case histories
(small and slow to grow training set).

» Mechanics-informed (geotechnical backbone guides response and scaling).
» Geostatistical updating anchors ML to reality.
» Is very easy for end-users to implement, test, critique, efc.

» Wil continuously improve with more data and better geotechnical models (inevitable)
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Performance Tests vs. Rashidian & Baise (2020) [RB20]

» One simple performance metric (among others) is Brier Score:

> Predicted probability of observation
|—> Observation (0 or 1)

Brier Score(BS) = NZ(P — 0,)*

» 0 = perfect model, 0.5 = random guessing, 1 = perfectly useless model.

» To assess statistical significance, we compute confidence intervals, Kolmogorov-Smirnov
(KS) stats, and Cohen’s d effect on BS samples.

» BS data resampled via agglomerative clustering to reduce autocorrelation effects (small).



Model Performance Tests vs. Rashidian & Baise (2020) [RB20]

» Test 1: Does the model perform better in unbiased regions with zero geotechnical data?

» Test set = Events that postdate RB20 training set and where no geotech data is available.
» Inventories from 2019 Ridgecrest, 2019 Puerto Rico, and 2023 Turkey Earthquakes

99% Confidence Comparison Against RB20
Model Mean BS Interval of Mean BS | KS Test Statistic Cohen’s d Effect
RB20 0.393 0.380 - 0.407 - -
LPI-ML 0.153 0.143 -0.162 0.56 -1.51
LPI,,-ML 0.128 0.120 - 0.137 0.62 -1.62
LSN-ML 0.180 0.170 - 0.191 0.49 -1.46
Ensemble 0.146 0.138 - 0.155 0.57 -1.59

» ML outperforms RB20 to significant degree (large improvements per KS, d)




Model Performance Tests vs. Rashidian & Baise (2020) [RB20]

> Test 2: Does geostatistical updating improve the model’s performance?
» Test set = Inventories from 24 global events in areas with geotech data

99% Confidence Interval Comparison Against RB20
Model Mean BS of Mean BS KS Test Statistic | Cohen’s d Effect
RB20 0.299 0.292-0.305 - -
Before Updating
LPI-ML 0.231 0.226-0.237 0.24 -1.05
LPI,,-ML 0.228 0.223-0.233 0.22 -1.11
LSN-ML 0.234 0.228-0.241 0.19 -0.99
Ensemble 0.228 0.222-0.233 0.24 -1.09

» ML outperforms RB20 to significant degree (moderate-to-large improvements per KS, d)
» Local updating further improves performance



Model Performance Tests vs. Rashidian & Baise (2020) [RB20]

» Test 3: Does model regionalization improve performance before updating?

» Test set = Applied global vs region-specific model to 3 events in Canterbury NZ

99% Confidence Interval Comparison Against RB20
Model Mean BS of Mean BS KS Test Statistic | Cohen’s d Effect
RB20 0.204 0.200-0.207 - -
Global
LPI-ML 0.143 0.139-0.147 0.40 -1.20
LPI,,-ML 0.127 0.123-0.132 0.52 -1.08
LSN-ML 0.187 0.183-0.191 0.21 -1.30
Ensemble 0.146 0.142-0.149 0.40 -1.24

» ML outperforms RB20 to significant degree (moderate-to-large improvements per KS, d)
» Regional model performs only marginally better
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Ongoing Work

» Integration with SimCenter tools (R2D) and USGS information products

> PEER scenario events

P Hwntscnnarl Earthquake
Seattle Fault Zone
M7.5

& '-"'-;ff-f'ﬁ" ST

a

Ensembled Model

PGF (%)

.'ICIO
B

Pacific Northwest Scenario Earthquake
Cascadia (geometric
mean), median
M9.0

N
4] 55 110 220
I ey — 1, &5 A

Ensembled Model
PGF (%)

.100
B




Ongoing Work

» Integration with SimCenter tools (R2D) and USGS information products

> PEER scenario events

» Network modelling in scenario events

» Maps also permit PBEE analyses at national scale
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