

DESIGN OF SEISMICALLY ISOLATED STRUCTURE FOR TARGET RELIABILITY

Research Advisor: Stephen A. Mahin, Professor Emeritus, UC Berkeley Student Investigator: Benshun Shao, Ph.D., Arup SF

Contact Email: shaobenshun@berkeley.edu

Motivation and Objective

❖ Target safety reliability for seismic design (ASCE 7)

Risk Category	Conditional Probability of Failure Caused by the MCER shaking hazard (%)
I&II	10
III	5
IV	2.5

Safety of seismically isolated structure

Safety of Supported Structure

Safety of Isolators

Current design regulation

- Displacement capacity based on average demand under MCER
- · No displacement restraint is required
- · Isolator capacity is the same for different risk categories

Following minimum code requirement

Risk Category	Calculated probability of failure of upper structure (%)	Calculated probability of failure of Isolator (%)	Combined probability of failure (%)		proba	Target probability of failure (%)	
I&II	<0.1	43	43			10	
III	<0.1	43	43			5	٦
IV	<0.1	43	43 /		(2	2.5	٦

⇔Objective

Seek efficient solution to design seismically isolated structure to meet target safety reliability

Methodology

Possible solutions investigated

Meet target safety reliability

Provide **enough capacity** for isolation system beyond average MCER demand

Method I: Large enough isolator without displacement restraint

Method II: Physical stopping mechanism (Moat Wall)

Method III: Isolator with internal soft stopping mechanism (Stiffening)

Numerical analysis model Leaning column Roller Probabilistic framework (FEMA P695) Post-Processing nerical Analysis model Final Fragility Curv Additional uncertainty besides ground motion uncertainty RESULTS

Selected Results

Reliability

P(Failure|GM Intensity)

Required capacities considering three methods

Main Conclusions

- ❖ Safety of seismically isolated structure requires safety of both upper-structure and isolator
- Design of seismically isolated structure following minimum code requirement does not achieve required safety reliability
- ❖ Seismic isolation system which can provide capacity beyond code requirement is needed for achieving target safety reliability, using stiffening isolator is an efficient solution

Selected References

- [1] F. McKenna, M. Scott and G. Fenves, "Nonlinear finite-element analysis software architecture using object composition," J. Comput. Civ. Eng. , Vols. 10.1061/(ASCE)CP.1943-5487-0000002, pp. 96-107, 2010.
- [2] P. Uriz and S. Mahin, "Toward earthquake-resistant design of concentrically braced steelframe structures," Berkeley, CA, 2008.
- [3] Zayas, V., Low, S., and Mahin, S., 1990. A Simple Pendulum Technique for Achieving Seismic Isolation, Earthquake Spectra 6, 317–333.
- [4] Masroor, A., and Mosqueda, G., 2015. Assessing the Collapse Probability of Base-Isolated Buildings Considering Pounding to Moat Walls Using the FEMA P695 Methodology, Earthquake Spectra 31, 2069-2086.