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Motivations: Looking Forward

➢ Liquefaction results in a sudden loss of soil strength, causes permanent ground 

deformation, and damages a wide array of infrastructure assets:



➢ In the Cascadia Subduction Zone (CSZ), regional-scale assessments of liquefaction are 

limited, have been resigned to many simplifying/conservative assumptions:

➢ Begs further research but highlights liquefaction’s potentially staggering impact.

Motivations: Looking Forward

➢ Predicted impacts in M9 event using “HAZUS” type approach:

2,755 km of roads, 1,815 km of rail, 837 bridges, and 8 

ports will likely be rendered unavailable due predominantly to 

liquefaction (considered only WA state infrastructure!).
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Motivations: Looking Backward

➢ Simulations of CSZ M9 ground motions[1] are understandably uncertain. For example:

➢ What can paleoliquefaction tell us about motions in the last (1700 CE) CSZ event?

[1] Frankel, A., Wirth, E., Marafi, N., Vidale, J., & Stephenson, W. (2018). Broadband synthetic seismograms for magnitude 9 

earthquakes on the Cascadia megathrust based on 3D simulations and stochastic synthetics. BSSA 108(5A), 2347-2369.
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Modeling Liquefaction

➢ Liquefaction models generally fall into 3 tiers:

➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A range of 

complexities, but all are limited by lack of subsurface information (e.g., HAZUS).

➢ Tier 2: Requires in-situ geotechnical test measurements. Used at site scale. By far most 

widely validated and commonly used model in engineering practice.

➢ Tier 3: Requires numerous soil and model parameters (typically calibrated against cyclic 

lab data). Used at project scale. Can provide additional spatial/temporal insights. 
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Modeling Liquefaction
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➢ Tier 1: Requires only geologic or geospatial data. Used at regional scale. A wide range 

of complexities, but all are limited by lack of subsurface information. 

➢ Tier 2: Requires in-situ geotechnical test measurements. Used at site scale. By far most 

widely used model in engineering practice.
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lab data). Used at project scale. Can provide additional spatial/temporal insights. 

  

Geologic/Geospatial Models “Stress-Based” Models Constitutive Models

Excess Pore Pressure Ratio, ru

1

0

Tier 1 Tier 2 Tier 3

Most common/validated approach, but requires site-specific test data…



Modeling Liquefaction

➢ Several types of in-situ test data can be used to predict liquefaction, but Cone Penetration 

Test (CPT) data is generally favored (~$3k-$10k per test):
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Looking Forward

➢ Goal:

➢ Predict liquefaction-induced ground failure, for each of  30 CSZ M9 simulations, at:

1. 400 sites where CPT data is available 

(includes 10 paleoliquefaction sites).

2. Continuously across the region.
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Looking Forward: Site Response

➢ M9 CSZ simulations used regional velocity model with minimum VS of 600 m/s [3]. 

Soft Rock

[3] Stephenson, W. J., Reitman, N. G., & Angster, S. J. (2017). P-and S-wave velocity models incorporating the Cascadia subduction zone 

for 3D earthquake ground motion simulations, Version 1.6—Update for Open-File Report 2007–1348 (No. 2017-1152). USGS.



Looking Forward: Site Response

➢ Simulated motions must be modified for local conditions (VS structure < 600 m/s): 

600 m/s

What data is available to 

define near-surface 

velocity structure?



Looking Forward: Site Response

➢ What data is available to define near-surface velocity structure?

Kellogg Island, Seattle

Brush Island, Oregon

(a) (b) (c)

1) Measured Vs profiles (sometimes)



Looking Forward: Site Response

➢ What data is available to define near-surface velocity structure?

[4] Geyin, M., & Maurer, B. W. (2023). US National VS30 Models and Maps Informed by Remote Sensing and Machine Learning. 

Seismological Research Letters 94 (3): 1467–1477

1) Measured Vs profiles (sometimes)

2) VS30 predictions (always)

Geyin & Maurer[4] VS30 Model: 

o Data from 7000 sites

o 17 geospatial predictors

o ML ensemble model

o Predictions updated in field

o US national coverage
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Looking Forward: Site Response

➢ What data is available to define near-surface velocity structure?

[5] Shi, J., & Asimaki, D. (2018). A generic velocity profile for basin sediments in California conditioned on VS30. Seismological 

Research Letters, 89(4), 1397-1409.

1) Measured Vs profiles (sometimes)

2) VS30 predictions (always)

3) VS profile predictions (always)

Several general and region-specific soil velocity models are available (e.g., Shi and Asimaki[5])

𝑉𝑠 𝑧 = ቐ
𝐴 , 𝑧 < 2.5 m

𝐴 1 + 𝐵 𝑧 − 2.5
1
𝐶 , 𝑧 ≥ 2.5 m

o A, B, C are fitting parameters conditioned on VS30.

o Trained on California profiles.

o Others (e.g., Wirth et al. 2021) have since trained similar models on Pacific Northwest profiles. 

o Limitation: all sites with same VS30 have same VS profile.



Looking Forward: Site Response

➢ What data is available to define near-surface velocity structure?

[7] Assaf, J., Molnar, S., & El Naggar, M. H. (2023). CPT-Vs correlations for post-glacial sediments in Metropolitan Vancouver. Soil 

Dynamics and Earthquake Engineering, 165, 107693.

1) Measured Vs profiles (sometimes)

2) VS30 predictions (always)

3) VS profile predictions (always)

4) CPT data (sometimes)

Many CPT-VS models are 

available, including some that 

are region specific [7]
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Looking Forward: Site Response

➢ Approach in absence of site-specific VS profile:

1) Predict VS30 by Geyin and Maurer (2023)

2) Predict VS-depth by Wirth et al. (2021)
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Looking Forward: Site Response

➢ Approach in absence of site-specific VS profile:

1) Predict VS30 by Geyin and Maurer (2023)

2) Predict VS-depth by Wirth et al. (2021)

3) When available, predict VS-depth via 

ensemble of 6 CPT-VS models
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Looking Forward: Site Response

➢ Approach in absence of site-specific VS profile:

1) Predict VS30 by Geyin and Maurer (2023)

2) Predict VS-depth by Wirth et al. (2021)

3) When available, predict VS-depth via 

ensemble of 6 CPT-VS models

4) Update regional model
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Looking Forward: Site Response

➢ Total-stress site-response analyses performed via PySeismoSoil (Asimaki and Shi, 2017)

➢ Hybrid Hyperbolic soil model; properties estimated from VS in each layer

➢ Both EQL-FD and NL analyses performed (NL adopted)
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Looking Forward: Discrete Predictions

➢ 18 CPT-based liquefaction models ensembled

➢ 6 Triggering Models x 3 Manifestation Models

• Robertson and Wride 1998

• Architectural Inst. of Japan 2001

• Moss et al. 2006

• Idriss & Boulanger 2008

• Boulanger & Idriss 2014

• Green et al. 2019

• LPI (Liquefaction Potential Index)

• LPIISH (Modified LPI)

• LSN (Liquefaction Severity Number)

➢ Fragility functions conditioned on these models have 

been trained from global data to predict the 

probability of liquefaction surface manifestation.  

Manifestation Model Index (eg LPI)
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Different liquefaction 

models give somewhat 

different predictions

[8] Geyin, M., & Maurer, B. W. (2020). Fragility functions for liquefaction-induced ground failure. Journal of Geotechnical and 

Geoenvironmental Engineering, 146(12), 04020142.

[8]



Looking Forward: Discrete Predictions

➢ What is liquefaction surface manifestation?  

➢ Liquefaction ejecta or ground deformation 

➢ Indicates instability, reduced bearing capacity

➢ A practical proxy of damage potential for 

various near-surface infrastructure assets

➢ 18-model ensemble was ~90% efficient predicting 
manifestations in 2001 Nisqually, WA, EQ [9].



Looking Forward: Discrete Predictions

➢ Regional observations:

➢ Probability of manifestation >60% 

at most Vancouver sites; >40% at 

most Seattle & Portland sites. 

➢ Many coastal test sites do not 

contain liquefaction-susceptible soils 

(could exist at unsampled locales).

➢ Scale of impact is immense.

➢ Liquefaction could be pervasive, 

affect major hubs of population, 

transportation, and commerce. 

Median Probability of  Manifestation



Looking Forward: Discrete Predictions

➢ Regional observations:

➢ Probability of manifestation >60% 

at most Vancouver sites; >40% at 

most Seattle & Portland sites. 

➢ Many coastal test sites do not 

contain liquefaction-susceptible soils 

(could exist at unsampled locales).

➢ Scale of impact is immense.

➢ Liquefaction could be pervasive, 

affect major hubs of population, 

transportation, and commerce. 

Median Probability of  Manifestation

➢ Discrete predictions are useful but must be continuous for complete assessment of impacts. 
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Looking Backward

➢ Goal:

➢ Having predicted liquefaction for various M9 CSZ simulations, do any match the 

interpreted 1700 CE paleoliquefaction evidence better or worse?

➢ In other words, can the ground motions experienced in 1700 CE be constrained?



Looking Backward

➢ Performed analysis using 10 distributed paleoliquefaction study sites:

➢ Whether liquefaction did, or did not, 

occur in 1700 CE has uncertainty.

➢ Uncertainties assigned to each study 

site considering all evidence. 

Site

Score

Probability that 1700 

Observation is Positive (%)

Probability that 1700 

Observation is Negative (%)

0 0 100

1 10 90

2 20 80

3 30 70

4 40 60

5 50 50

6 60 40

7 70 30

8 80 20

9 90 10

10 100 0

3

3

3

2

9

7

3

9

6

2



Looking Backward

➢ Most notably, even the “best fitting” 

simulation does not fit the evidence 

especially well…

➢ Predictions suggest liquefaction should 

be relatively common throughout 

Puget Lowlands, but there is not yet  

obvious/proposed/apparent/favored 

evidence of 1700 CE liquefaction.

3

3

3

2

9

7

3

9

6

2

Simulation most likely to produce 1700 CE 

liquefaction evidence



Looking Backward

➢ How to interpret this difference?

1) Significant 1700 liquefaction evidence 

awaits discovery?

2) Component models used to predict site 

response, liquefaction are erroneous?

3) 1700 motions were less than expected 

from M9 sims in portions of CSZ?

4) If so, was 1700 slightly smaller than 

M9? Not a full-margin rupture? Why 

were the motions less?

3

3

3

2

9

7

3

9

6

2

Simulation most likely to produce 1700 CE 

liquefaction evidence
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Looking Forward: Continuous Predictions [ongoing in US; trialed in NZ]

➢ Solution: a mechanics-informed machine learning model anchored to in-situ test data.

➢ Step 1/3: Subject CPTs (400 CSZ + 50,000 global) to wide range of ground motions

 Predict liquefaction response using CPT-based models

                   Fit functional form to manifestation model index vs PGA response

Magnitude-scaled PGA
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A conveys thickness of 

liquefiable strata

B conveys liquefaction 

resistance of those strata



➢ Step 2/3: Train ML models to predict “A” and “B” via 30 geospatial predictor variables.

➢ These variables aim to predict below-ground conditions using above-ground 

observations (e.g., satellite sensed) and mapped information (all freely available):

Example predictors: (a) depth to groundwater; (b) depth to bedrock

(a) (b)

Looking Forward: Continuous Predictions [ongoing in US; trialed in NZ]



Looking Forward: Continuous Predictions [ongoing]

➢ Solution: a mechanics-informed machine learning model anchored to discrete data sites.

➢ Step 1/3: Subject each CPT to wide range of ground motions:

➢ More geotech data = better ML model, and more complete anchorage of ML to reality. 

➢ Show example of idea being applied (VS30) and regression kriging. 

Variable Description

Convergence A classifying measure of convergent areas as channels and divergent areas as ridges.

Compound topographic index A proxy of long-term soil moisture availability, also topographic wetness index.

Depth to bedrock Interpolated depth to bedrock. 

Distance to coast Minimum distance to coast.

Distance to river Minimum distance to river computed for different Strahler orders.

Elevation deviation A measure of the amount of elevation variation within a dataset.

Geologic unit Geology units categorized into "Simple names."

Geomorphon Classified as flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, or depression.

Groundwater depth Interpolated depth to groundwater. 

Height above nearest drainage A topographic normalization to the local relative heights found along the drainage network.

Landform entropy A texture metric of the spatial disorderliness of landform types within the window. 

Landform uniformity A texture metric of the uniformity of landform types within a window. 

Major landform The landform (classification) that covers most grid cells of the aggregation window.

Maximum multiscale deviation The difference in elevation across a window divided by the standard deviation of the window.

Maximum multiscale roughness The spherical standard deviation of 3-dimensional vectors to calculate vector ruggedness.

Pfafstetter level The ‘Pfafstetter’ coding system implemented as 12 hierarchically nested sub-basins.

Precipitation Mean annual precipitation.

Profile curvature A measure of the rate of change of a slope; affects the acceleration of water flow.

Roughness The largest inter-cell absolute elevation difference of a cell and its 8 surrounding cells.

Scale of MMD See Maximum multiscale deviation.

Scale of MMR See Maximum multiscale roughness.

Shannon index A diversity index based on the proportion of landform types within the window. 

Soil depth Qualitative soil depth classifier.

Soil drainage Qualitative soil drainage classifier.

Soil order Soil classification consistent with the New Zealand Soil Classification (NZSC).

Tangential curvature The rate of change perpendicular to a slope gradient; relates to sediment accumulation.

Terrain ruggedness index A measure of the ruggedness and topographic complexity (elevation variability) of landscapes.

Topographic position index The difference of elevation of a cell and the mean of its 8 surrounding cells. 

Topographic slope The rate of change of elevation in the direction of the water flow line.

Vector ruggedness measure Quantifies ruggedness via variation in sine and cosine of the slope in three dimensions.

Vs30 Average shear wave velocity of uppermost 30m. 



➢ Step 2/3: Train ML models to predict “A” and “B” via 30 geospatial predictor variables.

Looking Forward: Continuous Predictions [ongoing in US; trialed in NZ]



➢ With this approach, rapid prediction of  probability of  ground failure (PGF) is trivial:

Looking Forward: Continuous Predictions [ongoing in US; trialed in NZ]

A

B

PGA

+

+



Looking Forward: Continuous Predictions [ongoing in US; trialed in NZ]

➢ Step 3/3: Use geostatistics to update ML predictions of A, B using CPT measurements.

Machine Learning predictions 

before geostatistical updating

Machine Learning predictions 

after geostatistical updating
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Closing

➢ Looking forward

➢ Discrete predictions suggest liquefaction could be pervasive in M9 CSZ events, affect 

major hubs, but (like ground motions) expected response varies widely.

➢ Continuous predictions (ongoing) are needed to fully assess impacts, network reliability.

➢ Looking backward

➢ The lack of clear/proposed 1700 liquefaction evidence in the Puget Lowland is 

interesting (forward predictions of M9 ruptures suggest it should be somewhat common).

➢ 1700 ground motions may have been less than expected from M9 simulations in some 

areas (e.g., Seattle), but this is only one of several reasonable interpretations. 

➢ General

➢ ML can effectively exploit large quantities of above-ground geospatial information to 

predict below-ground conditions/traits/responses
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