PEER Researchers' Workshop

Aug 15-16, 2024

Stochastic Simulator-based Uncertainty Quantification for Seismic Responses of Bridges

Jungho KIM*

Postdoc researcher, University of California Berkeley

Marco Broccardo (co-PI)

Associate professor, University of Trento

Ziqi Wang (PI)

Assistant professor, University of California Berkeley

Project details (#NCTRZW)

- **Title**: Stochastic simulator-based uncertainty quantification for seismic responses of bridges
- **PI**: Ziqi Wang (UC Berkeley), **Co-PI**: Marco Broccardo (University of Trento)
- **Duration**: Aug 2023 Jan 2025

Research goals

- The goal is to **develop** an efficient **stochastic simulator-based approach** for probabilistic seismic analysis of structural systems
- Technical aims are:
	- ➢ Develop **stochastic surrogate models for the stochastic simulator** to efficiently estimate performance measures of seismic response
	- ➢ Develop **sensitivity analysis methods** leveraging stochastic surrogate models

- Develop surrogate model for stochastic simulator **(done)**
- Uncertainty quantification of seismic responses using stochastic simulator **(done)**
- Sensitivity analysis of seismic response & comparison with ground motion selected-based approach **(on-going)**

1. Development of stochastic surrogate model

Challenges in surrogate modeling

Excitation sequence White noise process, time-series **Structural parameters** Material parameters, mass, damping, geometry … **Input uncertainties** \overline{M} \boldsymbol{R} **Seismic hazard parameters** Magnitude, rupture distance, shear velocity …

- Surrogate modeling can be **challenging** due to the **complex & high-dimensional input uncertainties**
	- **Dimensionality reduction** can be useful

Dimensionality reduction-based stochastic surrogate model

Main idea: Perform dimensionality reduction in the input-output space

"Extract" stochastic surrogate model from results of **dimensionality reduction**

Procedures of the proposed stochastic surrogate model

- **•** Dimensionality reduction in the input-output space–construct \mathcal{H} : $z \equiv (x, y) \in \mathbb{R}^{n+m} \mapsto \psi_z \in \mathbb{R}^d$
- Construct a conditional distribution $f_{\widehat{Y}|\Psi_{\mathrm{Z}}}(\widehat{y}|\bm{\psi}_{\mathrm{Z}})$ to predict \bm{y} given $\bm{\psi}_{\mathrm{Z}}$
- "Extract" a surrogate model ${f}_{\widehat{Y}|X}(\widehat{y}|x)$ from ${\mathcal H}$ and ${f}_{\widehat{Y}|\Psi_{\mathbf{Z}}}$

"True" surrogate model:

$$
f_{\hat{Y}|X}(\hat{y}|x) = \iint f_{\hat{Y}|\Psi_{Z}}(\hat{y}|\Psi_{Z}) f_{\Psi_{Z}|XY}(\Psi_{Z}|x, y) f_{Y|X}(y|x) d\Psi_{Z} dy
$$

\nCondi. distribution
\nDimensionality reduction
\nOriginal model

Procedures of the proposed stochastic surrogate model

- **•** Dimensionality reduction in the input-output space–construct \mathcal{H} : $z \equiv (x, y) \in \mathbb{R}^{n+m} \mapsto \psi_z \in \mathbb{R}^d$
- Construct a conditional distribution $f_{\widehat{Y}|\Psi_{\mathrm{Z}}}(\widehat{y}|\bm{\psi}_{\mathrm{Z}})$ to predict \bm{y} given $\bm{\psi}_{\mathrm{Z}}$
- "Extract" a surrogate model ${f}_{\widehat{Y}|X}(\widehat{y}|x)$ from ${\mathcal H}$ and ${f}_{\widehat{Y}|\Psi_{\mathbf{Z}}}$

"Stationary" surrogate model:

$$
f_{\widehat{Y}|X}^{(\infty)}(\widehat{y}|x) = \int \int f_{\widehat{Y}|\Psi_{Z}}(\widehat{y}|\Psi_{Z}) f_{\Psi_{Z}|XY}(\Psi_{Z}|x, y') f_{\widehat{Y}|X}^{(\infty)}(y'|x) d\Psi_{Z} dy'
$$

"approximate" surrogate

prediction stage

Transition kernel:

$$
T(\widehat{\mathbf{y}}^{(t)},\widehat{\mathbf{y}}^{(t+1)}|\mathbf{x})=f_{\widehat{Y}|\Psi_{\mathbf{z}}}(\widehat{\mathbf{y}}^{(t+1)}|\Psi_{\mathbf{z}})f_{\Psi_{\mathbf{z}}|XY}(\Psi_{\mathbf{z}}|\mathbf{x},\widehat{\mathbf{y}}^{(t)})
$$

 \rightarrow Outputs: Stochastic surrogate model, $\,\widehat{\bm{\mathcal{Y}}}^{(t)} \sim \digamma_{\widehat{\bm{\mathcal{Y}}}|X}(\widehat{\bm{\mathcal{Y}}}|x)$

Summary of the proposed stochastic surrogate model

$$
X = [X_1, X_2, ..., X_n]
$$

\n $M(X)$
\n $Y = [Y_1, Y_2, ..., Y_m]$
\nwhere $n \gg 100$

- We "extract" a surrogate model from the results of dimensionality reduction
	- ➢ Surrogate model for high-dimensional system
- **Stochastic simulator:** Output predictions are probabilistic distributions
- **Multi-output predictor**: We can quantify interdependencies between multiple outputs

Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. *arXiv preprint*:2402.04582.

2. Uncertainty quantification of seismic response

Application (Case 1: stochastic ground motion model)

UQ for seismic response

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_h, \boldsymbol{X}_w, \boldsymbol{X}_s \end{bmatrix} \in \mathbb{R}^{\geq 2,000}$ $\boldsymbol{X}_h = \{M, R_{rup}\} \in \mathbb{R}^2$ $\boldsymbol{Y} = [\textsf{IDR}_1, ..., \textsf{IDR}_9, \textsf{SD}_1, ..., \textsf{SD}_9] \in \mathbb{R}^{18}$ $\widehat{\mathcal{M}}_{\mathcal{S}}(X)$ *Uncertainty propagation using stochastic simulator*

9-story steel building structure:

Seismic hazard characteristics

$$
A_n = (n, n_{rup}) \subseteq \mathbb{R}
$$

 $X_w = \{w_i, i = 1, ..., n_w\}$ $\in \mathbb{R}^{\geq 2,000}$ **Excitation sequences**

White noise sequence in SGMM

Structural system parameter

$$
\boldsymbol{X}_{s} = \left\{ \zeta, E, f_{\mathcal{Y}}^{b}, \delta_{h}^{b}, f_{\mathcal{Y}}^{c}, \delta_{h}^{c} \right\} \in \mathbb{R}^{6}
$$

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Surrogate modeling of seismic response

Prediction by stochastic simulator ($N_T = 600$)

• Inputs: $X = [X_h, X_w, X_s]$

■ Outputs: $Y = [IDR_1, ..., IDR_9, SD_1, ..., SD_9]$

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

UQ for seismic response

• Response PDFs **• Correlation matrix**

• Inputs: $X = [X_h, X_w, X_s]$

■ Outputs: $Y = [IDR_1, ..., IDR_9, SD_1, ..., SD_9]$

Median and interquartile ranges

Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Errors of the surrogate model

- Relative mean square error (RMSE):
- Comparison of RMSE at different numbers of training sets, N_T

Application (Case 2: ground motion database)

- Use **2086 GM records** from PEER NGA-west database (selected by $6.0 \leq M \leq 8.0, 10 \leq R \leq 50$ km)
- Applications to the same building structure

Ground motion database

as realization of

- Inputs: $X = [X_h, X_w, X_s]$
- Outputs: $Y = [IDR_1, ..., IDR_9, SD_1, ..., SD_9]$

Uncertain structural parameters for 9-story steel building

Surrogate modeling of seismic response Training set (N = 600)

• Prediction by stochastic simulator ($N_T = 600$)

-manguMummbr/leMystynerman

÷

Test set $(N = 1,000)$

Fragility curve estimation

- Cloud analysis is adopted: $ln(EDP) = a + b ln(IM) + \varepsilon_R$
- Using the trained surrogate model ($N_T = 600$), fragility curves are estimated from a set of 50 ground motions

3. Sensitivity analysis of seismic response

Global sensitivity analysis of seismic response

Input uncertainties

Variance-based sensitivity analysis

● Integrated sensitivity over the entire input parameter space: "**Global" sensitivity analysis**

● Two main indices: **First-order (main-effect)** and **total-effect indices**

$$
S_i = \frac{\mathbb{V}\text{ar}_{X_i} \left[\mathbb{E}_{X_{\sim i}} [Y | X_i] \right]}{\mathbb{V}\text{ar}[Y]}, \qquad S_{T_i} = 1 - \frac{\mathbb{V}\text{ar}_{X_{\sim i}} \left[\mathbb{E}_{X_i} [Y | X_{\sim i}] \right]}{\mathbb{V}\text{ar}[Y]}, \qquad 0 \le S_i \le 1
$$

Quantify the **additive effect of each variable** and **interactions with the other variables**

Variance-based sensitivity analysis

● Sensitivity indices for **each EDP** with respect to **each group of input uncertainties**

- Inevitably *high-dimensional* integral (due to white noise sequence)
- High computational complexity (Complexity = $d \times N^2$)

Sensitivity indices of seismic response $\begin{bmatrix} \cdot & \text{Inputs: } X = [X_h, X_w, X_s] \\ \cdot & \text{Output} \end{bmatrix}$

Concluding remarks

- The project goal is to develop an **efficient stochastic simulator-based approach for probabilistic seismic analysis of structural systems**
	- ➢ Development of a surrogate model for the **stochastic simulator**
	- ➢ **Uncertainty quantification** of seismic response using stochastic simulator
	- ➢ **Global sensitivity analysis** of seismic response leveraging stochastic surrogate model
- On-going research includes
	- ➢ Comparison of GSA-based approach and **ground motion selected-based approach**
	- ➢ Application to **bridge structures** (Auburn Ravine Bridge & Penstock Bridge)
- **Reference**
	- Kim, J., Yi, S. R., & Wang, Z. (2024). Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification. *arXiv preprint*:2402.04582.
	- Kim, J., and Z. Wang. Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator. (Under Review)

Thanks for listening

