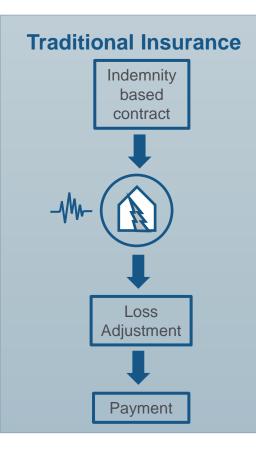
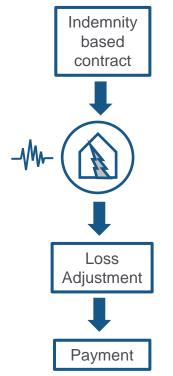


Simulated Ground Motions for the San Francisco Bay Area 18-19 January 2024 | PEER – LBNL Workshop


IMPLICATIONS OF THE USE OF PHYSICS-BASED SIMULATIONS IN THE (RE)INSURANCE SECTOR

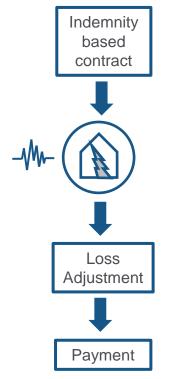
19.01.2024 M. Stupazzini, R. Paolucci, A. Allmann, I. Mazzieri, M. Käser, C. Smerzini

Introduction



Introduction

Traditional Insurance



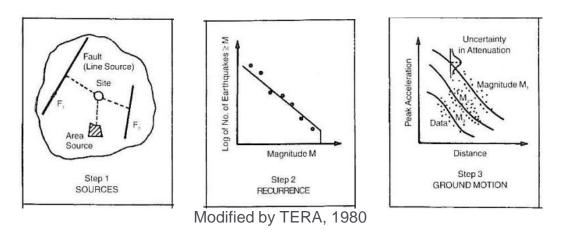
"The non-life insurance pricing consists of establishing a premium or a tariff paid by the insured to the insurance company in exchange for the risk transfer. A usual way to obtain the insurance premium is to <u>combine the</u> <u>conditional expectation of the claim frequency with the</u> <u>expected claim amount</u>." (David, 2015)

Introduction

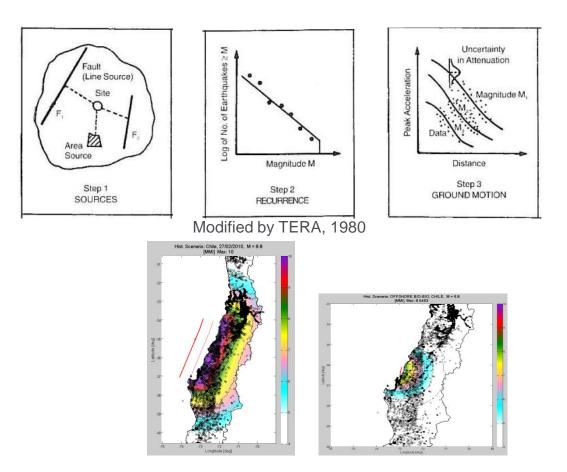
Traditional Insurance

"The non-life insurance pricing consists of establishing a premium or a tariff paid by the insured to the insurance company in exchange for the risk transfer. A usual way to obtain the insurance premium is to <u>combine the</u> <u>conditional expectation of the claim frequency with the</u> <u>expected claim amount</u>." (David, 2015)

"In reinsurance premiums are calculated very often by the so-called burning cost method (see Gerathewohl (1976), chapter 5), a very elementary estimating or forecasting method." (Kremer, 1984)


Introduction Basic principle of insurance

sum of loss sum of premiums = (over a certain time) (over a certain time) **Problem:** Not enough observations of 3500000 real losses and too short observation interval. 3000000 → modeling of synthetic 2500000 event sets necessary ! 2000000 loss 1500000 1000000 500000 0 1 10 100 1000 10000 return period

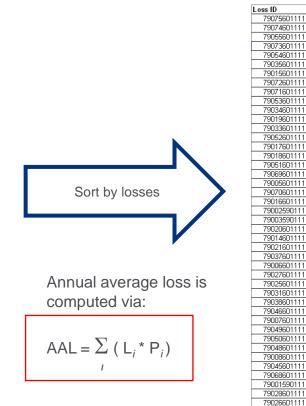

Munich RE 萋

Property Catastrophic Modelling

- Probabilistic Seismic Hazard Assessment, Cornell, 1968 Esteva, 1970 McGuire, 1976
- Logic Tree, Kulkarni et al., 1984
- Monte Carlo simulation, Musson, 2009

Property Catastrophic Modelling

- Probabilistic Seismic Hazard Assessment, Cornell, 1968 Esteva, 1970 McGuire, 1976
- Logic Tree, Kulkarni et al., 1984

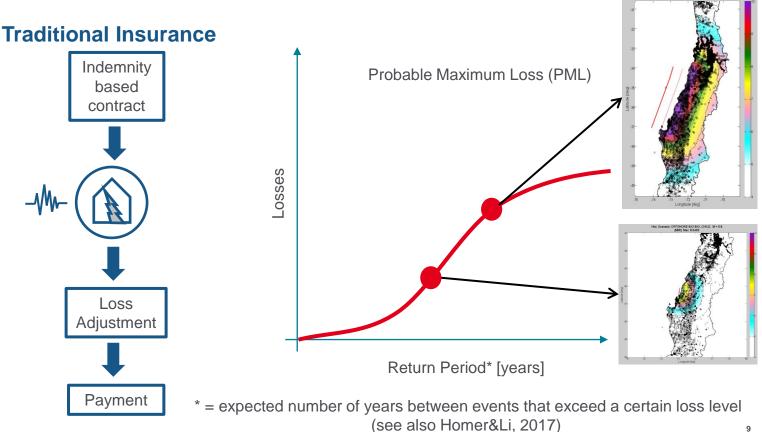

•

• Monte Carlo simulation, Musson, 2009

Property Catastrophic Modelling Event Loss Table (ELT) and Annual Average Loss (AAL)

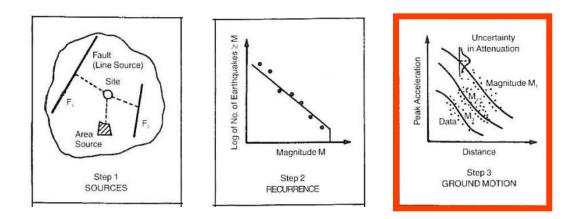
Loss ID	Losses	Probability
71004490111	31880	0.0000250
71004490111	32900	0.0000202
71004500111	65890	0.0000178
71004510111	99899	0.0000178
71004520111	100918	0.0000137
71004530111	136489	0.0000138
71004550111 71007540111	170498 2504	0.0000108
71007550111	3589	0.0000108
71008490111	843	0.0000250
71008500111	1550	0.0000202
71008510111	1550	0.0000178
71008520111	2258	0.0000157
71008530111	4052	0.0000138
71008540111	5898	0.0000122
71008550111	7427	0.0000108
71011510111	1563	0.0000178
71011520111	1563	0.0000157
71011530111	3127	0.0000138
71011540111	4690	0.0000122
71011550111	4690	0.0000108
71012550111	1563	0.0000108
71014530111	18756	0.0000138
71014540111	37512	0.0000122
71014550111	61889	0.0000108
71015480111	9026	0.0000250
71015490111	10253	0.0000250
71015500111	14766	0.0000202
71015510111	20308	0.0000178
71015520111	25852	0.0000157
71015530111	26884	0.0000138
71015540111	38166	0.0000122
71015550111	50223	0.0000108
71016550111	1228	0.0000108
71017490111	620	0.0000250
71017500111	620	0.0000202
71017510111	1139	0.0000178
71017520111	1660	0.0000157
71017530111	1660	0.0000138
71017540111	3496	0.0000122
71017550111	4988	0.0000108
71018540111	620	0.0000122
71018550111	1139	0.0000108
71019500111	1526	0.0000202

osses	Probability		
133998352	0.0000001		
129762193	0.0000001		_
118293935	0.0000001		
117554340	0.0000001		
115358800	0.0000001		
105191113	0.0000001		
94939435	0.0000001		
94608504	0.0000001		
93994622	0.0000001		
90814195	0.0000001	Cummulative sum over probabilities	
89545358	0.0000001	Ę	
88622112	0.0000001	⊒	
84867325	0.0000001	3	
84016389	0.0000001		
83749481	0.0000001	a	
82493940	0.0000001	÷	
81582667	0.0000001	۵ ۵	
81536053	0.0000001		
81495306	0.0000001	SC	
81325784	0.0000001	5	
77205819	0.0000001		
77007852	0.000002	0	
75319716	0.000002	l ≦	
75138043	0.0000001	Ϋ́	
73726959	0.0000001	σ	
72386374	0.0000001	2	
72107042	0.0000001	ĕ	
72096580	0.0000001	ã	
71831104	0.0000001	0	
71639091	0.0000001	Ŧ	
71213075	0.0000001	E.	
70846538	0.0000001	ŭ	
70825182	0.0000001		
70695378	0.0000001		
70616009	0.0000001		
70330444	0.0000001		
70320559	0.0000001		7
69798792	0.0000001		
69680677	0.0000001	$\mathbf{\mathbf{\nabla}}$	
69676089	0.0000001		
69618605	0.0000002		
69603323	0.0000001		
69529242	0.0000001		


Probability

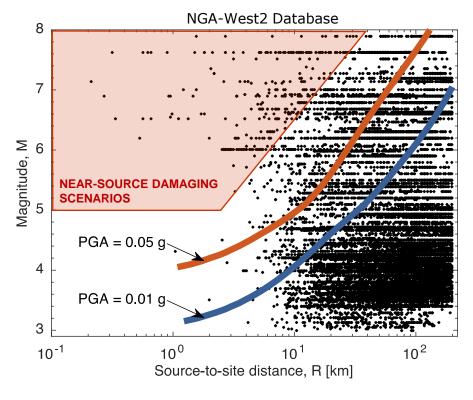
Losses

Property Catastrophic Modelling Probable Maximum Loss (PML)

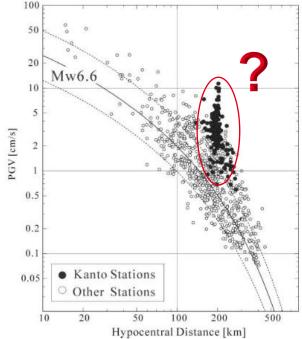


Hist. Scenario: Chile, 27/02/2010, M = 8.8 IMMII Max: 10

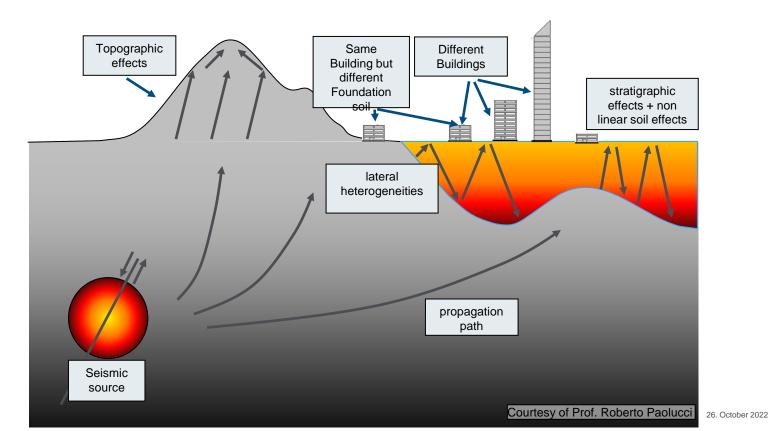
Property Catastrophic Modelling


Modified by TERA, 1980

KEY WORDS: (1) Ground Motion Models (2) Portfolio (3) Spatial Correlation


- Probabilistic Seismic Hazard Assessment, Cornell, 1968 Esteva, 1970 McGuire, 1976
- Logic Tree, Kulkarni et al., 1984
- Monte Carlo simulation, Musson, 2009

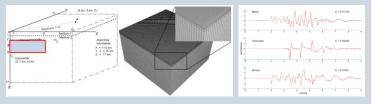
Ground Motion Models (GMMs)


Baker, Bradley and Stafford (2021)

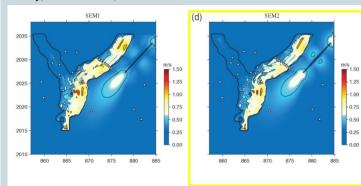
«Anomalous Propagation of Long-Period Ground Motions Recorded in Tokyo during the 23 October 2004 Mw 6.6 Niigata-ken Chuetsu, Japan, Earthquake» by Takashi Furumura and Toshihiko Hayakawa, Bulletin of the Seismological Society of America, Vol. 97, No. 3, pp. 863–880, June 2007, doi: 10.1785/0120060166

From a physical perspective the peculiar behavior of the records can be explained...

er 2022 12


Simulated Ground Motions for the San Francisco Bay Area, 18-19 January 2024 | PEER - LBNL Workshop

Physics-Based Scenarios (PBSs) need to be verified and validated



Verification

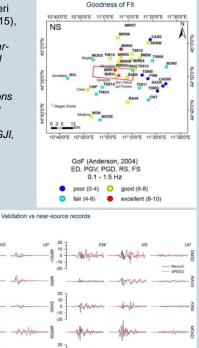
Stupazzini M, Paolucci R, Igel H (2009), *Near-fault earthquake ground*motion simulation in the Grenoble valley by a high-performance Spectral *Element code*, BSSA, 99: 286–301.

Chaljub E., Moczo P., Tsuno S., Bard P.Y., Kristek J., Käser M., Stupazzini M., Kristekova M. (2010), *Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley, France*. BSSA, 100: 1427-1455

Paolucci R., Mazzieri I., Smerzini C., (2015), Anatomy of strong ground motion: nearsource records and three-dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po Plain earthquake, Italy, GJI, 203-3: 2001–2020.

1 -20

20

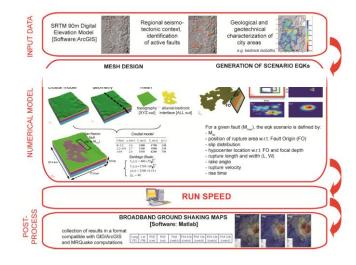

1.20

₹-20 -40 -10 20 300 10 20

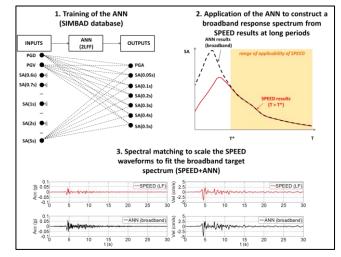
1 (a)

t (s)

Validation



20 30


t (s)

10 20 30.0

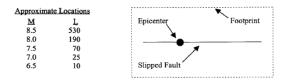
SPEED "recipe" to compute broadband (BB) ground motion simulations

- step1, Physics-Based Scenario (PBS)
- + step2, Artificial Neural Network (ANN)

http://speed.mox.polimi.it/

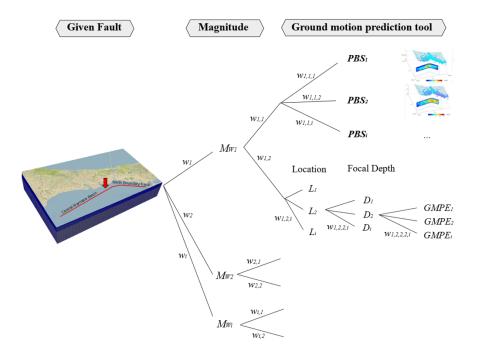
R.Paolucci, F.Gatti, M.Infantino, C.Smerzini, A.Güney Özcebe, M.Stupazzini (2018), *Broadband Ground Motions from 3D Physics-Based Numerical Simulations Using Artificial Neural Networks*, BSSA, 108 (3A): 1272-1286.

OPINION PAPER

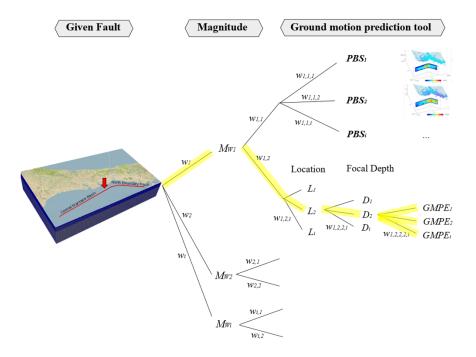

The Footprint of an Earthquake

George W. Housner, M.EERI

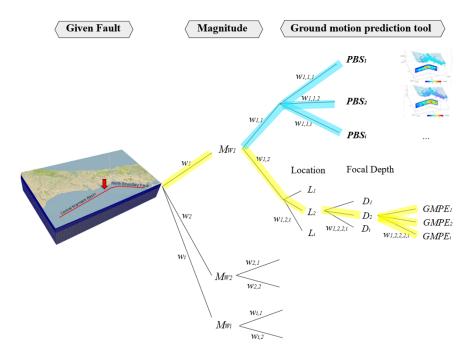
When the recent earthquake occurred in Turkey, it was generally known within a day where the epicenter was located and that the magnitude was M7.4. Many people asked me questions about the extent of damage and the loss of life that I could not answer because magnitude and epicenter do not provide sufficient information for engineers. For immediate engineering purposes one needs to know the approximate length, and the location and orientation of the fault slip (not the surface expression of the fault). The epicenter locates one point on the slipped length of fault, but this could be at either end or somewhere in the middle. In the case of the Turkey earthquake, the western end of the slipped length of fault seems to have been approximately 20 miles west of the epicenter, and the fault on which the slip occurred was essentially east-west trending. The locations of the ends of the slipped length of fault can usually be determined approximately by the clusters of aftershocks in their vicinities.

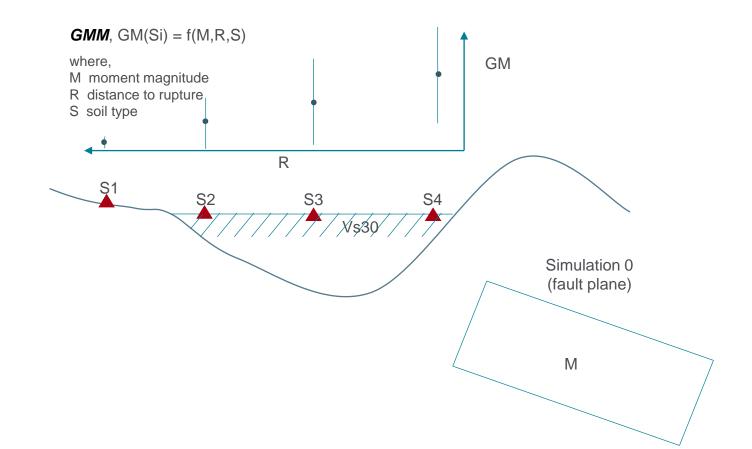

The length of slipped fault for an M7.4 earthquake would be about 60 miles, so the area subjected to strong shaking of 25% g or greater can thus be estimated to have had a length of about 70 miles and a width of about 40 miles, and this rectangle can be thought of as the strong motion footprint of the earthquake. The northwestern corner of the footprint was approximately 30 miles southeast of Istanbul, which explains why Istanbul was not more seriously damaged. Had the fault slip traveled farther west of the epicenter, the northern edge of the footprint would have passed 10 miles south of Istanbul, which would have caused much more damage. The foregoing discussion applies to strike-slip faults; other types of faults could have footprints of different shapes.

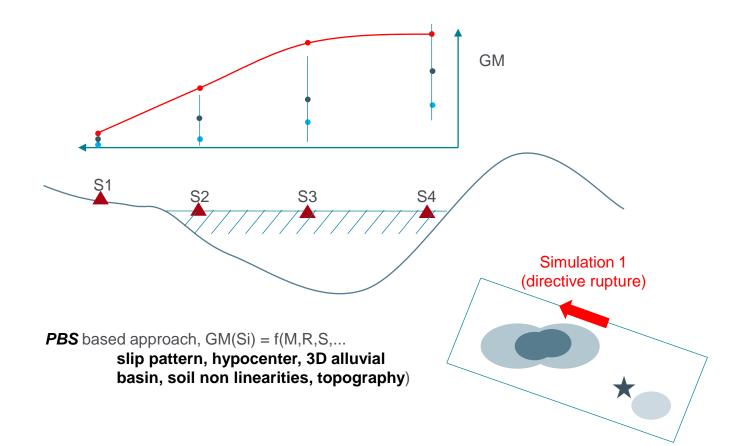
If, within a few days, the approximate location and dimensions of the footprint could be reported, it would be very helpful to outsiders in understanding the distribution of damage. The size of the footprint could be based on instrumental recordings and on insider observations of damage; and the width could be specified for 25% go r some lesser value as the situation requires. The slipped length L can be estimated from the Richter magnitude M, and if the location and orientation of the footprint can be estimated, many questions about damage and lack of damage could be answered. For a large earthquake the epicenter is not as helpful to engineers as is the footprint.

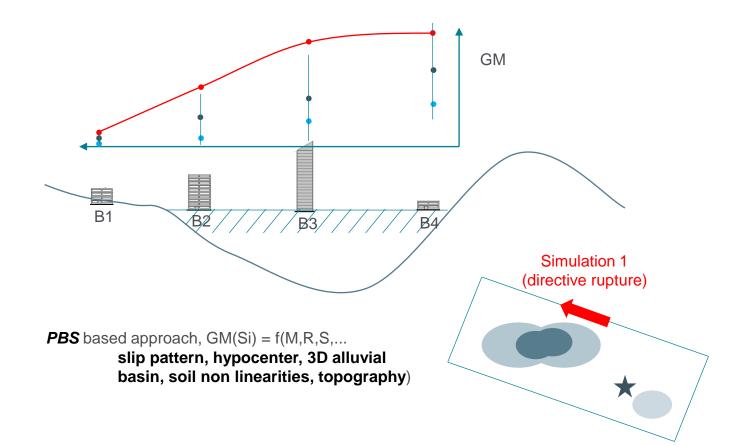


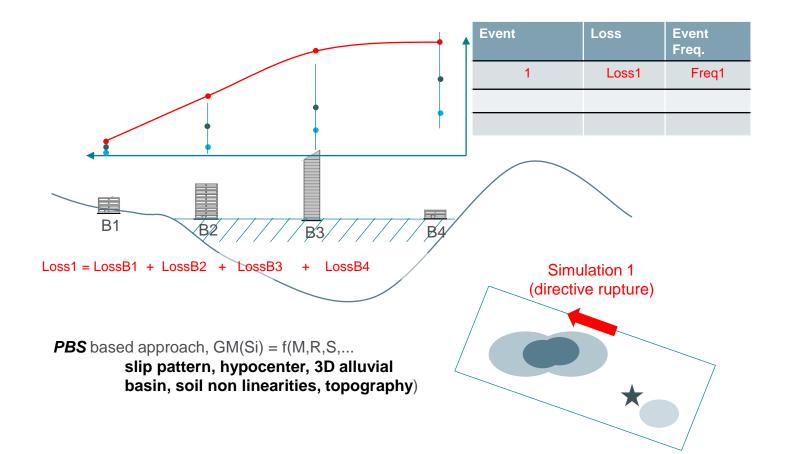
Department of Civil Engineering, California Institute of Technology, Pasadena, CA 91125

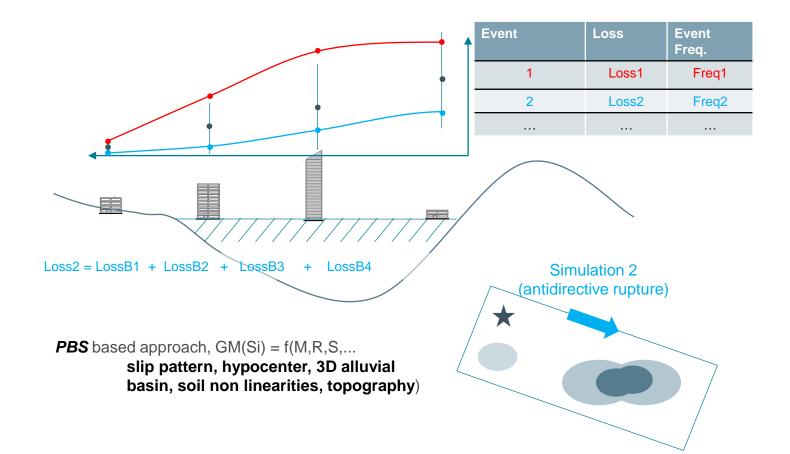

"Footprint" based PSHA

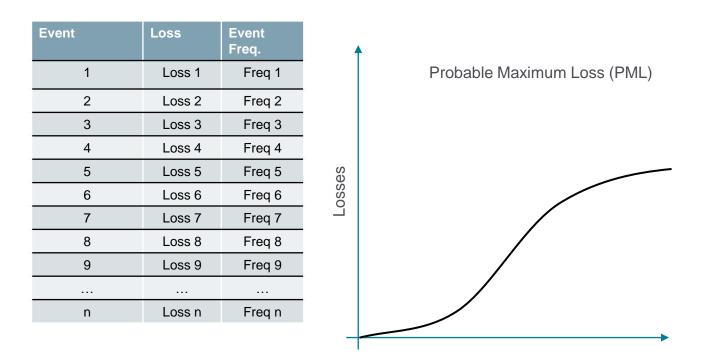

"Footprint" based PSHA

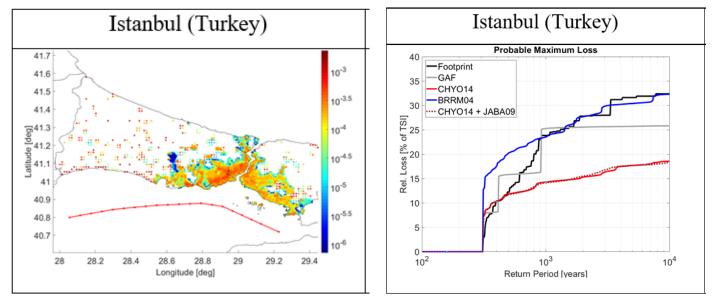



"Footprint" based PSHA




GMMs vs Physics-Based Scenario (PBS) in a nutshell



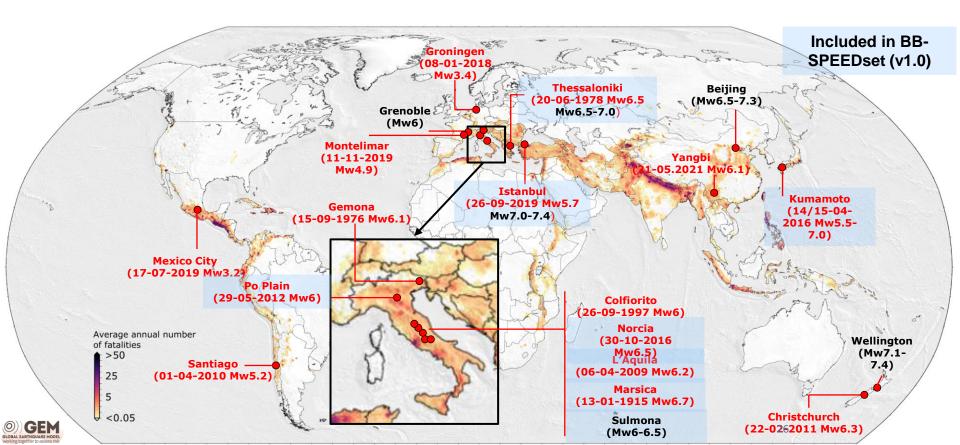


Return Period [years]

PRA results according to the "Footprint based" approach against classical approaches

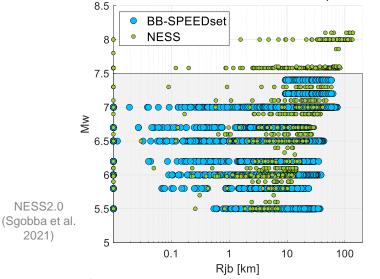
Footprint: pml based on physics-based footprints

GAF: Generalized Attenuation Function (see Villani et al., 2014)

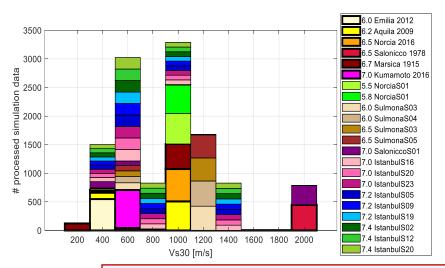

CHYO14: pml based on Chiou&Youngs 2014 ground motion model

BRRM04: pml based on Bray&Rodriguez-Marek 2004 ground motion model

CHYO14 + JABA09: pml based on Chiou&Youngs 2014 ground motion model including the spatial correlation model of Jayaram&Baker 2009


Overview of case studies by SPEED

BB-SPEEDset: a dataset of near-source physics-based simulated accelerograms



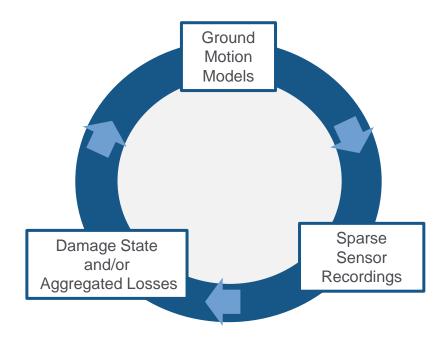
 $M_{w}\text{-}R_{ib}$ and V_{S30} distribution of BB-SPEEDset

BB-SPEEDset: A Validated Dataset of Broadband Near-Source Earthquake Ground Motions from 3D Physics-Based Numerical Simulations 👾

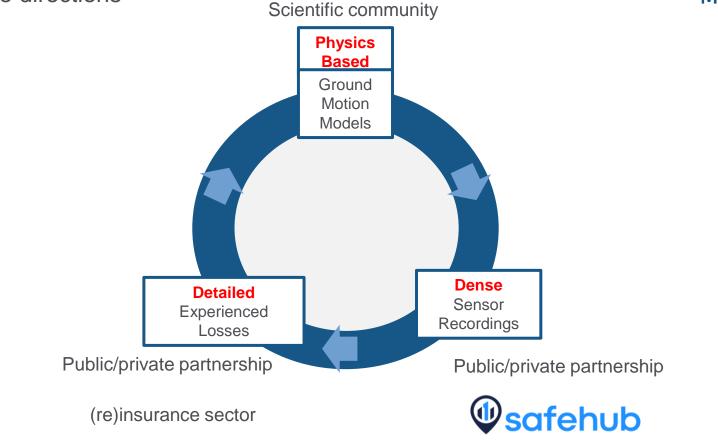
Roberto Paolucci; Chiara Smerzini 😅; Manuela Vanini

Bulletin of the Seismological Society of America (2021) 111 (5): 2527-2545.

Open-source:


http://speed.mox.polimi.it/bb-speedset/

- Flatfile
- 3-component broadband accelerograms (~12'000)


Status-quo

Property Catastrophic Modelling

Future directions

Conclusions: "Physics-Based Ground Motion Modelling" community

Was able to...

- generate a large amount of verified and validated physics-based simulations worldwide,
- challenge and improve the quality of Physics-Based Silumations (PBS) according to different quantitative metrics criteria,
- identify scientific research fields, presently under investigation.

TO DO:

- PBSs tend not to be collected into a global repository in contrary to what other community have acchieved (e.g.: GEM Global Earthquake Model);
- it is difficult to obtain already simulated PBSs and to make use of the different published results;
- still missing common standard to store PBSs results.

The accomplishment of the TO DO's will drastically accelerate the adoption and therefore testing of PBSs in Seismic Risk Assessment.

Munich RE

Thanks for your attention!

References

- Baker J, Bradley B, Stafford P. Seismic Hazard and Risk Analysis. Cambridge: Cambridge University Press; 2021. doi:10.1017/9781108425056
- Chaljub E., Moczo P., Tsuno S., Bard P.Y., Kristek J., Käser M., Stupazzini M., Kristekova M. (2010), Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble, Valley, France.
 BSSA, 100: 1427-1455
- Cornell, A. "Engineering Seismic Risk Analysis", 1968, Bulletin of the Seismological Society of America. Vol. 58, No. 5, pp. 1583-1606.
- David M., "Auto Insurance Premium Calculation Using Generalized Linear Models", 2015, Procedia Economics and Finance, Vol. 20, pag.147-156, ISSN 2212-5671, https://doi.org/10.1016/S2212-5671(15)00059-3.
- Esteva, L. "Seismic risk and seismic design decisions. In Seismic Design for Nuclear Power Plants", 1970, ed. R. J. Hansen, 142–182. Cambridge, MA: Massachusetts Institute of Technology Press
- Gerathewohl, K. (1976): Rückversicherung Grundlagen und Praxis. Karlsruhe 1976, Part 1.
- Homer D., Li M., "Notes on Using Property Catastrophe Model Results", 2017, Casualty Actuarial Society E-Forum, Spring 2017-Volume 2 (<u>https://www.casact.org/sites/default/files/2021-02/2017_most-practical-paper_homer-li.pdf</u>)
- Kremer, E. "The burning cost method and ratio estimation", 1984, Blätter DGVFM 16, 295–299 (1984). https://doi.org/10.1007/BF02808748
- Kulkarni R., Youngs R., Coppersmith K. 1984. "Assessment of confidence intervals for results of seismic hazard analysis". 263-270.
- McGuire, R. K. (1976). FORTRAN Computer Program for Seismic Risk Analysis. USGS Open-File Report 76–67
- Musson, R. "The use of Monte Carlo simulations for seismic hazard assessment in the UK", 2000. Annals of Geophysics. 43. 2009, 10.4401/ag-3617.
- Paolucci R., Mazzieri I., Smerzini C., (2015), Anatomy of strong ground motion: near-source records and three-dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po Plain earthquake, Italy, GJI, 203-3: 2001–2020.
- Paolucci R., Smerzini C., Vanini M. (2021). BB-SPEEDset: A Validated Dataset of Broadband Near-Source Earthquake Ground Motions from 3D Physics-Based Numerical Simulations. Bulletin of the Seismological Society of America. 111. 10.1785/0120210089.
- Paolucci R., Gatti F., Infantino M., Smerzini C., Güney Özcebe A., Stupazzini M. (2018), Broadband Ground Motions from 3D Physics-Based Numerical Simulations Using Artificial Neural Networks, BSSA, 108 (3A): 1272-1286.
- Stupazzini M, Paolucci R, Igel H (2009), Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance Spectral Element code, BSSA, 99: 286–301.
- Stupazzini M., Infantino M., Allmann A., Paolucci R., 2020. "Physics based probabilistic seismic hazard and loss assessment in large urban areas: A simplified application to Istanbul", Earthquake Engineering & Structural Dynamics 50(2), 99-115, DOI: 10.1002/eqe.3365
- Tera Corporation: 1978, Bayesian seismic hazard analysis, a methodology.
- Villani M., Faccioli E., Ordaz M., Stupazzini M., (2014). "High-Resolution Seismic Hazard Analysis in a Complex Geological Configuration: The Case of the Sulmona Basin in Central Italy". Earthquake Spectra. 30. 1801-1824. 10.1193/112911EQS288M.