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Research Overview

Seismic isolation has demonstrated to be one of the most effective
techniques to mitigation seismic damage in various types of

structures including bridges

Performance and modeling of seismically isolated bridges is well
understood for design level motions

For beyond design basis shaking, failure modes and consequences

are not clearly defined
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Research Overview

* Limited studies examining bridge behavior beyond design
considerations

* Test at UNR demonstrated effectiveness of isolation system to 3X
design motion leading to localized bearing instability but stable
overall response

* Testing in Japan leading to plastic hinge forming in column with
energy dissipation shifting from bearing to column
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Research Objectives

* Develop advanced models of seismically isolated bridge components
capable of characterizing response under extreme shaking
* Lead Rubber Bearing Models: typically modeled with (smooth) bilinear models
* Impact Models: typically use modified bi-linear model
* Revisit abutment and deck models for impact
m) Implementation of models in OpenSEES

* Development of prototype bridge models to assess system response

* Damage characterization

* Determine damage state for bearings and bridge components supplemented by
past experiments and research

* Mitigation Measures

* Effects on supplemental damping, bearing hardening, and restrainers



Modeling of Bearings

* Advanced modeling of Lead Rubber Bearings

Force [kips]

* Strength degradation of lead core due to heating

* Hardening of elastomer induced at large strains

* Effects of vertical loads and instability of bearings
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Modeling of Bearings

* Comparison of Bearing Models to Experimental Data

* Model works well in 1D, need extension to 2D anisotropic behavior
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Effects of Bearing Models on SDOF Response
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Modeling of Impact

Limited experimental data for verification of impact models

e Contact Model

* OpenSees ImpactMaterial is based on bilinear approximation to
Herts contact model and is calibrated to penetration distance

* Hertz Damped Model was implemented in OpenSees
* Contact model important for local impact response
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Bridge Model

Prototype model of ordinary seismically isolated bridge (Buckle et al.
2011)
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Bridge Model

Abutment model in OpenSees derived from ABAQUS
simulations:
* Backfill soil: Hyperbolic gap material

* Wall: TwoNodelLink element for out-of-plane shear behavior at the base
* Abutment-Deck Contact: Hertzdamp contact model
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Bridge Model

Ground Motions:
* 30 bidirectional records for site in Los Angeles
* “Design Level” considers 975 Year return period
* “Beyond Design” considers 2475 years of return period

Response spectra of selected ground motions
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Design vs Beyond Design Level:
* Deck displacement for beyond design is around twice the design level

* No abutment impact for the design level intensity

* 11 out of 30 abutment impact for beyond design intensity
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Design vs Beyond Design Level:
* Bent behavior essentially linear for design level
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Design vs Beyond Design Level:
* Significant nonlinear behavior observed for beyond design

Moment/WH (%)
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Alternative Designs

 Stiffening Configuration:

Bearings design is modified to have stiffer
bearings at the abutment that engage
hardening earlier, more flexible at bents

 Damping Configuration:

Viscous dampers are added between
abutment and deck, with 25% additional
damping
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Results

Alternative designs:
* Deck orbital displacement only slightly less for stiffening design

* Displacement reduction of about 40% with added dampers
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Results

Alternative designs:
* Both alternative designs reduce the column demands compared with
original design
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Distribution of demands between isolation and bent:

For small intensity shaking, bent contribution is high because bearing
remains elastic

For design level demands, bearing yields and bent contribution drops to
20%

For larger demands, column yields and bent contribution increases
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Conclusions

- Design-level shaking: bridge performs as expected
* Limited nonlinear behavior at the columns, no pounding

* Maximum shear strain in lead rubber bearings remains within
300% shear strain

* For beyond design-level shaking:

* Plastic hinges develop at columns, specially in the longitudinal
direction

* 11 of 30 records resulted in pounding to abutment

* 4 out of 30 ground motions produced a deformation greater than
400% shear strain in bearings without restraints
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Conclusions

* Mitigation measures - Stiffer bearings at abutments:

* The overall deck displacement does not change significantly with
similar occurrences of impact

* Reduces forces at the bent, but increases the bearing shear strain
at the abutment

* Mitigation measures — Supplemental viscous dampers:

* Deck displacement is reduced by about 40% with beyond design
motions result in displacement comparable to design-level
without dampers

* Column behaves essentially linear and no pounding observed

* Need for more comprehensive evaluation of different bridge
configurations and variability in design paramters
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