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Project details (#NCTRZW)

● The goal is to develop an efficient stochastic simulator-based approach for probabilistic 

seismic analysis of structural systems

● Technical aims are:

➢ Develop stochastic surrogate models for the stochastic simulator to efficiently 

estimate performance measures of seismic response

➢ Develop sensitivity analysis methods leveraging stochastic surrogate models

● Title: Stochastic simulator-based uncertainty quantification for seismic responses of bridges

● PI: Ziqi Wang (UC Berkeley), Co-PI: Marco Broccardo (University of Trento)

● Duration: Aug 2023 – Jan 2025

Research goals
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Research overview

𝑌𝑘

𝑃𝐷𝐹

Seismic response

ℳ 𝑋1, 𝑋2, … , 𝑋𝑛

FEM deterministic model

Step 2. 

Uncertainty propagation

Step 1. 

Stochastic simulator

Step 3. 

Sensitivity analysis

𝒀 = ℳ 𝑿
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Milestones

● Develop surrogate model for stochastic simulator (done)

● Uncertainty quantification of seismic responses using stochastic simulator (done)

● Sensitivity analysis of seismic response & comparison with ground motion 

selected-based approach (on-going)

Current point
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1. Development of stochastic surrogate model
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Challenges in surrogate modeling

𝑌𝑘

𝑃𝐷𝐹

ℳ 𝑋1, 𝑋2, … , 𝑋𝑛

FEM deterministic model

𝒀 = ℳ 𝑿
EDP vectors

● Surrogate modeling can be challenging due to the

complex & high-dimensional input uncertainties

Dimensionality reduction can be useful

Stochastic surrogate model

Excitation sequence

White noise process, time-series

Structural 

parameters

Material parameters,

mass, damping, geometry …

Input uncertainties

𝜎𝑦, 𝜉, 𝐴

𝑀
𝑅

Seismic hazard parameters

Magnitude,

rupture distance,

shear velocity …

Seismic response
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Dimensionality reduction-based stochastic surrogate model

𝒀 = ℳ 𝑿

Physical model

Low-dimensional representation via working 

with 𝒙, 𝒚 ∈ ℝ𝑛+𝑚: 𝒚 −ℳ 𝒙 = 0

High-dimensional input 𝑿

𝐀 ሷ𝐘 𝑿, 𝑡 + 𝐑𝐘 𝑿, 𝑡 = 𝑞

Constrained by 

physical laws

ℋ: 𝒛 ≡ 𝒙, 𝒚 ↦ 𝝍𝑧 ∶

● Main idea: Perform dimensionality reduction in the input-output space

“Extract” stochastic surrogate model from results of dimensionality reduction

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.
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Procedures of the proposed stochastic surrogate model

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.

▪ Dimensionality reduction in the input-output space–construct ℋ: 𝒛 ≡ 𝒙, 𝒚 ∈ ℝ𝑛+𝑚 ↦ 𝝍𝑧 ∈ ℝ𝑑

▪ Construct a conditional distribution 𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z to predict 𝒚 given 𝝍z

▪ “Extract” a surrogate model 𝑓෡𝒀|𝑿 ෝ𝒚 𝒙 from ℋ and 𝑓෡𝒀|𝚿𝐳

training stage

𝑓෡𝒀|𝑿 ෝ𝒚 𝒙 = නන𝑓෡𝒀|𝚿𝐳
ෝ𝒚 𝝍z 𝑓𝚿𝐳|𝑿𝒀 𝝍z 𝒙, 𝒚 𝑓

𝒀|𝑿
𝒚 𝒙 𝑑𝝍z𝑑𝒚

Dimensionality reduction Original model Condi. distribution

“True” surrogate model:



▪ Dimensionality reduction in the input-output space–construct ℋ: 𝒛 ≡ 𝒙, 𝒚 ∈ ℝ𝑛+𝑚 ↦ 𝝍𝑧 ∈ ℝ𝑑

▪ Construct a conditional distribution 𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z to predict 𝒚 given 𝝍z

▪ “Extract” a surrogate model 𝑓෡𝒀|𝑿 ෝ𝒚 𝒙 from ℋ and 𝑓෡𝒀|𝚿𝐳

prediction stage

𝑓෡𝒀|𝑿
(∞)

ෝ𝒚 𝒙 = නන𝑓෡𝒀|𝚿𝐳 ෝ𝒚 𝝍z 𝑓𝚿𝐳|𝑿𝒀 𝝍z 𝒙, 𝒚′ 𝑓෡𝒀|𝑿
(∞)

𝒚′ 𝒙 𝑑𝝍z𝑑𝒚′

“approximate” surrogate

𝑇 ෝ𝒚(𝑡), ෝ𝒚(𝑡+1)|𝒙 = 𝑓෡𝒀|𝚿𝐳
ෝ𝒚(𝑡+1) 𝝍z 𝑓𝚿𝐳|𝑿𝒀 𝝍z 𝒙, ෝ𝒚

(𝑡)

“Stationary” surrogate model:

Transition kernel:

→ ෝ𝒚′~𝑓෡𝒀|𝑿 ෝ𝒚 𝒙

9
Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.

ෝ𝒚(𝑡) ~ 𝑓෡𝒀|𝑿 ො𝒚 𝒙→ Outputs: Stochastic surrogate model,

Procedures of the proposed stochastic surrogate model
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Summary of the proposed stochastic surrogate model

● We “extract” a surrogate model from the results of dimensionality reduction

➢ Surrogate model for high-dimensional system

● Stochastic simulator: Output predictions are probabilistic distributions

● Multi-output predictor: We can quantify interdependencies between multiple outputs

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model 

for high-dimensional forward uncertainty quantification. arXiv preprint:2402.04582.

𝑿 = 𝑿1, 𝑿2… ,𝑿𝑛 𝒀 = 𝑌1, 𝑌2, … , 𝑌𝑚ℳ 𝑿

where 𝑛 ≫ 100
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2. Uncertainty quantification of seismic response
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Sources of uncertainty

Seismic hazard

characteristics 𝑿ℎ

Excitation

sequences 𝑿𝑤

Structural system

parameters 𝑿𝑠

Ground motion

acceleration time-history
Seismic responses 𝒀

Stochastic ground 

motion model

𝑿ℎ = {𝑀, 𝑅𝑟𝑢𝑝, 𝑉𝑠30, … }

𝑿𝑤 = {𝑤𝑖 , 𝑖 = 1, … , 𝑛𝑤}

𝑿𝑠 = {𝜎𝑖 , 𝐴𝑖 , 𝜉, … }
𝜎𝑦, 𝜉, 𝐴

M

R

𝒀 = {𝐸𝐷𝑃1, 𝐸𝐷𝑃2, . . }

Ground motion

database

Stochastic simulator

𝒀 = ෡ℳ𝑠 𝑿ℎ, 𝑿𝑤 , 𝑿𝑠

Case 1

Case 2

𝑛𝑤 ≥ 1,000
Nonlinear response 

history analysis
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Application (Case 1: stochastic ground motion model)

PDF of 𝑀

𝑿ℎ = 𝑀,𝑅𝑟𝑢𝑝 ∈ ℝ2𝑿 = 𝑿ℎ, 𝑿𝑤 , 𝑿𝑠 ∈ ℝ≥2,000

𝒀 = IDR1,...,IDR9,SD1,...,SD9 ∈ ℝ18

෡ℳ𝑠 𝑿
Uncertainty propagation 

using stochastic simulator

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

𝑿𝑠 = 𝜁, 𝐸, 𝑓𝑦
𝑏, 𝛿ℎ

𝑏, 𝑓𝑦
𝑐 , 𝛿ℎ

𝑐 ∈ ℝ6

𝑿𝑤 = 𝑤𝑖 , 𝑖 = 1, … , 𝑛𝑤
∈ ℝ≥2,000

Gutenberg–Richter 

model 

White noise sequence

in SGMM

Seismic hazard 

characteristics

Excitation sequences

Structural system parameter

● UQ for seismic response

● 9-story steel 

building structure:
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Surrogate modeling of seismic response

● Prediction by stochastic simulator (𝑁𝑇 = 600)

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

▪ Inputs: 𝐗 = 𝑿ℎ , 𝑿𝑤 , 𝑿𝑠

▪ Outputs: 𝒀 = IDR1,...,IDR9,SD1,...,SD9
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MCS

Predictions

UQ for seismic response

● Response PDFs ● Correlation matrix

● Median and interquartile ranges

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

▪ Inputs: 𝐗 = 𝑿ℎ , 𝑿𝑤 , 𝑿𝑠

▪ Outputs: 𝒀 = IDR1,...,IDR9,SD1,...,SD9

Reference

(MCS)

Prediction
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Errors of the surrogate model

● Relative mean square error (RMSE):

● Comparison of RMSE at different numbers of training sets, 𝑁𝑇 𝜀𝜂 =
𝔼 𝜇 ෠𝑌 𝑿 −ℳ 𝑿

2

𝕍ar ℳ 𝑿

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Mean prediction
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…

𝑀 = 6.5, 𝑅 = 30𝑘𝑚 . .

𝑀 = 7.0, 𝑅 = 20𝑘𝑚 . .

Ground motion database

𝑀 = 6.9, 𝑅 = 41𝑘𝑚 . .

𝑿ℎ ∈ ℝ2 𝑿𝑤∈ ℝ>3,000 𝑿𝑠 ∈ ℝ6

2,086

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

▪ Inputs: 𝐗 = 𝑿ℎ , 𝑿𝑤 , 𝑿𝑠

▪ Outputs: 𝒀 = IDR1,...,IDR9,SD1,...,SD9

→ Acceleration time-history is considered

as realization of 𝑿𝒘

Application (Case 2: ground motion database)

● Use 2086 GM records from PEER NGA-west database (selected by 6.0 ≤ 𝑀 ≤ 8.0, 10 ≤ 𝑅 ≤ 50 𝑘𝑚)

● Applications to the same building structure

Uncertain structural parameters for 9-story steel building
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● Prediction by stochastic simulator (𝑁𝑇 = 600)

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Surrogate modeling of seismic response Training set (𝑁 = 600)
Test set (𝑁 = 1,000)
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Fragility curve estimation

● Cloud analysis is adopted: ln EDP = 𝑎 + 𝑏 ln IM + 𝜀𝑅

● Using the trained surrogate model (𝑁𝑇 = 600), fragility curves are estimated from a set of 50 ground motions

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Prediction

Reference

(MCS)

(a) IM=PGA (b) IM=SA
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3. Sensitivity analysis of seismic response



Excitation sequence

White noise process, time-series

Structural 

parameters

Material parameters,

mass, damping, geometry …

Input uncertainties

𝜎𝑦, 𝜉, 𝐴

𝑀
𝑅

Seismic hazard parameters

Magnitude,

rupture distance,

shear velocity …
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Global sensitivity analysis of seismic response

𝑌𝑘

𝑃𝐷𝐹

ℳ 𝑋1, 𝑋2, … , 𝑋𝑛

FEM deterministic model

𝒀 = ℳ 𝑿
EDP vectors

Step 3. 

Sensitivity analysis

Seismic response
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Variance-based sensitivity analysis

● Two main indices: First-order (main-effect) and total-effect indices

𝑆𝑖 =
𝕍ar𝑋𝑖 𝔼𝑿~𝑖 𝑌 𝑋𝑖

𝕍ar 𝑌
,

0 ≤ 𝑆𝑖 ≤ 1
𝑆𝑇𝑖 = 1 −

𝕍ar𝑿~𝑖 𝔼𝑋𝑖 𝑌 𝑿~𝑖

𝕍ar 𝑌
,

Quantify the additive effect of each variable and interactions with the other variables

● Integrated sensitivity over the entire input parameter space: “Global” sensitivity analysis

…

ℳ 𝑿

Forward uncertainty 

propagation

𝑋1

𝑋2

𝑋𝑛

Output

Decomposition 

of variance

→ Sensitivity

Analysis

Input 

uncertainties
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Variance-based sensitivity analysis

𝒀 = 𝐸𝐷𝑃1, … , 𝐸𝐷𝑃𝑚

● Sensitivity indices for each EDP with respect to each group of input uncertainties

→ 𝑆𝐮
𝑘 =

𝕍ar𝑿𝐮 𝔼𝑿~𝐮 𝐸𝐷𝑃𝑘 𝑿𝐮

𝕍ar 𝐸𝐷𝑃𝑘
, 𝑆𝑇𝐮

𝑘 = 1 −
𝕍ar𝑿~𝐮 𝔼𝑿𝐮 𝐸𝐷𝑃𝑘 𝑿~𝐮

𝕍ar 𝐸𝐷𝑃𝑘

𝑿 = 𝑿ℎ, 𝑿𝑠, 𝑿𝑤

3 “groups” of random variables

● Inevitably high-dimensional integral (due to white noise sequence)

● High computational complexity (𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑑 × 𝑁2)
Stochastic simulator

𝑿ℎ

𝑿𝑠

𝑿𝑤

𝐸𝐷𝑃1

𝐸𝐷𝑃𝑚

…ℳ 𝑿
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Sensitivity indices of seismic response
▪ Inputs: 𝐗 = 𝑿ℎ, 𝑿𝑤 , 𝑿𝑠

▪ Outputs: 𝒀 = IDR1,...,IDR3

First-

effect:

Total-

effect:

SD interval on

sensitivity indices
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Concluding remarks

● The project goal is to develop an efficient stochastic simulator-based approach for probabilistic 

seismic analysis of structural systems

➢ Development of a surrogate model for the stochastic simulator

➢ Uncertainty quantification of seismic response using stochastic simulator

➢ Global sensitivity analysis of seismic response leveraging stochastic surrogate model

• Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional 

forward uncertainty quantification. arXiv preprint:2402.04582.

• Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic 

simulator. (Under Review)

● On-going research includes

➢ Comparison of GSA-based approach and ground motion selected-based approach

➢ Application to bridge structures (Auburn Ravine Bridge & Penstock Bridge)

● Reference



Thanks for listening
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