PEER Researchers' Workshop

Aug 15-16, 2024

Stochastic Simulator-based Uncertainty Quantification for Seismic Responses of Bridges

Jungho KIM*

Postdoc researcher, University of California Berkeley

Marco Broccardo (co-PI)

Associate professor, University of Trento

Ziqi Wang (PI)

Assistant professor, University of California Berkeley

Project details (#NCTRZW)

- **Title**: Stochastic simulator-based uncertainty quantification for seismic responses of bridges
- **PI**: Ziqi Wang (UC Berkeley), **Co-PI**: Marco Broccardo (University of Trento)
- **Duration**: Aug 2023 Jan 2025

Research goals

- The goal is to **develop** an efficient **stochastic simulator-based approach** for probabilistic seismic analysis of structural systems
- Technical aims are:
 - Develop stochastic surrogate models for the stochastic simulator to efficiently estimate performance measures of seismic response
 - > Develop **sensitivity analysis methods** leveraging stochastic surrogate models

Research overview

Input uncertainties

Seismic hazard parameters

Magnitude, rupture distance, shear velocity ...

Excitation sequence

White noise process, time-series

Structural parameters

Material parameters, mass, damping, geometry ...

Step 1. Stochastic simulator

FEM deterministic model

$$\mathcal{M}(X_1, X_2, \dots, X_n)$$

Step 2. Uncertainty propagation

Seismic response

Step 3. Sensitivity analysis

- Develop surrogate model for stochastic simulator (done)
- Uncertainty quantification of seismic responses using stochastic simulator (done)
- Sensitivity analysis of seismic response & comparison with ground motion selected-based approach (on-going)

1. Development of stochastic surrogate model

Challenges in surrogate modeling

Input uncertainties **Seismic hazard parameters** Magnitude, rupture distance, shear velocity ... **Excitation sequence** White noise process, time-series Structural parameters Material parameters, mass, damping, geometry ...

Stochastic surrogate model

FEM deterministic model

 $\mathcal{M}(X_1, X_2, \dots, X_n)$

Dimensionality reduction can be useful

 Y_k

Seismic response

 $Y = \mathcal{M}(X)$

EDP vectors

PDF

Dimensionality reduction-based stochastic surrogate model

• Main idea: Perform dimensionality reduction in the input-output space

"Extract" stochastic surrogate model from results of dimensionality reduction

Procedures of the proposed stochastic surrogate model

- Dimensionality reduction in the input-output space–construct $\mathcal{H}: \mathbf{z} \equiv (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n+m} \mapsto \psi_z \in \mathbb{R}^d$
- Construct a conditional distribution $f_{\hat{Y}|\Psi_z}(\hat{y}|\psi_z)$ to predict y given ψ_z
- "Extract" a surrogate model $f_{\hat{Y}|X}(\hat{y}|x)$ from \mathcal{H} and $f_{\hat{Y}|\Psi_z}$

Procedures of the proposed stochastic surrogate model

- Dimensionality reduction in the input-output space–construct $\mathcal{H}: \mathbf{z} \equiv (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n+m} \mapsto \psi_z \in \mathbb{R}^d$
- Construct a conditional distribution $f_{\hat{Y}|\Psi_z}(\hat{y}|\psi_z)$ to predict y given ψ_z
- "Extract" a surrogate model $f_{\hat{Y}|X}(\hat{y}|x)$ from \mathcal{H} and $f_{\hat{Y}|\Psi_z}$

"Stationary" surrogate model:

$$f_{\widehat{Y}|X}^{(\infty)}(\widehat{y}|x) = \int \int f_{\widehat{Y}|\Psi_z}(\widehat{y}|\psi_z) f_{\Psi_z|XY}(\psi_z|x,y') f_{\widehat{Y}|X}^{(\infty)}(y'|x) d\psi_z dy$$

"approximate" surrogate

prediction stage

Transition kernel:

$$T(\widehat{\boldsymbol{y}}^{(t)}, \widehat{\boldsymbol{y}}^{(t+1)} | \boldsymbol{x}) = f_{\widehat{\boldsymbol{Y}} | \boldsymbol{\Psi}_{z}}(\widehat{\boldsymbol{y}}^{(t+1)} | \boldsymbol{\psi}_{z}) f_{\boldsymbol{\Psi}_{z} | \boldsymbol{X} \boldsymbol{Y}}(\boldsymbol{\psi}_{z} | \boldsymbol{x}, \widehat{\boldsymbol{y}}^{(t)})$$

 \rightarrow Outputs: Stochastic surrogate model, $\hat{y}^{(t)} \sim f_{\hat{y}|x}(\hat{y}|x)$

Summary of the proposed stochastic surrogate model

$$X = [X_1, X_2 \dots, X_n] \qquad \qquad \mathcal{M}(X) \qquad \qquad Y = [Y_1, Y_2, \dots, Y_m]$$

where $n \gg 100$

- We "extract" a surrogate model from the results of dimensionality reduction
 - Surrogate model for high-dimensional system
- Stochastic simulator: Output predictions are probabilistic distributions
- Multi-output predictor: We can quantify interdependencies between multiple outputs

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. *arXiv preprint*.2402.04582.

2. Uncertainty quantification of seismic response

Application (Case 1: stochastic ground motion model)

• UQ for seismic response

 $X = [X_h, X_w, X_s] \in \mathbb{R}^{\geq 2,000}$ $\widehat{\mathcal{M}}_s(X) \quad Uncertainty \text{ propagation} using stochastic simulator}$ $Y = [IDR_1, ..., IDR_9, SD_1, ..., SD_9] \in \mathbb{R}^{18}$

 9-story steel building structure:

Seismic hazard characteristics

$$\boldsymbol{X}_h = \left\{ \boldsymbol{M}, \boldsymbol{R}_{rup} \right\} \in \mathbb{R}^2$$

Excitation sequences $X_w = \{w_i, i = 1, ..., n_w\}$

∈ ℝ^{≥2,000}

Structural system parameter

White noise sequence in SGMM

$\boldsymbol{X}_{S} = \left\{ \zeta, E, f_{y}^{b}, \delta_{h}^{b}, f_{y}^{c}, \delta_{h}^{c} \right\} \in \mathbb{R}^{6}$ $\frac{\text{Variable}}{\text{Damping ratio, } \zeta (\%)} \qquad 3$ Elastic modulus, *E* (Mpa) 200,000

Variable	Mean	c.o.v	Distribution
Damping ratio, ζ (%)	3	0.2	Lognormal
Elastic modulus, E (Mpa)	200,000	0.05	Lognormal
Yield strength for beam, f_y^b (Mpa)	248	0.1	Lognormal
Yield strength for column, f_y^c (Mpa)	345	0.1	Lognormal
Strain hardening ratio for beam, δ^b_h	0.01	0.2	Lognormal
Strain hardening ratio for column, δ_h^c	0.01	0.2	Lognormal

Surrogate modeling of seismic response

• Prediction by stochastic simulator ($N_T = 600$)

• Inputs: $\mathbf{X} = [X_h, X_w, X_s]$

Outputs: Y = [IDR₁,...,IDR₉,SD₁,...,SD₉]

UQ for seismic response

Response PDFs

• Inputs: $\mathbf{X} = [\mathbf{X}_h, \mathbf{X}_w, \mathbf{X}_s]$

Correlation matrix

• Outputs: Y = [IDR₁,...,IDR₉,SD₁,...,SD₉]

Median and interquartile ranges

Errors of the surrogate model

- Relative mean square error (RMSE):
- Comparison of RMSE at different numbers of training sets, N_T

Application (Case 2: ground motion database)

- Use **2086 GM records** from PEER NGA-west database (selected by $6.0 \le M \le 8.0, 10 \le R \le 50 \text{ km}$)
- Applications to the same building structure

Ground motion database

Ť	M=6.5, R=30km	-marger Marger and Marger and Marger and	Uncertain stru
			Varia
2,086 $M = 7.0, R = 20km$:	Damping ra
		Elastic module	
		_	Yield strength for
	$M = 7.0, R = 20 km \dots$	2 mounter the Marchall hall have	Yield strength for o
		ru - Hr	Strain hardening ra
			Strain hardening rat
Ļ	$M = 6.9, R = 41 km \dots$	mmaismly hypely where here	
	$X_h \in \mathbb{R}^2$	$X_w \in \mathbb{R}^{>3,000}$	
		ightarrow Acceleration time	-history is considered

as realization of X_w

• Inputs: $\mathbf{X} = [\mathbf{X}_h, \mathbf{X}_w, \mathbf{X}_s]$

Uncertain structural parameters for 9-story steel building

Variable	Mean	c.o.v	Distribution
Damping ratio, ζ (%)	3	0.2	Lognormal
Elastic modulus, E (Mpa)	200,000	0.05	Lognormal
Yield strength for beam, f_y^b (Mpa)	248	0.1	Lognormal
Yield strength for column, f_y^c (Mpa)	345	0.1	Lognormal
Strain hardening ratio for beam, δ^b_h	0.01	0.2	Lognormal
Strain hardening ratio for column, δ_h^c	0.01	0.2	Lognormal

 $X_s \in \mathbb{R}^6$

Surrogate modeling of seismic response

• Prediction by stochastic simulator ($N_T = 600$)

÷

mmakenher hold hall hall have

Training set (N = 600)Test set (N = 1,000)

Fragility curve estimation

- Cloud analysis is adopted: $\ln(EDP) = a + b \ln(IM) + \varepsilon_R$
- Using the trained surrogate model ($N_T = 600$), fragility curves are estimated from a set of 50 ground motions

3. Sensitivity analysis of seismic response

Global sensitivity analysis of seismic response

Input uncertainties

Variance-based sensitivity analysis

• Integrated sensitivity over the entire input parameter space: "Global" sensitivity analysis

• Two main indices: First-order (main-effect) and total-effect indices

$$S_{i} = \frac{\mathbb{V}\mathrm{ar}_{X_{i}}\left[\mathbb{E}_{X_{\sim i}}[Y|X_{i}]\right]}{\mathbb{V}\mathrm{ar}[Y]}, \qquad S_{T_{i}} = 1 - \frac{\mathbb{V}\mathrm{ar}_{X_{\sim i}}\left[\mathbb{E}_{X_{i}}[Y|X_{\sim i}]\right]}{\mathbb{V}\mathrm{ar}[Y]}, \qquad 0 \le S_{i} \le 1$$

→ Quantify the additive effect of each variable and interactions with the other variables

Variance-based sensitivity analysis

• Sensitivity indices for each EDP with respect to each group of input uncertainties

- Inevitably *high-dimensional* integral (due to white noise sequence)
- High computational complexity (Complexity = $d \times N^2$)

Sensitivity indices of seismic response

Concluding remarks

- The project goal is to develop an efficient stochastic simulator-based approach for probabilistic seismic analysis of structural systems
 - > Development of a surrogate model for the **stochastic simulator**
 - > **Uncertainty quantification** of seismic response using stochastic simulator
 - > **Global sensitivity analysis** of seismic response leveraging stochastic surrogate model
- On-going research includes
 - Comparison of GSA-based approach and ground motion selected-based approach
 - > Application to **bridge structures** (Auburn Ravine Bridge & Penstock Bridge)
- Reference
 - Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. *arXiv preprint*:2402.04582.
 - Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Thanks for listening

