
INFORMING PREDICTIONS FROM ABOVE 

WITH COMMUNITY DATA FROM BELOW: 
A MECHANICS-INFORMED AI LIQUEFACTION 

MODEL FOR RAPID RESPONSE & SIMULATION
G

PEER Researcher’s Workshop

16 August 2024

Morgan Sanger 

& Brett Maurer 
University of Washington



©travelieu.com

Outline

©travelieu.com

Motivation & 

Background

Motivation & 

Background

Ongoing & 

Future Work

Ongoing & 

Future Work

Model 

Concept/Demo

Model 

Concept/Demo
GoalGoal Benefits Benefits 



©travelieu.com

Motivation

➢ Liquefaction routinely damages infrastructure, hinders post-event mobility and recovery.



➢ Some scenario earthquake studies suggest liquefaction could cause more damage than 

any other earthquake effect:

➢ Draws attention to: 

1) Liquefaction’s potentially staggering impact (could these predictions be true?!)

2) How liquefaction is predicted at regional scales (DHS used “HAZUS” type model)

➢ The Dept. of Homeland Security (2019) predicted impacts to 

infrastructure owed by WA state in an M9 earthquake.

2755 km of road, 1815 km of rail, 837 bridges, 

and 8 ports are expected to be unavailable due 

predominantly to soil liquefaction.

Motivation



Background

➢ Liquefaction models can be viewed as having 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).

  

Geologic/Geospatial Models
Tier 1



Background: Tier 1 Models

For example, Rashidian & Baise (2020):

➢ Adopted by USGS for regional predictions in 

near-real-time and for future scenario events. 

➢ Five variables: VS30, precipitation, depth to 

water, distance to water, PGV.

➢ Trained on global liquefaction observations.

➢ Similar models used internationally. 

[1] Rashidian, V., & Baise, L. G. (2020). Regional efficacy of a global geospatial liquefaction model. Engineering geology, 272, 105644.



Background

➢ Liquefaction models can be viewed as having 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).

➢ Tier 2: Requires in-situ geotechnical test data. Used at site scale. Most widely validated 

and commonly used model in engineering practice.

  

Geologic/Geospatial Models “Stress-Based” Models

Tier 1 Tier 2



LPI

➢ Several types of in-situ data can be used, but Cone Penetration Test (CPT)-based models 

are generally favored (~$3k-$10k per test):

Robertson & Wride 1998

Moss et al. 2006

Idriss & Boulanger 2008

Boulanger & Idriss 2014

Green et al 2019

Saye et al 2021

NGL models and others 

forthcoming…

Background: Tier 2 Models

Triggering/Incidence Models Manifestation/Consequence Models

Prediction of profile/system response

Liquefaction Potential Index (LPI)

Ishihara Inspired LPI (LPIISH)

Liquefaction Severity Number (LSN)

Ishihara Inspired LSN (LSNISH)

NGL models and others 

forthcoming…
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Background

➢ Liquefaction models can be viewed as having 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface data (e.g., HAZUS).

➢ Tier 2: Requires in-situ geotechnical test data. Used at site scale. Most widely validated 

and commonly used model in engineering practice.

➢ Tier 3: Requires many soil and model parameters. Used at project scale. Can provide 

additional spatial/temporal insights. 

  

Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Excess Pore Pressure Ratio, ru
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Background

➢ Liquefaction models can be viewed as having 3 tiers:

  

Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Excess Pore Pressure Ratio, ru

1

0

Tier 1 Tier 2 Tier 3

Our focus.

Tier-1 models have important uses but major limitations.

 How can Tier-2 data and models be used to improve them?
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➢ Current Tier 1 models have some major limitations:

1. They do not exploit the available geospatial information.

(accurate inference of subsurface conditions surely requires more than 4 variables)

2. They do not benefit from knowledge of liquefaction mechanics developed over 50+ yrs.

     (models are trained only on observations, have no mechanistic backbone)

3. They are not informed by, or anchored to, measurements of subsurface conditions.

     (subsurface data is plentiful in many regions but is not used, often contradicts models) 

➢ Goal: Development of a Tier-1 model that addresses each of these limitations. 

Project Goal
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Modeling Concept & Demonstration in New Zealand

➢ Step 1/5: Compile global subsurface geotechnical test data (we’re using CPTs for now)

CPT Data

~45,000 CPTs and counting…

Most data

Data from 

47 States

Will demonstrate 

using only this data



➢ Step 2/5: Subject each CPT to a spectrum of seismic loading (PGAM)

 Predict liquefaction response (e.g., LPI) using Tier-2 models

                   Fit functional form to this computed response

Modeling Concept & Demonstration in New Zealand

Magnitude-scaled PGA

LP
I A conveys cumulative 

thickness of liquefiable strata

B conveys liquefaction 

resistance of those strata

𝑳𝑷𝑰 = 𝑨 𝒕𝒂𝒏−𝟏 𝑩 ∗ 𝑷𝑮𝑨𝑴  − ൗ𝑨
𝑩

𝟐
∗ 𝟏𝟎𝟎

Increasing A



➢ Step 3/5: Compile geospatial features/predictors at CPT locations

Modeling Concept & Demonstration in New Zealand

~75 global datasets



Modeling Concept & Demonstration in New Zealand

➢ Step 4/5: Train ML model to predict A & B, then run models everywhere.



Modeling Concept & Demonstration in New Zealand

➢ Expected liquefaction response is, in effect, precomputed & stored everywhere on earth.

➢ Permits rapid prediction of impacts (e.g., probability of ground failure, PGF).

A

B

PGAM

+

+

LPI

𝑳𝑷𝑰 = 𝑨 𝒕𝒂𝒏−𝟏 𝑩 ∗ 𝑷𝑮𝑨𝑴  − ൗ𝑨
𝑩

𝟐
∗ 𝟏𝟎𝟎



Modeling Concept & Demonstration in New Zealand

➢ Step 5/5: ML predictions are geostatistically updated by geotechnical data

𝑨𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = 𝒍𝒏
𝑨𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

𝑨𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 Rashidian & Baise (2020)

Our model (before local updating)

Our model (after local updating)

e.g., Feb 2011 M6.2 Christchurch Earthquake
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Benefits

➢ Trains on subsurface measurements (vast training set), not on liquefaction case histories 

(small and slow to grow training set).

➢ ML can manage, exploit many potentially-useful predictors.

➢ Mechanics-informed (geotechnical backbone guides sensible response and scaling).

➢ Geostatistical updating anchors ML predictions to reality.

➢ Is very easy for end-users to implement, test, critique, etc.

➢ Will continuously improve with more data (global trend toward shared data)...



New Zealand Geotechnical Database

100,000+ geotechnical explorations…



Washington DNR Data Portal

100,000+ geotechnical explorations…



Benefits

➢ Trains on subsurface measurements (vast training set), not on liquefaction case histories 

(small and slow to grow training set).

➢ Mechanics-informed (geotechnical backbone guides sensible response and scaling).

➢ ML can manage, exploit many potentially-useful predictors.

➢ Geostatistical updating anchors ML predictions to reality.

➢ Is very easy for end-users to implement, test, critique, etc.

➢ Will continuously improve with more data (global trend toward shared data).

➢ All code on GitHub; designed for frequent version updates with new community data.
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➢ Data Intake, especially in PEER Territory (currently ~3,500 CPTs)

➢ Regional vs. National vs. Global Models

➢ Integration with SimCenter Tools (R2D)

➢ Network Modelling in Scenario Events

➢ Merging with Bridge Damage (UW Structures)

➢ Traffic Impacts 

➢ Access to HealthCare

➢ Demographic Analyses

➢ Maps also permit PBEE analyses at regional scale (e.g., return period of damage)

Ongoing and Future Work
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