### Workshop: the HayWired Scenario & Research Needs for Resilient New Buildings

A PEER-USGS Workshop at Sibley Auditorium, UC Berkeley

2:30 – 5:00 PM, January 17, 2018

Khalid Mosalam, UC Berkeley, PEER Director

Keith Porter, University of Colorado Boulder, HayWired Engineering Coordinator

# Background

- SAFRR Scenarios: events worth planning for; not best, worst, or average, but realistic
- HayWired: a Bay Area earthquake to test the interconnected world
- We used HayWired as a lens through which to view the adequacy of code objectives in an interesting new way, & to consider one way for enhancing resilience



Prepared in cooperation with the California Geological Survey

#### The HayWired Earthquake Scenario—Earthquake Hazards



Scientific Investigations Report 2017–5013–A–H

U.S. Department of the Interior U.S. Geological Survey

# Today's discussion

- What can a scenario tell a code-writer or community leader about code adequacy?
- Advantages and disadvantages of leading resilience options?
  - Greater stiffness and strength PBEE-2
  - Innovative structural systems Others
- What additional information do policymakers need from engineers?
  - Current research
  - **Research needs**



Prepared in cooperation with the California Geological Survey

#### The HayWired Earthquake Scenario—Earthquake Hazards



Scientific Investigations Report 2017–5013–A–H

U.S. Department of the Interior U.S. Geological Survey

# Objectives

Dispassionate, scholarly advice or direction for code-writers and community leaders on code adequacy and resilience options

- Presentations to help inform the discussion
- For each of our 4 questions, what do we know and agree on that they can use to derive new value?
- What unresolved issues really matter to code-writers and community leaders that, once resolved, would provide useful information for real decisions?

# Viewing the Code through HayWired

Keith Porter, CU Boulder, HayWired Engineering Coordinator

## What if every building met code?

What if:

- 1. Every building had an average 6% collapse probability in MCE<sub>R</sub> shaking
- 2. Every building had ASCE 7's assumed probability distribution of collapse capacity at other levels of shaking
- 3. New buildings exhibited the same ratios of red tags to collapse and yellow tags to red tags as *existing* building exhibited in Loma Prieta and Northridge
- 4. An earthquake occurs and produces the Aagaard et al. (2010) ground motion map for Mw 7.0 Hayward Fault (NH+HS) bilateral rupture

### Collapse



### Let's call this "impairment"

|                  | F                                                                                                                                                    | or every 1                                                                                 | collapse                                                                                                  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                  | UNS<br>CHIS PLACARD IS NOT &<br>This structure has been inspected, found to<br>be seriously demaged and is unsets to                                 | AFE<br>or occupy<br>demolition order)<br>Date                                              |                                                                                                           |  |
|                  | Do not enter, except as specifically<br>authorized in writing by jurisdiction,<br>Entry may result in death or Injury.<br>Facility Name and Address. | Integration: This structure has been inspected and found to be damaged as described below: | Date Caution: Aftershocks since inspection                                                                |  |
|                  | De Not Remeve, Alter, c<br>until Authorized by G                                                                                                     | Entry, occupancy, and lawful use are<br>restricted as indicated below:                     | may increase damage and risk.) This facility was inspected under emergency conditions for: (Jurisdiction) |  |
| + 13 red tags    |                                                                                                                                                      | Facility Name and Address:                                                                 | Inspector ID / Agency                                                                                     |  |
| + 49 yellow tags |                                                                                                                                                      | Do Not Remove, Alt<br>until Authorized b                                                   | Do Not Remove, Alter, or Cover this Placard<br>until Authorized by Governing Authority                    |  |

# Impairment in HayWired





# Impairment in HayWired

| Condition                            | Buildings affected |         |  |
|--------------------------------------|--------------------|---------|--|
| Condition                            | I = 1.0            | l = 1.5 |  |
| Collapsed                            | 8,000              | 2,000   |  |
| Red tagged                           | 102,000            | 27,000  |  |
| Yellow tags                          | 390,000            | 100,000 |  |
| Total impaired buildings             | 500,000            | 130,000 |  |
| People in impaired buildings         | 1,500,000          | 390,000 |  |
| Businesses in imp. buildings         | 150,000            | 39,000  |  |
| % of 2 million Bay Area<br>buildings | 24%                | 6%      |  |



2 million Bay Area buildings  $I_e = 1.0 \rightarrow 24\%$  impaired  $I_e = 1.5 \rightarrow 6\%$  impaired

# Public preferences



# Maximum efficient stiffness & strength from benefit-cost analysis basis



# Benefit-cost ratio at maximum efficient stiffness & strength



#### Moderated discussion

1. What can a scenario say about building code adequacy that code writers should consider? How does this compare with what communities should consider?

2. Under what conditions is PBEE a practical resilience option for new buildings? What about increasing design strength and stiffness? Other options such as self-centering frames? Others?

3. What current research could inform building code-writers' and code-adopters' decisions about resilience options?

4. What new research is needed to inform those decisions?