Liquefaction evaluation of gravelly soils: An integrated laboratory testing and numerical modeling approach

### Adda Athanasopoulos-Zekkos (PI), CEE UC Berkeley

Dr. Jongchan Kim, Post Doc, UC Berkeley Bofei Xu, PhD student, UC Berkeley Prof. Misko Cubrinovski, Univ of Canterbury, NZ Dr. Nathaniel Wagner, Slate Geotechnical Consultants





PEER Researchers' Workshop

August 25, 2023



# Where do we find these soils?

- Fills (Engineered or Reclaimed)
- Natural Deposits
- Mine taili









### Gravel Liquefaction in the Literature

| Year   | <u> </u>   | Earthquake                 | Reference                        |  |  |  |  |
|--------|------------|----------------------------|----------------------------------|--|--|--|--|
| 1891   | 7.9        | Mino-Owari, Japan          | Tokimatsu & Yoshimi (1983)       |  |  |  |  |
| 1905   | 7.1        | Messina, Italy             | Baratta (1910)                   |  |  |  |  |
| 1906   | 8.2        | San Francisco, CA          | Youd and Hoose (1978)            |  |  |  |  |
| 1948   | 7.3        | Fukui, Japan               | Ishihara (1985)                  |  |  |  |  |
| 1964   | 9.2        | Seward, Alaska             | McCulloch & Bonilla (1970)       |  |  |  |  |
| 1975   | 7.3        | Haicheng, China            | Wang (1984)                      |  |  |  |  |
| 1976   | 7.8        | Tangshan, China            | Wang (1984)                      |  |  |  |  |
| 1976   | 6.5        | Friuli, Italy              | Sirovich (1996)                  |  |  |  |  |
| 1978   | 7.4        | Miyagiken-Oki, Japan       | Tokimatsu & Yoshimi (1983)       |  |  |  |  |
| 1983   | 6.9        | Borah Peak, Idaho          | Youd et al (1985), Harder (1986) |  |  |  |  |
| 1988   | 6.8        | Armenia                    | Yegian et al (1994)              |  |  |  |  |
| 1992   | 5.8        | Roermond, Netherlands      | Maurenbrecher et al (1995)       |  |  |  |  |
| 1993   | 7.8        | Hokkaido, Japan            | Kokusho et al (1995)             |  |  |  |  |
| 1995   | 7.2        | Kobe, Japan                | Kokusho & Yoshida                |  |  |  |  |
| (1997) | )          |                            |                                  |  |  |  |  |
| 1999   | 7.6        | Chi-Chi, Taiwan            | Chu et al (2000)                 |  |  |  |  |
| 2008   | 7.9        | Wenchuan, China            | Cao et al (2013)                 |  |  |  |  |
| 2014   | 6.1 Cephal | lonia Island, Greece Nikol | aou et al (2014)                 |  |  |  |  |
| 2016   | 7.8        | Muisne, Ecuador            | Vera Grunauer et al (2017)       |  |  |  |  |
| 2016   | 7.8        | Kaikoura, New Zealand      | Cubrinovsky et al (2017)         |  |  |  |  |

#### 2014 Cephalonia EQ



Nikolaou et al. GEER (2014)

#### 2016 Kaikoura EQ



Cubrinovski et al. (2018)

## Gravel Liquefaction Sites in the World



Rollins, 2019

## Gravel Liquefaction in Older Dams



- Liquefaction hazard recognized after construction
- Liquefaction evaluation & remediation are often "multi-million dollar" decisions

# Gravel Liquefaction at Port Facilities

- Lateral Spread > 1 m
- Settlements > 25cm





- Lateral Spread > 1.5m
- Gravel ejecta

#### Integrated approach: Micro to Macro Response



### UC Berkeley Large-size Cyclic Simple Shear (CSS)



Monotonic, cyclic and post-cyclic tests were performed on three uniform gravels, and mixtures of gravels and Ottawa Sand C109

Pea Gravel



Rounded to Subrounded

8 mm Crushed Limestone



Angular

5 mm Crushed Limestone



Angular

V<sub>s</sub> was measured in every specimen





### Cyclic Simple Shear Test Results for Pea Gravel



### Cyclic Simple Shear Test Results for Sand/Gravel Mix



### **Liquefaction Resistance**



O <u>CRR<sub>15</sub> = 0.104 (loose), 0.134 (medium), 0.152 (dense)</u>

• Higher  $N_c$  required for denser specimens (less contractive)

Kim et al. 2023 ASCE JGGE

### Initial Shear Stress (α) Conditions



#### Initial Shear Stress (α) Conditions



### Liquefaction Resistance (Alpha conditions)





 $K_{\alpha} = \frac{CRR_{15,\alpha}}{CRR_{15,\alpha=0}}$ 

### **Postcyclic Volumetric Strain**

#### **Dissipation of excess pore water pressure**

#### → Recovery of vertical effective stress 100 kPa (reconsolidation)



#### Integrated approach: Micro to Macro Response



## **Regional Map and Seismicity**



Bradley et al 2017



### Site Map



# Data synthesized for this analysis

- Onsite Vs Profile
  - Roy and Rollins , Vantassel et al 2018
- CPT (six onsite data points)
  - Provided by Roy and Rollins
- Lab Data providing CRR Curve and Residual Strength of the gravelly fill
  - Cyclic Simple Shear (CSS), Monotonic Simple Shear (MSS) on Gravelly Fill Sampled collected from the site, <u>Kim et al 2022 (UCB)</u>
- Observed Deformations
  - GEER Report, Kaikoura 2016
- Cross Sections
  - Cubrinovski et al 2018

## Input Ground Motion Selection and Pre-Processing

- Recording from POTS (the Rock Site recording) used directly as the outcrop motion.
- Equivalent Linear 1-D Site Response Analysis performed in *DEEPSOIL* with the CPLB, PIPS, and Mean Vs Profile
- Compared with the CPLB, and PIPS Recordings



## Underground Stratigraphy



 Used subsurface conditions from Cubrinovski et al 2018, combined with rock depth determined using the forementioned Vs Profiles, as the basis of baseline model development.

# Constitutive Models and Soil Parameters

### Liquefiable Soil

- Gravelly Reclamation Fill
  - PM4Sand model used, with CRR curve developed from the lab.
  - Sr used from the lab data
- Sandy Reclamation Fill
  - PM4Sand model used, with CRR curve developed using the liquefaction triggering relationship (LTR) Boulanger and Idriss (2014), from the CPT data.
  - Sr, Boulanger and Idriss (2015), using the CPT data.

#### Non-Liquefiable Soil

- MC Model used with soil parameters developed from the limited CPT data points we have.
- Generic values are used in the baseline model, for secondary parameters, e.g. porosity, hydraulic conductivity, etc.
- Linear Elastic material is used for bedrock

## Soil Parameters used in the baseline model

| Phase         | Soil Unit Name                                          | Model Type     | Bulk Modulus<br>(Pa) 3D formulae | Shear<br>Modulus<br>(Pa) | Density<br>(kg/m^3) | Cohesion<br>(pa)     | Phi_cv<br>(Degrees)  | Vp (m/s<br>inherent)   | Vs (m/s<br>inherent)                       | Data Based<br>on |
|---------------|---------------------------------------------------------|----------------|----------------------------------|--------------------------|---------------------|----------------------|----------------------|------------------------|--------------------------------------------|------------------|
|               | Compacted Gravelly Fill Crust                           | MC             | 26000000                         | 120000000                | 1800                | 2000                 | 37                   | 453                    | 258                                        | Generic          |
|               | Marine Sediment                                         | MC             | 195000000                        | 9000000                  | 1600                | 15000                | 29                   | 416                    | 237                                        | СРТ              |
|               | Wellington Alluvium 1 (approx. 18 to 55 meters deep)    | MC             | 390000000                        | 180000000                | 2050                | 2000                 | 38                   | 520                    | 296                                        | Vs/Generic       |
| Static Phase  | Wellington Alluvium 2 (approx. 55 to 98<br>meters deep) | MC             | 498333333                        | 230000000                | 2100                | 2000                 | 40                   | 581                    | 331                                        | Vs/Generic       |
|               | Soft Bedrock                                            | Linear Elastic | 8666666667                       | 400000000<br>0           | 2300                |                      |                      | 2300                   | 1320                                       | СРТ              |
|               | Rock Lining                                             | MC             | 346666667                        | 160000000                | 1800                | 2000                 | 37                   | 523                    | 298                                        | Generic          |
|               | Uncompacted Gravelly Reclamation Fill                   | MC             | 195000000                        | 9000000                  | 1750                | 2000                 | 36                   | 398                    | 227                                        | СРТ              |
|               | Sandy Reclamation Fill                                  | MC             | 216666667                        | 10000000                 | 1850                | 2000                 | 38                   | 408                    | 232                                        | СРТ              |
|               |                                                         |                |                                  |                          |                     |                      |                      |                        |                                            |                  |
|               | Soil Unit Name                                          | Model Type     | G_o                              | h_po                     | D_r                 | e_min<br>(secondary) | e_max<br>(secondary) | h_o<br>(secondar<br>y) | Data Based<br>on                           |                  |
| Dynamic Phase | Uncompacted Gravelly Reclamation Fill                   | PM4Sand        | 1000                             | 0.20                     | 0.55                | 0.258                | 0.568                | 0.4                    | <u>Kim et al</u><br>2022 (UCB),<br>and CPT |                  |
|               | Sandy Reclamation Fill                                  | PM4Sand        | 930                              | 1.1                      | 0.6                 |                      | default              |                        | СРТ                                        |                  |

## Mesh used in the baseline model



## Lab CSS Testing and CRR Curves

CRR vs CSR @Mw=7.8, Sigma'v = atm



### Maximum Excess Pore Pressure Ratio (pp\_ex/sigma'v\_ini)



## Post-Liquefaction response





Muti-colored and void cells are zones with Residual Strength applied, which correspond to the liquefied zones shown in the previous slide. Voids are due to FLAC running out of legend space.

# URS/Roth model

- No calibration needed; the key input is CRR\_15 (set to 0.134).
- Gravelly fill soil parameters
  - Density 1750, consistent with PM4sand
  - Vs 194, consistent with G0 of 1000 in PM4Sand
  - Friction Angle, 38 degrees
  - CRR15 0.134 constrained by lab data
  - For K sigma Idriss and Boulanger (2008) (N160CS = 14.6)
  - For K alpha Idriss and Boulanger (2008) (N160CS = 14.6)
  - residual shear strength ratio = 0.125 back analyzed to achieve a reasonable match in the displacement field

## UBCSand model

- Calibrated to match the lab derived CRR curve
- Key parameters adjusted for calibration include the failure ratio m\_rf (set to 0.8), and the shear modulus number m\_kge (set to 400).



### Displacement field obtained compared to the PM4Sand and URS/Roth cases



Distance from Bulkhead (m)

 $K_{\sigma}$  effect

- K sigma, the overburden stress correction factor, was not explicitly an input for PM4Sand and UBCSand, as opposed to the direct assignment in URS/Roth model.
- For illustration purposes, the analytical details for PM4Sand are presented here.



## $K\alpha$ effect

• Similarly, K alpha, the overburden stress correction factor were studied for PM4Sand and UBCSand. For illustration purposes, the analytical details for PM4Sand are presented here.



Harder and Boulanger (1997)

## Next Steps

- Assess the performance of all three implemented constitutive models: further evaluate and summarize the differences in their development and calibration processes, and how they lead to varying levels of post-event displacements.
- Study the sub-layering effects within the reclamation fills.
- Quantitatively study the SSI effects from the wharfs

### Acknowledgements

<u>Collaborators:</u> Prof. Misko Cubrinovski Prof. Kyle Rollins





<u>Post-Doctoral Researchers:</u> Dr. Jongchan Kim





## Thank You!

