
PACIFIC EARTHQUAKE ENGINEERING 
RESEARCH CENTER

Demand Fragility Surfaces for Bridges in Liquefied
and Laterally Spreading Ground 

Scott J. Brandenberg
Department of Civil and Environmental Engineering

University of California, Los Angeles

Jian Zhang
Department of Civil and Environmental Engineering

University of California, Los Angeles

Pirooz Kashighandi
Department of Civil and Environmental Engineering

University of California, Los Angeles

Yili Huo
Department of Civil and Environmental Engineering

University of California, Los Angeles

Minxing Zhao
Department of Civil and Environmental Engineering

University of California, Los Angeles

PEER 2011/01
MARCH 2011



Disclaimer

The opinions, findings, and conclusions or recommendations 
expressed in this publication are those of the author(s) and 
do not necessarily reflect the views of the study sponsor(s) 
or the Pacific Earthquake Engineering Research Center.



Demand Fragility Surfaces for Bridges in Liquefied 
and Laterally Spreading Ground 

Scott J. Brandenberg 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 

Jian Zhang 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 

Pirooz Kashighandi 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 

Yili Huo 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 

Minxing Zhao 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 
 
 
 
 
 
 

PEER Report 2011/01 
Pacific Earthquake Engineering Research Center 

College of Engineering 
University of California, Berkeley 

March 2011 



ii 

 



iii 

ABSTRACT 

This report presents demand fragility surfaces for bridges in liquefied and laterally spreading 

ground that represent probability P(EDP>edp|IM=im), where a vector of engineering demand 

parameters is presented and the intensity measure is taken as free-field lateral spreading ground 

displacement. Equivalent global nonlinear finite element analyses were used to generate the 

responses of bridges due to liquefaction-induced lateral spreading, while nonlinear dynamic 

time-history analyses were implemented to determine the response due to seismic shaking. A 

classification system was developed for the bridges based on the type of superstructure, how the 

superstructure connects to abutments and piers, and the age of the bridges. Model input 

parameters were represented using random variables to capture the variability in structural and 

geotechnical conditions at Caltrans bridge sites. Nonlinear equivalent static analyses were 

conducted with inputs sampled randomly using the Monte-Carlo simulation method. Covering a 

wide range of different structural and geotechnical configurations, demand fragility surfaces 

were provided, which are a significant improvement over existing relations. Previous relations 

were not derived systematically and are known to be overly-conservative. The study also 

compares the seismic vulnerability of different classes of typical Caltrans bridges subject to 

seismic shaking and liquefaction-induced lateral spreading. It finds that although the fragility 

functions subjected to either shaking or lateral spreading show significant correlation with the 

structural characterizations, differences emerge for ground shaking and lateral spreading 

conditions. The fragility surfaces presented herein are ideally suited for implementation within 

the Pacific Earthquake Engineering Research Center’s methodology in a transportation network 

analysis, or as a screening tool for identifying a manageable subset of bridges for more 

systematic individual retrofit evaluation. 
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1 

1 Introduction 

1.1 LIQUEFACTION AND LATERAL SPREADING 

Liquefaction is defined as the strength loss of loose saturated cohesionless soils during undrained 

loading. The tendency for loose soils to contract during drained loading is expressed as 

generation of excess pore pressures during undrained loading, resulting in a reduction of 

effective stresses and loss of strength. Liquefaction often occurs during earthquakes, causing 

flow slides, lateral spreading, and settlements. This report focuses on lateral spreading as a result 

of earthquake-induced liquefaction and subsequent damage to bridges.   

Lateral spreading is the permanent lateral deformation of gently-sloping ground due to 

liquefaction, typically on the order of centimeters up to a few meters. Lateral spreading occurs 

when driving shear stresses temporarily exceed the undrained shear strength of the liquefied soil, 

thereby causing an accumulation of displacement in the direction of static shear stress. Often, 

lateral spreading is associated with a cyclic mobility behavior in which inertia forces cause 

accumulation of displacement. Lateral spreading may also occur after strong shaking has ceased 

due to void redistribution. Static shear stresses are present in slopes or in level ground located 

near a free-face (usually adjacent to rivers, lakes, etc).  

Lateral movement of the soil may result in a wide range of structural damage, ranging 

from none—when the structure is adequately strong to resist ground displacements—to 

collapse—when demands imposed by lateral spreading significantly exceed structural capacity.  

1.2 CASE HISTORIES OF DAMAGE TO PILE FOUNDATIONS IN LATERAL 
SPREADS 

Damage to structures as a result of liquefaction and lateral spreading in response to strong 

ground shaking is common. Figure 1.1 shows the collapse of Showa Bridge following the 1964 
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Niigata earthquake. Excessive lateral deformation of the liquefiable soils that supported the 

bridge caused damage to the pile foundations, resulting in large deformations of the piers that 

caused the decks of bridge to unseat and fall into the river. 

Another example of lateral spreading was the damage incurred by wharf at the Port of 

Oakland during the 1989 Loma Prieta earthquake (Figures 1.2 to 1.4).  Spreading of the rock fill 

material on top of liquefied loose hydraulic fill imposed significant loads on the piles that 

supported the wharf.  The connection between the battered piles supporting the wharf and the 

soil contained a small unsupported length. During the earthquake the laterally stiff piles 

sustained large loads that exceeded their capacity, incurring damage at the point where they were 

connected to the wharf (Figure 1.4). The formation of a gap at the wharf-to-soil connection 

caused the crane rails to separate, rendering them useless for moving cargo onto and off freighter 

ships, which caused significant economic losses. 

 

 

 

 

 

Figure 1.1    Damage to steel piles of Showa Bridge (Hamada 1992). 
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Figure 1.2 Top of the wharf of Port of Oakland following the 1989 Loma Prieta 
earthquake.  The cranes separated and could not operate as a result of the 
extension of the wharf (photo by John Egan, AMEC). 

 

 

Figure 1.3 Soil profile and pile configuration of the wharf at the Port of Oakland (photo 
by John Egan, AMEC). 
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Figure 1.4 Damage to the battered piles supporting the wharf at the Port of Oakland 
during the 1989 Loma Prieta earthquake (photo by John Egan, AMEC). 

Liquefaction has also damaged new structures that were designed to withstand its effects.  

The Nishinomiya Bridge in Kobe, Japan, is an example of a modern bridge where out-of-phase 

movement of the bridge abutments—due at least in part to the liquefaction and lateral spreading 

apparent in Figure 1.5—caused one of the span decks to fall off its seat during the 1995 Kobe 

earthquake. The bents of this bridge are supported on caissons rather than driven pile 

foundations, but the fundamental mechanisms of load transfer bear some similarities to load 

transfer against pile foundations. 

Fortunately, not all case histories of damage to bridges and other structures that undergo 

lateral spreading are as dramatic as the abovementioned examples.  In many cases the bridge or 

structure was subjected to large lateral spreading ground displacements and yet survived with 

minor to intermediate levels of repairable damage. Even though cases with little or no damage 

are often not well-documented or investigated, they are equally important from the engineering 

standpoint because they may provide valuable information about the factors responsible for 

acceptable performances of bridges under such severe demand. Therefore, analyzing such case 

histories is critical for additional insights into understanding the fundamental mechanisms of 

damage to structures under lateral spreading.  
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Despite lateral spreading of soils on one bank of the river, the Landing Road Bridge in 

Whakatane, New Zealand, suffered only moderate damage (see Figure 1.6) during the 1987 

Edgecumbe earthquake. The ground liquefied and spread laterally up to 2 m (6.56 ft) against five 

spans in the left bank of the bridge. Some piers cracked, suffering about 1% permanent rotation; 

cracks were also visible near the head of some of the piles. Settlements of 0.3 to 0.5 m (11.81  to 

19.69 in.) at one of the abutments made the bridge impassible after the earthquake. Buckled 

footpaths indicated compressive forces were mobilized in the superstructure (Berrill et al. 2001). 

The bridge was repaired by epoxy injections into the concrete cracks and the approach fill was 

repaired, providing access onto the bridge at the left abutment.  

 

 

 

 

 

 

Figure 1.5 Unseating of the Nishinomiya Bridge as a result of lateral spreading during 
the 1995 Kobe earthquake. 



6 

 

Figure 1.6 Side view of the Landing Road Bridge in Whakatane, New Zealand, which 
suffered moderate damage due to 2 m (6.56 ft) of lateral spreading of the left 
bank during the 1987 Edgecumbe earthquake. 

During the 2007 Niigata Ken Chuetsu Oki earthquake in Kashiwazaki, Japan, a number 

of bridges with continuous superstructures and seat-type abutments were only moderately 

damaged despite as much as a meter of lateral spreading. Damage included permanent offsets in 

elastomeric bearings, cracked abutments, and permanent offsets at approaches, but nearly all of 

the bridges were in service within days after the earthquake. 

1.3 IMPLICATIONS FOR CALTRANS BRIDGES 

The California Department of Transportation (Caltrans) owns roughly 13,000 bridges that were 

constructed since 1900. From data extracted from National Bridge Inventory (NBI) database, 

Figure 1.7 shows the distribution of California bridges based on the year of construction. 

Note that over half of the bridges in California were built before 1971, the year of the 

destructive San Fernando, California, earthquake. The damage caused by that earthquake 

resulted in major improvements to the building codes, including the addition of many seismic 

provisions to the codes. Because most of the California bridges were constructed prior to 1971 

with limited considerations for seismic loading, a significant number of these bridges may be 

susceptible to damage under earthquake shaking. Many of the older-vintage bridges have been 

retrofitted to improve their performance during earthquake-induced ground shaking, but it is 
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unclear to what extent these retrofits will improve performance in laterally spreading ground. 

Although seismic codes were introduced for design of newer bridges, the knowledge of 

liquefaction and liquefaction-induced damage (e.g., lateral spreading) was very limited at that 

time, and more robust methods for analyzing bridges in liquefied ground have only recently 

emerged following the 1995 Kobe earthquake, which prompted a concerted research effort using 

centrifuge models, 1g shake table tests, blast-induced field liquefaction tests, and case history 

analysis. 

Therefore, many older bridges as well as some of the newer bridges may be susceptible to 

damage or complete loss in an event of an earthquake if the underlying soils liquefy. Naturally, if 

the extent of anticipated damage from earthquake-induced liquefaction and lateral spreading is 

not currently known, those particular bridge configurations and locations that are susceptible to 

such damage have not yet been identified, but analyzing the entire suite of 13,000 bridges is not 

feasible. A screening procedure is therefore required to identify the bridges that (1) are in regions 

where liquefaction and lateral spreading might be expected to accompany earthquake shaking 

(the focus of a companion research study) and (2) are structurally most susceptible to the loads 

imposed by liquefaction and lateral spreading (the focus of this research). 

 

 

Figure 1.7 Distribution of California bridges by year of construction based on NBI 
database. 
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Caltrans has undertaken an extensive seismic retrofit program where bridges were 

screened based on structural response to ground shaking, but vulnerability to liquefaction and 

lateral spreading was not considered. The potential damage to a bridge during lateral spreading 

depends on physical properties of the bridge (structural and geometric configurations), the 

mechanical characteristics and deformation potential of the soils underlying the bridge, and 

ground motion. The primary mechanism of damage to bridges founded on liquefiable soils is 

large displacements of the bridge components in response to large ground displacements.  

Described below are three damage mechanisms typical of bridges subjected to lateral spreading: 

• Large Relative Displacements between the Superstructure and the Substructure: This 

mode of damage applies to bridges with simply supported superstructure where the 

superstructure rests on bearings atop the piers and abutments. During lateral spreading 

different foundation components can move different amounts in different directions, 

thereby causing large relative displacement between the superstructure and substructure 

components. Large relative displacements may result in unseating of the decks of the 

bridge and collapse of some spans; this is what caused damage to the Showa and 

Nishinomiya Bridges.  

• Excessive Curvature Ductility in Bridge Piers: Relative displacements between the pile 

caps and the superstructure may cause excessive flexural and/or shear demands in the 

piers. Effects of these demands can range from spalling of cover concrete to loss of axial 

capacity and possible collapse if axial loads cannot be redistributed. Modern ductile 

bridges can typically tolerate larger amounts of drift than older more brittle bridges. As 

an example of this damage mechanism, some cracks were observed in the shear walls at 

Landing Road Bridge due to the mobilization of larger curvature ductility. 

• Excessive Curvature Ductility in Piles: Lateral spreading may induce large demands in 

piles due to kinematic interaction. Damage to the piles may result in large pile cap 

translation and rotation, and settlement due to loss of axial capacity in the piles. The 

extent of damage to the above-ground bridge components depends on the bridge 

configuration; in some cases pile damage may not manifest above ground. For example, 

piles beneath the Niigata family courthouse building were severely damaged in the 1964 

Niigata earthquake, but the damage was only discovered about twenty years later when 

the foundation was excavated.  Cracks in the piles of the Landing Road Bridge are 

another example of a similar damage mechanism. 
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Based on the vulnerability of the Caltrans bridges to these types of loading and damaged 

mechanisms described above, a screening tool is needed that evaluates the damage susceptibility 

of different types of bridges.  Such a tool should answer two specific questions: (1) Is the bridge 

located in potentially liquefiable soils?; and (2) How susceptible is the bridge to damage if 

located in liquefiable soils? Knudsen et al. (2009) answered the first question: ground 

deformation potential for all ≈13,000 Caltrans bridge sites was estimated. This report herein 

addresses the second question by investigating various bridges with different structural properties 

and different soil properties under different load combinations to determine their susceptibility to 

lateral spreading. Bridges were categorized into several different structural classes, and a large 

number of bridge realizations within every class were analyzed using numerical models. Results 

are presented as demand fragility surfaces that relate mobilized engineering demand parameters 

(EDPs) to free-field lateral spreading ground displacement. The results of this study—combined 

with results from Knudsen et al. (2009)—provide a rational means for screening Caltrans bridges 

for damage potential due to liquefaction and lateral spreading. 

1.4 AVAILABLE FRAGILITY FUNCTIONS 

A fragility function has traditionally been defined as a probability of exceeding a damage 

measure (DM) conditioned on an EDP. Fragility functions have also been used to represent the 

probability of exceeding an EDP given and intensity measure (IM), or as the probability of 

exceeding a DM given an IM. Figure 1.8 shows a schematic of a set of fragility curves for 

bridges with different vintages that relates DM to IM. 

In HAZUS (1999), which is a software program for loss estimation developed by FEMA, 

damage states for bridges are divided into five states and are defined as follows: 

• None (ds1) is defined by no damage to the bridge. 

• Slight/Minor Damage (ds2)  is defined as minor cracking and spalling to the abutment, 

cracks in shear keys at abutments, minor spalling and cracks at hinges, minor spalling at 

the column (damage required no more than cosmetic repair), or minor cracking to the 

deck. 

• Moderate Damage (ds3) is defined as any column experiencing moderate (shear cracks) 

cracking and spalling (although the column is still structurally sound), moderate 

movement of the abutment [< 2 cm (0.79 in.)], extensive cracking and spalling of shear 



10 

keys, any connection having cracked shear keys or bent bolts, keeper bar failure without 

unseating, rocker bearing failure, or moderate settlement of the approach. 

• Extensive Damage (ds4) is defined as column degrading without collapse (shear failure  

where the column becomes structurally unsafe), significant residual movement at 

connections, or major settlement approach, vertical offset of the abutment, differential 

settlement at connections, and shear key failure at abutments. 

• Complete Damage (ds5) is defined as any column collapsing and connection losing all 

bearing support, which may lead to imminent deck collapse or tilting of the substructure 

due to foundation failure. 

 

Even though the descriptions of the damage states in HAZUS are complex, existing 

fragility functions for damage to bridges as a result of liquefaction-induced lateral spreading 

based on free-field ground displacements are currently too elementary. The existing fragility 

functions in HAZUS were adopted from Basoz and Mander (1999). Based on 

HAZUS, regardless of type of bridge and its foundation components and characteristic of the 

soils underlying the bridge, 10 cm (3.9 in.) of ground displacement is sufficient to put the bridge 

in damage state 4 (extensive damage), and 35 cm (13.8 in.) of displacement is enough to cause 

complete damage (ds5 or collapse) in the bridge. The graphical representation of the available 

fragility functions is shown in Figure 1.9. 

These fragility functions were originally intended to characterize structural damage in 

single-span bridges due to abutment displacements, not originally intended to be used in analyses 

of liquefied ground. Extending this methodology to laterally spreading ground assumed that 

foundation displacements were equal to free-field ground displacements. However, free-field 

ground displacements would typically cause much lower foundation displacements in the 

structure because of pinning effects and compression, extension of the soils under lateral loading, 

or the flowing mechanism of soils around foundation components. Furthermore, different bridge 

characteristics would result in different bridge responses and different types of bridges would 

have different fragility functions (as they do for ground shaking in HAZUS). 
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Figure 1.8   Schematic of a set of fragility curves for bridges with different vintages. 
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Figure 1.9    HAZUS fragility curves for damage to bridges as a result of lateral spreading. 

 

The inappropriate use of HAZUS fragility functions is clearly evident in the relatively 

good performance of Landing Road Bridge despite as much as 2 m (6.56 ft) of lateral ground 

displacement near the bridge; HAZUS would have predicted a ds5 while the damage to the 

bridge was classified as ds3. The HAZUS fragility functions were also found to be inaccurate in a 

transportation network analysis by Kiremidjian et al. (2006), which predicted widespread bridge 

collapse caused by the 1989 Loma Prieta earthquake (Figure 1.10) due to liquefaction and lateral 

spreading. Such levels of collapse did not occur, and the collapses that did occur during the 

earthquake (i.e., the Cypress Structure and one span of the Bay Bridge) were not caused by 

liquefaction. 
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Additionally, the recent Niigata Chuetsu-Oki earthquake of July 16, 2007, in Japan 

caused lateral ground displacements near bridges on the order of tens of centimeters, which 

would be sufficient to categorize bridges in ds4 or ds5 based on HAZUS criteria. In fact, most of 

the bridges remained in service, experiencing only moderate damage consisting primarily of 

permanent offsets in the elastomeric bearings at the abutments and cracks in the abutments 

(Figure 1.11). Development of more reliable and meaningful fragility curves for different classes 

of bridges of different vintages or other simple properties is the focus of this project, as will be 

discussed in greater detail in the following chapters. 

 

 

Figure 1.10 Estimated damage to bridges during the 1989 Loma Prieta earthquake 
(Kiremidjian et al. 2006). 



13 

 

Figure 1.11 Permanent offset in elastomeric bearing at Nagomi Bridge caused by ground 
deformation during the Niigata Chuetsu-Oki earthquake (Kayen et al. 2007). 

1.5 ANALYSIS METHOD 

A numerical method was adopted to evaluate bridges under liquefaction and lateral spreading 

demands.  Discussed here are several methods available for analyzing bridges. 

The ideal numerical model would include a three-dimensional representation of the soil 

using constitutive models that capture liquefaction, a global structural model of the entire bridge, 

and would impose ground shaking on the base of the soil. Because of the computational costs 

associated with such a complex model, only one such study has been conducted to date (Elgamal 

et al. 2008). Two-dimensional dynamic models of the bridge with continuum soil elements 

attached to the structural elements using soil-structure interaction zero length elements to predict 

the performance of a bridge during liquefaction and lateral spreading have also been developed 

(Kramer et al. 2008; Zhang et al. 2008). Unfortunately, these methods are also computationally 

expensive, often requiring several months to model and perform a limited number of dynamic 

analyses. 
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Evaluating the fragility of different classes of bridges requires performing many analyses 

of bridges with different structural configurations, structural properties, and geometries with 

different soil profiles. Although a considerable body of recent research has clarified many of the 

fundamental loading mechanisms between pile foundations in liquefied and laterally spreading 

ground (e.g., Boulanger and Tokimatsu 2006), many of these findings appear contradictory. 

Effort is now needed to synthesize the body of research into robust analysis methods that will 

provide accurate predictions of bridge performances in liquefied ground. Given the time 

constraints of this project, a simpler analysis method was developed to accurately predict bridge 

performance when subjected to liquefied ground with lateral spreading. 

The Caltrans’ Seismic Design Criteria (SDC) (2006) specifies several global methods for 

analyzing bridges exposed to ground shaking, including equivalent static analysis (ESA), elastic 

dynamic analysis (EDA) [otherwise known as response spectrum analysis (RSA)], nonlinear 

static pushover analysis, and nonlinear global dynamic analysis, also known as time-history 

analysis. Unfortunately, none of these analysis methods as outlined in the SDC is suitable for 

evaluating the bridge performance undergoing liquefaction and lateral spreading. The method 

proposed herein synthesizes the body of research of the loading mechanisms present during 

liquefaction and lateral spreading in order to evaluate the nonlinear performance of bridges under 

both displacements and inertial demands applied to the bridge during liquefaction and lateral 

spreading. This method is referred to as the nonlinear equivalent static analyses in this report, 

and the details about modeling and the boundary conditions used in this method is discussed in 

great depth in Chapter 2 of this report. 

1.6 ORGANIZATION OF THE REPORT 

This report evaluates the fragility of different classes of bridges by creating realistic finite 

element models of bridges using the OpenSees finite element platform, and generating demand 

fragility surfaces of different components of the bridge using the nonlinear equivalent static 

analyses method.  This report consists of six chapters, organized as follows: 

Chapter 2 presents the methodology of the global equivalent static analysis method used 

to perform the numerical analyses of the bridge models in OpenSees. The details of the modeling 

approach and the fundamental behaviors in liquefaction and lateral spreading found in recent 
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research are described, and several examples of the global equivalent static analyses are 

presented. 

Chapter 3 outlines the basis for selecting the parameters used in the numerical models as 

well as specifying the classes of bridges that were analyzed. The distributions of the bridge 

parameters, geotechnical parameters, and inertia demands are presented. The output was sampled 

using the Monte Carlo method from the specified distributions used in the numerical models. 

Chapter 4 discusses how the analyses were performed, how the EDPs were controlled, 

and how the fragility surfaces were fit to the raw recorded data. Next, the fragility surfaces for 

several classes of bridges are presented and trends noted. Correlations among the EDPs are 

discussed, as well as disaggregation of the input parameters. 

Chapter 5 evaluates the fragility functions of different classes of typical bridges found in 

California when subject to seismic shaking and compares them to bridges subject to liquefaction-

induced lateral spreading. Numerical models capable of simulating complex soil-structure 

interaction (SSI) effects are presented and nonlinear behavior of columns and connections are 

developed for each bridge class. The dynamic responses are obtained using nonlinear time-

history analyses for a suite of 250 earthquake motions with increasing intensity. Fragility 

functions for each bridge class are derived and compared for both seismic shaking and lateral 

spreading. Significant correlation between the fragility functions and the structural 

characterizations are identified. 

Chapter 6 presents a summary of the conclusions and provides some context for 

interpreting the value of the findings of the report.  Limitations of the study and the need for 

future work are also discussed. 
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2 Global Equivalent Static Analysis Method 

As mentioned in the previous chapter, those methods commonly used to evaluate the global 

performance of a bridge due to ground shaking are summarized in the Caltrans SDC (2006), and 

include ESA, EDA, nonlinear static pushover analysis, and nonlinear global dynamic analysis. 

Equivalent static analysis applies equivalent static forces or spectral displacements at 

individual frames, with the seismic demand determined from a design response spectrum, 

therefore, ESA can reasonably estimate displacement demands for bridges whose response can 

be characterized by a predominantly translational mode of vibration, but may be inappropriate 

for curved or skew bridges, and bridges with many spans and/or expansion joints. Elastic 

dynamic analysis, which is also known as RSA, is a linear elastic multi-modal spectral analysis 

and should include sufficient number of modes to capture at least 90% mass participation in the 

longitudinal and transverse directions of the bridge. Because this method is a linear elastic 

method it can only indirectly account for sources of nonlinearity in the system, including the 

effects of surrounding soil, yielding of the structural components, opening and closing of 

expansion joints, and abutment behavior. According to Caltrans (SDC 2006), both ESA and EDA 

are only appropriate for Ordinary Standard bridges, implying that these methods are not suitable 

for bridge sites with the potential of liquefaction and lateral spreading. 

Nonlinear static pushover analysis imposes an increasing displacement pattern to identify 

potential failure mechanisms and establish tolerable displacement limits of the bridge. In this 

method, displacements are applied incrementally to push the frame of the bridge in the nonlinear 

range until the potential collapse mechanism is reached. This is a recommended method for 

analyzing the inelastic response of bridges because it accounts for interaction of the bridge 

components and redistribution of the loads within different components. However, the 

applicability of this method for bridges under liquefaction and lateral spreading demands is not 

evaluated, and it is not immediately clear how the displacements demands to the superstructure 
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frames should be concurrently applied with the displacement demands due to lateral spreading at 

the foundation level or at the abutments. 

Nonlinear global dynamic analysis, also known as time-history analysis, is the most 

accurate and robust method for evaluating bridge performance. Here, the response of the bridge 

is evaluated directly by applying a suite of ground motions at the boundaries of the model. In 

cases with only ground shaking, the structural engineers typically model the foundation using 

simple SSI elements at the boundaries of the bridge frame. However, this method of applying the 

boundary conditions cannot capture the complex response of the bridge during liquefaction and 

lateral spreading that may involve significant displacements and rotation of the foundations. 

Therefore, the proper modeling of the bridge under liquefaction and lateral spreading using 

nonlinear global dynamic analysis requires explicitly modeling the structure (including the 

foundation) and soil elements with advanced soil constitutive models that can capture complex 

behavior of soils during liquefaction and lateral spreading, including generation and dissipation 

of pore pressures and reduction of shear strength of the soil during liquefaction. 

The most robust method for performing nonlinear global analysis of a bridge in liquefied 

ground is to use a three-dimensional soil continuum with constitutive models that captures 

liquefaction behavior (e.g., Elgamal et al. 2008). Such models explicitly capture SSI in liquefied 

ground by directly modeling the soil continuum and nonlinear pile elements, and do not require 

SSI elements. Unfortunately, this approach is extremely computationally expensive and not a 

viable option except for key bridges.  

A less computationally expensive dynamic approach involves modeling the bridge in two 

dimensions, with two-dimensional soil continuum elements (e.g., Zhang et al. 2008; Kramer et 

al. 2008). However, because SSI is inherently a three-dimensional problem, SSI elements (i.e., p-

y, t-z, and q-z) are required at the interface of the soil elements and the structural elements to 

capture the three-dimensional loading mechanisms. The two-dimensional soil mesh provides a 

free-field displacement that is imposed on the free-ends of the SSI elements, which can be 

adjusted to account for the effects of liquefaction [e.g., the PyLiq1 material in OpenSees 

(Boulanger et al. 2003)]. While the cost of performing this type of two-dimensional analyses is 

significantly lower than the three-dimensional analyses, they are still computationally very 

demanding and thus inappropriate for routine evaluations of ordinary bridges. 

Caltrans’ SDC (2006) also mentions stand-alone local analyses of a single component 

(e.g., a single pier) of the bridge in longitudinal and transverse directions. Local analysis is the 
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most common approach for analyzing piles in liquefied ground because software platforms such 

as LPile are amenable to this type of analysis (e.g., Brandenberg et al. 2007; Ashford and 

Juirnarongrit 2006). Local analysis may be appropriate in cases where boundary conditions 

imposed on the foundation from the superstructure are clearly understood. However, these 

boundary conditions are often not known a priori because loads may be transmitted between 

adjacent piers through axial forces in the superstructure. For example, the displacement and 

rotation demands at the top of a single pier depend on how the lateral spreading demands on the 

foundation of that pier are transmitted to other piers or abutments through axial loads in the 

superstructure. Furthermore, lateral spreading at one pier may place demands on other piers and 

abutments in nonliquefied ground, and these demands are very difficult to assess using local 

analysis methods. Although global analyses of a bridge can capture these important features, 

local analyses cannot. Examples of global analyses of a bridge are presented later in this chapter, 

and a bridge’s response is compared with examples of an individual component of the bridge 

using local equivalent static analysis. This comparison has been done to provide guidance on 

cases where local analysis is sufficient and where global analysis is needed. 

The method proposed here is the nonlinear equivalent static global analysis, wherein a 

global structural model of the bridge (including foundation elements) is constructed from 

nonlinear beam-column elements, SSI elements are attached to embedded components, and free-

field ground displacements are imposed on the free-ends of the SSI elements simultaneously 

with inertia demands consistent with the effects of liquefaction. To reduce the computational 

complexity, a soil continuum is not modeled. This approach incorporates the recent body of 

research and advances in understanding the load transfer mechanisms during liquefaction and 

lateral spreading, but uses a computationally less demanding approach. The details of the 

modeling and boundary conditions are discussed in the following sections of this chapter. 

Global analysis of bridges in liquefied ground requires more collaboration between the 

geotechnical and structural engineers than local analyses and demands a more sophisticated level 

of modeling, where all the structural and foundation elements of the bridge are modeled and soil-

structure elements are appropriately specified to account for complex soil behaviors observed 

during liquefaction and lateral spreading. Numerical modeling programs, such as OpenSees and 

SAP2000, are capable of performing this level of modeling.  In this study, all numerical analyses 

were performed using the OpenSees finite element platform (McKenna and Fenves 2006) 

developed by Pacific Earthquake Engineering Research Center (PEER). 
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2.1 STRUCTURAL MODELING 

The numerical modeling of the bridges selected was performed in two dimensions, and the 

lateral spreading displacements and inertial demands were applied in the longitudinal direction of 

the bridge; these models do not take into account those bridges with a curved geometry or skew. 

Also, bridges with significant lateral spreading demands in the transverse direction are not 

considered here. 

Two-dimensional beam column elements with three-degrees of freedom per node were 

required to model the longitudinal response of the bridge. The models used in this study utilized 

three-dimensional beam column elements with six-degrees of freedom per node, with the out-of-

plane DOF's constrained to restrict response to the two-dimensional plane of interest. This 

approach was adopted so that the bridge models could be adapted to three-dimensional loading 

conditions for future research studies. Multi-column bents and pile groups with multiple 

members in the out-of-plane direction were represented using single elements in the plane, with 

structural properties adjusted to represent the number of out-of-plane members. 

2.1.1 Pier Columns and Piles 

 The pier columns and piles were modeled using nonlinear beam-column elements.  A bilinear 

moment curvature relationship was aggregated with linear elastic shear deformation response 

and elastic axial response. Each nonlinear beam-column elements consisted three integration 

points, with two of the points at the nodes where maximum bending moments were anticipated 

(i.e., Lobatto integration). 

Moment-curvature relationships of pier columns were evaluated using fiber-section 

analyses of columns, with proper size and longitudinal and transverse reinforcement ratios as 

well as proper axial load ratios. Subsequently the moment-curvature relationship was 

approximated as a bilinear curve using the Hardening material model in OpenSees by specifying 

the initial stiffness of moment-curvature curve (EIeff), the yield moment of the column (My) and 

the post-yield stiffness of the curve, which is conveniently chosen to be 5% of the initial stiffness 

of the column. The axial and shear force-deformation relationships were modeled elastically with 

stiffness equal to EA, and GA, respectively. The moment-curvature response of the piles was 

obtained using the fiber-section analysis program Xtract by Imbsen. The moment-curvature 
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Figure 2.1 Fiber section of a 0.61 m (24 in.) CIDH pile model and the corresponding 
moment curvature relation. 

relationship was then approximated using a bilinear relationship similar to the pier column 

elements. Figure 2.1 shows an example of a moment curvature analysis performed in Xtract for a 

0.61 cm (24 in.) cast-in-drilled-hole (CIDH) pile. 

2.1.2 Abutments, Superstructure, and Pile Caps 

The abutments, superstructure, and pile caps were assumed to remain linearly elastic under the 

applied boundary conditions. Hence, linear elastic beam-column elements were used for 

modeling. For these elements only the elastic properties of the materials, i.e., modulus of 

elasticity (E) and moment of inertia (I), as well as the cross-sectional area (A) of the elements, 

were needed. Pile caps and abutments do not behave as beams because they violate the plane-

sections assumption in beam theory; therefore, the EI and EA values for these elements were 

selected to be so large that they behaved essentially as rigid bodies. The EI and EA for the 

superstructure elements were based on the cross-sectional properties of the reinforced concrete 

box girder section. For those bridges with simply supported superstructure or seat-type 

abutments, the interface between the superstructure deck and the bent caps or the abutments were 

modeled with zero-length springs with appropriate types and capacities. 
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2.1.3 Bearings at Abutments 

Figure 2.2 shows the schematic of a typical seat-type abutment, as well as the different types of 

springs needed to capture the response at the abutments. As seen in this figure, three types of 

springs were needed for the seat-type abutments. 

 

 

Figure 2.2   Schematic of a seat-type abutment of the bridge. 

 

Spring 1 connects the superstructure deck node to the node at the top of the stem wall and 

models the horizontal load transfer mechanism at the abutment bearing. The bearing load 

deformation usually can be captured by an elastoplastic material spring in which the capacity of 

the bearing (i.e., plastic ordinate) is Q  and the horizontal stiffness of the bearing is HK . For 

elastomeric bearings, the capacity, Q , is calculated using Coulomb friction as follows: 
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.Q Nμ=  (2.1)

where N is the normal tributary force acting on the bearing, and μ is the coefficient of friction 

of the elastomeric bearing. The coefficient of the friction for the elastomeric bearing is between 

0.35 and 0.4 according to SDC (2006). The horizontal stiffness of the bearing HK is calculated 

using the following formula: 

.
H

r

G AK
t

=  
(2.2)

where A  is surface area of the bearing pads, rt  is total thickness of the bearing pads, and G  is 

effective shear modulus of rubber ≈  1 MN/m2 (150 psi). Consequently, the yield displacement of 

the bearing is calculated as: 

y
H

QU
K

=  
(2.3)

In modern bridges, typically the total surface area of the elastomeric bearings is selected so that 

the vertical stress on the bearings, vσ , does not exceed 100 psi (~ 690 kPa). 

Rocking and rollout displacements of the bearings are important design considerations 

for dynamic shaking of the bridges. Multi-layer bearings with steel sheets in between the rubber 

pads are typically used to increase the vertical stiffness of the bearing by modifying its shape 

factor, reducing any damage due to rocking or rollout of the bearings. However, bearings with 

the same total rubber pad thickness essentially have the same horizontal stiffness. Because the 

loading demands in the nonlinear equivalent static analyses are applied statically and 

incrementally, dynamic responses of the bearings (i.e., rocking and rollout) are not captured.  

Thus, the vertical degrees of the freedom of the two nodes connecting to spring 1 are equal, 

which causes the spring to be rigid in vertical direction since the two nodes move together. 

Spring 2 is a horizontally oriented spring connecting the top node of the stem wall to the 

bottom node of the back wall of the abutment. This spring follows a rigid plastic load 

deformation relationship with a capacity, BWV , equal to the shear capacity of the connection 

between the back wall and the stem wall.  Note that to mobilize the passive soil resistance of the 

approach embankment, modern abutment backwalls are designed to break away from the stem 

wall. This spring causes the two nodes to move together until the shear capacity of the backwall 
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is exceeded, at which point the backwall is no longer connected to the stem wall and can 

translate into or away from the abutment backfill depending on the direction of the loading. 

Springs 3 and 4 model the expansion joint gap between the superstructure deck end nodes 

and the nodes at the top and bottom of the backwall. These springs do not carry any load in 

tension or compression unless they are compressed the distance of the expansion gap—typically 

2.54 cm (1 in.) —at which point they behave rigidly, allowing the loads to be carried by soil p-y 

springs as well as the bridge structural elements. The end element of the deck is extended 

vertically using a rigid elastic beam-column element, so that the top node of the deck could be 

connected to the top node of the backwall. This way of modeling the deck enforces compliance 

between backwall rotation and superstructure rotation at the abutment when the gap is closed 

both at the top and bottom of the backwall (Springs 3 and 4). 

Diaphragm abutments are also sometimes used in Caltrans bridges, and these moment-

resisting connections were modeled by having the stiff abutment beam column element share a 

node with the superstructure element. Hence, a 90° angle was maintained between the 

superstructure and abutment, though the connection could rotate. 

2.1.4 Bearings at Simply Supported Spans 

Figure 2.3 shows the schematic of a typical connection of simply supported spans and the 

required spring to model this connection properly. Two types of springs exist at this connection. 

Springs 1 and 2 are horizontally oriented elasto-plastic springs connecting the top node of the 

pier column to the end nodes of the two spans sitting above it. These springs are symmetrical and 

model the stiffness and shear capacity of the interface between the deck spans and pier columns 

in a similar manner as the bearing spring in the abutment (i.e., Spring 1 in Figure 2.2).  Generally 

speaking, the capacity of these springs is equal to the shear capacity of the interface, while the 

stiffness of the springs is governed by the amount of relative displacements between the deck 

and the pier column at the connection before the shear capacity of the connection is reached. 

Consequently, in the case where the interface is an elastomeric bearing, the stiffness and capacity 

of the springs follows the relationships mentioned earlier for the abutment bearings.  In the case 
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Figure 2.3 Schematic of a simply supported bridge superstructure and the corresponding 
interface springs at the top of a pier. 

where the interface is grouted and the superstructure is connected to the pier column using 

dowels, the capacity of Springs 1 and 2 would equal the shear capacity of the dowels and the 

grout, while the stiffness of the springs would essentially be rigid. Adjusting the capacities and 

the stiffnesses of these springs allows for appropriate modeling of other kind of interfaces 

typically used in construction of these connections. 

Spring 3 is a horizontally oriented no-tension rigid spring connecting the end nodes of the 

two spans of the deck, allowing the spans of the deck to move away from each other without 

interacting with the other span.  However, once the spans are compressed to each other, the 

spring becomes rigid resulting in the two spans moving together without penetration of one span 

into the other. 

2.2 SOIL-STRUCTURE INTERACTION MODELING 

To model the SSI-interaction effects at the bridge abutment components (i.e., abutment walls and 

piles) and the foundation components supporting the pier columns (i.e., piles and pile cap), a 

beam on a nonlinear Winkler foundation approach is used. The soil-structure elements include p-

y springs for lateral interaction, t-z springs for axial interaction, and q-z springs for pile tip 

bearing. The SSI interaction effects on piles are fundamentally different from the non-pile 
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components of the bridge. Thus, the discussion on the SSI-interaction modeling is divided 

between SSI interaction springs on pile caps and abutment walls, and SSI interaction springs on 

piles. 

2.2.1 Influence of Liquefaction on Passive Pressure Amplitude 

Passive earth pressure theories in relatively uniform soil profiles are well-established and 

calibrated with load test data (e.g., Romstad et al. 1995; Mokwa and Duncan 2001; Rollins and 

Sparks 2002; Lemnitzer et al. 2009). However, practical problems often require estimating 

passive pressures for non-uniform soil conditions in which a relatively strong layer overlies a 

weak layer. Examples include embankments constructed on soft clay and liquefaction-induced 

lateral spreading of a nonliquefied crust layer against embedded foundation elements.  Relatively 

little research has been devoted to characterizing the influence of underlying weak soil on the 

mobilization of passive pressures. This section uses finite element simulations to demonstrate 

that underlying weak soil can significantly affect mobilization of passive pressures and presents 

simple analytical models for estimating passive force in such cases. 

2.2.1.1 Boundary Conditions Resulting in Rankine Passive Force 

Rankine (1856) earth pressure theory is widely recognized as appropriate for cases where a 

frictionless soil/wall contact exists, whereas log-spiral theory (e.g., Caquot and Kerisel 1948) is 

appropriate for estimating passive pressures with some wall friction. Terzaghi (1936) noted that 

uniform Rankine earth pressure can be realized only for soil deposits with frictionless contacts 

along the vertical boundaries (i.e., a wall) and also along the base of the deposit. A frictionless 

contact along a vertical boundary may be a realistic assumption for smooth walls, but the contact 

at the base of a deposit is typically rough because the interface strength is equal to the strength of 

the weaker soil layer. Hence, Terzaghi concluded that Rankine stress states can exist “only in our 

imaginations” and discouraged the use of Rankine earth pressure theory. However, the boundary 

conditions required for Rankine earth pressure may be nearly realized when a weak layer 

underlies the deposit. It is currently unclear how reduction in friction along the base of a deposit 

affects mobilization of passive earth pressure. 

To illustrate the boundary conditions required to obtain Rankine passive force, a set of 

finite element simulations was performed for a 4 m- (13.12 ft-) thick cohesionless backfill (γ = 
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20 kN/m3, φ=35°) with various boundary conditions at the soil/wall interface and along the base 

of the soil deposit. Figure 2.4 illustrates the three cases in which (a) the soil/wall interface and 

base are both frictionless, (b) the soil/wall interface is rough but the base is frictionless, and (c) 

the soil/wall interface is frictionless but the base is rough (i.e., uniform soil exists below the 

deposit). The analyses were performed using Phase2 7.0, which is part of the Rocscience 

software package. A Mohr-Coulomb material model was used with elastic constants E = 52 MPa 

and ν = 0.3, which corresponds to a reasonable strain-compatible shear wave velocity of 100 

m/sec.  The wall was translated horizontally 0.2 m (7.87 in.) into the backfill (sufficient to 

mobilize passive pressure), and the resulting contours of horizontal stress, σxx, are plotted 

superposed on the deformed meshes in Figure 2.4.  Additionally, Figure 2.5 shows σxx versus 

depth at distances of 0, 1, 2, and 4 m (3.28, 6.56, and 13.12 ft) behind the wall. 

Regarding Figures 2.4a and 2.5a (frictionless wall and base), σxx exhibits a triangular 

earth pressure distribution that is the same at every position behind the wall along the x-axis. 

This load case results in a uniform state of Rankine passive failure everywhere in the deposit, 

wherein σxx = Kp·σyy is the major principal stress, σyy is the minor principal stress, and Kp = 

[1+sin(φ)]/[1-sin(φ)] = 3.69. Also presented in Figure 2.5 is the horizontal component of the 

passive force, PpH, which was computed by numerical integration of the σxx distribution. The 

computed values of PpH are in reasonable agreement with the value computed using Rankine 

earth pressure theory of PpH = Kp·γ·H2/2 = 590 kN/m, with the small difference (about 1%) 

attributed to the numerical convergence tolerance and approximations in numerical integration of 

the σxx distribution. 
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Figure 2.4 Boundary conditions resulting in Rankine passive force for a 4 m- (13.12 ft-) 
thick cohesionless deposit: (a) frictionless wall, frictionless base; (b) rough 
wall, frictionless base; and (c) frictionless wall, rough base. 

 

 

Figure 2.5 Passive pressure distributions for boundary conditions in Figure 2.4 at various 
distances behind the wall. 

. 
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Regarding Figures 2.4b and 2.5b (frictionless base, rough wall), friction between the wall 

and backfill causes the distribution of σxx to vary spatially with distance behind the wall.  For 

example, at x = 0 the earth pressure distribution is curved such that σxx is larger than the Rankine 

passive pressure near the top of the wall and lower than the Rankine passive pressure near the 

bottom of the wall. The earth pressure distribution becomes less curved as distance-to-wall x 

increases and is nearly triangular at x = 4 m (13.12 ft).  At x > 3H a uniform Rankine earth 

pressure distribution is observed. Hence, irregularities in the earth pressure distribution decrease 

as x increases, eventually transitioning to a uniform Rankine distribution. This observation is 

consistent with the friction-induced arching effect on active pressure mobilization studied by 

Paik and Salgado (2003), wherein principal stress rotation is largest at the wall interface (i.e., 

where τxy is maximum) and decreases with distance away from the wall, eventually reaching a 

condition wherein principal stress directions are vertical and horizontal. 

Passive forces computed in Figure 2.5b as the integral of σxx with depth are all nearly 

identical to those in Figure 2.5a and consistent with Rankine passive force. This observation, 

contrary to the common expectation that wall friction causes passive force to deviate from the 

Rankine passive force, can be explained by observing a free-body diagram of the soil deposit 

between the wall on the left side of the deposit and a vertical slice at any point where x > 3H.  A 

uniform Rankine stress state is observed on the right side of the free body such that the resultant 

force acting from right to left is equal to the Rankine passive force. Since shear stresses imposed 

on the top and bottom of the deposit are zero, the horizontal resultant force acting on the left side 

of the deposit must also be the Rankine passive force by horizontal force equilibrium. Hence, we 

can conclude that Rankine passive force (i.e., PpH) is correct for long deposits with a frictionless 

base, regardless of whether the wall is rough or smooth.  However, horizontal stresses (i.e., σxx) 

exhibit deviations from Rankine pressures immediately behind the wall, and the position of the 

resultant is higher than 1/3H due to the curved distribution acting on the wall. 

Regarding Figures 2.4c and 2.5c (frictionless wall, rough base), a traditional passive 

bulge is observed in the soil behind the wall. Although the pressure distribution is approximately 

triangular in the upper portion of the wall, irregularities exist near the bottom of the wall.  

Nevertheless, at x = 0 the resultant force is PpH = 582 kN/m, which is reasonably consistent with 

Rankine earth pressure theory. However, unlike the previous two cases, the PpH values attenuate 

with distance as failure is confined to a region immediately behind the wall. 
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The conclusion that can clearly be drawn from Figures 2.4 and 2.5 is that Rankine earth 

pressure theory correctly represents the passive resultant force PpH for cases where either the 

soil/wall interface is frictionless and/or the base of the soil deposit is frictionless. Friction along 

either interface will cause σxx to locally deviate from the Rankine condition, but the resultant is 

the same. Even for cases with a rough wall, Rankine earth pressure theory provides the correct 

passive force if the base is frictionless. 

2.2.1.2 Influence of Underlying Weak Soil 

Having established that Rankine earth pressure theory produces accurate PpH values for cases 

with a frictionless base, we now turn our attention to the case wherein the soil below the deposit 

is weak, but not entirely frictionless. This boundary condition is pertinent for embankments 

compacted on soft clay and for liquefaction-induced lateral spreads where the nonliquefied 

spreading crust typically exerts a dominant loading component on embedded structures as it is 

carried atop weak liquefied soil. A suite of finite element studies was carried out wherein a 

cohesionless sand deposit rested atop a 0.5 m- (19.69 in-) thick weak soil layer modeled as a 

Mohr-Coulomb material with constant undrained shear strength, su (i.e., c = su, and φ = 0). 

The analysis was performed in two steps: (1) first, a gravity analysis was performed in 

which the base of the deposit was constrained against displacement and the vertical boundaries 

were constrained against horizontal displacement and free vertically; and (2) plastic loading in 

which 0.2 m (7.87 in.) horizontal displacement was imposed on the sand backfill and reaction 

forces recorded during gravity analysis were imposed on the left side of the underlying weak 

soil. The wall was assumed to be rough (i.e., vertical displacements were constrained to zero on 

the left side of the sand deposit, thereby implying δ =φ), and the right side of the deposit was 

constrained only against horizontal displacement and was free to displace vertically. The 

horizontal component of the passive force was computed by integrating the horizontal stress on 

the left vertical face of the deposit.  Analyses were performed for undrained shear strengths of 

the weak layer of su = 1, 2, 5, 10, 20, and 40 kPa, and friction angles in the cohesionless sand 

deposit of φ = 30°, 35°, and 40°.  Figure 2.6 shows a deformed mesh and contours of σxx for su = 

1 kPa and φ = 35°.   
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Figure 2.6 Deformed mesh and horizontal stresses for a 4 m- (157.5 in.-) thick 
cohesionless deposit with φ=35° and γ=20kN/m3 over a 0.5 m- (19.7 in.-) thick 
weak layer with su=1 kPa. 

 

 

Figure 2.7 Horizontal component of passive force versus su for various φ for (a) H=2 m 
(6.56 ft) and (b) H=4 m (13.12 ft). 
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Results of the computed passive force values are plotted in Figure 2.7.  At small values of 

su the passive force is only slightly larger than the Rankine passive force; as su increases, the 

passive force also increases. This observation is analogous to traditional log-spiral passive earth 

pressure theories in which increasing the soil/wall interface friction angle, δ, increases the 

passive force. 

2.2.1.3 Analytical Model 

The finite element method is useful for computing passive force for any combination of backfill 

properties, wall properties, and underlying soil properties, but a simpler solution would be useful 

since the time and expense required to perform a finite element analysis may not be justified for 

many projects. Consider the free-body diagram in Figure 2.8 that incorporates the strength of the 

underlying weak layer using a failure surface consisting of two linear segments; one horizontal 

segment through the underlying weak layer and another through the cohesionless backfill at an 

angle of 45°-φ/2 from the horizontal direction. This solution is similar to the Coulomb earth 

pressure theory since a planar failure surface is assumed. An expression for PpHθ can be obtained 

by dividing the free-body diagram into two regions and enforcing force equilibrium (Equation 

2.4). To find the solution for passive pressure, PpH, the value θcr that minimizes PpHθ must be 

solved. A closed-form solution for θcr is too unwieldy, but PpH can be solved numerically using 

Newton-Raphson iteration, or simply by varying θ over a suitable range with a suitably small 

increment and computing the minimum PpHθ. Note that the solution for PpH does not depend on 

PpV, and PpV is included in the free-body diagram in Figure 2.8 for completeness even though it 

has no effect on the solution. The lack of effect due to PpV on the solution is consistent with 

Figure 2.4b, which shows that the earth pressure resultant is independent of wall friction when 

the base is frictionless. 
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Figure 2.8 Analytical model for estimating passive force for a cohesionless deposit resting 
on a weak layer. 

Note that the solution for Equation 2.4 is very similar to traditional Coulomb earth 

pressure theory if the soil/wall interface friction angle is adjusted such that PpV = suH (i.e., such 

that the average frictional stress acting on the wall is equal to su). Furthermore, Coulomb earth 

pressure theory is known to over-predict passive pressures when the interface friction angle 

between the wall and the backfill is large since the resulting log-spiral failure surface is not well-

approximated by a plane. Based on these observations, another approach was also evaluated for 

estimating passive pressure in which a log-spiral method was utilized with an equivalent 

interface friction angle, δeq, selected such that PpV = suH.  The solution for δeq was obtained 

iteratively by (1) selecting a trial value of δeq, (2) computing Pp = (γH2/2)·Kp(φ,δeq), (3) 

computing PpV = Pp·sin(δeq), and (4) repeating (1) through (3) until PpV = suH.  After computing 

δeq, the horizontal component of the passive force was computed as PpH = Pp·cos(δeq). The 

relation by Zhu and Qian (2000) was used to compute Kp(φ,δeq) combinations. 

Solutions for PpH corresponding to the combinations of H, φ, and su included in the finite 

element study were computed using both analytical solution methods; the results are superposed 

on the finite element solutions in Figure 2.7. The analytical solutions are in reasonable agreement 

with the finite element solutions, with differences less than 5%.  For larger su values, the planar 

failure surface in Figure 2.8 predicts slightly larger PpH than the log-spiral method with PpV = 

suH.  Friction along the base of the deposit causes curvature of the failure surface, hence the log-

spiral mechanism more accurately represents the true failure mechanism. Neither method 

constitutes a mechanically rigorous solution, but both are very similar and agree well with the 
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finite element simulations, indicating that they are accurate within the range of input parameters 

studied in the finite element solutions. Both analytical methods are presented to give users an 

option for ease of implementation. 

2.2.1.4 Discussion 

The solutions presented herein are most appropriate when the underlying layer is weak relative to 

the passive pressures mobilized in the cohesionless deposit; they may be inappropriate for cases 

where the underlying layer is strong. In particular, a high su or low Pp value may result in a 

condition where δeq>φ, and the proposed analytical methodology is not validated for this 

condition. Numerical solutions or other appropriate methods should be used in such cases. This 

study applies only to two-dimensional loading conditions, but three-dimensional effects are 

known to increase passive force due to horizontal spreading of stresses. Three-dimensional 

effects would be anticipated to increase passive force for finite-width structures in the layered 

profiles studied herein, but it is unclear whether three-dimensional correction factors formulated 

for uniform soil conditions (e.g., Ovesen 1964; Duncan and Mokwa 2001) can be accurately 

applied.   

In traditional passive earth pressure theory (and for the equations derived in this report), 

the soil is assumed to exert an upward friction stress on the wall since the soil typically bulges up 

as the wall is pushed horizontally into the soil (Figure 2.9a). However, when soil liquefies and 

spreads laterally, settlement is often caused by extensional strain in the crust and by sand boil 

formation in underlying liquefiable layers; therefore, it is conceivable that the direction of 

interface friction force may be reversed if the crust settles as it spreads laterally (Figure 2.9b). 

Hence, the direction in which PpV acts is uncertain for liquefaction problems. If a down-drag 

force is mobilized, the passive force will be less than the Rankine passive force.   
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Figure 2.9 Load cases wherein (a) positive δ  is mobilized as passive bulge forms, and (b) 
negative δ  is mobilized as crust settles. 

 

Uncertainty in the direction of PpV is further illustrated in Figure 2.10, which shows the 

position of soil layers before and after applying a sequence of earthquake motions for centrifuge 

model SJB03 (Brandenberg et al. 2005). The nonliquefiable crust layer consisted of over-

consolidated bay mud with a layer of coarse sand on top to protect the clay from desiccation due 

to wind currents during spinning. The crust was underlain by a liquefiable loose layer of Nevada 

sand (DR = 35%) over dense Nevada sand (DR = 75%). The model was subjected to a sequence of 

motions that liquefied the loose sand and caused the crust to spread laterally toward the water 

channel with displacements on the order of tens of centimeters in model scale at the toe of the 

slope. A passive bulge is clearly apparent on the crust surface upslope from the pile cap, hence it 

is reasonable to conclude that the upper portion of the spreading crust exerted an upward 

interface friction stress on the pile cap; this is consistent with the direction commonly assumed 

for passive earth pressure theory. However, settlement of the bottom of the clay layer is apparent 

behind the pile cap where the thickness of the clay layer increased with some clay moving 

upward and some moving downward.  It is therefore unclear whether the resultant of the friction 

on the pile cap acted upward or downward. Brandenberg et al. (2005) found that Rankine earth 

pressure theory produced reasonable predictions of measured crust loads, but clear conclusions 

could not be obtained from the measured data because it was difficult to separate the passive 

force from the other components of horizontal force (i.e., friction between the sides and base of 

the cap and the spreading crust, loads on the pile segments beneath the cap).  
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Figure 2.10 Centrifuge model after liquefaction-induced deformation. The direction of slip 
between crust and pile group is ambiguous. 

 

Passive pressure in the presence of liquefaction and lateral spreading is more uncertain 

than for traditional problems in the absence of liquefaction. Additionally, passive pressure 

constitutes a driving force for lateral spreading problems, but a resisting force to an externally 

applied load for traditional problems. One should consider whether an upper-bound or lower-

bound estimate of passive pressure is conservative for a particular problem. For traditional earth 

pressure problems, under-estimating passive pressure is conservative and the possibility that 

settlement could reduce passive force should be considered. For lateral spreading problems over-

estimating passive pressure is conservative, and therefore assuming down drag at the soil/wall 

interface would be unconservative. 

This section presented cases wherein the weak layer lies immediately beneath the deposit, 

but often a weak layer lies some distance below the deposit. For example, an abutment backwall 

often occupies the upper few meters of a much thicker embankment, and liquefaction of the soil 

underlying the embankment deep below the abutment wall may occur. It is currently unclear how 

a deep weak layer affects passive pressure mobilization, though the influence would be 

anticipated to reduce as depth to the weak layer increases. 

The total crust load from the nonliquefied crust spreading against the embedded part of a 

structure (i.e., pile group or abutment wall), is the smaller of the load calculated by the two 

mechanisms (Figure 2.11). In the individual mechanism the soil spreads around the piles or 

around the sides of a pile cap or an abutment wall, and components of lateral crust load are 

passive pressure against the pile cap, friction between the cap and crust, and lateral loads on the 

pile segments beneath the cap.  In the block mechanism the soil is trapped between the piles and 

the whole group acts as an equivalent block, and components of lateral loading are passive 
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Figure 2.11 Mechanisms of spreading in nonliquefiable crust: (a) flowing mechanism and 
(b) equivalent block mechanism. 

pressure on the equivalent block (i.e., through the entire crust thickness), and friction between 

the equivalent block and crust. Figure 2.11 represents the two mechanisms of spreading. The 

mechanism with the lower overall crust load controls. For cases where the block mechanism 

controls, the sum of p-y element capacities in the crust should be reduced by a p-multiplier so 

that the total crust load is equal to that computed for the block mechanism. 

2.2.1.5 Influence of Liquefaction on Passive Pressure Stiffness 

In a classical retaining wall problem at a site where the soils do not liquefy, the passive earth 

pressures develop in the backfill soils if the retaining wall is pushed into the soil. This might be 

the case when the diaphragm wall (abutment wall) of a bridge is pushed into the abutment by 

earthquake shaking. Static load tests in nonliquefied ground have shown that the ultimate passive 

pressures are mobilized at a wall displacement of 1% to 7% of the wall height. For example, 

Rollins and Sparks (2002) performed static load tests on pile groups in granular soil and 

observed that the peak load was mobilized at displacements of about 2.5% to 6% of the wall 

height, while Duncan and Mokwa (2001) and Mokwa and Duncan (2001) reported peak load 

occurring at displacements of about 1% to 4% of the pile cap height. Abutment wall tests 

performed by Lemnitzer et al. (2009) also showed that the peak passive load was attained at 

about 3% of the wall height. 
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However, the stiffness of the load transfer is fundamentally different for the cases where 

the nonliquefiable crust is spreading against a pile cap or abutment wall or another embedded 

component of the bridge. Brandenberg et al. (2007) showed that underlying soft soil (including 

liquefied sand) softens the load transfer between a crust and embedded bridge component. The 

primary cause of this soft response is the reduction of friction along the base of the spreading 

crust due to liquefaction of the underlying soils. Additional contributions may also come from 

gaps and cracks in the crust, and cyclic degradation in clayey crusts. The liquefaction of the 

ground under the crust influences distribution of stresses in the crust by creating an almost 

frictionless boundary that permits horizontal stresses to spread to large distances upslope from 

the embedded component, thereby increasing the zone of influence. Relative displacement is the 

integral of horizontal displacement in the zone of influence, hence a large zone of influence 

equates to a soft load transfer behavior. Centrifuge tests performed by Brandenberg et al. (2007) 

shows that the load transfer response in the nonliquefied crust is about an order of magnitude 

softer that the traditional p-y response in nonliquefiable soil profiles, meaning that an order of 

magnitude larger relative displacement is required to mobilize passive pressures (Figure 2.12).  

Therefore, in order to capture the load transfer observed in nonliquefied crust, the stiffness of the 

traditional p-y curves should be modified to account for this soft response. This can be done by 

adjusting the y50 value (deflection at one-half the ultimate soil resistance) in clays and by 

adjusting the modulus of subgrade reaction, k, for sands so that the shape of the p-y curve 

resembles the soft load transfer response of the nonliquefied crust. 

 

   

Figure 2.12 Load transfer in nonliquefiable crust: (a) recorded load-deflection data from 
centrifuge models and (b) normalized backbone load transfer relations 
(Brandenberg et al. 2007). 
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Brandenberg et al. (2007) proposed a mathematical model for determining the proper 

load transfer behavior for lateral spreading of the nonliquefied against a stationary pile cap. This 

procedure was used in determining the appropriate stiffness of the p-y springs at the piles caps 

and also abutment walls. 

2.2.1.6 Soil-Structure Interaction Elements on Piles 

Three different types of SSI springs are necessary for modeling the interaction of the piles and 

the surrounding soils: p-y elements are used to model lateral interaction, t-z elements are used to 

model friction between the soil and piles, and Q-z elements are used to model pile end bearing. 

The SSI elements on the piles were based on existing relationships for piles in nonliquefied 

ground and subsequently modified for the effects of liquefaction. 

The p-y elements in clay followed relations developed by Matlock (1970) and p-y 

elements in sand followed API (1993).  Matlock’s equations are in the following form: 
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where, p is soil resistance, y is deflection, ultp is ultimate soil resistance, and 50y is deflection at 

one-half the ultimate soil resistance. The capacity of the p-y spring, pult, depends only on pile 

diameter and undrained shear strength of clay at deeper depths; at shallow depth, it also depends 

on the depth and unit weight of the clay. The parameter 50y  is the measure of stiffness of the 

spring. 

The API (1993) p-y curves for sands follow the form: 
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where, k is the modulus of subgrade reaction of sand,  x is depth of interest, and A  is a factor to 

account for cyclic or static loading. The capacity of the spring, ultp , in sands depends on the 

friction angle of the sand and its unit weight. 

The p-y elements were modeled using the PySimple1 material available in OpenSees 

assigned to zero-length elements oriented normal to the length of the piles and attached at pile 
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nodes. The PySimple1 material fits a hyperbolic load-displacement function to the forms 

suggested by Matlock (1970) (PySimple1 Type 1) and API (1993) (PySimple1 Type 2). The 

PySimple1Gen command was used to automate the PySimple1 materials and zeroLength 

elements (which would be an otherwise tedious task to perform by hand since different materials 

are required at different depths along the piles). 

Although these relationships provide good approximations and are appropriate for 

characterizing lateral interaction of the piles in clayey and sandy soils in sites where no 

liquefaction is present, the p-y behavior in sites where liquefaction occurs is much more 

complex. The dynamic load deflection behavior in liquefied sands was first observed by Wilson 

et al. (1998; 2000) by back-calculation of the results of dynamic centrifuge model tests of pile-

supported structures (Figure 2.13). 

 

 

Figure 2.13 p-y behavior in liquefied sand for loose sand (left column) and medium dense 
sand (right column). 

 
As can be seen in Figure 2.13, for loose sand (Dr = 35 %) the p-y response is very soft 

and weak relative to the traditional API (1993) curves.  However the medium dense sand (Dr = 

55 %) exhibits an inverted s-shaped displacement-hardening behavior, similar to the stress-strain 
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behavior in undrained loading of dilative saturated sands. Several studies [e.g., Tokimatsu et al. 

(2001); Ashford and Rollins (2002); Rollins et al. (2005)] have since observed similar responses 

as the response observed by Wilson et al. (1998; 2000). 

The inverted s-shape of the load transfer is attributed to dilatancy of the medium dense 

sand during undrained loading. Sands that are dense of the critical state have the tendency to 

dilate, and since there is no plastic volumetric strain in undrained loading, the dilatant tendency 

manifests as a drop in pore pressure and associated increase in effective stress. The increase in 

effective stresses causes the soil to strain-stiffen, thereby causing the inverted s-shaped stress-

strain behavior (Figure 2.14). 

 

Figure 2.14 Stress-strain response and effective stress path for Sacramento River sand 
during undrained cyclic triaxial loading (Boulanger and Idriss 2006). 

These features of dynamic p-y behavior in liquefied soil cannot be reasonably captured in 

static analysis. The most common approach for softening p-y elements to account for 

liquefaction is to apply reduction factors in the form of p-multipliers to the traditional API (1993) 

sand p-y curves. Brandenberg (2005) proposed p-multipliers for liquefied sands based on 
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penetration resistance of the sand, using (N1)60-CS, which is a directly related to the relative 

density of the sand, as summarized in Table 2.1. The p-multipliers in Table 2.1 are appropriate 

for conditions where excess pore pressure ratios reach unity. However, excess pore pressure 

ratios often reach an intermediate value between 0 and 1. Dobry et al. (1995) suggests that the p-

multiplier can be linearly interpolated, as shown in Figure 2.15. 

Table 2.1   p-multipliers, mp, to account for liquefaction (Brandenberg 2005). 

(N1)60-CS mp 

<8 0.0 to 0.1 
8-16 0.05 to 0.2 
16-24 0.1 to 0.3 
>24 0.2 to 0.5 

 

 

Figure 2.15 Effect of peak free-field excess pore pressure ratio on the ultimate capacity of 
p-y materials in liquefied sand (Dobry et al. 1995). 

 
For piles in group configurations located in nonliquefied soil, often there is a group 

effect, causing a reduction in loads on the nonleading rows of piles. These group effects are 

usually accounted for by applying group effect multipliers. The group effects were accounted for 

the portions of the piles that were embedded in dense nonliquefiable soils. These group effects 
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should not be applied in the portions of the piles that were embedded in liquefiable sands since 

the liquefied sand is weak (Rollins et al. 2005), thus group multipliers were not included for 

liquefied sands. For p-y springs on portions of the piles embedded in the nonliquefiable crust, the 

stiffness of the p-y springs ( 50y ) should be modified in a similar manner as the p-y springs behind 

an abutment wall or a pile cap, as described in the previous section. 

Axial interaction of the piles with the surrounding soil is modeled using t-z springs. T-z 

springs in the analyses were modeled by assigning TzSimple1 material to the zero-length 

elements oriented along the length of the piles. The free node of the zero-length t-z elements 

were fixed in all directions. The TzSimple1 material was symmetrical similar to the PySimple1 

material.  Little is known about the effects of liquefaction on the behavior of t-z elements. In the 

absence of data, p-multipliers may be assumed to characterize the effects of liquefaction on t-z 

behavior as well. Therefore, similar p-multipliers as the p-multipliers for liquefaction effects on 

the p-y springs were also applied to the t-z springs. 

Tip bearing capacity of the piles was modeled by attaching q-z springs at the tip of the 

piles along the length of the pile. The free node of the q-z springs should also be fixed in all 

directions. In the OpenSees analyses, the QzSimple1 material was used for the q-z zero-length 

elements. Unlike the PySimple1 and TzSimple1 material in Opensees, the QzSimple1 material is 

not symmetrical since the capacity of the springs is much less in tension than it is in 

compression. As a result, care should be taken in orienting the zero-length element in the correct 

direction. 

2.2.1.7 Selection of Inertia Loads 

Inertia forces can occur simultaneously with lateral spreading displacement demands, and the 

two loads should be accounted for simultaneously in global equivalent static analysis procedures.  

However, the inertia demands must be altered to account for the effects of liquefaction. Changes 

in inertia demands compared with those for the nonliquefied case are caused by (1) the influence 

of liquefaction on site response, and (2) inertia forces acting out-of-phase with ground 

displacements. Brandenberg et al. (2005) showed that inertia demands may occur during lateral 

spreading, and can be an important contributor to the lateral loads on the foundation. A number 

of case histories and model studies have shown that lateral spreading may also occur after 

ground shaking has ceased due to void redistribution. For example, the Landing Road Bridge and 
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Showa Bridge were both affected by lateral spreading that occurred after shaking had stopped.  

For design, assuming the inertia demands and lateral spreading demands occur simultaneously is 

prudent. The probability of having zero inertia force can also be included in a probabilistic 

framework in performance-based earthquake engineering (PBEE). 

Boulanger et al. (2007) presented two modification factors for adjusting the inertia 

demands to account for the effects of liquefaction. Table 2.2 shows the suggested modification 

factors to use in the equation: 

max_. .liq cc liq nonliqSa C C Sa=  (2.7)

where liqSa  is the spectral acceleration when liquefaction is present, and max_ nonliqSa  is the spectral 

acceleration for the nonliquefaction case. Cliq quantifies the influence of liquefaction on surface 

motion and is equal to the ratio of the peak horizontal surface acceleration with liquefaction to 

the peak horizontal surface acceleration without liquefaction. Ccc quantifies the phasing between 

the inertia demand and the total peak demand, expressed as the inertia value at the time that the 

critical loading cycle occurred (i.e., when the peak bending moment was measured in the piles) 

divided by the peak inertia value for the entire record.  The values of Cliq and Ccc were based on 

dynamic finite element models calibrated with centrifuge test data.  Cliq and Ccc varied with the 

frequency content of the ground motion that was imposed on the base of the finite element 

models, with low-frequency motions exciting the liquefied soil more than high-frequency 

motions. The frequency content of the motion was quantified as SaT=1s / SaT=0s. The input 

motions appropriate for the analyses performed by Boulanger et al. (2007) would be rock 

motions, assuming that the site response analysis is performed on the soil layers lying above 

rock. Based on the spectral shapes for the Caltrans SDC, the middle row in Table 2.2 

corresponding to SaT=1s / SaT=0s = 0.5 to 1.6 contains the controlling factors. These factors should 

be applied to the ground surface motion expected without liquefaction. 

Inertia demands are typically applied as displacements in spectral design of bridges.  

However, applying spectral displacements is complicated by the simultaneous application of 

lateral spreading displacements because only global boundary conditions can be controlled in a 

numerical model, whereas the displacement demand is a relative displacement measure.  

Applying the inertia demands as forces rather than displacements is more convenient and is 

permitted in the Caltrans SDC. However, this approach may not be numerically stable if a 

collapse mechanism forms.   
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Table 2.2   Factors Cliq and Ccc for modification of the nonliquefied inertia loads (Boulanger 
et al. 2007). 

Response spectra for nonliquefied 
condition, SaT=1s / SaT=0s 

Pile cap Superstructure 

Cliq Ccc Cliq Ccc 

1.7 – 2.4 1.4 0.85 0.75 0.65 
0.5 – 1.6 0.75 0.85 0.55 0.65 
≤ 0.4 0.35 0.85 0.45 0.65 

 

2.3 EXAMPLE ANALYSES 

In this section, a few examples of the nonlinear global equivalent static analyses are presented 

and explained in detail. The examples are intended to demonstrate the global ESA method that 

was used to derive the fragility functions in Chapter 4, and to show features of interaction among 

bridge components captured using global analysis that cannot be modeled using a local analysis.  

First a perfectly symmetrical three-span simply supported bridge with equal-length spans and 

single-column bents of the same height and dimensions, with seat-type abutments under several 

lateral spreading displacement patterns, is considered. Then the global response is compared with 

local analyses of a single component of the bridge (i.e., a single pile group and pier column) 

under similar loading conditions, and the differences between the local and global analyses are 

investigated. Finally, the response of this bridge under a certain loading conditions is compared 

with the response of a similar bridge with continuous super-structure and monolithic abutments 

under similar loading conditions.  

2.3.1 Configuration of the Example Simply Supported Bridge with Seat-type Abutments  

This example bridge is a simply supported three-span straight bridge with equal spans with 

circular identical single-column bents (Figure 2.16 and Table 2.3). Each bent is supported on a 

3× 4 group of 0.61m (24 in.) CIDH reinforced concrete piles connected by a 1 m- (3.28-ft) thick 

4 m × 5 m (13.12 ft ×  16.40 ft) pile cap, with the longer dimension in the transverse direction of 

the bridge. The superstructure is a 12.2 m (40 ft) wide concrete box-girder structure supported on 
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pile-supported seat-type abutments with a total height of 3.3 m (10.83 ft) for the backwall and 

stem wall. The abutments are supported on a 0.7 m (2.30 ft) pile cap that itself rests on two rows 

of six 0.61 m (24 in.) CIDH piles. The superstructure rests on elastomeric bearings with total pad 

thickness 0.051 m (2 in.) at the abutments, while they are connected at the top of pier columns 

using dowels (i.e., pinned connection). 

 

 

 

 

Figure 2.16 Schematic of the three-span simply supported bridge with seat-type 
abutments. 

 

Figure 2.17 CALTRANS acceleration response spectra for 5% damping for magnitude 
7.25 ± 0.25 in site class D. 
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Table 2.3   Properties of three-span simply supported bridge with seat-type abutment. 

Parameter Value 

Spans Length 25 m 
Pier Height 6.5 m 

Pier Diameter 1.46 m 
Pier Yield Moment 7011 kN.m 

Pier Initial Stiffness, EI 2.107×106 kN.m2 
Pier Shear Capacity 3049 kN 

Pile Diameter 0.61 m 
Pile Yield Moment 400 kN.m 
Pile Initial Stiffness 5.797×104 kN.m2 

Bearing Height 0.051 m 
Bearing Capacity 490 kN 

Bearing Yield Displacement 0.035 m 

 

Table 2.4 Thickness and properties of the soil layers in the layers used in the example 
problems. 

Soil Layer 
Thickness 
of the layer 

(m) 

Unit Weight, γ 
(kN/m3) 

Friction 
Angle, φ 
(degrees) 

Cohesion, 
(kPa) 

Subgrade 
Reaction, k 

(kN/m3) 
mp 

Embankment 6 20 38 20 80-1357 * 1 
Natural 
Crust 3 19 0 70 - 1 

Liquefied 
Sand 2 19 32 - 25,541 0.05 

Dense Sand - 20 38 -  55,450 0.65 ** 

*   The subgrade reaction stiffness at the embankment crust is adjusted to match the y50 value calculated using 
Brandenberg et al. (20070 relations for the stiffness of the nonliquefiable crust.   
** The multiplier in the dense sand layer is selected based on Dobry et al.(1995) assuming an excess pore 
pressure of about 40%. 

 

 

The soil profile used in this example is a typical liquefiable site soil profile. In this 

example, the natural crust overlying the liquefied sand layer is a clayey crust. The ground water 
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level is assumed to be at surface of the crust. The properties of the soils in this soil profile are 

summarized in Table 2.4. 

The p-multiplier in the liquefied sand is selected to be 0.05 based on recommendations by 

Brandenberg (2005) and Dobry et al. (1995). The p-multiplier for the dense sand underlying the 

liquefied sand was selected using the relation recommended by Dobry et al. (1995) 

( 1 0.95p um r= − ), assuming an excess pore water pressure of about 40%. 

The stiffness of the p-y springs in the nonliquefied crust was estimated using the relations 

presented by Brandenberg et al. (2007) for both the crust at the abutment (embankment fill and 

nonliquefied crust) and the clayey crust at the intermediate piers; the 50y values for the crust at the 

abutment and pile caps were estimated to be 0.2 m (7.87 in.) and 0.05 m (1.97 in.), respectively. 

The subgrade reaction in the embankment fill sands was adjusted so that the load transfer at the 

embankment is consistent with the soft response typical of nonliquefied crusts spreading over 

liquefied sand layers. 

The displacement profile in liquefied ground often exhibits a discontinuity at the interface 

of the liquefied sand and the nonliquefied crust. The discontinuity is caused by the relative 

sliding of nonliquefied crust over liquefiable sands due to void redistribution (Malvick et al. 

2008). In these examples the displacement at the interface of the crust and the liquefied sand is 

half of the displacement in the liquefied crust. The displacements in the denser sand layer are 

zero.  The displacements in the liquefied sand layer increase linearly (i.e., constant strain), while 

the displacements in the crust are constant throughout the thickness of the layer (i.e., zero strain). 

The inertia loads on the bridge were calculated by estimating the spectral acceleration Sa of the 

bridge in a nonliquefied site (i.e.,
max_ nonliqaS ) and modifying the demand using the modifications 

for the demand in liquefiable sites, as discussed earlier. The Sa of the bridge in a nonliquefied 

site was obtained from Caltrans’ Acceleration Response Spectra (ARS) shown in Figure 2.17 at 

the desired level of shaking and using the appropriate soil class site, based on the first-mode 

natural period of the bridge.  The period of the bridge in the longitudinal direction was 

approximated according to the formula: 

.2 trib

cl

mT
k

π=  
(2.8)
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where, .tribm is the tributary mass acting on each of the columns, and clk  is the stiffness of the 

column. The lateral stiffness of the column for a simply supported bridge can be calculated to be: 

3

3 eff
cl

EI
k

h
=  

(2.9)

where, effEI is the effective bending stiffness of the column, and h  is the height of the column. 

The lateral stiffness of this continuous bridge is:
 6 2 33 (2.107 10 kN.m ) (6.5m) 23,107 kN/mclk = × × =  and the tributary of mass acting on each 

pier is . 308.8tribm Mg= . Subsequently, the fundamental period of the bridge in the longitudinal 

direction can be approximated to be 2 308.8 23,107 kN/m 0.73 sec.T Mgπ= =
.
Lengthening of 

the natural period of the bridge due to liquefaction is accommodated using the Ccc and Cliq 

factors suggested by Boulanger et al. (2007). 

The shear wave velocity of this site associated with the first 30 m (98.43 ft) (
30sV ) of this 

profile was estimated to be about 270 m/sec  (885.83 ft/sec), which, puts this site in site class D 

(i.e., 180 <
30sV < 360) according to Caltrans SDC (2006). The nonliquefiable Sa for a bridge 

located in site class D, undergoing rock shaking of max 0.4a g= during an earthquake of 

magnitude 7.25 ± 0.25 using the ARS curves available in Caltrans SDC is 0.85g at the period of 

this bridge.  The liquefied Sa for this bridge is then, 0.3g ( .0.65, 0.55cc liqC C= = ). 

Lateral spreading displacements may occur in many different combinations at different 

bridge components. For example, spreading might occur only on one side of a channel, or on 

both sides. Spreading may be larger at a pier near a channel than at the abutment further upslope.  

Furthermore, the maximum demand on the bridge components may occur when the direction of 

the application of the inertia is in the direction of lateral spreading, or when the direction of the 

inertial force is against the direction of spreading. Therefore, it is important to consider different 

possible scenarios (i.e., load cases) when performing nonlinear global equivalent static analyses.  

The examples that follow explore several possible load cases and bridge configurations. 
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2.3.2 Effect of Different Displacement Patterns on the Response of the Bridge 

Table 2.5 summarizes the response of the piers of the example bridge described above under 

different global and local loading conditions. Load case 1 (Figure 2.18) considers the bridge 

under lateral spreading displacements happening in the left spreading feature (i.e., left abutment 

and left pier) of the bridge with 0.50 m (1.64 ft) of free-field ground displacement at the left 

abutment with 2 m (6.56 ft) of lateral spreading at the left pier. It is also assumed that in this 

loading condition the inertia is still present while the lateral spreading is occurring. In this load 

case, the inertia load is considered to be happening in the direction of spreading. As a result, 

inertia loads were applied as a force equal to the product of the mass and spectral acceleration Sa 

of the bridge, while the displacement demands on the bridge were linearly increasing.  

Under this loading condition the entire bridge is moving from left-to–right under the 

combined effects of lateral spreading and inertia demands. Large demands are mobilized in the 

piles supporting the left abutment and the left pier, which are the locations where lateral 

spreading displacements were imposed. The pile cap displacement at the left pier is 0.34 m (1.12 

ft), while the superstructure displacement is 0.30 m (11.81 in.), which places only 0.04 m (1.58 

in.) of displacement demand on the pier. In contrast, the pile cap displacement at the right pier is 

less than 0.02 m (0.79  in.), while the displacement of the top of the pier is 0.30 m (11.81 in.), 

placing a much more significant displacement demand that yields the pier and mobilizing a 

curvature ductility of 9.5 (Mmax = -9980 kN·m). This global analysis demonstrates how lateral 

spreading demands on some bridge components can transfer demands to other components 

founded in firm ground. This type of interaction can only be properly modeled using a global 

analysis. 
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Table 2.5 Summary of pier responses under different global and local loading conditions. 

Analysis ID 
max  (kN m)M ⋅  (m)capΔ  φμ   (m)Top PierΔ   (%)Capθ  

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Global 1 5771 -9980 0.34 0.018 < 1 9.5 0.3 0.3 -0.04 -0.76
Global 2 -6436 -6238 0.015 0.014 < 1 < 1 0.078 0.074 -0.31 0.28 
Global 3 6759 -9007 0.26 0.01 < 1 6.7 0.19 0.19 0 0.47 
Local 1 -5710 N/A 1.965 N/A < 1 N/A 3.94 N/A -29.8 N/A 
Local 2 9228 N/A 0.168 N/A 7.3 N/A 0 N/A -0.1 N/A 
Local 3 5710 N/A 0.319 N/A < 1 N/A 0.282 N/A -0.03 N/A 

 

 

 

 

Figure 2.18 Global analysis load case 1 showing load pattern and deformed mesh (top) and 
deformed mesh and moment distribution in nonlinear beam column elements 
(bottom). Deformations amplified by a factor of 4.0. 
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Figure 2.19 Global analysis load case 2 showing load pattern and deformed m (top) and 
deformed mesh and moment distribution in nonlinear beam column elements 
(bottom). Deformations amplified by a factor of 2.0. 

Load case 2 considers the bridge under symmetrical displacement demand from both 

abutments of the bridge, such that the lateral spreading displacements are equal in magnitude 

[maximum ground displacement is 0.5 m (19.69 in.)] but opposite in direction toward the center 

of the bridge. The inertia demand is also present and is applied from left to right. This loading 

condition is shown in Figure 2.19, with the corresponding deformed mesh and the bending 

moment distributions on the piles and the piers of the bridge. Since the spreading is perfectly 

symmetrical, the only demand on the piers comes from the inertia load that is being concurrently 

applied with lateral spreading displacements which moves the superstructure about 0.08 m (3.15 

in.) to the right. However, the inertia demand is not large enough to cause the pier columns to 

yield. The piles supporting the abutments suffer extensive deformations to the extent that failure 

is expected; thereby reducing their axial load carrying capacity. 

While the analysis clearly predicts extensive damage to these piles, the amount of 

damage predicted may be unreasonable for several reasons. The large demands are, in part, an 

artifact of the Winkler assumption that the p-y element behaviors are independent of the adjacent 

elements and the fact that free-field ground displacements are being imposed on the piles. In 
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essence these assumptions result in an unrealistic soil deformation pattern wherein the actual soil 

deformation would be small behind the abutment backwall and large deeper down at the piles. A 

two- or three-dimensional pinning analysis would more reasonably capture the manner in which 

the forces imposed on the embankment by the abutment backwall would reduce deformations in 

the underlying soils; such an analysis is beyond the scope of this work. Nevertheless, the 

predicted abutment displacement is consistent with the bridge deformation mechanism observed 

at several bridges in past earthquakes (e.g., in Kashiwazaki during the 2007 Niigata Chuetsu-Oki 

earthquake; Kayen et al. 2007).  

2.3.3 Effect of the Direction of the Inertia Demands on the Bridge Response 

Inertia demand on bridges and other structures during an earthquake is transient and alternating 

in all directions. As a result, when liquefaction and lateral spreading occurs at the site of the 

bridge during an earthquake, at an instant in time the inertia load acting on the bridge can range 

from being perfectly in-phase with the lateral spreading displacement demands to being perfectly 

out-of-phase. Thus, it is important to consider the inertia loads in-phase and out-of-phase with 

lateral spreading since the overall demand may be more severe in one case or the other. 

Load case 3 (Figure 2.20) has the same lateral spreading demand as load case 1 (Figure 

2.18), however the inertia demand in load case 3 is out-of-phase with lateral spreading demands.  

Here, the displacement demand due to inertia in the opposite direction of spreading displacement 

demand increases the bending moment in the left pier from 5771 kN m⋅  to 6759 kN m⋅ . While 

this demand is still lower than the yield moment of the pier (7011 kN m⋅ ), it is obvious that load 

cases with out-of-phase inertia may result in higher demands on the piers, causing them to yield 

or reach higher curvature ductilities. On the other hand, the inertia acting in the opposite 

direction of spreading results in lowering the superstructure displacement from 0.3 m to 0.19 m 

(11.81 in to 7.48 in). This results in reduction of displacement demands on the right pier causing 

a reduction in curvature ductility from 9.5 to 6.7 (Mmax = -9980 kN m⋅  to Mmax = -9007 kN m⋅ ).  

Pile cap displacement at the left pier is also reduced from 0.34 m to 0.26 m (1.12 ft to 0.85 ft).  

Generally speaking, the demand on the bridge can be significantly affected by the direction of 

inertia, and the above example points to the importance of considering both load cases when 

evaluating the performance of the bridge under liquefaction-induced demands. 
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Figure. 2.20 Global analysis load case 3 showing load pattern and deformed mesh (top) and 
deformed mesh and moment distribution in nonlinear beam column elements 
(bottom). Deformations amplified by a factor of 4.0. 

2.3.4 Effect of Bridge Type on the Response of Bridges 

In order to investigate the effect of bridge type on the response of the bridge under lateral 

spreading demands, consider a bridge similar to the bridges in load cases 1 to 3 compared to a 

bridge with exactly the same geometry but with a continuous superstructure and with monolithic 

abutments.  The superstructure is connected to a 3-m (9.84 ft-) tall diaphragm wall supported on 

a single row of six 0.61 m (24 in) CIDH piles (Figure 2.21) (consistent with common 

foundations for diaphragm abutments). The boundary conditions of this bridge are different (i.e., 

fixed-fixed), therefore, the period of the bridge should be calculated based on a lateral stiffness 

of a column fixed at both top and bottom, as follows: 

 

3

12 eff
cl

EI
k

h
=  

(2.10)
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Figure 2.21   Schematic of the three-span continuous bridge with monolithic abutments. 

 

 

Therefore, 6 2 312 (2.107 10 kN.m ) (6.5 m) 92, 428 kN/m= × × =clk and subsequently the period of 

the bridge is 2 308.8 92, 428 kN/m 0.37 sec.T Mgπ= =
. 

The nonliquefiable Sa for a bridge 

located in site class D, undergoing rock shaking of max 0.4a g= during an earthquake of 

magnitude 7.25 ± 0.25 using the ARS curves, is 1.10g at the period of this bridge. The liquefied 

Sa for this bridge is then, 0.4g ( .0.65, 0.55cc liqC C= = ). 

Load case 4 (Figure 2.22) considers this continuous bridge under the same lateral 

spreading displacement pattern as in load case 1 [i.e., 2 m (6.56 ft) of spreading at the left pier 

and 0.5 m (19.69 in.) of spreading at the left abutment], and with inertia acting in-phase with the 

lateral spreading demands but with inertia demands associated with a Sa equal to 0.4g based on 

the period of this bridge. Table 2.6 shows the comparison of the results of the two bridges 

considered in load cases 1 and 4. 

As can be seen in Figure 2.22, the moment distribution mobilized at the end of load case 

4 shows a double curvature as would be expected in bridges with columns with double fixity.  

Compared with the bridge with seat type abutments, the diaphragm abutments increase the 

stiffness of the bridge and reduce the superstructure displacement from 0.3 m to 0.13 m (11.81 

in. to 5.12 in.).  Also the pile cap displacements at the left pier reduced from 0.34 m to about 0.15 

m (13.39 in. to 5.91 in). Furthermore, the stiffer right pier in this case, imposes more 

displacement and rotation demand at the right pile cap because of the displacement of the 

superstructure. 
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Figure 2.22 Global analysis load case 4 (continuous bridge with monolithic abutments) 
showing load pattern and deformed mesh (top), and deformed mesh and 
moment distribution in nonlinear beam column elements (bottom). 
Deformations amplified by a factor of 4.0. 

 

Table 2.6 Comparison of the response between a simply supported bridge with seat-type 
abutments and a continuous bridge with monolithic abutments under the same 
loading conditions. 

Analysis ID 

max  (kN m)M ⋅
 

(m)capΔ  φμ   (m)Top PierΔ   (%)Capθ  

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Global 1 5771 -9980 0.34 0.018 < 1 9.5 0.3 0.3 -0.04 -0.76
Global 4 -5734 9557 0.146 0.035 < 1 8.3 0.136 0.132 0 -1.3 
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2.3.5 Comparison of Global Analyses and Local Analyses 

Although global equivalent static analyses can capture the interaction between different bridge 

components, the computational demand required to model the entire bridge is often not justified 

and local analysis of a single sub-system is performed instead.  Unfortunately, local analysis 

does not directly capture the interaction of multiple sub-systems, therefore, the boundary 

conditions imposed in the local analysis should envelope the possible global boundary 

conditions. In this section, local analyses of a single pier are performed and compared with the 

global analyses. The left pier and pile group are modeled in the local analysis, and several 

different boundary conditions are imposed at the top of the pier. The rotational restraint at the top 

of the pier is free for a simply supported bridge and fixed for a monolithic bridge. The 

displacement degrees of freedom are modeled separately in order to capture possible global 

loading mechanisms. First, the inertia force is imposed in-phase with lateral spreading 

displacements to represent a condition where the superstructure displacement is driven largely by 

inertia loading (Figure 2.23). Second, the top of the pier is held fixed at zero displacement to 

model the possible case where the superstructure is held in place by other sub-systems in 

nonliquefiable stable ground (Figure 2.24), which in turn fixes the top of the pier against 

displacement. Finally, the inertia force is imposed in the opposite direction from lateral 

spreading displacements as this condition may cause large displacement demands on the pier 

(Figure 2.25). The free-field ground deformation profile applied to the left pier in global load 

cases 1 and 3 is applied to the pile group in the local analysis. 

Global load case 1 and local load case 1 have identical displacement and inertia demands, 

yet the response of the local analyses did not capture the response observed in the global load 

case 1. The local analysis predicts significant displacement at the pile cap [1.97 m (6.46 ft)] due 

to yielding of the piles and a pile cap rotation of about 30%. The superstructure displacement is 

3.94 m (12.93 ft). The difference between the local and global analysis here is that the local 

analysis does not permit the pier to help resist lateral loads from the spreading soil by 

transferring forces to the abutments and the other pier.   

Local load case 2 attempts to better capture the distribution of forces through the pier to 

other components by fixing the top of the pier against horizontal translation. Compared with 

global analysis 1, local load case 2 predicts smaller pile cap displacement [(0.17 m (6.70 in.)] 
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compared with 0.34 m (1.12 ft) and larger flexural demand on the pier (Mmax = 9228 kN·m 

compared with 5771 kN·m), causing the pier to reach a curvature ductility of 7.3. 

 

 

 

Figure 2.23 Local analysis 1 showing deformed mesh and moment distribution. 
Deformation × 1. 

 

Figure 2.24 Local analysis 2 showing deformed mesh and moment distribution. 
Deformation × 4. 
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Figure 2.25 Local analysis 3 showing deformed mesh and moment distribution. 
Deformations ×  4. 

 

Global load case 3 and local load case 3 (Figure 2.25) have the same free-field ground 

deformation profile and inertia demand, with inertia load acting out-of-phase relative to the 

lateral spreading displacements. However, differences arise in the predicted response. Local load 

case 3 predicts large pier top displacement [0.28 m (11.02 in.) compared with 0.19 m (7.48 in.)], 

larger pile cap displacement [0.319 m (12.56 in.) compared with 0.26 m (10.24 in.)] and smaller 

bending moment demand (5710 kN·m compared with 6759 kN·m). These trends are consistent 

with the distribution of demands from the pier to other components through the superstructure in 

the global analysis. 

Clearly, the local analysis approach differs significantly from the global analysis method, 

but in general the three different loading conditions imposed in the local analyses enveloped the 

responses from the global analyses. Here, significant pile cap displacements and demands on the 

piers would be predicted using either global or local analysis methods, with a similar conclusion 

that the foundation performance is inadequate. Therefore, local analysis may be a feasible design 

tool, with the acknowledgment that global analysis is believed to more accurately model the 

behavior of the entire bridge. The purpose of this report is not to formulate a design method but 

rather to evaluate the behavior of bridges (many of them are old and fragile) to liquefaction and 

lateral spreading. The global method is better suited to this goal. 
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Table 2.7   Properties of the .61 m (24 in.) CISS piles. 

Parameter Value 

Pile Diameter 0.61 m 

Pile Yield Moment 1977 kN.m 

Pile Initial Stiffness 2.865×105 kN.m2 

Table 2.8 Comparison of the response of the bridge with strong CISS piles under global 
and local analyses. 

Analysis ID 

max  (kN m)M ⋅
 

(m)capΔ  φμ   (m)Top PierΔ   (%)Capθ  

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Left 
Pier 

Right 
Pier 

Global 5 2518 -5404 0.04 0.003 < 1 < 1 0.048 0.048 0 0 
Local 4 -5710 N/A 0.147 N/A < 1 N/A 0.36 N/A -2.6 N/A 
Local 5 4967 N/A 0.027 N/A < 1 N/A 0 N/A -0.11 N/A 
Local 6 5710 N/A 0.025 N/A < 1 N/A -0.007 N/A -0.11 N/A 

2.3.6 Effect of Pile Strength on the Response of the Bridges 

Having determined that the foundation in the previous examples would be considered 

inadequate from a design perspective, the analysis was repeated with larger diameter piles, which 

we will refer to as global case 5. Global load case 1 (i.e., inertia load in-phase with lateral 

spreading displacements) was repeated with the 0.61 m (24 in.) CIDH piles are substituted with 

0.61 m (24 in.) cast-in-steel-shell (CISS) piles, with properties summarized in Table 2.7. Local 

load cases 1, 2, and 3 were also repeated with the 0.61 m (24 in.) CISS piles, and called local 

load case 4, 5, and 6, so that a comparison between the local load cases can be made with the 

global analysis. Table 2.8 summarizes the results of the analyses performed using 0.61 m (24 in.) 

CISS piles. 

Figure 2.26 shows the deformed mesh and moment distribution for the global load case 5 

with CISS piles, which are clearly much more effective than the CIDH piles in resisting lateral 

spreading demands on the bridge.  The pile cap supporting the left pier displaced only 0.04 m 

(1.58 in.) [compared with 0.34 m (1.12 ft) for the CIDH piles] despite 2 m (6.56 ft) of lateral 
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spreading displacements being applied at this pier. Also the superstructure displaced less than 

0.05 m (1.64 ft). Neither pier column yielded with the CISS piles because the pile cap did not 

displace significantly. 

The local load cases better envelope the global response for the CISS piles, indicating 

that local analyses are more than adequate when the foundation performance is good. This is 

consistent with the observation that (1) the primary difference between the local and global 

analysis is the ability of the latter to distribute demands to other components through the 

superstructure, and (2) less demand is distributed through the pier to the superstructure when the 

foundations are stiff and strong. This confirms the previous observation that local analysis can be 

a useful design tool, but global analysis is better for predicting the distribution of demands 

throughout the bridge. 

 

 

 

Figure 2.26 Global analysis load case 5 with CISS piles showing load pattern and 
deformed mesh (top) and deformed mesh and moment distribution in 
nonlinear beam column elements (bottom).  Deformations amplified by a 
factor of 4.0. 



62 

2.3.7 Pile Pinning Effect of Reducing Displacement Demands on Abutments 

Abutment walls and piles at the abutments reduce the displacement demands imposed on the 

bridge by restraining the finite-width slope. This reduction in demand has been called “pile 

pinning,” although bridge components other than the piles also contribute to pinning. The 

procedure is referred to as a “pinning” analysis herein. Free-field lateral spreading ground 

deformation is not the appropriate demand to place on bridge components in a finite-sized lateral 

spread (e.g., when the out-of-plane thickness is small for an embankment, or when the upslope 

extent of the spread is small). Rather, a displacement demand that is compatible with the pinning 

forces should be used. A pinning-compatible displacement is determined by performing a two-

step procedure first proposed by the Transportation Research Board (TRB 2002) and 

subsequently updated by Boulanger et al. (2007).  These methods, originally developed for local 

analysis, have been extended to global analysis in this study.   

The first step of the procedure involves performing an equivalent static analysis where 

the embankment soils are displaced against the bridge to develop a relation between the 

mobilized forces and free-field ground surface displacement. The distribution of horizontal force 

mobilized against the embedded structural components is recorded to model the restraining 

forces imposed on the spreading soil in the second step.  As noted by Boulanger et al. (2007), the 

restraining force mobilized at a given amount of free-field ground displacement is not equal to 

the restraining force that exists during the entire earthquake. Rather, the restraining force begins 

at zero and eventually reaches its final value at the end of lateral spreading. Hence, Boulanger et 

al. (2007) suggested taking the running average of the relation between restraining force and 

free-field ground displacement to use in combination with the Newmark sliding block analysis in 

the second step. 

The second step involves a sequence of slope stability analyses to find the yield 

acceleration of the embankment associated with various levels of restraining force, and a 

Newmark sliding block analysis to identify the ground displacement associated with that yield 

acceleration. The restraining forces can be represented by directly imposing the distribution of 

forces in the p-y springs on the slope or by representing the distribution as a resultant force 

acting at the centroid of the distribution. The limit equilibrium analysis is conducted for a unit 

thickness (i.e., out of the plane of the problem); therefore, the restraining force must be 

multiplied by an appropriate thickness of the embankment to obtain units of force. Boulanger et 
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al. (2007) found that using a width equal to only the width of the pile group is inadequate 

because stresses attenuate geometrically in the embankment; they recommend using the full crest 

width plus half of the side slope mass to determine an appropriate equivalent width. After 

performing both steps, the mobilized force versus ground displacement is plotted on the same 

figure as the restraining force versus Newmark displacement, and the intersection of this plot is 

the displacement-compatible solution. 

An example of the pinning procedure is performed for the three different global load 

cases 1, 2, and 3 for the bridge in the example problem. Step 1 of the pinning procedure was 

therefore already completed in previous sections, and step 2 was completed using slope stability 

analyses in the Rocscience program Slide 5.0 combined with a Newmark sliding block analysis 

for a ground motion recorded at Port Island, Kobe, scaled to peak ground accelerations (PGA) of 

0.2g, 0.3g, and 0.4g. Obviously, the amplitude of Newmark displacements also depend on the 

frequency content and duration of the ground motion, but those effects were ignored for this 

analysis. 

The soil properties used for the slope stability analyses are summarized in Figure 2.27.  

The embankment was 6 m (19.69 ft) tall. The clay crust and the liquefied sand layers were 3 and 

2 m (9.84 and 6.56 ft) tall, respectively. The equivalent width of the embankment was calculated 

to be 18.2 m (59.71 ft) using recommendations by Boulanger et al. (2007), and the length of 

backfill embankment for the slope stability analyses was limited to 30 m (93.43 ft) (five times 

the height of the embankment). The yield acceleration (i.e., ay) of the embankment with no 

pinning force present was calculated to be 0.0615g using Spencer’s (1967) method (Figure 2.28). 

 

 

Figure 2.27 Soil profile and its properties used in the pinning analysis of abutments. 



64 

 

Figure 2.28 Slope stability analyses performed using slide 5.0 and the associated failure 
surface for yield acceleration of ay = 0.0615g. 

 

Figure 2.29 Distribution of forces behind the abutment wall at the end of the global load 
case 1 analysis. 



65 

 

Figure 2.30 Results of the pinning analyses for different load cases 1, 2, and 3 at different 
peak ground motion levels for Kobe motion recorded at Port Island. 

Figure 2.29 shows the distribution of the forces on the abutment piles at the end of the 

global load case 1. The distribution was represented as the resultant acting at a depth of 4.35 m 

(14.27 ft).  The location of the equivalent force is assumed to be constant for different values of 

the resisting force, even though the location somewhat varies by the magnitude and the 

distribution of the forces behind the wall for every load case. 

Figure 2.30 shows the results of the pinning analyses for load cases 1, 2, and 3. As can be 

seen in Figure 2.30, the amount of restraining force mobilized at the abutment depends on the 

pattern of lateral spreading displacements imposed on the bridge. The softest response is global 

load case 1, where the entire left side of the bridge is being pushed by lateral spreading soil. This 

load case is the least effective at pinning the spreading embankment. The stiffest response is 

global load case 2, where symmetrical lateral spreading demands are imposed in opposite 

directions, while inertia load is applied from left to right. This load case is the most effective at 

pinning the spreading embankment because the superstructure acts as a strut. Global load case 3, 

which has inertia demand out-of-phase from the lateral spreading demands, is more effective 

than global load case 1 in pinning the embankment displacements, but less effective than global 

load case 2. 

Furthermore, the pinning is more effective for stronger motions. Figure 2.31 shows the 

reduction in the ratio of the pinning-compatible displacements to free-field displacements, which 

is the intersection of the two steps of the pinning analysis for different values of ground 
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displacements. For all load cases the reduction in lateral spreading displacement demands 

becomes more significant as the free-field displacement (or PGA) increases. 

On average, the pinning compatible displacement is about three fourths of the free-field 

ground displacement for these load cases. From a design perspective, the pinning procedure 

outlined in this section can easily be repeated for other bridges and load cases with only a modest 

increase in effort. However, the procedure is too onerous for the large number of analyses 

performed by Kashighandi (2009) because it would require repeating both the slope stability 

analysis and the global equivalent static analysis for each of the thousands of simulations; 

therefore, as discussed in Chapter 4, the displacements at the abutments were decreased by 25% 

from their estimated free-field values to approximately incorporate the influence of pinning. This 

reduction is important because demands on the bridge are ultimately related to free-field lateral 

spreading ground displacement, which is a convenient metric that can be estimated using a 

number of different approaches. A reduction was not required for the pile group supporting the 

piers because the extent of lateral spreading soil was assumed to be very large for these 

components such that the free-field demand was appropriate. 

 

 

Figure 2.31 Ratio of pinning compatible displacement to free-field ground displacements 
for three load cases at different values of free-field ground displacement. 
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3 Input Parameters Selection 

Several approaches exist to characterize the potential for liquefaction-induced damage to the 

more than 12,000 Caltrans-owned bridges. The most robust approach would involve a systematic 

individual evaluation of every single bridge using the current state-of-the-art analysis procedures. 

Not only would this approach be essentially impossible because it would require too much time 

and money, it would also be wasteful because many bridges may be located at sites that are not 

susceptible to liquefaction. Another approach would analyze a smaller, statistically 

representative sample of the total bridge population and extrapolate findings to the remaining 

bridges that were left unanalyzed. Although this approach appears more reasonable, a 

statistically representative sample would be needed to capture the various combinations of 

structural configurations and soil conditions that exist for the entire bridge population, which 

would still involve an unreasonably large effort. Furthermore, obtaining as-built bridge drawings 

from the Caltrans database would be time-consuming. 

The approach adopted in this study was to use a small set of as-built drawings combined 

with information available from the NBI to develop a simple classification system based on 

structural properties such as vintage, type of connection between piers and abutments, number of 

pier columns per bent, and type of foundation. Structural properties such as span length and pier 

height were varied within each class to represent the variations identified in the NBI. A generic 

three-span bridge configuration was used throughout the analyses. Soil conditions for the 

liquefiable soil profiles were based on the USGS database of cone penetrometer soundings in the 

San Francisco Bay Area. The structural and geotechnical input parameters were represented as 

probability density functions. In some cases a large amount of data was available to define these 

input distributions (e.g., the NBI had maximum span length for all Caltrans bridges), while in 

other cases very little data was available. Consulting with Caltrans bridge designers and 
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engineering judgment was used when the available data was insufficient to accurately define 

distributions and correlations among the inputs.   

After defining distributions and correlation coefficients for all of the input parameters, 

individual realizations were obtained by randomly picking discrete input parameter values from 

their underlying distributions to construct a numerical model of the bridge. The task of 

automatically constructing a numerical model based on random inputs was facilitated by the 

scripting capabilities of the TCL language used to control OpenSees. Thousands of realizations 

were obtained by the Monte Carlo method. The remainder of this chapter presents the manner in 

which the distributions and correlations for the input parameters were defined. 

3.1 GENERIC BRIDGE CONFIGURATION 

Figure 3.1 shows the generic three-span template that was used throughout this study. This 

template was selected because it is the simplest configuration that permits study of the different 

types of loading conditions studied. For example, lateral spreading could occur at the left 

embankment and pier, but not at the right embankment and pier, or it could occur on both sides 

of the bridge toward the center. Fewer spans might limit the possible load combinations, while 

additional spans would probably not add significant information to the study. All of the spans 

had the same length and the two piers had equal heights. The abutments and piers were 

supported on pile groups. The pile groups with 0.38 m- (15 in.-) diameter Precast piles had 20 

piles in a group (i.e., a 4x5 configuration), while the pile groups with larger 0.61 m- (24 in.-) 

diameter CIDH and CISS piles had 12 piles per group (i.e., a 3x4 configuration).  The deck 

width was assigned a fixed value of 12.2 m (i.e., 40 ft), which is typical of two-lane highway 

super-structure deck width. Dead loads were estimated using deck section weight calculations 

based on sixteen pre-1971 as-built bridge drawings, and the dead load values were subsequently 

used to size the piers. 
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(a) 

(b) 

(c) 

Figure 3.1 Template of the bridges for modeling and analyses: (a) bridges with 
continuous superstructure and monolithic abutments; (b) bridges with simply 
supported superstructure and seat-type abutments; and (c) bridges with 
continuous superstructure and seat-type abutments. 

3.2 STRUCTURAL CLASSIFICATION 

Figure 3.2 is a flowchart depicting the structural classification system adopted in this study. The 

bridges are classified based on vintage, structure type, number of columns per bent, and pile 

types, as discussed in detail in the sections that follow. 
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Figure 3.2 Classification of bridges based on vintage, structure type, number of piers, 
and type of piles. 
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3.2.1 Vintage 

As design codes have evolved and improved over the years, the structural properties of a bridge 

are strongly related to the year in which the bridge was designed. Based on personal 

communication with Caltrans bridge designers, certain landmark dates are associated with major 

changes in bridge structural design codes. The most significant changes were introduced after the 

1971 San Fernando and 1994 Northridge earthquakes. Piers for bridges designed prior to 1971 

generally had low shear (transverse) reinforcement, and therefore did not exhibit much ductility. 

After 1971 more shear reinforcement was required in bridge piers to improve ductility. Code 

revisions following the Northridge earthquake involved primarily structural detailing and 

connections. Modeling connection details was beyond the scope of this project (all moment 

resisting connections were implemented by having the beam column elements share nodes, 

hence 90° connections); therefore, the 1994 code revision was not reflected in the classification 

system. Because design strategies focused on supporting the vertical load demands, older vintage 

bridges tend to be supported on small-diameter pile foundations that have very little lateral 

capacity. Newer vintage bridges, however, are often supported on bigger diameter piles, such as 

CIDH, CISS, and steel pipe piles, which exhibit significantly improved lateral load stiffness and 

capacity.  This is reflected in the classification system, where various different pile types are 

assigned to newer vintage bridges. Although various types of piles were also evident in the as-

built drawings for the older vintage bridges, these piles also exhibited equally poor lateral load 

carrying capacity, therefore, varying the properties of the piles was deemed unnecessary. 

3.2.2 Structural Connection Type 

The connection between the superstructure and the abutments and piers effects the distribution of 

shear and bending moment demands to the various bridge components.  The types of abutments 

considered in this study are seat-type—where the superstructure rests on top of a bearing 

attached to the abutment—and monolithic—where the abutment provides a moment-resisting 

connection to the superstructure. Seat-type abutments typically have a gap is between the 

superstructure and abutment backwall. Superstructures were considered either continuous—

where the entire superstructure is a monolithic member—or as simply supported where the 

superstructure is composed of multiple segments. Connections between the superstructure and 

the tops of the piers were modeled as either pinned or resting on an elastomeric bearing for the 
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simply supported bridges.  In this study, the bridges were categorized into three major classes: 

continuous bridges with monolithic abutments, simply supported bridges with seat-type 

abutments, and continuous bridges with seat-type abutments. 

3.2.3 Number of Pier Columns per Bent 

This study adopted as a criterion the number of pier columns per bent because multi-column 

bents tend to have higher moment and shear capacities compared with their single-column 

counterparts. Bridges with continuous superstructures and multi-column bents are designed with 

a pin connection to the pile cap, and with single column bents are designed with a fixed moment-

resisting connection.  This translates to major differences in the fragility of different components 

of these two types of piers. 

For simply supported bridges the pier columns are fixed into the pile cap since there is no 

moment-resisting connection at the top of the pier column. Hence, the multi-column bents 

exhibit higher flexural capacity but no difference in structural configuration. The difference 

between a single-column and multi-column bent is more important for transverse loading than 

for longitudinal loading since a multi-column bent forms a frame that can be much stiffer than a 

single-column.  However, all analyses in this report are along the longitudinal axis of the bridge. 

3.2.4 Pile Type 

The type of piles used in the bridge foundation has a significant effect on its performance under 

liquefaction and lateral spreading demands. Older bridges (i.e., pre-1971) mostly had small 

diameter [0.36  m- (14 in.-) to 0.41 m- (16 in.-) diameter] piles that were primarily designed for 

axial load bearing, without much consideration for lateral loading. They would generally be 

considered unsuitable for bridges located in liquefiable soils based on today’s design standards, 

but are nevertheless important to model for characterizing performance of the older vintage 

bridges.   

A broader range of pile types appears in the post-1971 bridges. Three individual pile 

types were considered for the newer vintage bridges, including 0.38 cm- (15 in.-) diameter 

precast concrete piles, 0.61 cm- (24 in.-) diameter CIDH reinforced concrete piles and 0.61 m- 

(24 in.-) diameter CISS piles.  These larger diameter CIDH and CISS piles are being more 

widely used in newer bridges, especially when the potential of liquefaction and lateral spreading 
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is present at the site of the bridge. Although larger-diameter drilled shafts are often used in new 

bridge designs, these large shafts were not considered in this study. 

3.3 SELECTION OF BRIDGE INPUT PARAMETER DISTRIBUTIONS 

Selection of statistical distributions for, and correlations among, input parameters for this study 

was based on (1) a set of sixteen as-built drawings of bridges built before 1971 and four as-built 

drawings of bridges constructed after 1971 provided by Tom Shantz (Caltrans), (2) the NBI, (3) 

personal communication with Caltrans bridge designers, (4) geotechnical information from the 

USGS database of cone penetration test records in the San Francisco Bay Area, and (5) 

engineering judgment when adequate information was unavailable. 

3.3.1 Span Lengths 

The maximum span length of bridges is listed in the NBI database. Figure 3.3 shows the 

histograms of the maximum span lengths for both the pre-1971 and post-1971 California bridges 

according to the NBI database. The newer bridges tend to have longer span lengths and also 

longer maximum span lengths. The distribution of maximum span length includes a number of 

short span lengths, which are probably associated with short single-span crossings, rendering 

them inappropriate for use in the three-span template. The remaining part of the distribution can 

be reasonably approximated by a normal distribution. The pre-1971 bridges were generated with 

spans sampled from a truncated normal distribution with mean of 21.6 m (70.87 ft), standard 

deviation of 13.3 m (43.64 ft), and truncation limits of 10 m (32.81 ft) and 60 m (196.85 ft), 

while post-1971 bridges had span lengths sampled from a truncated normal distribution with 

mean of 35.8 m (117.45 ft) and standard deviation of 17.7 m (58.07 ft) and the same truncation 

limits. The distribution was truncated to prevent analysis of very short or very long spans. 
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(a) 

 

(b) 

Figure 3.3 Histograms of maximum span length of bridges from NBI database: (a) pre-
1971 and (b) post-1971. 
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3.3.2 Pier Heights 

The NBI lists Minimum Vertical Under-clearance for bridges that cross other roads or railways, 

and Minimum Navigational Vertical Clearance is listed for bridges that cross rivers, but neither 

relates directly to pier height. As a result, the distribution of the pier heights was based on the 

limited number of drawings provided by Caltrans and engineering judgment. A truncated normal 

distribution was assumed for pier height, with a mean of 6.5 m (21.33 ft), a standard deviation of 

1.65 m (5.41 ft), and truncation limits of 2 m (6.56 ft).  The truncation limit was used to prevent 

analysis of unrealistically short piers. 

3.3.3 Superstructure Weight 

The distribution of the superstructure weight is important for the gravity analysis, as well as for 

establishing the inertia demand on the bridge. The dead load weight per tributary length per 

width of the deck was computed for sixteen pre-1971 as-built drawings provided by Caltrans, as 

summarized in Table 3.1. Based on Table 3.1, the distribution of the deck dead weight per area 

was assumed to be normally distributed with a mean of 9.1 2kN/m and a standard deviation of 

1.5 2kN/m .The weight of the superstructure was correlated with the size of the piers, as 

described next. 

3.3.4 Pier Column Moment and Shear Capacity 

The size of the piers is well correlated with the dead load acting on the pier and the axial load 

ratio (i.e., the ratio of the axial load to axial capacity of pier). Axial load ratio of the piers can 

vary from less than 1% (e.g., some pier walls) to more than 10% (e.g., some single-column 

piers). The as-built drawings were used to estimate distributions of axial load ratio. In general, 

axial load ratios were larger for the single-column bents and smaller for the multi-column bents. 

The mean axial load ratios were estimated to be 0.06 for the single-column piers and 0.04 and 

0.03 for two-column and three-column piers, with standard deviations of 0.007, 0.006, and 0.005 

for single column, two-column and three-column piers, respectively. These axial load ratios were 

used to size the piers based on the weight per area of the columns, which embedded the 
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Table 3.1   Dead weight per unit area for the available pre-1971 Caltrans drawings. 

Bridge 
Number 

Deck width 
B (m) 

Equal-weight 
concrete area A 

(m2) 

Weight per 
Trib. Length 

W (kN/m) 

Ratio W/B 
(kN/m2) 

1 16.5 6.65 166.3 10.1 
2 8.5 3.57 89.3 10.5 
3 11.9 5.55 138.8 11.7 
4 12.28 5.33 133.4 10.9 
5 48.8 29.40 735.0 15.1 
6 51.2 11.64 291.0 5.7 
7 10.0 3.02 75.4 7.5 
8 9.4 4.05 101.3 10.8 
9 10.4 3.38 84.5 8.1 
10 24.4 10.31 257.5 10.6 
11 9.1 2.98 74.4 8.2 
12 11.2 2.74 68.5 6.1 
13 9.75 3.32 82.9 8.5 
14 12.2 3.88 97.1 7.95 
15 10.4 2.71 67.7 6.5 
16 11.6 3.54 88.4 7.62 

 

correlation between the span length and pier column capacity. The gross areas of the piers were 

calculated by dividing the total axial capacity per column (back calculated from the axial load 

ratio) divided by the compressive strength of concrete ( '
cf ). 

After sizing the pier diameter, the flexural capacity was computed. Rather than 

individually computing flexural capacity for each pier diameter, a suite of Monte Carlo moment-

curvature analyses of the sections were conducted in OpenSees with representative distributions 

of steel strength ( yf ), compressive strength of concrete ( '
cf ), section effective depth ( d ), 

longitudinal reinforcement ratio ( ρ ), confined to unconfined concrete strength ratio 

( ' '
confined unconfinedc cf f ) for both the pre-1971 and post-1971 eras. Based on the analysis results, 

flexural and shear capacities were defined using statistical dimensionless parameters.  Yield 

moment of a column is defined using Equation 3.1: 
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where, yM is the yield moment of the column, gA is the gross area of the column, d is the 

effective depth of the section, n is s cE E (i.e., the ratio of the modulus of elasticity of steel to 

concrete, or so called modular ratio), ρ  is the longitudinal reinforcement ratio, which equals 

s gA A , and '
yM  is the normalized yield moment of the column. 

The dimensionless yield moment, '
yM , was found to be log-normally distributed, with 

mean and standard deviation as listed in Table 3.2. The yield curvature values were also recorded 

from the moment-curvature analyses and the resulting relations are also listed in Table 3.2.  Yield 

curvature is an important parameter since the curvature ductility of the piers is an important 

demand measure on the piers of the columns. 

 

Table 3.2 The median and dispersion of the normalized yield moment and the 
relationships between yield curvature and yield moment for circular and 
rectangular sections for both pre-1971 and post-1971 eras. 

Section 
Shape Vintage 

Log-Normal 
Distribution 

of '
yM  

Relationship of yield curvature, 
yφ and yield moment, yM  

λ ξ

Circular 
Sections 

Pre-1971  -2.65 0.24 679.00.00866 0.00257
yM

y eφ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠= +  

Post-1971 -2.42 0.23 795.20.00532 0.00211
yM

y eφ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠= +  

Rectangular 
Sections 

Pre-1971  -2.73 0.22 956.60.0123 0.00332
yM

y eφ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠= +  

Post-1971  -2.48 0.22 1145.80.00711 0.00268
yM

y eφ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠= +  
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Table 3.3 The fitting parameters for the natural log of medians of pier yield moments 
and the dispersion of the yield moments for circular and rectangular sections 
for both pre-1971 and post-1971 eras. 

Vintage Column 
Shape 

Number of 
Columns 
per Pier 

Fitting Parameters for 
ln(My) 

Standard 
deviation, 

ξ  1A 2A

Pre-1971 

Circular 
1 7.5559 2.3272 0.355 
2 8.1377 2.3713 0.358 
3 8.5011 2.3672 0.357 

Rectangular 
1 7.8237 2.2632 0.356 
2 8.4064 2.3160 0.360 
3 8.7643 2.3166 0.359 

Post-1971 
 

Circular 
1 7.9747 2.3700 0.344 
2 8.5589 2.4089 0.347 
3 8.9220 2.4153 0.348 

Rectangular 
1 8.2881 2.3261 0.356 
2 8.8742 2.3693 0.359 
3 9.2358 2.3729 0.359 

 

Using the normalized relationship of Equation 3.1 and the distributions in Table 3.2, yield 

moment was specified directly in terms of pier column diameter, D, using Equation 3.2, where 

ln(My) is the natural log of the median of yield moment for a column with a diameter of D, ln(D) 

is the natural log of the column diameter (or smaller dimension for rectangular columns), and A1 

and A2 are regression constants. 

( ) ( )1 2ln = + ×yM A A D  (3.2) 

The yield moment of the piers are log-normally distributed with median computed from 

Equation 3.1 and with fitting parameters and standard deviation listed in Table 3.3. In a similar 

fashion, a normalized relationship for shear capacity of the piers was also computed as shown in 

Equation 3.3, where dV is the shear capacity of the piers, eA is the effective area of the pier 

(approximated as 0.8 times the gross area of the pier), '
cf is the compressive strength of concrete 

(must be in units of kPa), yhf is the strength of transverse steel, tρ is the transverse reinforcement 

ratio, and '
dV is the normalized shear capacity of piers. The normalized shear capacity of the pier 
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columns, '
dV  , was found to be normally distributed, with mean and standard deviations listed in 

Table 3.4. 

'

' 5.65
2 '

d
d

yh t
e c

c

VV
f

A f
f
ρ

=
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠  

(3.3) 

 

Similar to the case with yield moment of columns, using the normalized relationship of 

Equation 3.3, the shear capacity was directly related to pier column diameter using the form in 

Equation 3.4, where ln(Vd) is the natural log of the median of the shear capacity, and B1 and B2 

are fitting parameters. Table 3.5 summarizes the fitting parameters for the natural log of the 

medians for a pier with diameter (or smaller dimension) of D and the dispersion associated with 

the log-normal distributions. 

( ) ( )1 2ln ln= + ×dV B B D  (3.4) 

Using the abovementioned relationships, correlation between span length and pier 

size/capacity was maintained in a reasonable way. Table 3.6 summarizes the median and 

dispersions of the moment and shear capacities for single-column and multi-column bridges 

belonging to both pre-1971 and post-1971 eras. The capacities for the multi-column bents 

represent the sum of capacities of the columns in the bent. 

 

Table 3.4 The mean and standard deviation of the normalized shear capacity of the pier 
for both pre-1971 and post-1971 eras. 

Section Shape Vintage Normal Distribution of '
dV   

μ σ  

Circular Sections 
Pre-1971 1.087 0.018 
Post-1971 1.189 0.034 

Rectangular Sections 
Pre-1971 1.028 0.009 
Post-1971 1.054 0.013 
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Table 3.5 The fitting parameters for the natural log of medians of pier shear capacity 
and the dispersion of the shear capacity for circular and rectangular sections 
for both pre-1971 and post-1971 eras. 

Vintage Column 
Shape 

Number of 
Columns per Pier 

Fitting Parameters for 
ln(Vd) 

Standard 
deviation, ξ  

1B 2B

Pre-1971 

Circular 
1 6.8585 1.7329 0.150 
2 7.5078 1.7480 0.151 
3 7.8990 1.7437 0.150 

Rectangular 
1 7.3097 1.6414 0.188 
2 7.9494 1.6613 0.189 
3 8.3344 1.6545 0.188 

Post-1971 
 

Circular 
1 7.3371 1.8367 0.232 
2 8.0016 1.8512 0.232 
3 8.3997 1.8457 0.232 

Rectangular 
1 7.7733 1.7220 0.246 
2 8.4257 1.7375 0.246 
3 8.8152 1.7313 0.246 

 

Table 3.6 The fitting parameters for the natural log of medians of pier shear capacity 
and the dispersion of the shear capacity for circular and rectangular sections 
for both pre-1971 and post-1971 eras. 

Vintage Column Type 

Moment Median 
and Standard 

Deviation 

Shear Median 
and Standard 

Deviation 

( . )kN mλ ξ ( )kNλ  ξ  

Pre-1971 
Single-Column  4040 0.77 1763 0.52 
Multi-Column 5982 0.79 3115 0.54 

Post-1971 
Single-Column 8478 0.78 3774 0.57 
Multi-Column  11970 0.81 6475 0.61 

 
 



81 

3.3.5 Bearings Parameters 

Bridges with seat-type abutments were assumed to be supported on elastomeric bearings (see 

details in Chapter 2). Connections between the pier top and the superstructure were assumed to 

be either on elastomeric bearings, pin connections (i.e., grouted dowels), or a concrete-to-

concrete seat.  Each type of bearing was evenly distributed (i.e., one-third of bearings were 

elastomeric, one-third were pin connections, and one-third were concrete-to-concrete seat). Data 

were unavailable to select these values and assignment of equal percentages is admittedly 

subjective. Given that, these three types of connection essentially cover a wide range of 

possibilities as far as the connection of the spans at the top of the piers. 

Properties of the elastomeric bearings were based primarily on the as-built drawings.  

Strain mobilized in an elastomeric bearing is a function of the bearing displacement and the 

height of the bearing. Table 3.7 summarizes the breakdown of the bearing heights that were used 

for the elastomeric bearings in bridges belonging to both the pre-1971 and post-1971 eras. The 

values selected were based on the available as-built drawings. 

Table 3.7 The breakdown of elastomeric bearing heights for pre-1971 and post-1971 
bridges. 

Bearing Thickness (in.) Pre-1971 Post-1971 

1 25% N/A 
1.5 25% N/A 
2 50% 50% 
3 N/A 50% 

Table 3.8 Mean and standard deviation of vertical stress on the elastomeric bearings for 
pre-1971 and post-1971 bridges. 

Bearing Vertical Stress Pre-1971 Post-1971 

Mean 690 kPa 
(100 psi) 

1035 kPa 
(150 psi) 

Standard Deviation 
103 kPa 
(15 psi) 

173 kPa 
(25 psi) 
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To compute the load-deformation characteristics of the elastomeric bearings, their 

stiffness and ultimate capacity had to be estimated. Per recommendations by Caltrans (SDC 

2006), the capacity of the elastomeric bearings was set to 35% of the weight acting on the 

bearing, The yield displacement of the bearing was computed using Equation 3.5 and is 

dependent on the shear modulus of the bearing material, bearing thickness, and vertical stress 

acting on the bearing.  In modern bearing design, the total surface area of the bearing pads are 

selected so that the vertical stress on the bearings does not significantly exceed 100 psi (i.e., 690 

kPa). Vertical stresses on the bearings were calculated for the available as-built drawings. 

According to the available drawings, the distribution of the vertical stresses on the bearings was 

assumed to be normally distributed, with means and standard deviations summarized in Table 

3.8. 

The yield displacement was calculated using the following mathematical manipulations, 

where yU  equals yield displacement of the bearing, rt equals the total thickness of the bearing 

pad, vσ equals the vertical stress on the bearing, and G equals the shear modulus of rubber (~1 

MPa). 

.
. .

σ

σ

= = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

r v
y

H

r vr

Q tQ QU
QGK GG A

tt

 
(3.5)

The load-deformation of the bearing was determined using the three parameters of bearing 

ultimate capacity (Q ), total bearing pad height ( rt ), and the vertical stress acting on the bearing 

( vσ ).  The load-deformation behavior was assumed to be elastic perfectly-plastic. 

An elastic perfectly-plastic material was also assumed for the analyses with the concrete-

to-concrete interface, and the stiffness of the linear portion of the load-deformation was set to a 

large value making the load-deformation essentially rigid-plastic. For ease of implementation in 

OpenSees, using the same elastic perfectly-plastic material for all types of bearings was 

convenient, even though some bearing types were essentially rigid-plastic. For the analyses 

where the dowels were used to connect the superstructure to the pier, the capacity of the load-

deformation (i.e., plastic capacity value) was set to the shear capacity of the dowels, with 

stiffness set very high making the response rigid-plastic.  Shear capacity of the dowels was based 

on observations from the as-built drawings combined with judgment. 
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3.3.6 Pile Strengths 

Figure 3.4 shows a few examples of the piles that were commonly used in California bridges.  

Lateral loading of piles was rarely considered in designing the typical pre-1971 bridge, and the 

type of piles encountered in the as-built drawings of those bridges were generally 0.38 cm- (15 

in.-) diameter piles of varying strengths not designed to resist lateral loading, yielding fairly 

quickly under demands of lateral spreading. Therefore, for all of the classes of the pre-1971 

bridges, only one type of precast piles was considered in the analyses.  The strength and the yield 

curvature of the pre-1971 piles are listed in Table 3.9. 

For post-1971 bridges, three different types of piles were considered.  A variety of the 

0.36 m to 0.41 m (14 in. to 16 in.) precast concrete piles with different configurations were 

modeled using Xtract.  Based on those Xtract section analyses, the yield moment of these small-

diameter newer precast concrete piles were assigned a log-normal distribution, while a normal 

distribution with very small variation was assigned to their yield curvatures; 0.61 m (24 in.) 

CIDH and 0.61 m (24 in.) CISS piles were also considered in the analyses of the post-1971 

bridges. These piles are typically much stronger that the small-diameter piles and are more 

commonly used in the design of modern bridges. The yield moment and yield curvature of these 

piles were also performed in Xtract, however, the values were not varied in the analyses. 

 

Table 3.9   Yield moment and yield curvature for piles used in the analyses. 

Vintage Pile Type 
Mean or 
Median 

Moment (kN/m) 
Dispersion

Mean Yield 
Curvature 

(1/m) 

Standard 
Deviation 

Pre-1971  0.38 m (15 in.) 
precast 84 N/A 0.011 N/A 

Post-1971 

0.38 m (15 in.) 
precast 180 (Median) 0.25 0.0123 0.0005 

0.61 m (24 in.) 
CIDH 400 N/A 0.0069 N/A 

0.61 m (24 in.) 
CISS 1977 N/A 0.0069 N/A 
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(a) 
 

         

  
 

Figure 3.4 Examples of piles specification from as-built drawings: (a) 0.38 m (15 in.) 
precast concrete piles typically used in pre-1971 bridges; (b) post-1971 0.38 m 
(15 in.) precast piles; (c) post-1971 0.61 m (24 in.) CIDH piles; and (d) post-
1971 0.61 m (24 in.) CISS piles. 

                     (b)                    (c)                    
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3.4 SELECTION OF GEOTECHNICAL INPUT PARAMETER DISTRIBUTIONS 

The geotechnical parameters defined in the analyses herein include the strength and thicknesses 

of the soil layers, the load-transfer between soil and embedded bridge components, and the 

lateral spreading deformation profile. Each of these inputs is discussed below. 

3.4.1 Thickness of Natural Crust, Liquefied Sand, and Approach Embankments 

The thickness and variation of the natural crust and thickness of the liquefiable sand were 

selected primarily based on the distribution of CPT logs for Northern California, available on the 

USGS website (http://earthquake.usgs.gov/regional/nca/cpt/).  Figure 3.5 depicts distributions of 

thickness and average CPT tip resistance in nonliquefied crust layers. Nonliquefied crust 

material was separated into fine-grained and coarse-grained soils. The thickness of the crust 

materials can go even beyond 10 m (32.81 ft) in some cases, but lateral spreading and other 

surface manifestations of liquefaction are typically limited to shallower layers (e.g., Ishihara 

1985). Hence, the thickness of the crust was assumed to be uniformly distributed between zero 

and 6 m (19.69 ft).   

The histogram of the liquefied sands thickness can be roughly approximated by log-

normal distributions. Based on this histogram, the thickness of the liquefied sand layer was 

assumed to be log-normally distributed with a median of 3 m (9.84 ft) and dispersion of 0.7 [i.e., 

ln(2)]. The distribution of thickness of the embankment was rather subjective.  It was assumed 

that the thickness of the embankment would vary uniformly between 3 m and 9 m (9.84 ft and 

29.53 ft) to capture the reasonable range of typical approach embankments. 

3.4.2 Undrained Shear Strength of Cohesive Nonliquefied Crust Material 

The undrained shear strength of clayey crust soils was estimated from the average CPT cone tip 

resistance values summarized in Figure 3.5. The median value of cone tip resistance (qt) is about 

3.0 MPa, which corresponds to an undrained shear strength of 200 kPa according to Equation 

3.6, where qt  equals the tip resistance of the cone, vσ equals total vertical stress, and ktN equals 

empirical value between 10 and 20, with 15 as an average. 
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Figure 3.5 Distribution of crust and liquefiable layer thickness based on USGS CPT logs 
for Northern California. 
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(3.6)

However, this undrained shear strength is larger than would be anticipated for near-shore 

sediments overlying liquefiable sands. Engineering judgment was used to reduce the median 

value of undrained shear strength to 70 kPa, which is consistent with strengths that would be 

anticipated for a desiccated crust above the ground water table. The distribution of the strength 

was assumed to be log-normally distributed with σln = 0.75. 
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3.4.3 Lateral Loads from Embankment Soils 

The embankment load consists of two components:  the passive pressures behind the abutment 

wall and the load mobilized by the piles supporting the abutment walls. Passive pressure, 

computed using Rankine earth pressure theory, was assumed to be log-normally distributed with 

σln = 0.75.  The large standard deviation is caused by uncertainty in the interface friction (as 

discussed in Chapter 2). The embankment backfill was assumed to have a baseline friction angle 

of 38oφ = and baseline apparent cohesion of 20 kPa=c . 

The ultimate values of lateral loads on the piles (pult) were computed using the API 

(1993) sand p-y curves from the baseline set of soil properties, and the distribution was assumed 

log-normal with σln = 0.75. For convenience, these distributions were implemented by 

computing the median value of passive pressure (or pult) using the baseline set of input 

parameters, and subsequently multiplying by a p-multiplier with median value of 1.0 and 

ln 0.75σ = . Note that this is different than assuming that the fundamental soil properties are 

random variables and subsequently computing pult. Directly assigning a median and standard 

deviation to crust load rather than the fundamental soil properties is based on the analysis in 

Chapter 2 that quantified the influence of interface friction angle uncertainty on passive pressure. 

3.4.4 Subgrade Reaction in Liquefied Sand  

Soil-structure interaction in the liquefied sand was modeled by applying a p-multiplier to the 

drained p-y curve to reduce its capacity. The distribution of the p-multipliers in the sand was 

chosen based on the recommendations of Brandenberg (2005) (see Table 2.1).  For loose sandy 

material [ ]1 60( ) 8CSN − <  Brandenberg recommends using a p-multiplier between 0.0 and 0.1.  

Therefore, here, the p-multiplier of liquefied sand was assigned a truncated normal distribution, 

with a mean of 0.05 and a standard deviation of 0.025, truncated at values below 0.01. 

The p-y behavior of liquefied sand back-calculated from full-scale field test and small-

scale centrifuge tests exhibit a concaved upward response attributed to the dilatancy of the sand, 

(Wilson et al. 2000; Rollins et al. 2005). Despite widespread acknowledgment that p-y behavior 

in liquefied ground can exhibit this type of behavior due to dilatancy, static analysis approaches 

traditionally have utilized a p-multiplier approach where the p-y behavior is modeled as being 

artificially soft and weak. The reluctance to model concave up behavior in static lateral spreading 
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analysis procedures is due to a mismatch in the assumed ground displacement profile and the 

strength of the p-y behavior. The basic idea is thus: a sand that is weak enough to exhibit large 

shear strains which manifest as lateral spreading should also be weak as it flows around a pile. 

By assuming the sand is weak enough to exhibit large shear strains (say 50%) but powerful 

enough to exert a large downslope force on a pile due to lateral spreading seems inconsistent. A 

more likely scenario is that the sand may transiently exhibit pore pressure reduction during 

shaking due to dilatancy (either from free-field strains due to site response or from local strains 

imposed by the pile); the increment of shear strain mobilized during this cycle would be very 

small since the soil would be transiently stiff.  As pore pressures rise back to 1 and the soil re-

liquefies, it would then strain again and flow past the pile. 

Studies that have shown large subgrade reaction forces mobilized by liquefied sand have 

also shown that these subgrade reaction forces act to resist downslope displacement of the pile. 

Rollins et al. (2005) demonstrated that large forces could be mobilized in static load tests in 

blast-induced liquefied soil, and that the sand could provide significant stiffness to react against 

the actuator.  Wilson et al. (2000) showed that liquefied sand could provide significant resistance 

to inertia-driven downslope pile displacement.  Brandenberg et al. (2005) showed that liquefied 

sand could provide a large upslope resisting force against the combined effects of inertia and 

lateral spreading of an overlying clay layer.  Never has a study shown that liquefied sand can 

mobilize a large downslope driving force against a pile during periods of dilatancy-induced pore 

pressure decreases, presumably because the dilatant sand does not exhibit large strain increments 

during the instants when pore pressures transiently drop. Therefore, in static analysis procedures, 

imposing large shear strains in a liquefied sand layer combined with a concave up dilatant p-y 

material is inappropriate, resulting in overestimation of the demands on the pile. 

To clarify this matter, an example problem is presented here that shows the expected 

response of a single 0.61 m (24 in.) CIDH pile under lateral spreading demands of liquefied sand 

(without a crust) against the pile, using a few cases of a hardening p-y behavior as well as the 

recommended approach, which applies a p-multiplier to the traditional strain-softening response 

as presented by API (1993) p-y curves. The pile is modeled to behave elastically with stiffness 

equal to the initial (pre-yield) stiffness of the pile obtained using section analysis of the pile in 

Xtract, with properties as shown in Table 2.7. The hardening shape of the p-y behavior as 

observed in Wilson et al. (2000) was modeled using PyLiq2 Material in OpenSees by applying 

effective stresses in the form of a second-order polynomial, as follows: 
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( )2' '
maxσ σ=v v fy y  (3.7)

in which 

' '
v f viFσ σ= ⋅  (3.8)

where F is the ratio of the ultimate effective stress to the initial effective stress prior to 

liquefaction, y equals lateral displacement, and maxy is maximum value of lateral displacement. 

Centrifuge tests performed by Wilson et al. (2000) showed that the ultimate load may be smaller 

or larger than the ultimate load as predicted by API (1993) curves. For the purpose of this 

example, the analyses were performed with F values equal to 2, 1, and 0.5. 

In this example, lateral spreading occurs over 5 m (16.40 ft) of liquefied sand (with no 

nonliquefied crust) overlying denser sands (Figure 3.6). The extent of lateral spreading 

displacement at the surface is 0.5 m (1.64 ft), and the strain is constant in the liquefied sand.  Soil 

properties of the layers are summarized in Table 3.10. 

Figure 3.7 shows the effective stress as a function of displacement ratio for cases with 

final effective stresses double, same, and half the initial effective stress, as well as the 

nonliquefied effective stress at the middle of the liquefied sand layer [depth = 2.5 m (8.21 ft)], 

with an effective stress of 20 kN/m2.  Figure 3.8 shows the p-y behavior in the middle of the 

liquefied sand layer [2.5 m (8.21 ft)] for the three hardening cases, as well as for the traditional 

API and the recommended approach (p-multiplier approach). 

 

Table 3.10 Properties of the soil layers used in the example analyses, 

Layer 
Depth to top 

of the layer (m) 
3( / )kN mγ 'φ  3 ( / )h kN mη

Loose sand 0 18 32 9,500 
Dense sand 5 18 38 32,600 
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Figure 3.6    Soil and lateral spreading profile used in the example analyses. 

 

 

Figure 3.7 Effective stress relations used in the example analyses calculated at the center 
of the liquefied sand layer. 
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Figure 3.8 p-y curves used in the example analyses at the center of the liquefied sand 
layer. 

Analyses were performed for four different p-y behaviors (see Figure 3.8) with the first 

three using the polynomial hardening curves with ultimate loads equal to 2, 1, and 0.5 times the 

API ultimate load, respectively. The last analysis was performed using a softened p-y curve with 

a p-multipler of 0.05 applied to the traditional API p-y curve. Figure 3.9 shows the predicted soil 

and pile displacements as well as the subgrade reaction and moment distribution along the pile 

for different cases of this example analysis. As can be seen in Figure 3.9, the hardening shape of 

the p-y curves predicts significant displacements of the 0.61 m (24 in.) CIDH piles under a 

modest lateral spreading displacement of 0.5 m (1.64 ft), in which the top of the pile displaces 

0.35 m (1.15 ft), 0.25 m (9.84 in.), and 0.15 m (5.91 in.) for load cases 1, 2, and 3, respectively.  

Also, the mobilized moment in the pile for the hardening load cases far exceeds the moment 

capacity of the pile (My ~ 400 kN/m), which would have resulted in significant curvature 

ductility in the pile had it been modeled nonlinearly. Such high displacement level of a large 

diameter 0.61 m (24 in.) CIDH pile under only 0.5 m (1.64 ft) of lateral spreading and in the 

absence of a nonliquefiable crust does not agree with the expected response of these piles based 

on case history evaluation and model test studies. The p-multipler approach (i.e., load case 4) 

predicts a pile displacement of 0.02 m (0.79 in.), which is deemed more reasonable.  
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3.4.5  Stiffness of Load Transfer in the Crust and Embankment 

The stiffness of the load transfer in the nonliquefied crust in a liquefied site is significantly (an 

order of magnitude) softer that the stiffness of soils in nonliquefied ground. Following the model 

presented by Brandenberg et al. (2007), the load transfer response was calculated for load 

transfer between the abutment and the approach embankment, and between the pile cap and 

spreading crust layer. The baseline value of 50y were 0.20 m (7.87 in.) for the abutments and 0.05 

m (1.97 m) for the pile caps. The 50y value was assigned a truncated normal distribution with a 

COV of 0.5, truncated at 0.005 m (0.20 in.) at piers and at 0.020 m (.79 in.) for the abutments. 

3.4.6 Characterization of Axial Capacity 

Axial capacity of the foundation comes from the t-z springs along the length of the piles and the 

q-z springs at the tip of the piles. While the t-z relations are known for the nonliquefied ground, 

little is known about t-z relations in liquefied sites. Given the lack of information, the p-

multipliers were also applied to the t-z relations.  The baseline axial capacity of the bridge in any 

foundation component is simply the sum of the t-z springs and the q-z springs in the piles.  In 

order to account for the variability of axial capacity, axial capacity multipliers were applied to 

the baseline values of the t-z and q-z springs. Similar to the p-multipliers in the liquefied sand, a 

truncated normal distribution with a mean of 1.0, a standard deviation of 0.5 (i.e., COV = 0.5) 

and a truncation value of 0.01 was applied to the multiplier of t-z and q-z springs. 

3.4.7 Horizontal Variation of Lateral Spreading Surface Displacements 

Lateral spreading ground surface displacements are known to exhibit significant horizontal 

variability throughout a spread feature (e.g., Faris 2004). The size of a lateral spread can be large 

or small relative to a bridge, and it is conceivable that ground displacements at some components 

are large and zero at others, or be nearly the same at multiple components. In order to capture the 

horizontal variability in the patterns of lateral spreading ground surface 
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Figure 3.9 Soil and pile displacement and subgrade reaction and moment distribution for 
(a) Pult = 2xPult_API ; (b) Pult = 1xPult_API ; (c) Pult = 0.5 x Pult_API ; and (d) mp = 
0.05. 
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displacement, the left side (i.e., the left abutment and the left pier) and the right side (i.e., the 

right abutment and the right pier) of the bridge were treated as separate spread features. The 

spreading is randomized but correlated so that the ratio of the displacements of the two 

components in the spread feature (e.g., ratio of displacement of the left pier to the displacement 

of the left abutment) follows a lognormal distribution with a median of 1.0 and a dispersion of 

ln(3).  Furthermore, one third of the load cases involved lateral spreading only on the left side of 

the bridge (left abutment and the left intermediate pier), one third with spreading only on the 

right side (right abutment and the right intermediate pier), and one third with spreading on both 

sides. Ground displacements were randomly selected at each component in accordance with 

these statistics and subsequently scaled so that the maximum ground displacement applied in all 

of the analyses was set to 2.0 m (6.56 ft). Ground displacements at the abutments were 

subsequently reduced by 25% to account for the pinning effect, based on the results of the 

pinning analyses as explained in Chapter 2.  

3.4.8 Vertical Ground Deformation Profile 

The vertical profile of ground deformation is also highly uncertain. Studies with a permeable 

nonliquefied crust layer were associated with a continuous displacement profile (e.g., Abdoun et 

al. 2003), whereas studies with a low-permeability crust have exhibited a displacement 

discontinuity at the interface (e.g., Malvick 2008; Brandenberg et al. 2005). The ground surface 

displacement can therefore be attributed to a combination of shear strains in the various soil 

layers (mostly in the liquefied layer) and interface slip as the crust spreads on top of the liquefied 

layers.  For simplicity in this study, shear strains in the nonliquefied layers were assumed to be 

zero, with the ground surface displacement entirely attributed to a combination of shear strain in 

the liquefied sand and interface slip. The amount of slip at the interface was represented by the 

ratio of displacement at the top of the liquefied layer to the displacement of the nonliquefied 

crust layer. This ratio was assumed uniformly distributed between 0 and 1. The shear strain in the 

loose sand layer was set to provide the remaining fraction of ground surface displacement. 

3.5 CHARACTERIZATION OF INERTIA DEMANDS ON THE BRIDGE 

Lateral spreading ground displacement during liquefaction may occur during ground shaking, 

and it is also possible that the lateral spreading may occur after the ground shaking has finished. 
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Therefore, inertia demands were applied concurrently with lateral spreading displacement only in 

50% of the analyses within each class, while for the other 50% of the analyses no inertia was 

present during the analysis.  When inertia was present in the analyses the inertia demand on the 

bridge was applied as a force equal to the product of the mass and Sa for liquefaction, as noted in 

Chapter 2. The natural period of the bridge was computed based on the mass of the 

superstructure and the fixed-base stiffness of the piers. Spectral accelerations were selected from 

the Caltrans SDC acceleration response spectra for site class D and a moment magnitude of 

7.25 ± 0.25. Peak ground acceleration was assumed to be either 0.2g, 0.3g, or 0.4g since response 

spectra are available for these PGA's. The response spectra for peak rock acceleration of 0.1g 

was believed to be small enough not to cause liquefaction and/or liquefaction-induced lateral 

spreading, and therefore was not used in the analyses. Once the Sa for nonliquefaction was 

selected, the Sa for liquefaction was calculated using liquefaction modifiers recommended by 

Boulanger et al. (2007) as stated in Chapter 2. The inertia force was linearly increased 

simultaneously with ground displacements and reached its peak value when the ground 

displacement reached 0.5 m (1.64 ft). Inertia force was kept constant as ground deformation was 

increased beyond 0.5 m (1.64 ft). This approach was consistent with the expected maximum 

transient ground deformation during a single inertia cycle based on centrifuge test observations. 
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4 Fragility of Bridges to Lateral Spreading 

4.1 PERFORMANCE-BASED EARTHQUAKE ENGINEERING AND FRAGILITY 
FUNCTIONS 

The Pacific Earthquake Engineering Research Center developed a PBEE methodology defined 

by the triple integral in Equation 4.1, 

| |

|

( ) ( | ). | ( | ) |

                       | ( | ) | | ( ) |
                     

DV DM DM EDP
dm edp im

EDP IM IM

P DV dv G dv dm dG dm edp

dG edp im dG im

> = ⋅

⋅

∫ ∫ ∫
 

(4.1) 

where DV is the decision variable, DM is the damage measure, EDP is the engineering demand 

parameter, dv is the value of decision variable, dm is the value of the damage measure, edp is the 

value of the engineering demand parameter, and im is the value of the intensity measure. 

To solve the triple integral, probabilistic relations are needed to define EDP given IM, 

DM given EDP, and DV given DM. Fragility functions typically quantify the probability of 

exceeding a DM given an EDP (e.g., Porter et al. 2007), though the term has also been applied to 

functions that represent probability of exceeding an EDP given an IM (Mackie and Stojadinovic, 

2005) or probability of exceeding a DM given an IM (HAZUS 1999). Fragility functions are 

therefore a critical component of PBEE.  Fragility functions can also be represented as surfaces 

when expressed over some range of IM and EDP values; these functions have been called 

“demand fragility surfaces” by Mackie and Stojadinovic (2005). 

This chapter focuses on producing demand fragility surfaces characterizing probability of 

exceeding common EDPs for bridges (i.e., pier column curvature ductility, abutment 

displacement, pile cap displacement) as functions of free-field permanent ground surface 

displacement, the most important and useful IM to characterize liquefaction-induced lateral 



98 

spreading. The fragility demand surfaces are produced numerically using thousands of 

realizations of a finite element model in which the inputs were randomly selected as detailed in 

Chapter 3 (i.e., Monte Carlo simulation). Correlation among EDP values is important for 

estimating DM using the demand fragility surfaces, so correlation coefficients among EDPs are 

also presented. Finally, disaggregation of the results is used to identify the input parameters that 

most significantly contribute to the demand fragility surfaces of bridges due to liquefaction-

induced lateral spreading.   

4.2 GENERATION OF DEMAND FRAGILITY SURFACES 

Demand fragility surfaces were generated using Monte Carlo simulations involving thousands of 

realizations of a nonlinear equivalent static global analysis. Input parameters were randomly 

selected from their assigned distributions using the uniform random number generator in TCL 

combined with a Box-Muller transform (Box and Muller 1958) for any variables that were not 

uniformly distributed (i.e., for variables with normal and log-normal distributions).  During the 

analyses the free-field lateral ground displacement was increased incrementally and the values of 

the IM (i.e., the maximum free-field ground surface displacement among the various bridge 

components) were recorded when specified levels of several EDPs were mobilized. Tables 4.1, 

4.2, and 4.3 present the EDPs that were monitored during the analyses for continuous bridges 

with monolithic abutments, simply supported bridges with seat-type abutments, and continuous 

bridges with seat-type abutments, respectively, and ground displacements were recorded when 

the EDP first reached the “initial value” and subsequently at each “incremental value” thereafter.  

The analysis proceeded until the maximum free-field ground displacement reached 2 m (6.56 ft) 

or until a limiting demand on a bridge pier was reached, defined as either exceeding a curvature 

ductility of 11 in one of the pier columns, exceeding the shear capacity of a pier column, or 

having a span displacement exceed the seat length for a simply supported span. These limits 

were established (1) based on the assumption that this level of mobilized EDP in the pier column 

would constitute serious damage and continuing the analysis would have little physical meaning, 

and (2) numerical convergence became difficult at such large levels of structural nonlinearity. 
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Table 4.1 Engineering demand parameters and their recorded values for continuous 
bridges with monolithic abutments. 

EDP 
 Performance 

Group Initial Value Incremental 
Value Unit 

Curvature 
Ductility in Piers 

 Pier 2  1 1 NA 

 Pier 3  1 1 NA 

Pile Cap 
Displacement 

 Pier 2  0.025 0.025 (m) 

 Pier 2  0.025 0.025 (m) 

Pile Cap Rotation 
 Pier 2  0.5 0.5 % 

 Pier 3 0.5 0.5 % 

Abutment 
Displacement 

 Abutment 1  0.025 0.025 (m) 

 Abutment 4  0.025 0.025 (m) 

Abutment Rotation 
 Abutment 1  0.5 0.5 % 

 Abutment 4  0.5 0.5 % 

Pier Pile Curvature 
Ductility 

 Pier 2 1 2 NA 

 Pier 3 1 2 NA 

Abutment Pile 
Curvature 
Ductility 

 Abutment 1 1 2 NA 

 Abutment 4  1 2 NA 
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Table 4.2 Engineering demand parameters and their recorded values for simply 
supported bridges with seat-type abutments. 

EDP Performance 
Group Initial Value Incremental 

Value Unit 

Curvature 
Ductility in 

Piers 

Pier 2 1 1 NA 

Pier 3 1 1 NA 

Pile Cap 
Displacement 

Pier 2 0.025 0.025 (m) 

Pier 3 0.025 0.025 (m) 

Pile Cap 
Rotation 

Pier 2 0.5 0.5 % 

Pier 3 0.5 0.5 % 

Abutment 
Displacement 

Abutment 1 0.025 0.025 (m) 

Abutment 4 0.025 0.025 (m) 

Abutment 
Rotation 

Abutment 1 0.5 0.5 % 

Abutment 4 0.5 0.5 % 

Pier Pile 
Curvature 
Ductility 

Pier 2 1 2 NA 

Pier  3 1 2 NA 

Abutment Pile 
Curvature 
Ductility 

Abutment 1 1 2 NA 

Abutment 4 1 2 NA 

Strains in 
Bearings 

Abutment 1 50 50 % 

Pier 2 50 50 % 

Pier 3 50 50 % 

Abutment 4 50 50 % 

Unseating Any Pier or Abutment 0.38 NA (m) 
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Table 4.3 Engineering demand parameters and their recorded values for continuous 
bridges with seat-type abutments. 

EDP Performance 
Group Initial Value Incremental 

Value Unit 

Curvature Ductility in 
Piers 

Pier 2 1 1 NA 

Pier 3  1 1 NA 

Pile Cap 
Displacement 

Pier 2  0.025 0.025 (m) 

Pier 2  0.025 0.025 (m) 

Pile Cap 
Rotation 

Pier 2  0.5 0.5 % 

Pier 3  0.5 0.5 % 

Abutment 
Displacement 

Abutment 1 0.025 0.025 (m) 

Abutment 4 0.025 0.025 (m) 

Abutment 
Rotation 

Abutment 1 0.5 0.5 % 

Abutment 4 0.5 0.5 % 

Pier Pile Curvature 
Ductility 

Pier 2 1 2 NA 

Pier 3 1 2 NA 

Abutment Pile 
Curvature Ductility 

Abutment 1 1 2 NA 

Abutment 4 1 2 NA 

Strains in 
Bearings 

Abutment 1 50 50 % 

Abutment 4 50 50 % 

Unseating 
Unseating in  

any Abutment 0.38  NA  (m)  
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Table 4.4 Generation of fragility function for curvature ductility of seven post-1971 
simply supported bridges with seat-type abutments and single column piers.  

Sorted DFF Probability 
Mass 

Cumulative Prob. 
Dens. 

0.044 0.001105 0 
0.049 0.001105 1.11E-03 
0.053 0.001105 2.21E-03 
0.054 0.001105 3.32E-03 
0.055 0.001105 4.42E-03 
0.057 0.001105 5.53E-03 
0.058 0.001105 6.63E-03 

: : : 
: : : 
: : : 

1.838 0.001105 0.393 
1.905  0.001105  0.394 

 

Once the analyses were completed, the free-field ground displacements required to 

mobilize a given EDP value were sorted in increasing order and plotted as a histogram reflecting 

the cumulative probability mass function. The probability mass assigned to each discrete analysis 

was equal to 1/N, where N was the number of analyses in a given data set (typically 1000).  

Separate cumulative probability mass functions were developed for each EDP type (e.g., pier 

curvature ductility), each EDP value within that type (e.g., curvature ductility of 1, 2, 3, …), and 

for each class of bridge. The process is best demonstrated through an example. Table 4.4 shows 

the exercise of generating the fragility function for maximum curvature ductility of seven in any 

of the piers of the set of analyses of post-1971 simply supported bridges with seat-type 

abutments and single-column piers. 

The first column is the array of free-field ground displacements required to mobilize a 

maximum curvature ductility of seven in the piers. The probability mass of all of the analyses are 

the same as listed in the second column. For this particular set of analyses, 95 runs failed to 

converge. These runs were excluded from the set of analyses, hence each analysis has a 

probability mass of 1/905 = 0.001105. 
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(a) (b) 

Figure 4.1 Generation of fragility function for pier curvature ductility of seven for post-
1971 simply supported bridges with seat-type abutments and single-column 
piers; (a) probability mass function and (b) cumulative density function. 

Figure 4.1a shows the histogram of the probability mass distributions of free-field 

displacements to reach a curvature ductility of seven presented in Table 4.4. The cumulative 

distribution of the actual data is shown on Figure 4.1b, with the corresponding log-normal 

distribution superimposed on the distribution of the data.  As can be seen in the figure, the log-

normal distribution fits the data very well. 

Cumulative probability density functions for typical random variables range from 0 to 1.  

The fragility function shown in Figure 4.1 does not reach an ultimate value of 1 but rather 

reaches a value of only 0.394 as ground displacement reaches 2 m (6.56 ft).  Furthermore, the 

slope of the fragility function becomes very flat at 2 m (6.56 ft) of free-field ground 

displacement, and the fragility function will not reach a cumulative probability density of 1.0 

regardless of how large the free-field ground displacement becomes. The physical explanation 

for this behavior is that some bridges are strong enough to induce passive failure in the spreading 

soil (i.e., to mobilize the full capacities of the p-y elements) without reaching a curvature 

ductility of seven in any of the pier columns. For such cases, the lateral spreading displacement 

can continue to infinity without inducing further damage to the bridge. Hence, the fragility 

functions in this report are mixed random variables with some probability mass lumped at 

infinite ground displacement.  
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4.3 FITTING FRAGILITY SURFACES TO THE DATA 

The fragility function in the previous section was generated numerically by summing the 

probability mass of each discrete case, but a more convenient representation of the fragility 

function can be obtained by fitting a functional form to the discrete data (as the fragility 

functions in this study were well-approximated as log-normal distributions).  One option would 

be to specify a median and standard deviation for each value of EDP for each analysis case, but 

this would result in a very large number of constants.  The approach adopted here was to utilize 

six constants to fully define the demand fragility surface.  Each of the six constants is presented 

by an example in the following paragraphs. 

For a simply supported bridge with seat-type abutments and single-column piers 

belonging to the post-1971 era, ten different EDPs are recorded, as listed in Table 4.2. The 

fragility results of two of the EDPs, pile cap displacement, and pier curvature ductility are shown 

in Figure 4.2.  

 

(a) (b) 

 

Figure 4.2 Fragility curves of two EDPs of simply supported bridges with seat-type 
abutments and single-column piers belonging to the post-1971 era: (a) pile cap 
displacement and (b) pier curvature ductility. 



105 

The fragility functions at every EDP value can be defined by a median λ , a standard 

deviation of natural logarithms of the data ξ , and an additional scalar value representing the 

limiting value of cumulative probability (i.e., the amount of probability mass included in the 

finite range of free-field ground displacement, also equal to 1 minus the probability mass lumped 

at a ground displacement of infinity). This involves specifying 80 different constants for cap 

displacement and 11 different constants for pier curvature ductility. Repeating this process for the 

other EDPs in Tables 4.1, 4.2, and 4.3 and for all of the classes of bridges results in an 

unmanageable representation of the fragility functions. The alternative approach adopted in this 

study is to use linear regression to define the medians, standard deviations, and peak probabilities 

as functions of the EDP. Linear regression requires specification of a slope and an intercept 

value, hence two constants each are required for median, standard deviation, and maximum 

probability, and the entire demand fragility surface can therefore be defined by six constants.  

Figure 4.3 shows the linear regressions of the natural logarithms of median, standard deviation, 

and peak probability for pile cap displacement of the abovementioned class of bridges. As shown 

in the figure, all three parameters can be represented fairly well using a linear regression versus 

logarithms of the EDP values, though there is some misfit particularly at lower values of EDP. 

Some misfit must be accepted as a tradeoff for the convenience of expressing the demand 

fragility surfaces using a manageable set of constants.  The formulas for the three lines can be 

summarized as follows: 

0 1 ln( )edpλ β β= + ⋅  (4.6)

2 3 ln( )edpξ β β= + ⋅  (4.7)

4 5p ln( ) 1.0max edpβ β= + ⋅ ≤  (4.8)

where  λ  is the logarithm of median of the log-normal distribution, ξ  is the standard deviation 

of natural logs of data, and pmax  is the maximum probability at 2 m (6.56 ft) of ground 

displacement at each EDP value. 
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Figure 4.3 Linear regression of the values of fragility curve parameters: (a) logarithm of 
medians, (b) dispersion (standard deviation of logarithms of data), and (c) 
maximum probability for simply supported bridges with seat-type abutments 
and single column piers built post-1971. 

The form of Equation 4.8 permits pmax > 1, which is a violation of probability theory.  

This can be seen in the misfit in Figure 4.3 at low edp values where the data lie below the linear 

trend. The data are all below a cumulative probability of 1.0, but the linear trend extends above 

1.0. Hence, pmax was truncated to have a maximum value of 1.0. For some EDPs a log-
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transformation of the edp values did not produce a linear fit, and a better linear fit was obtained 

based on the values of the variables themselves. Hence, pmax for some EDPs was defined as 

follows: 

4 5p 1.0max edpβ β= + ⋅ ≤  (4.9)

By utilizing the equations of the lines presented in Equations 4.6 through 4.9 for every 

value of IM (i.e., ground displacement) and every value of EDP (edp), the probability of 

exceedance can be calculated using Equation 4.10 for all EDPs other than curvature ductility in 

the piers, for which Equation 4.11 should be used. 

( )0 1
4 5

2 3 Peak Probability at edp value
 Standard Normal Cumulative Distribution

ln( ) ( ln( )( | ) 0 . ln( ) 1
( ln( )

β β β β
β β

⎛ ⎞− + ⋅
< = = ≤ Φ + ⋅ ≤⎜ ⎟+ ⋅⎝ ⎠

im edpP EDP edp IM im edp
edp

 
(4.10)

( )0 1
4 5

2 3 Peak Probability at edp value
 Standard Normal Cumulative Distribution

ln( ) ( ln( )( | ) 0 . 1
( ln( )

β β β β
β β

⎛ ⎞− + ⋅
< = = ≤ Φ + ⋅ ≤⎜ ⎟+ ⋅⎝ ⎠

im edpP EDP edp IM im edp
edp

 (4.11)

 

In Equations 4.10 and 4.11, Φ is the standard normal cumulative distribution function, 

im is the free-field ground displacement in meters, and edp is an engineering demand parameter 

in the same units as defined in this report (meters for displacement, radians for rotation). 

Equations 4.10 and 4.11 provide a convenient means of specifying the entire demand 

fragility surface using only six variables. In a few instances there is a misfit of the surface 

generated values for probability of exceeding certain EDPs above 1 or below 0. Since these 

values were statistically meaningless, the values of probabilities of exceedance were truncated 

between 0 and 1.  Figure 4.4 shows demand fragility surfaces plotted along with the discreet data 

for pile cap displacement and pier curvature ductility in the above-mentioned class of bridges. 

The degree of misfit between the data and the surface in Figure 4.4 is characteristic of the misfit 

for other EDPs. As can be seen in the figure, the probability of exceedance of pile cap 

displacement at low edp value of 0.025 m (0.98 in.) exceeds 1 due to the misfit of the fragility 

surface; thus the fragility surface was truncated at 1. 
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(a) (b) 

Figure 4.4 Demand fragility surfaces plotted along with the discreet date for (a) pile cap 
displacement and (b) pier curvature ductility for simply supported bridges 
with seat-type abutments and single-column piers built post-1971. 

 

4.4 FRAGILITY SURFACE RESULTS 

Using the fitting method explained above, fragility surfaces were created for all recorded 

EDPs for all classes of bridges that were analyzed in this study. Tables 4.5 through 4.10 

summarize the parameters for fitting the fragility surfaces for all 24 different classes of bridges 

analyzed as well as the appropriate equation to be used for each EDP for fitting the fragility 

surface.  Coefficients of variation (R2) of the fits were mostly above 0.9 with the lowest values 

near 0.8, indicating that the fitted surfaces agree reasonably well with the discrete data. Plots of 

the fitted fragility surfaces for different EDPs for all the classes of bridges analyzed are 

summarized in Figures 4.5 through 4.15. 
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Table 4.5   Fragility surface parameters for bridges with continuous superstructure, seat-type abutments, and single-column bents. 

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

Pier Column Curvature Ductility -1.764 0.465 0.842 -0.091 0.850 -0.048 -1.806 0.475 0.867 -0.082 0.903 -0.038 -1.847 0.489 0.814 -0.065 0.969 -0.038 -2.510 0.546 0.754 -0.031 1.040 -0.033 4.11
Pile Cap Displacement (m) 0.502 0.686 0.344 -0.132 0.025 -0.242 0.608 0.793 0.299 -0.157 0.185 -0.260 0.585 0.843 0.307 -0.141 0.294 -0.235 0.525 0.920 0.324 -0.116 0.225 -0.260 4.10

Abutment Displacement (m) 0.446 0.752 0.164 -0.196 0.434 -0.179 0.530 0.761 0.169 -0.189 0.369 -0.205 0.591 0.816 0.195 -0.157 0.369 -0.208 0.691 0.759 0.175 -0.163 0.260 -0.201 4.10
Abutment Rotation (%) 1.190 0.597 0.378 -0.065 -0.139 -0.252 0.538 0.503 0.407 -0.048 0.625 -0.083 0.436 0.524 0.420 -0.029 0.770 -0.046 1.831 1.031 0.424 -0.011 0.726 -0.060 4.10
Pile Cap Rotation (%) 1.433 0.573 0.285 -0.088 -0.447 -0.257 1.914 0.726 0.048 -0.148 -0.315 -0.252 1.941 0.782 0.231 -0.097 -0.274 -0.272 2.044 0.861 0.547 -0.025 -0.221 -0.236 4.10

Strain in Abutment Bearings -0.880 0.395 0.665 -0.154 0.637 -0.042 -0.713 0.330 0.756 -0.196 0.502 -0.021 -0.884 0.453 0.694 -0.166 0.471 -0.016 -1.806 0.942 0.830 -0.151 0.546 -0.063 4.10

Post-1971 Pre-1971

Engineering Demand Parameter
0.6m diameter CISS piles 0.6m diameter CIDH piles 0.38m diameter precast concrete piles Eq. 

No.
0.38m diameter precast concrete piles

 

Table 4.6   Fragility surface parameters for bridges with continuous superstructure, seat-type abutments, and multi-column bents. 

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

Pier Column Curvature Ductility -1.546 0.458 0.790 -0.094 0.805 -0.046 -1.583 0.462 0.837 -0.100 0.831 -0.031 -1.766 0.503 0.789 -0.083 0.847 -0.025 -2.181 0.564 0.739 -0.036 0.965 -0.021 4.11
Pile Cap Displacement (m) 0.398 0.727 0.329 -0.158 0.070 -0.245 0.510 0.822 0.339 -0.141 0.402 -0.185 0.420 0.831 0.357 -0.140 0.475 -0.179 0.277 0.825 0.348 -0.131 0.525 -0.175 4.10

Abutment Displacement (m) 0.486 0.753 0.164 -0.196 0.400 -0.204 0.574 0.778 0.165 -0.189 0.390 -0.215 0.598 0.804 0.186 -0.167 0.388 -0.208 0.710 0.745 0.156 -0.170 0.329 -0.210 4.10
Abutment Rotation (%) 1.328 0.624 0.271 -0.091 -0.098 -0.241 0.558 0.501 0.369 -0.054 0.636 -0.082 0.406 0.512 0.378 -0.040 0.817 -0.038 1.888 1.028 0.370 -0.032 0.869 -0.030 4.10
Pile Cap Rotation (%) 1.357 0.602 0.216 -0.118 -0.447 -0.268 1.089 0.480 0.167 -0.147 0.025 -0.109 1.004 0.462 0.484 -0.085 0.079 -0.114 0.386 0.378 0.536 -0.116 0.297 -0.045 4.10

Strain in Abutment Bearings -0.744 0.357 0.638 -0.130 0.677 -0.075 -0.635 0.331 0.723 -0.184 0.519 -0.036 -0.698 0.346 0.744 -0.191 0.459 -0.026 -1.607 0.859 0.830 -0.188 0.561 -0.070 4.10

0.38m diameter precast concrete piles0.6m diameter CISS piles
Engineering Demand Parameter

Pre-1971Post-1971
Eq. 
No.

0.38m diameter precast concrete piles0.6m diameter CIDH piles

 

Table 4.7   Fragility surface parameters for bridges with continuous superstructure, monolithic abutments, and single-column 
bents. 

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

Pier Column Curvature Ductility -1.544 0.429 0.994 -0.102 0.957 -0.059 -1.627 0.440 0.970 -0.097 0.982 -0.057 -1.762 0.457 1.007 -0.115 1.010 -0.050 -2.387 0.529 1.039 -0.090 1.099 -0.050 4.11
Pile Cap Displacement (m) 0.569 0.632 0.266 -0.218 -0.079 -0.253 0.506 0.661 0.239 -0.221 -0.034 -0.266 0.780 0.829 0.294 -0.187 0.009 -0.313 0.725 0.901 0.254 -0.206 -0.006 -0.312 4.10

Abutment Displacement (m) 0.806 0.564 0.175 -0.138 -0.089 -0.276 0.671 0.524 0.288 -0.104 -0.057 -0.265 0.864 0.616 0.244 -0.118 -0.010 -0.258 0.731 0.548 0.229 -0.125 0.061 -0.200 4.10
Abutment Rotation (%) 1.859 0.727 -0.123 -0.189 -0.506 -0.316 1.936 0.744 -0.073 -0.178 -0.550 -0.323 1.939 0.723 0.064 -0.148 -0.521 -0.301 2.168 0.741 -0.262 -0.230 -0.391 -0.239 4.10
Pile Cap Rotation (%) 1.562 0.535 0.056 -0.147 -0.538 -0.262 1.005 0.465 0.054 -0.171 -0.499 -0.267 1.719 0.706 0.236 -0.132 -0.618 -0.340 1.672 0.744 0.149 -0.168 -0.491 -0.287 4.10

0.38m diameter precast concrete piles Eq. 
No.Engineering Demand Parameter

0.6m diameter CISS piles 0.6m diameter CIDH piles 0.38m diameter precast concrete piles
Post-1971 Pre-1971
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Table 4.8   Fragility surface parameters for bridges with continuous superstructure, monolithic abutments, and multi-column 
bents. 

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

Pier Column Curvature Ductility -1.176 0.398 0.859 -0.101 0.859 -0.055 -1.346 0.390 0.927 -0.114 0.919 -0.049 -1.482 0.426 0.964 -0.130 0.880 -0.043 -2.110 0.502 1.033 -0.106 1.051 -0.043 4.11
Pile Cap Displacement (m) 0.504 0.547 0.315 -0.184 -0.166 -0.280 0.652 0.707 0.252 -0.201 -0.032 -0.313 0.536 0.776 0.355 -0.185 0.172 -0.264 0.801 0.890 0.277 -0.205 -0.007 -0.335 4.10

Abutment Displacement (m) 0.966 0.618 0.050 -0.183 -0.161 -0.301 0.866 0.604 0.166 -0.136 -0.066 -0.290 0.905 0.610 0.176 -0.137 -0.013 -0.275 0.869 0.589 0.240 -0.103 0.015 -0.227 4.10
Abutment Rotation (%) 1.841 0.710 -0.114 -0.192 -0.556 -0.332 2.101 0.777 -0.073 -0.176 -0.700 -0.361 2.245 0.784 -0.098 -0.179 -0.609 -0.326 1.974 0.701 0.000 -0.156 -0.518 -0.278 4.10
Pile Cap Rotation (%) 1.080 0.390 0.426 -0.048 -0.721 -0.309 1.343 0.546 0.011 -0.180 -0.695 -0.343 0.748 0.418 0.313 -0.107 -0.165 -0.163 1.936 0.797 0.100 -0.182 -0.694 -0.362 4.10

0.38m diameter precast concrete piles Eq. 
No.Engineering Demand Parameter

0.6m diameter CISS piles 0.6m diameter CIDH piles 0.38m diameter precast concrete piles
Post-1971 Pre-1971

 

Table 4.9 Fragility surface parameters for bridges with simply supported spans, seat-type abutments, and single-column bents. 

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

Pier Column Curvature Ductility -1.312 0.394 0.838 -0.116 0.426 -0.027 -1.272 0.414 0.855 -0.137 0.464 -0.026 -1.260 0.395 0.847 -0.131 0.492 -0.025 -1.665 0.499 0.835 -0.096 0.749 -0.024 4.11
Pile Cap Displacement (m) 0.279 0.636 0.298 -0.187 0.147 -0.209 0.347 0.757 0.286 -0.177 0.494 -0.137 0.327 0.819 0.291 -0.172 0.722 -0.079 0.252 0.811 0.282 -0.169 0.780 -0.075 4.10

Abutment Displacement (m) 0.485 0.762 0.161 -0.206 0.489 -0.183 0.613 0.782 0.187 -0.191 0.373 -0.221 0.580 0.810 0.208 -0.171 0.418 -0.203 0.598 0.822 0.174 -0.167 0.471 -0.184 4.10
Abutment Rotation (%) 1.347 0.633 0.218 -0.110 -0.011 -0.220 0.693 0.527 0.356 -0.065 0.616 -0.082 0.491 0.519 0.395 -0.039 0.774 -0.047 0.220 0.469 0.241 -0.072 0.788 -0.043 4.10
Pile Cap Rotation (%) 1.319 0.515 0.142 -0.118 -0.385 -0.248 1.088 0.494 0.190 -0.130 -0.210 -0.179 1.090 0.551 0.083 -0.162 0.024 -0.164 1.092 0.567 0.174 -0.129 0.216 -0.102 4.10

Strain in Abutment Bearings -0.660 0.339 0.653 -0.142 0.691 -0.057 -0.422 0.272 0.704 -0.164 0.447 -0.043 -0.724 0.369 0.672 -0.099 0.419 -0.020 -1.513 0.768 0.838 -0.230 0.542 -0.076 4.10
Strain in Pier Bearings -0.922 0.384 0.716 -0.106 0.453 -0.068 -0.891 0.410 0.700 -0.146 0.497 -0.038 -0.849 0.375 0.690 -0.125 0.617 -0.038 -1.151 0.416 0.810 -0.144 0.569 0.019 4.10

0.38m diameter precast concrete piles Eq. 
No.Engineering Demand Parameter

0.6m diameter CISS piles 0.6m diameter CIDH piles 0.38m diameter precast concrete piles
Post-1971 Pre-1971

 

Table 4.10   Fragility surface parameters for bridges with simply supported spans, seat-type abutments, and multi-column bents. 

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

Pier Column Curvature Ductility -1.073 0.362 0.775 -0.091 0.282 -0.020 -0.890 0.363 0.777 -0.132 0.322 -0.023 -1.260 0.395 0.847 -0.131 0.492 -0.025 -1.345 0.440 0.840 -0.144 0.590 -0.024 4.11
Pile Cap Displacement (m) 0.435 0.660 0.331 -0.170 0.139 -0.201 0.376 0.755 0.301 -0.176 0.495 -0.134 0.327 0.819 0.291 -0.172 0.722 -0.079 0.278 0.826 0.310 -0.155 0.849 -0.051 4.10

Abutment Displacement (m) 0.521 0.761 0.167 -0.203 0.476 -0.184 0.613 0.789 0.172 -0.195 0.377 -0.226 0.580 0.810 0.208 -0.171 0.418 -0.203 0.622 0.809 0.200 -0.160 0.432 -0.207 4.10
Abutment Rotation (%) 1.404 0.642 0.222 -0.108 -0.110 -0.243 0.718 0.540 0.378 -0.059 0.616 -0.084 0.491 0.519 0.395 -0.039 0.774 -0.047 0.330 0.487 0.352 -0.050 0.838 -0.034 4.10
Pile Cap Rotation (%) 1.499 0.560 0.064 -0.139 -0.317 -0.228 1.157 0.533 0.208 -0.125 -0.228 -0.191 1.090 0.551 0.083 -0.162 0.024 -0.164 1.200 0.610 0.272 -0.109 0.225 -0.107 4.10

Strain in Abutment Bearings -0.600 0.326 0.661 -0.149 0.701 -0.064 -0.437 0.273 0.691 -0.154 0.468 -0.055 -0.724 0.369 0.672 -0.099 0.419 -0.020 -1.320 0.723 0.882 -0.255 0.494 -0.070 4.10
Strain in Pier Bearings -0.856 0.403 0.680 -0.118 0.465 -0.089 -0.889 0.427 0.699 -0.152 0.492 -0.037 -0.849 0.375 0.690 -0.125 0.617 -0.038 -1.130 0.387 0.851 -0.169 0.630 -0.003 4.10

0.38m diameter precast concrete piles Eq. 
No.Engineering Demand Parameter

0.6m diameter CISS piles 0.6m diameter CIDH piles 0.38m diameter precast concrete piles
Post-1971 Pre-1971
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Figure 4.5 Fragility functions for pier column curvature ductility for bridges with multi-column bents. Curvature ductility from 
top to bottom are 1 through 10 in increments of 1. 
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Figure 4.6 Fragility functions for pier column curvature ductility for bridges with single-column bents.  Curvature ductility 
from top to bottom are 1 through 10 in increments of 1. 
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Figure 4.7 Fragility functions for pile cap displacement for bridges with multi-column bents.  Pile cap displacements from top to 
bottom are 0.025 m (0.98 in.) to 0.25 m (9.84 in.) in increments of 0.25 m (9.84 in.). 
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Figure 4.8 Fragility functions for pile cap displacement for bridges with single-column bents.  Pile cap displacement from top to 
bottom is 0.025 m (0.98 in.) to 0.25 m (9.84 in.) in increments of 0.025 m (0.98  in.). 
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Figure 4.9 Fragility functions for abutment displacement for bridges with multi-column bents.  Abutment displacement from 
top to bottom is 0.025 m (0.98  in.) to 0.25 m (9.84 in.) in increments of 0.025 m (0.98  in.). 
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Figure 4.10 Fragility functions for abutment displacement for bridges with single-column bents.  Abutment displacement from 
top to bottom is 0.025 m (0.98 in.) to 0.25 m (9.84 in.) in increments of 0.025 m (0.98 in.). 
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Figure 4.11 Fragility functions for abutment rotation for bridges with multi-column bents.  Abutment rotation from top to 
bottom is 0.5% to 5% in increments of 0.5%. 
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Figure 4.12 Fragility functions for abutment rotation for bridges with single-column bents.  Abutment rotation from top to 
bottom is 0.5% to 5% in increments of 0.5%. 
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Figure 4.13 Fragility functions for pile cap rotation for bridges with multi-column bents.  Pile cap rotation from top to bottom is 
0.5% to 5% in increments of 0.5%. 
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Figure 4.14 Fragility functions for pile cap rotation for bridges with single-column bents.  Pile cap rotation from top to bottom is 
0.5% to 5% in increments of 0.5%.
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The following sections explain some of the trends observed in the fragility functions in Figures 

4.5 to 4.14. 

4.4.1 Effect of Vintage on the Fragility of the Bridge 

Bridges built prior to 1971 have piers with low shear reinforcement and lower yield moment 

(and shear capacity) relative to the new vintage bridges. The relatively weak piers result in 

higher mobilized curvature ductility in the pier columns for a given free-field ground 

displacement compared with the newer-vintage bridges. The older vintage bridges were 

supported on pile foundations with lower flexural capacity compared to newer vintage bridges. 

However, the fragility functions for pile cap displacement are similar to the post-1971 bridges, 

with the same diameter (but slightly stronger) piles. This trend likely reflects that the smaller-

diameter piles are poorly suited to resisting lateral spreading demands and a slight increase in 

capacity provides little benefit. However, the larger-diameter CIDH and CISS foundations 

exhibited lower cap displacements. Pile cap rotations were slightly lower for the pre-1971 

vintage bridges with single-column bents. The cause of this behavior is based on the following 

observations: (1) pile cap rotation is caused by axial failure of the piles; (2) axial failure of the 

piles requires a certain amount of lateral load to be transferred from the laterally spreading soil; 

(3) the pre-1971 piles yield at relatively small ground displacements; and (4) yielding of the piles 

prevents axial failure of the pile tips thereby reducing pile cap rotation. Hence, the low pile cap 

rotation should not be considered a sign of good performance because these pile groups are 

likely to exhibit large translations. 

4.4.2 Effect of Structure Type on the Fragility of the Bridge 

Differences in the connection between the pier columns and superstructure (continuous or simply 

supported spans), and differences in abutment type (seat-type or monolithic) has a significant 

impact on the fragility functions. Pier columns for the simply supported bridges are free to rotate 

at the top; therefore, the pier columns are more flexible relative to a continuous bridge with 

double fixity at the top and bottom connections. This flexibility results in lower mobilized 

curvature ductility for a given amount of displacement, hence the fragility functions for pier 

column curvature ductility are lowest for bridges with simply supported spans. However, 

multiple case histories have shown that bridges with simply supported spans are vulnerable to 
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lateral spreading due to unseating rather than flexural failure of the pier columns.  Hence, pile 

cap displacement may be a more relevant EDP for characterizing collapse potential of these 

bridges.  The fragility functions indicate that pile cap displacements are largest for bridges with 

simply supported spans, which was expected. 

Bridges with continuous superstructures and multi-column bents are typically designed 

with a pin connection between the pier columns and pile caps, whereas bridges with single-

column bents are designed with fixed-fixed connections to avoid a collapse mechanism in the 

transverse direction. Furthermore, the capacity of the pier columns in a multi-column bent tends 

to be higher than the capacity of a single-column.  As a result, bridges with multi-column bents 

exhibit lower curvature ductility for a given amount of lateral spreading ground displacement 

than their single-column counterparts. 

4.4.3 Effect of Pile Types on the Fragility of the Bridge 

The effect of the pile type is quite clear in the fragility functions.  Larger-diameter, stronger piles 

result in lower mobilized pier column curvature ductility and pile cap displacement. These two 

EDPs are probably the most relevant for understanding damage potential: large diameter piles 

are beneficial. Larger-diameter piles may actually increase pile cap rotation compared with 

weaker piles simply because more load is transferred to the pile foundation, thereby increasing 

the chance that the pile tips will fail in compression or pull out thereby causing large cap 

rotations. 

4.5 CORRELATION TABLES 

Mobilized EDPs are correlated for a given ground displacement. This is intuitive as pile cap 

displacement is correlated with pile cap rotation since the deformation mechanism involves both 

translation and rotation. Correlation can also be more indirect, wherein demands in one 

component are transferred to another component by axial stresses in the superstructure. For 

example, abutment displacement is correlated with pile cap displacement for bridges with 

continuous superstructures, but not for bridges with simply supported spans.  Quantifying the 

correlation among EDPs is important when a vector of EDPs is used to define a specific damage 

state.  For example, one may choose to define a damage state as being a pile cap displacement 

larger than 0.3 m (11.81 in.) and a pier column curvature ductility larger than 4 and an abutment 
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displacement larger than 0.1 m (3.94 in.).  To define the probability of exceedance of this vector 

of EDPs, correlation among the EDPs must be quantified and included. 

Correlation coefficients were computed from the sample of the natural logarithms of the 

EDP values at various free-field ground displacements for each class of bridge. The coefficients 

were found to be basically independent of vintage and pile type, but dependent on structural 

configuration and weakly dependent on free-field ground displacement. A representative free-

field ground displacement of 0.80 m (31.50 in.) was selected. Correlation coefficients tended to 

be lower for lower free-field ground displacements, reaching a plateau around 0.80 m (31.50 in.).  

Tables 4.11, 4.12, and 4.13 present correlation coefficients among EDPs for the different 

structural configurations. 

Table 4.11 Correlation coefficients among the natural logarithms of EDPs for bridges with 
continuous superstructure and seat-type abutments. 

Abutment 
Disp

Abutment 
Rotation

Cap Disp. Cap 
Rotation

Pier 
Curvature 
Ductility

Abutment 
Bearing 
Strain

Abutment 
Disp

Abutment 
Rotation

Cap Disp. Cap 
Rotation

Pier 
Curvature 
Ductility

Abutment 
Bearing 
Strain

Abutment Disp 1.00 0.20 0.56 0.53 0.30 0.68 1.00 0.24 0.47 0.35 0.33 0.61
Abutment Rotation 0.20 1.00 0.12 0.22 0.14 0.07 0.24 1.00 0.14 0.21 0.17 0.10
Cap Disp 0.56 0.12 1.00 0.68 0.35 0.03 0.47 0.14 1.00 0.48 0.42 0.03
Cap Rotation 0.53 0.22 0.68 1.00 0.51 0.01 0.35 0.21 0.48 1.00 0.13 0.03
Pier Curvature Ductility 0.30 0.14 0.35 0.51 1.00 0.06 0.33 0.17 0.42 0.13 1.00 0.02
Abutment Bearing Strain 0.68 0.07 0.03 0.01 0.06 1.00 0.61 0.10 0.03 0.03 0.02 1.00

Single-Column Bents Multi-Column Bents

 

 

Table 4.12 Correlation coefficients among the natural logarithms of EDP's for bridges with 
continuous superstructures and monolithic abutments. 

Abutment 
Disp

Abutment 
Rotation

Cap Disp. Cap 
Rotation

Pier 
Curvature 
Ductility

Abutment 
Disp

Abutment 
Rotation

Cap Disp. Cap 
Rotation

Pier 
Curvature 
Ductility

Abutment Disp 1.00 0.43 0.63 0.58 0.39 1.00 0.47 0.59 0.50 0.36
Abutment Rotation 0.43 1.00 0.14 0.28 0.26 0.47 1.00 0.15 0.29 0.17
Cap Disp 0.63 0.14 1.00 0.67 0.38 0.59 0.15 1.00 0.60 0.50
Cap Rotation 0.58 0.28 0.67 1.00 0.52 0.50 0.29 0.60 1.00 0.47
Pier Curvature Ductility 0.39 0.26 0.38 0.52 1.00 0.36 0.17 0.50 0.47 1.00

Single-Column Bents Multi-Column Bents
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Table 4.13 Correlation coefficients among the natural logarithms of EDPs for bridges with 
simply supported spans. 

Abutment 
Disp

Abutment 
Rotation

Cap Disp. Cap 
Rotation

Pier 
Curvature 
Ductility

Abutment 
Bearing 
Strain

Pier 
Bearing 
Strain

Abutment 
Disp

Abutment 
Rotation

Cap Disp. Cap 
Rotation

Pier 
Curvature 
Ductility

Abutment 
Bearing 
Strain

Pier 
Bearing 
Strain

Abutment Disp 1.00 0.40 0.10 0.14 0.20 0.68 0.06 1.00 0.35 0.06 0.12 0.08 0.71 0.08
Abutment Rotation 0.40 1.00 -0.04 0.12 0.12 -0.12 -0.03 0.35 1.00 -0.06 0.14 0.00 -0.10 -0.02
Cap Disp 0.10 -0.04 1.00 0.58 0.37 -0.04 0.41 0.06 -0.06 1.00 0.58 0.42 -0.08 0.37
Cap Rotation 0.14 0.12 0.58 1.00 0.08 -0.11 0.06 0.12 0.14 0.58 1.00 0.03 -0.09 0.07
Pier Curvature Ductility 0.20 0.12 0.37 0.08 1.00 -0.02 -0.11 0.08 0.00 0.42 0.03 1.00 0.04 -0.03
Abutment Bearing Strain 0.68 -0.12 -0.04 -0.11 -0.02 1.00 -0.06 0.71 -0.10 -0.08 -0.09 0.04 1.00 -0.05
Pier Bearing Strain 0.06 -0.03 0.41 0.06 -0.11 -0.06 1.00 0.08 -0.02 0.37 0.07 -0.03 -0.05 1.00

Single-Column Bents Multi-Column Bents

 
 

The highest correlation coefficients were observed for bridges with continuous 

superstructures and monolithic abutments.  These bridges have the largest degree of connectivity 

among components; hence, deformations at one component tend to be associated with 

deformations at other components due to transmission of demands through the superstructure. 

Similarly, the lowest correlation coefficients were observed for bridges with seat-type abutments 

and simply supported spans. 

The correlation coefficient is a measure of the linear relation between random variables. 

Some of the EDPs exhibited a more complex nonlinear relationship. For simplicity’s sake, 

however, the authors suggest assuming that the distribution of a vector of EDPs can be 

characterized as a standard multivariate normal distribution with the covariance matrix computed 

from the reported correlation coefficients and variances. Closed-form solutions for cumulative 

probability density functions of multivariate normal distributions do not exist, therefore, the 

distributions must be computed numerically. One useful approach involves a Monte Carlo 

simulation, where correlation can be preserved using Cholesky factorization of the correlation 

matrix. The authors have deliberately refrained from defining damage states from the EDPs, 

instead selecting to present the EDP values that permits users to either directly utilize the EDPs 

in loss estimation or to define their own damage states as an intermediate step. 

4.6 EXAMPLE OF APPLICATION OF FRAGILITY SURFACES 

This section demonstrates how the fragility functions may be utilized for a specific site where 

limited structural information is available (i.e., enough is available to place the bridge in one of 

the classification systems presented in this report, but not enough to run a bridge-specific 

structural analysis). The example problem consists of a probabilistic seismic hazard analysis 
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(hazard curve and disaggregation), probabilistic liquefaction evaluation, and probabilistic lateral 

spreading displacement estimation. The free-field lateral spreading ground displacement hazard 

curve was integrated with the fragility functions presented here to compute mean annual rate of 

exceedance of various bridge EDPs due to liquefaction and lateral spreading. 

4.6.1 Site and Seismic Hazard Analysis 

A site in Santa Monica, California (118.492°W, 34.015°N), was selected for this example 

problem. This is the same site analyzed by Kramer and Mayfield (2007), which provides a 

convenient means of validating the liquefaction hazard curve with their results.  A probabilistic 

seismic hazard analysis was performed using OpenSHA (Field et al. 2003), with Vs30 = 300 

m/sec.  The seismic hazard curve and magnitude disaggregation are shown in Figures 4.15 and 

4.16.  The soil profile at the site consists of a 2.0 m- (6.56 ft-) thick nonliquefied crust with unit 

weight γ = 18 kN/m3 lies over a clean liquefiable sand with (N1)60 = 10.  The ground gently 

slopes at an angle of β  = 2° and can be reasonably represented as an infinite slope. 

 

 

Figure 4.15   Hazard curves from probabilistic seismic hazard analysis of the Santa Monica 
site. 



126 

 

Figure 4.16   Distributions of magnitude contributions to seismic hazard. 

4.6.2 Liquefaction Triggering Evaluation 

The next step in the analysis is computing the annual rate of exceedance of triggering of 

liquefaction using the mean hazard curve from Figure 4.15. Kramer and Mayfield (2007) 

outlined a framework for computing annual rate of non-exceedance of liquefaction that is 

adopted in this study. The approach is based on the probabilistic liquefaction triggering 

framework developed by Cetin et al. (2004), using the regression constants that account for 

measurement/estimation errors. Equation 4.12 defines probability of factor of safety against 

liquefaction (FSL) dropping below a value (FSL
*) given (N1)60, fines content FC cyclic stress ratio 

CSReq, moment magnitude Mw, and vertical effective stress '
0vσ . 

*

'
1 60

| ,

( ) (1 0.004 ) 13.79ln 29.06ln 3.82ln( / ) 0.06 15.25
4.21

wL L

eq w vo a

P FS FS PGA M

N FC CSR M p FCσ
Φ

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

< =

+ − − − + +
−

 (4.12)

The cyclic stress ratio is defined as ( )( )0.65eq v vo dCSR PGA g rσ σ= ′  where the stress 

reduction factor rd was treated deterministically (Golesorkhi 1989). Uncertainty in rd is 

anticipated to have negligible effect on the hazard analysis because the site is so shallow and rd is 

near unity. Peak horizontal ground acceleration is not sufficient to characterize liquefaction 
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triggering, and magnitude appears as well due to the influence of duration and frequency content.  

Hence, the hazard calculation must be integrated over PGA and Mw, which requires the 

disaggregation shown in Figure 4.16. Equation 4.13 defines the probability of non-exceedance of 

factor of safety against liquefaction, where the summations indicate discrete numerical 

integration over an adequate range of PGA and Mw values using the binning method, wherein the 

probability density functions are divided into small slices for numerical integration (after Kramer 

and Mayfield 2007). 

*
*

,
1 1

| , λ
= =

⎡ ⎤= <⎣ ⎦∑ ∑Λ Δ
Mw PGA

j wL

N N

L L i w PGA MFS
j i

P FS FS PGA M  (4.13)

Figure 4.17 shows the mean annual rate of non-exceedance of factor of safety against 

liquefaction, which is similar to the Santa Monica site presented by Kramer and Mayfield (2007) 

(see Figure 9 in their paper). The return period for FSL<1 is about 100 years (i.e., Λ =0.01 yr-1). 

 

 

Figure 4.17   Liquefaction triggering hazard curve for the Santa Monica site. 

4.6.3 Ground Displacement Evaluation 

The next step in the procedure is computing the mean annual rate of exceedance of lateral 

spreading ground displacement for this site. A number of methods for estimating lateral 
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spreading displacements exist, and including multiple approaches is important for quantifying 

the effects of epistemic uncertainty. For simplicity’s sake, only a single approach is utilized here 

although the methodology can easily be extended to other methods. The approach by Bray and 

Travasarou (2007) for computing permanent ground displacements is combined with the 

approach by Olson and Stark (2002) for estimating undrained residual strength of liquefied sand. 

For (N1)60 = 10, the mean value of '/ 0.1r vs σ =  based on the Olson and Stark suggestion, hence 

μsr = 0.1(2 m)(18 kN/m3) = 3.6 kPa. Furthermore, the standard deviation is σsr = 0.025(2 m)(18 

kN/m3) = 0.9 kPa. The static driving shear stress is τstat = (2 m)(18 kN/m3)sin(2°) = 1.3 kPa.  If 

the static driving shear stress exceeds the undrained residual strength, then a flow slide occurs 

and ground displacement is large. Assuming that sr is log-normally distributed, the probability of 

a flow slide can be computed using Equation 4.14, where Φ is the standard normal cumulative 

distribution function. 

[ ] ln ln| stat r

sr

sr

sP FlowSlide Liq τ

σ
μ

⎡ ⎤
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

Φ
2

21
 (4.14)

 

For cases when a flow slide does not occur, the lateral spreading ground displacement is 

computed using the methodology of Bray and Travasarou (2007) defined in Equation 4.15, 

where ky is the yield acceleration.  For an infinite slope, ky = (sr - τ stat)/γ Hcos β . 

( )

2

2

( 0) 1 1.76 3.22ln( ) 3.52ln(PGA)

ln( ) ln( )( | 0) 1
0.66

ln( ) 0.22 2.83ln( ) 0.333(ln( )) 0.566ln( ) ln(PGA)

3.04ln(PGA) 0.244(ln( )) 0.278( 7)

= = − − − +
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⎝ ⎠
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+ − + −

Φ

Φ
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y y y

w

P D k

d dP D d D

d k k k

PGA M

 (4.15)

 

The probability of lateral spreading ground displacement exceeding some value, d, 

conditioned on the occurrence of liquefaction is given in Equation 4.16, where the summation 
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indicates numerical integration by the binning method over the random variable ky, which 

depends on random variable sr. 

[ ][ ][ ]
1

( | ) 1 ( 0) ( | 0) 1 ( | )

( | )
=

> = − = > > − +∑ Δ
kyN

y
i

P D d Liq P D P D d D P FlowSlide Liq k

P FlowSlide Liq

 (4.16)

 

The mean annual rate of exceedance of free-field lateral spreading ground displacement 

is computed by inserting the conditional probability defined in Equation 4.16 in the hazard 

integral, as defined in Equation 4.17. 

,
1 1

( | ) ( | , )λ λ
= =

= >∑ ∑ Δ
PGAM

w

NN

D w PGA M
j i

P D d Liq P Liq PGA M  (4.17)

Figure 4.18 shows the lateral spreading ground displacement hazard curve for the 

example problem, which was computed using 30 bins for PGA and ky, and 17 bins for 

magnitude, for a total of 15,300 computations.  Also shown in Figure 4.18 are several values of 

ground displacement computed deterministically by taking the PGA associated with some hazard 

level combined with the modal magnitude (Mw = 6.5 in this case), mean ky value, and mean 

lateral spreading displacement value computed using Equation 4.15. In this case, the 

deterministic approach underestimates the true ground displacement hazard primarily because (1) 

the modal magnitude was used and higher magnitudes contribute to larger displacements 

according to a nonlinear relation, and (2) the mean value of the liquefied undrained strength was 

used and lower undrained strengths produce larger displacements according to a nonlinear 

relation. Kramer and Mayfield (2007) also showed how inconsistencies between the probabilistic 

and deterministic approaches to liquefaction triggering evaluation arise due to nonlinearities in 

the equations, and the mismatch depends on the slope of the hazard curve. These observations 

indicate that the return period associated with a design level ground motion may not be the same 

as the return period for a deterministically-computed engineering response parameter, and 

utilizing the performance-based approach is the only way to provide consistency. 
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Figure 4.18   Free-field lateral spreading displacement hazard curve. 

 

4.6.4 Bridge Engineering Demand Parameter Evaluation 

Example demand fragility surfaces are shown in Figure 4.19 for bridges constructed after 1971 

with simply supported spans, seat-type abutments, and 0.61 m (24 in.) CIDH deep foundations 

supporting the pile caps and abutments. The fragility function equations were inserted into the 

hazard integral to define the mean annual rate of exceedance of the three EDP values (Equation 

4.18). 

,
1 1

( | ) ( | ) ( | , )λ λ
= =

= > >∑ ∑ Δ
PGAM

w

NN

EDP w PGA M
j i

P EDP edp D P D d Liq P Liq PGA M  (4.18)

The EDP hazard curves are plotted in Figure 4.20. The 10% in 50-year EDP values ( λ = 

2.1x10-3 yr-1 and a return period = 475 years) are pile cap displacement = 0.1 m (3.94 in), the pier 

column remains elastic, and abutment displacement = 0.16 m (6.30 in.). These EDP hazard 

curves provide for better decision-making compared with the standard-of-practice approach of 

selecting a probabilistic ground motion and performing engineering calculations 

deterministically. 
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Figure 4.19 Fragility functions for post-1971 bridges with seat-type abutments, simply 
supported spans, multi-column bents, and 0.6 m- (1.97 ft-) diameter CIDH 
piles. Engineering demand parameters include: (a) pier column curvature 
ductility, (b) pile cap displacement, and (c) abutment displacement. 

 

 

 

Figure 4.20 Hazard curves for (a) pier column curvature ductility, (b) pile cap 
displacement, and (c) abutment displacement. 
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5 Influence of Dynamic Shaking Compared 
with Lateral Spreading 

 
Early in this project during the evaluation of structural configurations and development of the 

bridge classification system, a study was performed to investigate how different structural 

configurations are affected by strong ground motion in the absence of liquefaction compared 

with cases with liquefaction and lateral spreading. The comparison was made by computing 

fragility functions for various configurations of bridges subjected to dynamic shaking and also to 

liquefaction-induced lateral spreading, and then noting how fragility functions depended on 

structural configuration. The structural configurations, soil properties, and statistical methods 

used to generate the fragility functions are different from the methods presented in Chapter 3. 

However, this study is useful to include because it provides a comparison of fragility functions 

with and without liquefaction, and it shows how various structural configurations are affected 

differently by strong ground motion and by liquefaction and lateral spreading. These 

conclusions, potentially important for retrofit decisions, show that both hazard types must be 

considered simultaneously to arrive at suitable retrofit methodologies for bridges. 

5.1 INTRODUCTION 

Highway bridges are susceptible to damage due to two significant earthquake-induced 

mechanisms: seismic shaking and liquefaction-induced lateral spreading. Increased horizontal 

and vertical load due to dynamic effects under seismic shaking is considered the most dominant 

cause of bridge damages (Priestley et al. 1996; Basöz and Kiremidjian 1998). The column failure 

experienced by the Hanshin expressway during the 1995 Kobe earthquake (Kawashima and 

Unjoh 1997) and bridge collapse of the Cypress Street Viaduct during the 1989 Loma Prieta 

earthquake (Chen and Duan 2003) are examples of failures caused by excessive seismic loading. 
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For bridges built on liquefiable soil, earthquake-induced liquefaction and lateral spreading have 

significant impact on foundation weakening/failure and subsequent structural damage. The span 

unseating of the Nishinomiya Bridge during the 1995 Kobe earthquake (Wilson 2003) and 

collapse of the Showa Bridge during the 1964 Niigata earthquake (Yasuda and Berrill 2000) are 

examples of spectacular failures caused by liquefaction. 

Nevertheless, there are many bridges that have performed reasonably well under either 

seismic shaking or lateral spreading. For example, the Landing Road Bridge suffered only 

moderate and reparable damage, despite as much as 2.0 m (6.56 ft) of lateral spreading of the 

surrounding soils during the 1987 Edgecumbe earthquake (Berrill et al. 2001). Study of detailed 

structural configurations (e.g., column detailing, superstructure type, material, connection, 

continuity at support and foundation type, etc.) and soil conditions (strength and thickness of any 

nonliquefiable crust layer, thickness of the liquefiable layer, etc.) render different damage-

resistant capability for bridges. Furthermore, the failure mechanisms of bridges exhibited by 

seismic shaking or liquefaction-induced lateral spreading inevitably show different patterns due 

to distinct load transferring mechanisms, resulting in differences in damage potential under these 

two situations. Evaluating the damage potential of different classes of bridges under seismic 

shaking and liquefaction-induced lateral spreading is, therefore, critical for any design or retrofit 

strategies.  

There are inherent variabilities and uncertainties associated with the seismic responses of 

bridges due to liquefaction-induced lateral spreading (e.g., structural properties, soil properties, 

liquefaction mechanism and ground movement, etc.) or seismic shaking (e.g., structural 

properties, earthquake motion characteristics, etc.). To address this issue, the fragility function 

method has been used to provide a comprehensive evaluation of bridge response and damage 

potential under seismic shaking. Fragility functions, which relate the damage probability of 

bridges to either the intensity measure of earthquake input motions (e.g., PGA) or liquefaction-

induced ground displacement, are generated and compared for six types of typical highway 

bridges in California in order to evaluate the effects of structural characterizations on the damage 

probability of bridges. Nonlinear dynamic time-history analyses were used to derive the fragility 

functions of bridges under seismic shaking, while an equivalent static procedure (see Chapter 2) 

was used to derive the fragility functions of bridges under liquefaction-induced lateral spreading. 

Important structural and foundation parameters were also identified to provide a comprehensive 

evaluation of bridge response under earthquake loading. 
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5.2 FRAGILITY METHODS FOR DYNAMIC SHAKING 

Unlike the Monte Carlo method used in previously discussed lateral spreading fragility analysis, 

the following dynamic shaking fragility analysis employs probabilistic seismic demand model 

(PSDM) to derive analytical fragility functions using nonlinear time history responses of bridges. 

The PSDM can be developed using a ‘cloud’ approach or ‘scaling’ (like ‘stripe’) approach 

(Baker and Cornell 2006) to relate the EDPs to the ground motion intensity measures (IMs). The 

‘cloud’ approach uses unscaled earthquake ground motions. With the ‘scaling’ approach, all 

motions are scaled to selective intensity levels corresponding to a prescribed seismic hazard level 

and incremental dynamic analysis (IDA) is performed at different hazard levels. In this study, the 

‘cloud’ approach is termed as PSDA (Probabilistic Seismic Demand Analysis), while the 

‘scaling’ approach is termed as IDA. 

5.2.1 Probabilistic Seismic Demand Analysis 

The PSDA method utilizes regression analysis to obtain the mean and standard deviation for 

each limit state by assuming a logarithmic correlation between median EDP and an appropriately 

selected IM: 

( )bEDP a IM= or  ln ln lnEDP a b IM= +   (5.1)

where the parameters a and b are regression coefficients obtained from the response data of 

nonlinear time-history analyses. The remaining variability in ln(EDP) at a given IM is assumed 

to have a constant variance for all IM range, and the standard variation is estimated as follows 

(Baker and Cornell 2006):  

( ) ( )
2

1
|

ln ln ln

2

n

i i
i

EDP IM

EDP a b IM

n
ξ =

− +⎡ ⎤⎣ ⎦
=

−

∑
 

(5.2)

Subsequently, the EDPs are converted to the damage index (DI) that is compared with the limit 

states (LS) corresponding to various damage states (DS) dictated by a capacity model. If the DI 

is the same as the EDP, by further assuming a log-normal distribution of EDP at a given IM, the 

fragility functions (i.e., the conditional probability of reaching a certain damage state for a given 

IM) are written as: 
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where ξEDP|IM is the standard deviation of simulation data from the logarithmic correlation 

between median EDP and IM (obtained from Equation 5.2).  

5.2.2 Incremental Dynamic Analysis 

In contrast to the PSDA method, the IDA method requires more computational effort because of 

the scaling of earthquake motions to different IM levels, i.e., through increments. However, no a 

priori assumption needs to be made in terms of probabilistic distribution of seismic demand in 

order to derive the fragility curves. Nonlinear time-history analysis is conducted at every IM 

level. The occurrence ratio of a specified damage state is computed and directly used as the 

damage probability at the given IM level, i.e., the damage probability is calculated as the ratio of 

the number of damage cases ni at and beyond the damage state i over the number of total 

simulation cases N at a given IM level (Karim and Yamazaki 2001): 

inP DI LS IM
N

⎡ ≥ ⎤ =⎣ ⎦  (i=1 to 4) (5.4)

In most cases, IDA fragility curves can be fitted with either a normal cumulative distribution 

function: 

( ) ( )
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IM IM
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≥ = −⎢ ⎥
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∫  (5.5)

or a log-normal cumulative distribution function: 
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IM IM

IMIM

im
P DI LS IM d im
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λ
ξπξ

⎧ ⎫−⎡ ⎤⎪ ⎪⎣ ⎦≥ = −⎨ ⎬
⎪ ⎪⎩ ⎭

∫  (5.6)

where σIM and μIM are standard deviation and mean value, respectively, of IM to reach the 

specified damage state based on the normal distribution, while ξIM and λIM are standard deviation 

and mean value, respectively, of IM to reach the specified damage state based on the log-normal 

distribution. 
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5.3 GROUND MOTION AND BRIDGE MODELING 

5.3.1 Earthquake Ground Motion Selection and Intensity Measure 

Both the PSDA and IDA methods rely on a large number of nonlinear time-history analyses to 

derive the fragility functions, therefore, a significant number of earthquake records need to be 

selected so that a conceptually and statistically better prediction of bridge response can be 

obtained. In this study, 250 sets of earthquake ground motion records were selected from the 

PEER strong motion database (http://peer.berkeley.edu/smcat), and the records were applied in 

transverse, longitudinal and vertical directions simultaneously in the time-history analysis. 

Figure 5.1 shows the distribution of PGA, peak ground velocity (PGV), spectral 

acceleration (Sa) at period T=0.5 sec, earthquake magnitude M, and distance to epicenter r (as 

well as the site conditions of the selected ground motion records). The site conditions are 

characterized based on the average shear wave velocity to a depth of 30 m (98.43 ft) according to 

the USGS site classification criteria. 

The ground motions are characterized by the IM, and the choice of IM plays a crucial 

role both in running the fragility analysis and interpreting simulation results. Peak ground 

acceleration is adopted as the IM for earthquake input in this study, based on the linear 

consistency criterion suggested by Mackie and Stojadinović (2003) and with the consideration of 

its efficiency, practicality, and hazard computability as discussed by Padgett et al. (2008).  

5.3.2 Damage Index and Limit States 

The seismic responses of bridges are depicted and monitored by EDPs. Subsequently, the EDPs 

are related to the DI for various DSs using their corresponding LSs based on physical 

phenomenon or theoretical judgment. The fragility function method generally classifies the 

damage into four levels: slight, moderate, extensive and collapse damage, labeled here as DS 1, 

2, 3, and 4, respectively. For conventional highway bridges, columns—the most critical 

component—are often forced into the nonlinear range under strong earthquake shaking. A 

number of studies have developed the criteria for DI and corresponding LS based on damage 

status or loss of load-carrying capacity. Commonly used DI measures for columns are curvature 

ductility, displacement ductility, and residual displacement, etc., and the four damage states 

defined by HAZUS (FEMA 2007) are usually adopted. In this study, the curvature ductility, μκ , 
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is adopted as DI for columns, and the corresponding LS values are those adopted by Choi et al. 

(2004). 
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For bridges with seat-type abutments or isolation devices, the bearings might experience 

large displacements, resulting in damage of isolation devices and neighboring structural 

members in addition to damaging the columns. The damage states of isolation devices are 

determined based on experimental observation, as well as considering resulting pounding and 

unseating. Typically, either bearing displacement or shear strain is used to describe the damage 

states. Here, generic isolation bearings with mechanical properties resembling lead rubber 

bearings were used at the seat-type abutments and pier tops (if applicable), and the shear strain 

was used to capture the damage states in bearings. Table 5.1 lists the EDP, DI, DS, and 

corresponding LS definitions for these two components. Although the modern isolation bearings 

can experience shear strain up to 400% before failure, such large shear strain will result in large 

displacement, possibly causing significant pounding or unseating. Therefore, a maximum 250% 

shear strain is adopted, corresponding to 0.25 m (9.84 in.) maximum displacement.  

During earthquake shaking, piers and bearings may exhibit different component damage 

states that combine into a comprehensive damage state for the bridge system, which is hard to 

describe by only one component DI. Previous studies suggest that system fragility can be derived 

based on functionality or repair cost after earthquake (Mackie and Stojadinović 2007), or it can 

be generated based on component level fragility functions (Nielson and DesRoches 2007). In this 

study, a composite DS was designed (see Equation 5.7). The proportion ratio 0.75 for columns 

and 0.25 for bearings was determined synthetically by considering the relative component 

importance for load-carrying capacity during earthquakes and the repair cost after earthquakes. 

 

( )int 0.75 0.25       , 4
      

4                                                        or 4
Pier Bearing Pier Bearing

System
Pier Bearing

DS DS DS DS
DS

DS DS

⎧ ⋅ + ⋅ <⎪= ⎨
=⎪⎩

 (5.7)
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Table 5.1   Definition of component level damage index of columns and bearings. 

Component EDP or DI definition 
Slight 

(DS=1) 
Moderate  
(DS=2) 

Extensive 
(DS=3) 

Collapse 
(DS=4) 

Columns+ Section ductility μk μk >1 μk >2 μk >4 μk >7 

Bearings Shear strain γ γ>100% γ>150% γ>200% γ>250% 

+Choi et al. 2004 
 

5.3.3 Bridge Types  

Typical bridge designs were evaluated by reviewing the drawings of numerous bridges obtained 

from the Caltrans. Six bridge models (see Figure 5.2) were selected to represent the most 

common highway bridge types, with different variations of a multi-span straight bridge with 

single column construction. The bridge with pier bent (i.e., multiple columns), though not 

considered in this chapter, is another common type of construction in California and has been 

studied in Chapter 4 for lateral spreading scenarios. Model E1 represents a continuous bridge 

with monolithic abutments. In contrast to model E1, models E2-E6 all have seat-type abutments. 

Model E2 represents a continuous bridge with seat-type abutments. Model E3 is similar to Model 

E2 except that it has an expansion joint at the center of the mid-span. Model E4 is isolated at the 

pier tops with continuous deck, while model E5 has an expansion joint at the mid-span in 

addition to the isolation. In model E6, simply supported connections are adopted at the pier top, 

and the adjacent decks are pin connected to prevent collapse. The structural properties of bridge 

components are taken from two real Caltrans bridges that were built before 1971 and are 

therefore characteristic of older-vintage bridges designed before adoption of modern seismic 

codes. A previous study (Zhang et al. 2008) has shown that the location of expansion joints, if 

kept in a reasonable and practical range, has no obvious effect on the seismic response of bridges 

with straight alignment and symmetrical geometry, so here its location was not varied. 

5.3.4 Numerical Models of Bridges 

Numerical models were generated using software platform OpenSees. Elastic beam elements 

were used for the bridge deck, and nonlinear fiber section beam elements were used to model the 
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columns. The RC column was 1.83 m (72 in.) in diameter is reinforced with twenty-six No. 11 

longitudinal bars and No. 4 transverse reinforcements at 0.30 cm (12 in.) intervals. Figure 5.3a 

plots the force-displacement relationship of a single column from the pushover analysis using 

fiber elements in OpenSees. The force-displacement relationship of the column can be roughly 

approximated with a bilinear regression curve. Hence the column has an elastic stiffness of 

K1,C=1.10×105kN/m and characteristic strength of QC=1.36×103kN as indicated by the bilinear 

 

 

  

  

(a) E1: Monolithic Abutment & Continuous (b) E2: Seat Abutment & Continuous 

  

(c) E3: Seat Abutment & Continuous (with expansion 

joint) 

(d) E4: Seat Abutment & Continuous (with pier 

isolation) 

  

(e) E5 Seat Abutment & Continuous (with expansion 

joint and pier isolation) 

(f) E6: Seat Abutment & Simply supported pin 

connection 

     

Foundation Isolation bearing Gap Seat length Expansion joint Pin connection 

(g) Plot legend  

Figure 5.2   Sketches of the six bridge models.  
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curve; this represents a typical design for bridges built before 1971. The middle span is 30 m 

(98.43 ft) long while the other two spans are 20 m (65.62 ft) each. Seismic isolation bearings 

were modeled with bilinear springs for horizontal load-carrying properties and elastic springs for 

vertical properties (Kumar and Paul 2007). The bearing parameters were selected based on the 

optimum design parameters presented in Zhang and Huo (2009). Figure 5.3b plots the force-

displacement relationships of the bearing and its modeling parameters, K1,B, K2,B, and QB. Gap 

elements were employed to simulate the gap closing and the effects of pounding between the 

deck and abutments. Figure 5.3c shows the force-displacement relationship of the gap element 

with a 0.0254 m (1 in.) opening. The seat length [maximum 0.25 m (9.84 in.)] during earthquake 

shaking and lateral spreading was monitored and the analysis terminated if the seat length 

reduces to zero, i.e., unseating is impending. The SSI was simulated with springs and dashpots 

representing the stiffness and damping of foundations supporting columns and embankment at 

end abutments, whose properties were determined by the methods developed by Zhang and 

Makris (2002a, b). Table 5.2 summarizes the properties and modeling parameters of key bridges 

components. 
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Table 5.2   Bridge component properties and modeling parameters. 

 Deck Columns Bearings Gaps 

Properties 
Box girder 
with spans of  
20m/30m/20m 

Circular section 
(d=72in) with 26#11 
(longitudinal) and  
#4@12in (transverse) 
reinforcement 

Elastomeric rubber bearing 
for seat-type abutments and 
isolation at top of pier 

Gap distance: 
0.025m 

Modeling 
and 
parameters 

Elastic beam 
elements 

Fiber section beam 
elements  
K1,C=1.10×105kN/m 
QC=1.36×103kN 

Bilinear (horizontal) and 
linear (vertical) springs. 
QB=0.55QC K1,B=0.60K1,C 

K2,B=K1,B/30 

Gap elements:  
Δy=-0.025m 

 

5.4 FRAGILITY ANAYSIS FOR DYNAMIC SHAKING 

5.4.1 Analysis Example for Model E1 

Model E1 was studied first as an example to demonstrate the implementation of the PSDA and 

IDA methods. Using the PSDA method, Figure 5.4a shows the data points of the computed 

section curvature κ (rad/m) (EDP) versus the corresponding PGA (IM) of unscaled ground 

motions in logarithmic scale; a linear regression provides a reliable relationship between IM and 

EDP and an estimation of the standard deviation. Based on Equations 5.1 and 5.2, the parameters 

of the regression were obtained (a=0.00331 and b=1.866) while the standard deviation of the 

distribution was computed as ξEDP|IM=0.360. With Equation 5.3, the fragility data at each PGA 

level of the specified damage state could be calculated, and the fragility functions were then 

derived with these data, as shown in Figure 5.4b. 

With the IDA method, the 250 sets of records were scaled to 25 PGA levels from 0.06g to 

1.50g in 0.06g increments. The fragility functions were then derived following Equation 5.4, 

with the data from 6250 (250 ×  25) nonlinear dynamic analyses. Figure 5.5a shows the ‘raw’ 

fragility curves and the regression curves generated using cumulative normal (Equation 5.5) or 

lognormal (Equation 5.6) distribution functions. Both normal and log-normal distributions 

yielded similar results compared to the raw data. Figure 5.5b compares the fragility curves 

generated by the PSDA and IDA methods, respectively. Note that the two methods yield 

comparable results at slight and moderate damage states, but different results for extensive and 
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collapse states. The IDA method is generally more reliable than the PSDA method because the 

fragility functions are based on many more simulation cases and no pre-assumed relationship 

between the EDP and IM is assumed [some possible bias from the record scaling process has 

been pointed out by previous studies (Luco and Bazzuro 2007)]. Some errors or bias are 

introduced into the PSDA method due to a single assumption relating EDP to IM despite the 

damage states. In particular, the lack of large intensity earthquake motion records (as shown in 

Figure 5.1) may introduce errors to the PSDA results as the input motions are biased toward 

smaller intensity. This imbalance results in the discrepancy between PSDA and IDA methods 

observed in Figure 5.5b. 
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Figure 5.4   PSDA fragility analysis of Model E1. 
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5.4.2 Fragility Functions of Different Bridge Types 

Taking into consideration the possible bias of PSDA, the following analyses utilize the IDA 

method to generate fragility curves for all six bridge models shown in Figure 5.2. Figure 5.6 

compares the fragility curves of six different bridge models considered in this study for slight, 

moderate, extensive, and collapse damage states. The results show that models E2 and E3 

perform the least favorably among the six bridge types. The more severe damage seen in models 

E2 and E3 is attributed to the seat-type connection at abutments, which leads to smaller dynamic 

loads carried at abutments, resulting in more loads being transferred to the columns. In contrast 

to the seat-type abutment, the isolation bearings at the pier top reduced the damage experienced 

by the columns, which is reflected by much lower fragility curves of models E4 and E5 than for 

models E2 and E3. The expansion joint of model E3 did not make much difference in terms of 

the bridge response compared to model E2. A similar trend is seen between models E4 and E5 

for slight and moderate damage states. However, the expansion joint did make the isolated bridge 

more vulnerable to extensive and collapse damage, possibly attributable to the pounding between 

adjacent segments. Among all the models, model E1 performed the best for smaller earthquake 

intensities (i.e., PGA smaller than 0.7g for slight and moderate damage states and 1.0g for the 

extensive damage state), while model E6 performed the best for higher earthquake intensities for 

slight, moderate, and extensive damage states. The simply supported connection in model E6 

reduced the seismic energy transferred from the deck to the column significantly, hence 

protecting the column from greater damage potential. The pin connection also limited extreme 

damage to the bearings and the span collapse under larger earthquakes. Both factors contributed 

to the superior performance of model E6 under larger earthquakes. At the collapse damage state, 

model E1 (a continuous bridge with integral abutments) is clearly the best structural type. Figure 

5.6 shows that the structural characterizations of bridges play an important role in defining the 

damage potential of bridges under earthquake shaking. 
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5.5 COMPARISON OF FRAGILITY RESULTS FOR DYNAMIC SHAKING AND 
LATERIAL SPREADING 

5.5.1 Simplified Procedure to Derive Fragility Functions for Lateral Spreading  

Bridges can also experience liquefaction induced lateral spreading when subject to strong 

earthquakes. Embedded bridge components can attract large lateral loads from laterally 

spreading soil, particularly when a nonliquefied crust spreads laterally on top of underlying 

liquefied layers. The aforementioned six bridge models were then analyzed for lateral spreading 

cases, and fragility curves were derived to compare the similarities and differences between 

purely seismic dynamic shaking and lateral spreading. The equivalent static analysis procedure 

discussed in Chapter 2 was employed to simulate the bridge response under liquefaction-induced 

lateral spreading. In this procedure, free-field lateral spreading demands were imposed as 

displacements on the free ends of p-y springs attached to the bridge foundation, as shown in 

Figure 5.7. Inertia forces, which can occur simultaneously with lateral spreading forces, were 

imposed on the superstructure at connections with the piers and abutments, and also at the pile 

caps. The imposed inertia forces were consistent with the imposed free-field lateral spreading 

displacements based on the Newmark sliding block method (Brandenberg et al. 2007a). By 

analogy with the IDA method presented in the previous section, this analysis approach for lateral 

spreading is considered an “Incremental Static Analysis,” since free-field ground displacements 

are incrementally increased while the bridge damage is monitored. 
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(c) Extensive damage (d) Collapse damage 

Figure 5.6   Fragility curves of six bridge models under seismic shaking. 
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(a) Bridge under lateral spreading 

 

(b) Numerical modeling 

Figure 5.7   Numerical modeling of lateral spreading to bridges. 

Table 5.3   Probability properties of parameters of soil profile and foundation modeling. 

Parameter Median Negative Variation Positive Variation Distribution 

Crust Thickness Embankment 6.0m 4.5m 7.5m 
Normal 

In-situ Clay 3.0m 1.5m 4.5m 

Material Properties and Crust 
Strength1 

φ'sand=38º 
c'sand=20.0kPa 
Suclay=70.0kPa  

Median Crust 
Strength×0.46 

Median Crust 
Strength×2.17 Lognormal 

Δsand/Δcrust
2 0.5 0.16 0.84 Uniform 

Liquefied Sand mp 0.050 0.025 0.075 Normal 
y50 for p-y springs 

in crust 

Embankment y50=0.20m 
Median×0.5 Median×1.5 Normal 

In-situ clay y50=0.05m 

Axial Tip Capacity (Qtip) 1020.0kN per pile Median×0.5 Median×1.5 Normal 

Inertia Load3 amax=0.4g amax =0.2g amax =0.6g Normal 

Liquefied sand thickness 2.0m 1.0m 4.0m Lognormal 
1Crust strength (Pult) is computed by the procedure in Brandenberg et al. (2007a) and is assumed to be log-normally distributed.  
2Δsand/Δcrust is the ratio between the displacement at the top of the loose sand to the displacement of the crust. 
3Inertial load was increased linearly to reach amax at 0.5m of ground displacement, after which it was kept constant.  



149 

The above six models were also evaluated for their performance under the liquefaction-induced 

lateral spreading; they are labeled as models P1 to P6 to distinguish the differences in foundation 

modeling from models E1 to E6. All superstructure properties of models P1 to P6 were the same 

as in models E1 to E6, respectively. However, the pile foundations were modeled by bilinear 

beam elements on a Winkler foundation with p-y, t-z, and q-z spring elements to simulate the soil 

lateral resistance, axial shaft friction, and pile tip end bearing resistance, respectively. The soil 

profile used in this study was representative of sites with a nonliquefiable clay crust over 

liquefiable loose sand over nonliquefied dense sand. Variations in the soil parameters were based 

on the USGS database of CPT soundings in the San Francisco Bay Area (USGS 2007). Figure 

5.8 presents the sketch of a bridge founded on the soil profile. The layer properties and lateral 

spreading parameters are listed in Table 5.3 (as the median values). Soil properties were sampled 

from their respective distributions. From the information on soil profile, the properties of p-y 

elements were determined based on a nonliquefied soil profile and subsequently modified to 

account for the effects of liquefaction by (1) softening and weakening the p-y elements in the 

liquefied sand layer using a p-multiplier, and (2) softening (but not weakening) of the p-y 

elements in the nonliquefiable crust layer to account for the influence of the underlying liquefied 

sand using models derived by Brandenberg et al. (2007a). Softening of the p-y elements using 

this method indirectly accounts for the pinning effects of the bridge components on the spreading 

soils by coupling Newmark sliding block analyses with the load transfer behavior.  Pinning 

effects are considered more rigorously in other studies (e.g., Martin et al. 2002; Boulanger et al. 

2005). 

 

Embankment Fill

Clay
Liquefiable Sand

Dense Sand

Figure 5.8   Sketch of simulation for bridge and soil profile with liquefiable sand layer. 
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Slightly different from the procedure and results presented in Chapters 3 and 4, the fragility 

analysis in this chapter was simplified; the structural properties for each bridge type were not 

varied with variability introduced by foundation and soil properties mainly. To simplify the 

fragility analysis, only two loading patterns were adopted. Figure 5.9 presents the deformed 

shape of bridge model P1 under two possible load cases for liquefaction-induced lateral 

spreading. The results were obtained by imposing the displacements on the free ends of the p-y 

elements to model lateral spreading demands. In load case I (Figure 5.9a), lateral spreading 

occurred in the left embankment and left pier foundation. Although the displacement load of 

lateral spreading was applied on the left side of the bridge, it is the right column that experienced 

larger deformation and, therefore, experienced more severe damage in this loading case. This is 

due to the left-to-right displacement of the entire bridge, which acted like a system to the 

imposed spreading demands. In load case II (Figure 5.9b), only the left pier foundation 

experienced lateral spreading displacement load. The analysis results show that the left column 

suffered the most damage, but the damage was much smaller than in load case I given the same 

displacement magnitude. Figure 5.9 shows that the location of lateral spreading demands directly 

affects the bridge response and damage levels. Furthermore, damage was not restricted to the 

components exposed to liquefaction and lateral spreading, as loads may shift to other 

components in competent soil. Accurately predicting the areal extent of liquefaction and the 

amount of ground displacement is often difficult, and imposing many different load 

combinations may be required to identify the most critical conditions for a particular bridge. The 

influence of various lateral spreading displacement combinations was partially addressed in 

deriving the fragility functions presented in Chapter 4 as the lateral spreading features were 

treated as randomly distributed. 

5.5.2 Fragility Functions of Different Bridge Types under Liquefaction Induced Lateral 
Spreading 

Corresponding to a static simulation procedure, First Order Second Moment (FOSM) and Monte 

Carlo methods were generally adopted to generate fragility functions. The FOSM method 

assumes that both the input properties and output responses follow either normal or log-normal 

distributions, and applies only first order terms in Taylor’s expansion to estimate the mean and 
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(a) Load case I: Lateral spreading at left abutment and pier 

 

(b) Load case II: Lateral spreading at left pier 

Figure 5.9   Bridge deformations under two lateral spreading load cases. 
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Figure 5.10   Fragility curves generated with Monte Carlo method and FOSM method. 
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Figure 5.11   Fragility curves of six bridge models under lateral spreading. 

standard deviation of response if the mean and standard deviation of the input properties are 

known (Christian 2004), as shown below: 
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The Monte Carlo method selects a large number of input combinations of stochastic 

variables from the predetermined distribution and uses these combinations to compute the 

distribution of the output response (Christian 2004). As shown in Table 5.3, eight separate 

probabilistic parameters were considered in this study. Figure 5.10 depicts the fragility curves 

derived with Monte Carlo and FOSM method for bridges under load case I, expressed as damage 

probability versus free-field lateral spreading displacement (PGD). The two methods produce 
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nearly identical median values, while the FOSM approach predicts larger variance. The 

following analyses adopt the FOSM method to save on computational effort.  

The fragility curves of the six models were generated and compared in Figure 5.11. It is 

noted that the sequence of damage potential of the models under lateral spreading conditions is 

quite different compared to that under seismic shaking. Among the six models, model P1 

performed the poorest and model P5 performs the best. Because the static load induced by lateral 

spreading at abutments and one pier was transferred to the other pier through the deck, the 

isolation bearings at both abutments and pier tops reduced the loads exerted on the columns, and, 

consequently, mitigated the damage to the pier. The seat-type abutments in models P2 and P3 

resulted in a slightly smaller probability of damage compared to model P1. This observation is 

explained by the different loading mechanism due to lateral spreading. 

For the loading case I considered, the displacement loads were applied at the ends of left 

abutment and the left pier foundation. The seat-type abutment limited the maximum load that 

was transferred from the abutment to the columns, resulting in a smaller probability of damage 

for the columns. The isolation bearing at the column top also limited the force being transferred 

to the columns, resulting in a smaller probability of damage, a conclusion similarly drawn for the 

seismic shaking. The expansion joint of model P3 did not make much difference in terms of the 

bridge response compared to model P2. However, the expansion joint in model P5 notably 

reduced the damage probability under lateral spreading when compared to model P4. Here, the 

expansion joint offered less constraint compared to the continuous deck, transferring only the 

contact forces once the gap closed. For a similar reason, the model P6 with simply supported 

connections incurred more damage into the column and the whole bridge compared to models P4 

and P5. Similar to the analysis conducted of the models due to seismic shaking, the above 

fragility curves illustrate the effects of structural characterizations on the bridge response due to 

lateral spreading, although notably different from the cases under seismic shaking.  One 

important difference to consider when comparing damage due to shaking with that from lateral 

spreading is that shaking loads are transient, whereas lateral spreading displacements are 

typically largest at the end of shaking with some locked-in residual value. Hence, gaps at 

abutments and expansion joints that close due to lateral spreading may remain closed following 

an earthquake. 

Mean values of the fragility curves μIM represents the IM required to reach the specified 

damage state with 50% probability and, consequently, higher μIM , resulted in lower fragility 
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curves, i.e., better bridge performance. Hence, mean values of fragility functions μIM could 

possibly be a good indicator in evaluating the design effectiveness of different structural 

characterizations. Figure 5.12 compares the μIM values of reaching the slight, moderate, 

extensive, and collapse damage states for seismic shaking (Figure 5.12a), and lateral spreading 

(Figure 5.12b) loading conditions. The IM for the seismic shaking is the PGA of the input 

motion, while the IM for the lateral spreading situation is the free-field ground displacement. 

Clearly, the damage probabilities of different bridge models to seismic shaking and lateral 

spreading are quite different. In addition, the analyses in previous sections have demonstrated 

that structural characterizations may influence bridge response to seismic shaking and lateral 

spreading in different ways. Bridges with seat-type abutment (e.g., models E2~E3 and P2~P3) 

increased bridge damage under seismic shaking, but moderately protected bridges under lateral 

spreading conditions. Similar effects exist for expansion joints and simply supported 

connections. One striking structural property identified herein, is the effectiveness of pier 

isolation (e.g., models E4~E6 and P4~P6) in reducing the damages caused by both seismic 

shaking and lateral spreading. These conclusions could be very valuable for bridge engineers 

because a bridge designed and retrofitted to resist earthquake shaking only may not perform well 

under liquefaction-induced lateral spreading. 

 

Figure 5.12 Mean IM values for six bridge models to reach various damage states when 
subject to seismic shaking and lateral spreading. 
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5.6 SUMMARY 

In this chapter, the fragility functions of six different classes of bridges were derived when 

subjected to both seismic shaking and liquefaction-induced lateral spreading. Two approaches 

were implemented, PSDA and IDA, to derive fragility curves under seismic shaking, while 

FOSM and Monte Carlo methods were adopted to generate fragility curves under lateral 

spreading situation. It was found that the fragility functions of bridges subjected to either ground 

shaking or lateral spreading showed significant correlation with structural characterizations. 

Under seismic shaking, isolation at the tops of the piers and at the abutments benefited the 

bridge’s load-carrying capacity, but seat-type abutments made the columns more vulnerable. 

Furthermore, simply supported connections reduced the damage in columns, and expansion 

joints did not noticeably affect the bridge’s seismic resistance. In contrast, under lateral 

spreading, isolation at both pier top and seat-type abutments protected columns from damage 

because a portion of the displacement demand imposed by the spreading soils was 

accommodated by the isolation components. Expansion joints slightly benefitted the bridge 

response as the gap closing absorbed part of the displacement demand imposed by lateral 

spreading. The simply supported connection, however, performed less favorably compared to a 

design using a continuous deck with isolation on pier tops. In summary, bridges have different 

resistant capacities to seismic shaking and liquefaction-induced lateral spreading, and the 

differences are explained with the different loading and load carrying mechanisms. 
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6 Conclusions and Future Work 

6.1 RESEARCH FINDINGS AND CONCLUSIONS 

The contents of this report constitute several important contributions to the analysis of bridges in 

liquefied and laterally spreading ground.  First, the fragility functions provided in Chapter 4 are a 

significant improvement over previously-existing fragility functions for bridges in liquefied and 

laterally spreading ground. For example, the recommendations in HAZUS are known to be 

overly-conservative based on previous transportation network analysis simulations (e.g., 

Kiremidjian et al. 2006). This over-conservatism is largely because a systematic study to develop 

fragility functions for bridges in liquefied ground had simply not been conducted. The fragility 

functions presented in this report are significantly lower than the ones provided by HAZUS and 

in the opinion of the authors are much more reasonable. 

Second, the global equivalent static analysis method described in Chapter 2 is a novel 

approach that adds significant value to the typical local analysis methods most commonly used to 

design foundations in liquefiable soils. The manner in which loads are transferred among 

components of the bridge through the superstructure has a significant effect on the boundary 

conditions imposed on the tops of the pier columns, which in turn affects the ability of the bridge 

to resist lateral spreading. Although local analysis methods will continue to be the most popular 

method for designing foundations in liquefied ground, guidance is provided on appropriate 

boundary conditions for the top of the pier column to envelope the range of responses observed 

in the global analyses. 

Third, an example problem is provided showing in detail how the fragility functions can 

be incorporated into a PBEE framework to obtain mean annual rates of exceedance of various 

EDPs. The example began with a probabilistic seismic hazard analysis at a specific site, followed 

by a probabilistic liquefaction triggering evaluation, probabilistic lateral spreading ground 

surface displacement analysis, and finally integration with the fragility functions. This approach 
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shows tremendous promise as a more robust decision-making tool compared with prescriptive 

code-based approaches. 

Fourth, a comparison between the fragility functions for a common set of bridges for 

ground shaking in the absence of liquefaction and for those subject to liquefaction and lateral 

spreading is provided. The fragility functions clearly show that different structural configurations 

result in different trends in the fragility functions. Therefore, both hazards should be considered 

when appropriate for retrofit decisions and design. 

6.2 FUTURE WORK 

A primary motivation for the work presented in this report was the influence of the overly-

conservative fragility functions for bridges in liquefied ground on transportation network 

analyses. A natural progression of the work will be to implement these new fragility functions in 

the transportation network analyses to assess the reasonableness of the results compared with 

past earthquakes where liquefaction-induced damage has occurred. This type of analysis, beyond 

the scope of this report, will require coordination among various different research groups in the 

future. 

The fragility functions quantify probability of exceeding EDPs conditioned on free-field 

lateral spreading ground displacement—which is itself a highly uncertain random variable—that 

is conditioned on ground motion and soil properties. Accuracy of a PBEE result is therefore 

dependent on accuracy of the free-field lateral spreading displacement estimates. Different 

methods for estimating lateral spreading deformations often produce results that differ by more 

than one order of magnitude, indicating that the methodologies have not fully matured into 

reasonable agreement. Significant future research will be required to (i) gather high-quality case 

history information for liquefaction-induced lateral spreads, and (ii) validate prediction methods 

with the case history data. Particular focus should be placed on conditions that render 

significantly different predictions using the various methodologies to help resolve errors. 

The fragility functions were developed using static analysis methods. Work is currently 

ongoing to use dynamic inputs to the global bridge models to more realistically represent the 

effects of liquefaction and lateral spreading. These models are being used to validate the fragility 

functions developed with the static analysis procedures. 
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