Toward Modelling of Natural Deposits at Grain Scale: 3-D X-Ray CT Characterization and Study of Fabric Evolution in Naturally Deposited Sands

Nicholas Sitar, Ph.D., P.Eng.

Edward G. Cahill and John R. Cahill Professor

And

Fernando Estefan Garcia, Ph.D.

Post-doctoral Fellow Caltech

PEER Annual Meeting January 16-17, 2020

Funding provided by NSF grant CMMI-1853056, the Edward G. and John R. Cahill Chair, the Berkeley-France Fund, PEER-Caltrans

Our Objective

• Use X-RAY Computed Tomography to Characterize Fabric:

- Grain size, grain shape, grain aspect ratio
- Quantify grain fabric i.e. geometry of grain to grain contacts, contact area, etc.
- Observe Shear Zone Evolution

• Develop Level Set – DEM models to numerically reproduce

- Fabric as observed in the scans
- Stress-strain response
- Develop a realistic constitutive model that adequately mimics the influence of fabric under different loading conditions, especially liquefaction.

Where Does Fabric Come Into Play?¹

Type of Deposit:

- Source of the sediment
- Mode of transport
- Depositional environment
- Post-Depositional processes Geologic history

Soil Fabric:

- Gradation
- Grain shape and aspect ratio
- Grain orientation
- Geometry of grain to grain contacts
- Cementation/Matrix

¹ Terzaghi, K., "Influence of geological factors on the engineering properties of sediments, 50th Anniversary Volume, Econ. Geol., 1955, pp. 557–665.

Gravel Beach, No apparent preferred orientation but well packed Kapiti Island, NZ

Glacial outwash, imbricate fabric, clear preferential orientation Bountiful, Utah Sitar & Garcia PEER 2020 Treasure Island, SF Bay – constructed by hydraulic filling in 1939 Recent study shows a significant difference in liquefaction resistance between the hydraulic fill and underlying natural sand bar – fabric?

PEER

" Undisturbed" Sampling Procedure

• Objective - Obtain 11 mm "undisturbed" thinwall samples for X-Ray tomography and triaxial testing

Garcia PEER 2020

3-D X-Ray Computed Tomography

Laboratoire 3SR - Sols, Solides, Structures, Risques at the University Grenoble Alpes Prof. Cino Viggiani and Dr. Edward Ando - collaborators

• Fabric Characterization – Grain size, grain size distribution

Quantitative Grain Orientation Analysis

Pluviated in the Laboratory Viggiani et al.

Hydraulic Fill Undisturbed Treasure Island

Sand Bar Undisturbed <u>Treasure</u> Island

PEER

Grain Shape Analysis – Sphericity <.85

PEER

Vacuum Triaxial Test Configuration at Laboratoire 3SR

Triaxial Test Results – Sand Bar Deposit

Confining Pressure = 100 kPa Dry Unit Density = 16.17 kN/m³ (103.8 pcf) Void Ratio = 0.61

Triaxial Test Results – Sand Bar Deposit

Confining Pressure = 200 kPa Dry Unit Density = 16.17 kN/m³ (103.8 pcf) Void Ratio = 0.61

Triaxial Test Results – Sand Bar vs Hydraulic Fill

Shear Plane Evolution

3-D Reconstruction from X-ray Tomography

HPC Resources	Savio (Berkeley) Stampede2 (UT Austin)
# Grains	100,000- 120,000
Resolution	7.5-15 μm/pixel
Memory Required	128 GB
# Cores	Serial (~6 hours/image x 15-24 images on Stampede2)

Converting X-Ray CT Scans to Avatars for DEM Model – high resolution grain with "warts", artifacts from clay adhesions

Converting X-Ray CT Scans to Avatars for DEM Modeling – low resolution without artifacts

Results to Date

- We developed a procedure to collect undisturbed samples for 3-D XRCT
- We performed the first triaxial tests on undisturbed samples showing that natural sand bar deposits show much higher apparent friction angle due to the presence of fabric
- Fabric studies show that in while packing is clearly different, grain sphericity masks any preferential depositional fabric, i.e. imbrication is not dominant in the deposits we analyzed

Current Effort

- Developing realistic avatars in order to recreate the fabric
- Next step: LS-DEM modeling to reproduce the observed tests and then to validate/develop constitutive models

Acknowledgement

- Prof. Cino Viggiani and Dr. Edward Ando generously provided their time to learn with us and to teach us their techniques
- Mr. Max Weibicke of TU-Dresden shared insights and code for data processing
- Funding was provided by NSF grant CMMI-1853056, the Edward G. and John R. Cahill Chair, and the Berkeley-France Fund
- ENGEO Inc. provided undisturbed samples from Treasure Island

