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Objective: To highlight the lessons learned in applying a recently developed stochastic full
waveform inversion algorithm to characterize a geotechnical site using geophysical measurements

Stochastic full waveform inversion algorithm

Minimum variance framework
Gaussian mixture model (GMM) for parameterization of soil properties
Generalized polynomial chaos (gPC) for representing the PDFs of GMM parameters
Non-product quadrature rule for evaluation of high-dimensional expectation integrals

Results and discussions
Testbed site: a 60mx60m x40m site in Garner Valley, CA
Lessons learned
Comments on scalability of the algorithm for larger scale geophysical imaging
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Stochastic full waveform inversion algorithm
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Minimum variance framework

A flowchart of the algorithm
It, essentially, fuses sparse experimental
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Stochastic full waveform inversion algorithm
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Minimum variance framework

Parameterization of soil properties in the domain of interest

» Soil deposits exhibit spatial variability: nonuniform layers and lenses within
layers

» Uncertain soil properties are increasingly being modeled as random fields

» Conventional random field parameterization approaches use the
Karhunen-Loeve expansion for spatial discretization:

» Mathematically optimal, but..
» Requires repeated use of very large scale eigenanalysis
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Stochastic full waveform inversion algorithm
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Minimum variance framework

GMM for parameterization of random field soil properties

» Hat functions mimic horizontal layering of a soil deposit
» Gaussian functions mimic presence of non-uniformity and lenses within layers

Y(x,y,2) = X108 o(2)Ti(X, . 2)

a= Zi:1 (1 - \2;722,4) Y

1 {(x - -y (z— z,-)Z}
5 + +

2 12 12 2

ri(vaaz) =€

a: 1-D, piece-wise linear hat function
I 3-D, Gaussian function
L: Number of hat functions
Ng: Number of Gaussian functions
Parameters of « and I are random variables
.(é University at Buffalo
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Stochastic full waveform inversion algorithm
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Minimum variance framework

gPC for representing the PDFs of GMM parameters

» Denote the paramﬁters (random variables) of the GMM model by O:
Y(X’yv Z, e) = 21:61 a(Z, G)1 )F,(x, Y, 2, 92)

@ = {@1’ 92} ={{h27 Y17 Y27° ey Yk}){/X7 /yylz}}

» Represent © in terms of standardized random vector, &:
e=f(£) Where€:[£1,£2,--',fm]TGRm

» Write © in terms of orthogonal polynomial basis function, ¢,(&) (Xiu and
Karniadakis 2003):
N

. Ele;
©)(€) = - Gon(€), j=1:2,+.m  where 6 = FEE
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Stochastic full waveform inversion algorithm
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Minimum variance framework

Evaluation of expectation integrals

» The algorithm involves 2 types of integrals:
» Stochastic collocation integrals for estimating the statistics of FE simulated
measurements:

M
Elug] = Jo ukp(©)d® = [, up/p(€)dg ~ 21 WU (©(7)), N=1.2,--
q:

(uk: soil displacement at an FE node i at time step k; N: order of statistical
moment; ©(¢9) and wg: g quadrature point and its associated weight)

» Minimum variance integrals (Xgp and Xp):
e.g., Ton = £[(©@ — £7[O])(h(u(©)) — £~ [h(u(©))])"]
= il wq (B(€%) — £718)) (M(u(©(€") — £~ [h(u(®))])
» Both types suffer from the curse of dimensionality as the number of random
variables. £, grows G o
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Stochastic full waveform inversion algorithm
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Minimum variance framework

Conjugate Unscented Transformation (CUT) for evaluation of
expectation integrals

» Conventional quadrature rules (e.g., Gauss) rely on
tensor product of 1-D quadrature points: exponential
growth in computational cost

» CUT yields a non-product rule:

» An extension of conventional unscented
transformation which satisfies additional higher order
‘ moment constraints
Cass-togrira » Alleviates the computational burden associated with
Sparse Grid Applied Quadrature Scheme H H H i H
evaluation of high-dimensional integrals
Y

, N., Singla, P., and Singh, T., “Conjugate Unscented Transformation: Applications to Estimation and Control", A
Systems, Measurement, and Control, Vol. 140, No. 3, pp. 030907-1-22, 2018
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Results and discussions
[ leJele]

Testbed site: a 60m x 60m x 40m site in Garner Valley, CA

Testbed site and geophysical experiment
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» Geophysical experiment was

i Soil responses at Receivers # 10 (left) and 2 (right)
performed by UT Austin group
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Results and discussions
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Testbed site: a 60m x 60m x 40m site in Garner Valley, CA

Prior assumptions for FE simulation e

» Based on information on local geology and PS
suspension logging available at a nearby site

» 2 horizontal layers up to a depth of 40m

> Relatively loose sand layer up to a depth of 20m
» Denser sand or weathered rock below

DEPTH, METERS

» Proximity to Lake Hemet: shallow water table

» Vs: 3 hat functions with centers at Om, 20m, and 40m .
» Vp: 2 hat function with centers at the surface and at e T
the depth of the water table below which it is Ve (ot and Ve (righ) measuremens

represented as a function of » and Vg available at a nearby site
Risk and Reliability Research Group té
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Results and discussions
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Testbed site: a 60m x 60m x 40m site in Garner Valley, CA

Prior assumptions for FE simulation
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Testbed site: a 60m x 60m x 40m site in Garner Valley, CA

Results and discussions
[e]e]e] )

FE 3|mulated prlor mean versus experimental measurements
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Results and discussions
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Lessons learned

Posterior estimates
Frequency domain inversion
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Results and discussions
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FE simulated posterior mean versus experimental measurements

Lessons learned
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Results and discussions
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Lessons learned

Were prior assumptions good enough?
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Lessons learned

Results and discussions
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How about the amplitudes correspondlng to the peak frequency?

Receiver #2

15210
Raceiver# 1
05 1

Receiver #3,

2

L Receiver ¥ 4

Roceiver #5

2

Roceiver #6

100 200 300 400 500 100 200 300 400 500

102 102

Reconer 18

Recover ¥9
2|

1
‘\
05}

l
!
|

100 200 300 400 500

Receiver # 10
2

i

100 200 300 400 500

102

100 200 300 400 500

100 200 300 400 500

| 2
s
|

Recangr 13

100 200 300 400 500 mn 200 300 400 500

100 200 300 400 500

W

Roceiver # 16

2

} Receiver # 15
i

1
[
[

2

1

icmimincd |

Roceivet # 17

100 200 300 400 500

10°

100 200 300 400 500

10?

} Receiver# 18

l ;

e |

’ Recever 119

1

mu 200 300 400 500

Roceiver # 20

100 200 300 400 500
107

Rociver 421

6

100 200 300 400 500 100 200 300 400 500
ot

100 200 300 400 500

107

100 200 300 400 500

10°

100 200 300 400 500

10%

100 200 300 400 500

10%

} Recaer #23

8L 10
Recaiver # 22
6| ‘1 5

.

|

1

1
Recengriizs

1

1

1
/!

L Recaerv 25
|
[
|

Receiipe 27

100 200 300 400 500
10
Receiver # 28

s
100 200 300 400 500 100 200 300 400 500

107

100 200 300 400 500
<107

100 200 300 400 500

100 200 500 400 500

100 200 300 400 500
107

100 200 300 400 500

Rodaver # 30

asured| !
Simulated|

2|
151
1

s

!

|
l

1.5/

Rocaer # 32
2|

1

& Rocenerhas
|

2

i

i

Roceier ¥ 34

4 Rem o 435

i

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

Risk and Reliability Research Group

» They didn’t behave ideally
either!

» Can we do a better job with
the prior assumption?
» Fourier amplitudes (and
peak frequencies) of

simulated measurements
should be smaller

» But which ® (GMM
parameters) to adjust?

G5



Results and discussions
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Lessons learned

Sensitivity analysis for “improving” the prior assumptions

§ZZW\AM g0t gwﬂd 8M"\W » As prior ©4 is negatively
” correlated with the simulated

-1 -0
0 10 20 30 0 10 20 30 0 10 20 30 0 20

Receiver no. Receiver no. Receiver no. Receiver no. Fourier amp”tUde, ianeaSing @1
@ er=vs, (b)oa=vs, (C)ez=vs, (d)es=vp is expected to reduce the values
of the realizations of the

8W\IUW\J\ SEZW\/WM g o el ] simulated Fourier amplitude

» Similarly, decreasing prior O

(€) s =Hu () @ = vooown, (9) ©7=1 and Os is expected to reduce
Pearson correlation coefficient (PCC) between prior © and the values of the realizations of
FE simulated Fourier amplitude corresponding to the peak the simulated Fourier amplitude

frequency at each receiver location
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Results and discussions
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Lessons learned

“Improved” versus “ori

ginal” posterior estimates
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Lessons learned

Results and discussions
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Improved posterior mean versus experimental measurements
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20

» Frequency domain
comparison
» Better match at all the

receiver locations
compared to the
“original” case
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Lessons learned

Results and discussions
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Improved posterior mean versus experimental measurements
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Time domain comparison

The updated prior for sail
parameters leads to the FE
ensembles that better
capture measurement data
as their subset and hence
leads to more accurate soil
parameter estimates
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Results and discussions
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Lessons learned

Posterlor probablllstlc 3D profiles
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Vp (m/s): mean (left) and standard deviation (right)

» Nonuniform layers and lenses within
layers:

» Vs: Marginal COVs are larger at
and close to the surface (around
20%) and they become smaller
with depth

» Vp: Consistent with that of partially
saturated soils, pockets of larger
values — albeit with large COVs —
between the surface and the water
table

Uniw it)
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Results and discussions
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Lessons learned

Posterior correlation structures
» The fluctuating horizontal correlations

5% 1 e y from highly positive to highly negative
LN - y g yp. gnly .9
82 §205 —o a_ over a long distance suggests intra-layer
887 S84 ., « mixing of at least two different materials
X, X, 5 00 over the entire domain in the horizontal
Vg correlation structure: (left) x-direction at (y,z) = (30,0) and (right) directions

z-direction at (x,y) = (20,30)

v //“%‘0

» The correlation structure of Vp is similar

Correlation
coefflment
Lo -

Correlation
coefficient
o

o =

IS s
oo

50 — 2 o % tothatof Vg, but there exist some
00 . .
X, X, 7, 7, differences due to more uniform (more
Vp correlation structure: (left) x-direction at (y,z) = (30,0) and (right) ags
Z-direction at (x,y) = (20.30) correlated) nature of P-wave velocities of

saturated soils
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Results and discussions
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Comments on scalability of the algorithm for larger scale geophysical imaging

Comments on scalability of the algorithm

» Both GMM and CUT are promising for larger scale geophysical imaging
without prohibitive computational cost:
» GMM bypasses large scale eigenanalysis by approximating the eigenfunctions
of the KL expansion
» CUT alleviates the computational burden associated high-dimensional
expectation integrals

» However, the algorithm uses the conventional FE method for numerically
simulating geophysical measurements

» An efficient approach is needed for modeling wave propagation through soils;
ideally a reduced order model

Risk and Reliability Research Group
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Results and discussions

Comments on scalability of the algorithm for larger scale geophysical imaging

Thank you!
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