

PEER International Pacific Rim Forum June 16-17, 2021

The U.S. DOE EQSIM Exascale Application Development for Fault-to-Structure Regional-Scale Simulations

David McCallen Lawrence Berkeley National Laboratory & University of Nevada, Reno

June 16, 2021

HPC advancements are enabling unprecedented scientific simulations

2

The DOE Exascale Computing Project (ECP) is preparing to exploit a billion-billion FLOPS

Three parallel components of the Exascale program...

Supporting software stack for the Exascale computational ecosystems

Software

Technology

Selected science applications (24) for Exascale platforms

Applications

Development

Exaflop Computers

Advanced computer hardware at the Exascale

EarthQuake SIMulation (EQSIM) framework integrated fault-to-structure simulations

Key issues that will be explored through simulations...

- How do earthquake ground motions actually vary across a region and how does this impact risk to infrastructure?
- How do complex (realistic) incident ground motion waveforms actually interact with a particular facility?

Fault-to-structure simulations are a very challenging multi-scale problem

The EQSIM core team spans engineering, seismology, math and computer science

Engineering Mechanics

David McCallen

Mamun Miah

Maryam Tabbakhha

Applied Math / Numerical Methods

Anders Petersson

Wei Liu

Postdoctoral scholars

Computer Science

Houjun Tang

Seismology / Geophysics

Arben Pitarka

Arthur Rodgers

Rie Nakata

Wu Kenawy Graduate students

Huang

Eckert

6

Statement of the EQSIM exascale goal – high frequency, fast regional simulations

Deterministic, *fast* forward ground motion simulations at frequencies of engineering interest are the core focus of our developments

Regional-scale model (SFBA)

Simulation of one earthquake realization 30 25 **Higher frequency** Execution Time (Hours) (~5x resolution increase) aster execution 20 ~5x speed up) **Historical** performance 15 10 - Advanced algorithms - Application optimization for hardware 5 Exascale - Exascale platforms goal 10 2 8 6 **Resolved Frequency (Hz)**

Advancing the SW4 geophysics code for simulating earthquake ground motions

Improved physics, computational efficiency at 300 billion grid points

Optimizing the code for execution on massively parallel GPU-based computers

Effective parallelism, I/O and workflow

San Francisco Bay Area – progress on simulations at 10Hz on Summit

Advancements in EQSIM performance for a M7 Hayward fault 10 Hz SFBA simulation

History of San Francisco Bay Area simulations (2000 – 2021)

San Francisco Bay Area

12

10

8

6

4

2

0

0

SFBA Frequency Resolved (Hz)

5x

15

20

25

Computational effort

Computational progress

Aagaard et. al. 2008

Harmsen et. al. 2008

Aagaard et. al. 2010

Hartzell et. al. 2010

EQSIM 2017

EQSIM 2018

EQSIM 2019

EQSIM 2020

5

Petersson et. al. 2014

10

Years since 1998

EQSIM has alternate workflows for coupling geophysics and engineering models

Generalizing coupling and software: linking geophysics and engineering codes

Strong coupling workflow – ground motion data compression for a near surface layer

40 story steel moment frame building response at 2km off the fault

Simulations can provide new insight into wave propagation in the near-field domain

Simulations can provide new insight into building response in the near-field domain

Our end-game – making regional scale faultto-structure simulations "non-heroic"

Realization 1

Realization 2

Realization N

The EQSIM project is collaborating with PEER to frame an operational environment for use

1) Synthetic records from simulations, thousands of response histories (EQSIM)

2) Four part "acceptance" criteria under development (PEER)

Petrone

PFFR

Abrahamson

3) Archive a compressed set of response histories for a near-surface 3D volume (PEER)

Community access 4) Fetch surface motions <u>or</u> 3D motions and utilize coupling code (EQSIM)

