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Motivation

» Liquefaction routinely damages infrastructure, hinders post-event mobility and recovery.




Motivation

» Some scenario earthquake studies suggest liquefaction could cause more damage than

any other earthquake effect:

» The Dept. of Homeland Security (2019) predicted impacts to

Resiliency infrastructure owed by WA state in an M9 earthquake.

B Assessment

Washington State
Transportation Systems

2755 km of road, 1815 km of rail, 837 bridges,

and 8 ports are expected to be unavailable due

predominantly to soil liquefaction.

» Draws attention to:
1) Liquefaction’s potentially staggering impact (could these predictions be trueé¢!)

2) How liquefaction is predicted at regional scales (DHS used “HAZUS” type model)




Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1
Geologic/Geospatial Models

(km)

B

» Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).



Background: Tier 1 Models

For example, Rashidian & Baise (2020):

>

>

YV VY

Adopted by USGS for regional predictions in
near-real-time and for future scenario events.

Five variables: V¢,,, precipitation, depth to
water, distance to water, PGV.

Trained on global liquefaction observations.

Similar models used internationally.
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Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1 Tier 2
Geologic/Geospatial Models “Stress-Based” Models

Dist. to river
(km)
0-15

6-10.5

» Tier 2: Requires in-situ geotechnical test data. Used at site scale. Most widely validated
and commonly used model in engineering practice.



Background: Tier 2 Models

» Several types of in-situ data can be used, but Cone Penetration Test (CPT)-based models
are generally favored (~53k-S10k per test):

Triggering/Incidence Models Manifestation/Consequence Models
>< T - Liquefaction Potential Index (LPI)
‘/_ “ 0.8 - Ishihara Inspired LPI (LPI )
Ground Deformation > 0.6 - Liquefaction Severity Number (LSN)
Pipeline Damaae "_f . Ishihara Inspired LSN (LSN¢,,)
F Pd . D 9 -g 0.4 |:> NGL models and others
oundation Damage -g 0.2 forthcoming...
Building Damage Ratio ($) &
Ei'C. O 1 | 1

0 50 100

LPI @

Prediction of profile/system response



Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1

Geologic/Geospatial Models

Dist. to river
(km)
0-1.5

6-10.5

» Tier 3: Requires many soil and model parameters. Used at project scale. Can provide

Tier 2
“Stress-Based” Models

Tier 3

Constitutive Models

-
.
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Excess Pore Pressure Ratio, r,

|1
I

additional spatial /temporal insights.




Background

» Liquefaction models can be viewed as having 3 tiers:

Tier 1

Geologic/Geospatial Models

Dist. to river
(km)

» 50-1.5
6-10.5

Tier 2

“Stress-Based” Models

Tier 3
Constitutive Models

Excess Pore Pressure Ratio, r,

i1

1o

Tier-1 models have important uses but major limitations.
How can Tier-2 data and models be used to improve them?

Ovur focus.
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Project Goal

» Current Tier 1 models have some major limitations:

1. They do not exploit the available geospatial information.
(accurate inference of subsurface conditions surely requires more than 4 variables)

2. They do not benefit from knowledge of liquefaction mechanics developed over 50+ yrs.
(models are trained only on observations, have no mechanistic backbone)

3. They are not informed by, or anchored to, measurements of subsurface conditions.
(subsurface data is plentiful in many regions but is not used, often contradicts models)

» Goal: Development of a Tier-1 model that addresses each of these limitations.
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Modeling Concept & Demonstration in New Zealand

» Step 1/5: Compile global subsurface geotechnical test data (we're using CPTs for now)

~45,000 CPTs and counting...

L p———

- S
= g e

Most data




Modeling Concept & Demonstration in New Zealand

> Step 2/5: Subject each CPT to a spectrum of seismic loading (PGA,,)
Predict liquefaction response (e.g., LPl) using Tier-2 models
Fit functional form to this computed response

Y LPI = Atan™? (B «(PGAy — (A/B))z) +100

100 p—7-—-v -
Increasing A
80 |
— 0 A conveys cumulative
5 10 “ thickness of liquefiable strata
20 : :
B conveys liquefaction
0 resistance of those strata

0 0.5 1 1.5 2
Magnitude-scaled PGA



Modeling Concept & Demonstration in New Zealand

» Step 3/5: Compile geospatial features/predictors at CPT locations

Variable Description
Convergence A classifying measure of convergent areas as channels and divergent areas as ridges.
Compound topographic index A proxy of long-term soil moisture availability, also topographic wetness index.
Depth to bedrock Interpolated depth to bedrock.
Distance to coast Minimum distance to coast.
Distance to river Minimum distance to river computed for different Strahler orders.
Elevation deviation A measu
Geologic unit Geology
Geomorphon Classifie br depression.
Groundwater depth Interpold
Height above nearest drainage A topog hinage network.
Landform entropy A texturd ndow.
Landform uniformity A texturd
Major landform The land indow.
Maximum multiscale deviation The diffd n of the window.
Maximum multiscale roughness The sphd ' ruggedness.
Pfafstetter level The 'Pfaf basins.
Precipitation Mean an
Profile curvature A measu flow.
Roughness The largs ding cells.
Scale of MMD See Max
Scale of MMR See Max
Shannon index A diversi DW.
Soil depth Qualitati
Soil drainage Qualitati ~75 gIOde ddfc:sefs
Soil order Soil clasdreorcroreororrrer e e oo oo oo
Tangential curvature The rate of change perpendicular to a slope gradient; relates to sediment accumulation.
Terrain ruggedness index A measure of the ruggedness and topographic complexity (elevation variability) of landscapes.
Topographic position index The difference of elevation of a cell and the mean of its 8 surrounding cells.
Topographic slope The rate of change of elevation in the direction of the water flow line.
Vector ruggedness measure Quantifies ruggedness via variation in sine and cosine of the slope in three dimensions.
Vs30 Average shear wave velocity of uppermost 30m.




Modeling Concept & Demonstration in New Zealand

> Step 4/5: Train ML model to predict A & B, then run models everywhere.




Modeling Concept & Demonstration in New Zealand

» Expected liquefaction response is, in effect, precomputed & stored everywhere on earth.

PGF (%)
B 0-20
T - 20 -
0.8 - 40 -
w 0.6 A
& 0.4 .
0.2
0 1 | 1
0 50 100
— > LPI

2
LPI = Atan™1 (B * (PGAM - (A/B)) ) x 100

—

» Permits rapid prediction of impacts (e.g., probability of ground failure, PGF).



Modeling Concept & Demonstration in New Zealand

> Step 5/5: ML predictions are geostatistically updated by geotechnical data

Aobserved

Apredicted

Residuals in A

 PRY

-14--0.76

[ |-076--036
[ ]-036--005

No Lig. Observed

Liq. Observed
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Benefits

» Trains on subsurface measurements (vast training set), not on liquefaction case histories
(small and slow to grow training set).

» ML can manage, exploit many potentially-useful predictors.

» Mechanics-informed (geotechnical backbone guides sensible response and scaling).
» Geostatistical updating anchors ML predictions to reality.

» Is very easy for end-users to implement, test, critique, efc.

»  Will continuously improve with more data (global trend toward shared data)...



New Zealand Geotechnical Database

el A

< PG A A

100,000+ geotechnical explorations...



Washington DNR Data Portal

GEOLOGIC
INFORMATION
PORTAL

ki
(41"
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=

100,000+ geotechnical explorations...



Benefits

» Trains on subsurface measurements (vast training set), not on liquefaction case histories
(small and slow to grow training set).

» Mechanics-informed (geotechnical backbone guides sensible response and scaling).
» ML can manage, exploit many potentially-useful predictors.

» Geostatistical updating anchors ML predictions to reality.

» Is very easy for end-users to implement, test, critique, efc.

» Wil continuously improve with more data (global trend toward shared data).

» All code on GitHub; designed for frequent version updates with new community data.
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Ongoing and Future Work

» Data Intake, especially in PEER Territory (currently ~3,500 CPTs)

» Regional vs. National vs. Global Models

» Integration with SimCenter Tools (R2D)

» Network Modelling in Scenario Events
» Merging with Bridge Damage (UW Structures)
» Traffic Impacts

L
& I E-FE -~

» Access to HealthCare SN i

e A “w = ]
» Demographic Analyses \ Optimal Route [

» Maps also permit PBEE analyses at regional scale (e.g., return period of damage)
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