

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER 2019 ANNUAL MEETING JANUARY 17-18, 2019 LOS ANGELES, CA

UC BERKELEY • CALTECH • OSU • STANFORD • UC DAVIS • UC IRVINE • UC LOS ANGELES • UC SAN DIEGO • UNR • USC • U WASHINGTON

Accelerated Bridge Construction in Pacific Northwest Seismic Regions

Outlines:

- ✓ Accelerated Bridge Construction in Washington
- ✓ Fully Precast Bridges HFL
- ✓ UHPC Pier Connections
- Superelastic Materials IBRD
- ✓ Prestressed Columns with Self Centering Capability

Bijan Khaleghi, PhD, PE, SE State Bridge Design Engineer WSDOT - Bridge & Structures Office

Accelerated Bridge Construction & Seismic Challenges

Examples of WSDOT ABC Projects

Hood Canal Approach Bridge Construction

ABC - Bridge Lateral Slide: Night Closure

7 pm Saturday September 14th

2 pm Sunday September 15th

Bridge Move Summary:

- 1. Temporary Span out (25 min.)
- 2. Permanent Span in (45 min.)
- 3. Deck Lowering (30 min.)

http://wwwi.wsdot.wa.gov/eesc/bridge/ABC/

UHPC Connection for DBT Bridges - ABC

Existing bridges constructed via this method have shown poor performance from the welded bars.

Proposed Solution: Eliminate the welds and use UHPC to create the longitudinal joint.

SCOPE: Develop a new, inexpensive UHPC mix using local materials, test its structural performance, and specify a joint width.

Bridge Substructure & Seismic Design Requirements

Typical WSDOT Precast prestressed girder bridge with dropped bent cap

Connections need to be:

- Constructible
- Seismic Resilient Emulative
- Long term Performance & Longevity

Seismic Design Specifications

Large-Bar Connection - UW

- Member socket connection at base
- Large, bars at precast cap connection
- Two-stage cap
- Upper stage CIP
- Girders integral with combined lower and upper stages of cap

Precast Bridge System in High Seismic Regions - HFL

Column-to-Cap Connection

Connection Tests (42% Scale)

Moment vs. Drift

10.00

LB-02

Same response for precast and CIP

Column-to-Spread Footing and Shaft Connection Tests

Column-Shaft Tie Reinforcement

		DS-1	DS-2	DS-3
Column Diame	eler	20 in.	20 in.	20 in.
Column Reinforcem	ent Ratio	1.0 %	1.0 %	1.6 %
Shaft Diamel	er	30 in.	30 in.	26 in.
	Top 1 ft.	0.75	0.375	1.30
Lateral Reinforcement Efficiency Factor	Upper Half	0.50	0.25	1.00
Del .	Lower Half	0.50	0.25	1.00
Failure	10	Column	Shaft	Column

Socket Connection – Internal Forces

Precast Bridge System in High Seismic Regions - HFL

- PCI Journals
- Webinars
- Showcase

Precast Bent System for Use in High Seismic Regions

John Stanton

NHI Innovations Web Conference August 18, 2011

BergerABAM

Precast Bent System for Use in High Seismic Regions

Marc Eberhard University of Washington

Washington State DOT

NHI Innovations Web Conference August 22, 2013

Precast Bent Cap Placement

- Two Erection Cranes
- Segment Weight :(120 & 165 kips)
- 16 Duct Connection per Segment 0
- CIP Closure

Examples of WSDOT ABC Projects

Precast Bent: Grouted Duct Connection

SR 202 / SR 520 1^{1/2} Hours +/-Bent Cap Erection

SR 520 Floating Bridge & Landings Precast Crossbeam – Pier 36

EB Nalley Valley Project Precast Bents

Precast Column-Foundation Connection

Contractor Initiated Precast Column Idea - Saved One Month

Concrete filled Steel Tubes

Two Level Performance Seismic Design Requirement

Two-level performance criteria are required for design of Essential and Critical bridges.

- FEE: 30% probability of exceedance in 75 years 210 yrs Return Period
- SEE: 7% probability of exceedance in 75 years 975 yrs Return Period
 Bridges are considered as Critical, Essential, or Normal for their operational classification as described below.
- Critical Bridges are expected to provide immediate access to emergency and similar life-safety facilities after an earthquake.
- Essential Bridges serve as vital links for rebuilding damaged areas and provide access to the public shortly after an earthquake. <u>All bridges within</u> the seismic lifeline are considered Essential bridges.
- Normal Bridges All bridges away from Lifeline not designated as either Critical or Essential are designated as Normal.

	Sei	smi	c D	esig	gn	
Pe	rfoi	rma	nce	Cri	teri	a
• 1	Jormal	Bridge	s: O	ne Leve	el	
Essential Bridges: Two Level						
• •	Critical	Bridge	s: T	wo Lev	el	2 ⁴
Seismic Critical Member	D	isplacement	Ductility I	Demand Lin	nits	
	Normal	Essential	Bridges	Critical	Bridges	
	Bridges	SEE	FEE	SEE	FEE	
Pier Wall in Weak Direction	5.0	2.5	1.5	1.5	1.0	
Pier Wall in Strong Direction	1.0	1.0	1.0	1.0	1.0	
Single Column Bent	5.0	2.5	1.5	1.5	1.0	2
Multiple Column Bent	6.0	3.5	2.0	1.5	1.0	
Pile Column with Plastic Hinge	5.0	3.5	2.0	1.5	1.0	
at Top of Column						
Pile Column with Plastic Hinge	4.0	2.5	1.5	1.5	1.0	
Below Ground						
Superstructure	1.0	1.0	1.0	1.0	1.0	

NCHRP: Performance Based Seismic Design

Bridge Operational	Seismic Hazard	Expected Post EQ	Expected Post EQ
Importance Category	Evaluation Level	Damage State	Service Level
Normal	SEE	Significant	No Service
Essential	SEE	Moderate	Limited Service
	FEE	Minimal	Full Service
Critical	SEE	Minimal to Moderate	Limited Service
	FEE	None to Minimal	Full Service

Use of isolation Bearings for Bridges

- Seismic isolation bearings are designed per LRFD, SGS, Isolation GS, and BDM.
- Expansion joints accommodate seismic movements required for isolation bearings to function properly.
- Adequate clearance at abutments for seismic displacement.
 Combinations of isolation bearings and conventional bridge column fixity are not allowed.

Parameter	Trans &	
	Longit	
Seismic Total Design	6 to 24	
Displacement range (TDD)	inches	
Isolated Structure Effective	2 to 3	
Period (T)	seconds	

Innovative Bridge Design – Super Elastic Materials

Innovative Super Elastic Materials - SMA

- Superelastic Nickel-Titanium Shape Memory Alloy (SMA) Bars
 - Reduce residual displacements

- **Challenges with including SMA**
 - Cost
 - Schedule 6 month delivery, not including process to head bar for mechanical splice
 - Mechanical splice required in hinge region

WSDOT Bridge Column Test - UNR

- Three 0.4 Scale Columns
 - Incorporating SMA and ECC
 - I Conventional RC
- 62 in clear height
- 18 in x 18 in cross-section
- Cyclic loading

Damage at End of Testing

SR99-RC (8% Drift)

SR99-LSE (12% Drift)

SR99-SSE (10% Drift)

SR 99 South Tunnel off Ramp Access

- Bridge Completed in 2018
- Open to traffic 2/2019

Seismic Resiliency – Self Centering Precast Columns

Seismic Resiliency – Self Centering Precast Columns

Bending

Tension cracks and

compression crushing

Crushing

Cracking

During Earthquake

Strands elongate

due to joint opening.

Rotation

Strands

Force in strands

rights the column.

precas griders

Prestressed Columns with Self Centering Capability for Seismic Resiliency

Minimal strength degradation & cross-over displacements

Seismic Resiliency – UHPC for Column PH Regions

S-2.5-20

NS-2.5-10

S-2.5-10

S-4-10

Proposed Research: FIU-UHPC Connection Tests

2019-21 Biennium Bridge Research Projects:

- Performance of Steel Jacket Retrofitted Reinforced Concrete Bridge Columns in Cascadia Subduction Zone Earthquakes
- Effects of Cascadia Subduction Zone M9 Earthquakes on Bridges in Washington State

