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ABSTRACT 

Earthquake ground motions are typically recorded with one vertical and two horizontal 
components. It has become standard practice to represent the horizontal component of ground 
shaking in a manner that recognizes a range of amplitudes with changing azimuths. These variable 
amplitudes can be generically denoted RotDxx, where xx indicates the percentile of the horizontal 
amplitude range. RotDxx representations of ground motion are used with amplitude parameters 
(peak acceleration and velocity) as well as response spectral ordinates for a range of oscillator 
periods. The use of RotDxx ground motions was introduced in the NGA-West2 project, and 
analysis procedures for their computation were originally developed in Fortran by the fourth author 
of this report. Here we describe the implementation of these analysis procedures in R, resulting in 
an “R” package referred to as Rotated Combination of Two-Component ground motions (RCTC). 
We describe related algorithms for recovering accurate peak quantities from digital data (i.e., Sinc-
interpolation and subset selection), which are also implemented in RCTC. We verify the code 
outputs by comparing them with a prior Fortran code. RCTC takes as input two horizontal 
components of ground motion, their azimuths, and their time step, and returns various types of 
variables, including pseudo spectral acceleration for each horizontal component, RotDxx for xx=0, 
50, 100% as well as earlier, orientation-independent, geometric mean parameter GMRotI50. Other 
period-independent variables are also computed and outputted. We document here the code 
verification and provide instructions for its use. 
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1 Introduction 

Earthquake ground motions are typically recorded with triaxial accelerometers or seismometers 
having one vertical and two horizontal components. Prior to the NGA-West1 project [Power et al. 
2008], the geometric mean was typically used to represent horizontal component ground motions. 
The geometric mean is computed as: 

gm x yIM IM IM  (1.1) 

where IMx and IMy are the as-recorded intensity measures in the horizontal plane. Equation (1.1) 
can also be viewed as the exponent of the mean of the natural logs of IMx and IMy. Figure 1.1 
shows the 5% damped pseudo-acceleration response spectra based on the two individual horizontal 
component ground motions and the geometric mean recorded at the LA–Pico and Sentous site 
(RSN1000) during the 1994 Northridge, California, earthquake. 

 
Figure 1.1 5% damped pseudo spectra accelerations of two horizontal components and their 

geometric mean. Ground motions from LA–Pico and Sentous station, 1994 
Northridge, California, earthquake. 

During the NGA-West1 project, there was concern that the geometric mean has an arbitrary 
dependence on the azimuths of the two horizontal components of the recording instrument. As a 
result of this, an azimuth-independent geometric mean intensity measure was proposed and 
denoted GMRotI50 [Boore et al. 2006]. Alternate definitions for other percentiles (e.g., 
GMRotI100) can also be readily computed, but the median was used in NGA-West1. Figure 1.2 
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compares the geometric mean spectra with the range of GMRotIxx spectra (0, 50, and 100 
percentile). Note that GMRotI100 is not necessary larger than GMRotI00 and GMRotI50 at all 
periods, because GMRotI100 is not selected as a maximum value but is an outcome of a particular 
choice of penalty function, as described in Boore et al. [2006, Section 2.3]. 

Following NGA-West1, the maximum component replaced the geometric mean as the 
seismic design requirement in U.S. building codes. Although this is widely recognized as a poorly 
conceived definition of ground motion that introduces bias to risk analysis of structures [Stewart 
et al. 2011], the maximum component shifted the representation of horizontal ground motions 
away from geometric mean to a single-azimuth combination of the two components. Partially in 
response to that change in the ground-motion definition used in a large fraction of earthquake 
engineering practice, NGA-West2 [Bozorgnia et al. 2014] adopted the median-component ground 
motion, denoted RotD50 [Boore 2010]. RotDxx representations of ground motion are used with 
amplitude parameters (peak acceleration and velocity) as well as response spectral ordinates for a 
range of oscillator periods. Analysis procedures to compute RotDxx were originally produced in 
Fortran by the fourth author. 

In this report, we describe the Rotated Combination of Two-Component (RCTC) code for 
computing RotDxx in R (statistical computing software). The RCTC code computes RotDxx for 
xx=0, 50, and 100%, as well as the earlier, orientation-independent, geometric mean parameter 
GMRotI50. We verify RCTC against the original Fortran code and provide instructions for its 
installation and usage. 

 
Figure 1.2 Comparison between GMRotIxx spectra and geometric mean spectra. Ground 

motions from LA-Pico and Sentous, 1994 Northridge, California, earthquake. 
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2 Intensity Measure Computation 

This chapter describes the procedures used to compute GMRotI50 and RotDxx ground-motion 
intensity measures. The procedures are intended for use with two-component records from the 
PEER ground-motion database, which has already been instrument-corrected (as needed), and low- 
and high-pass filtered. Sections in this chapter describe required signal processing, the intensity 
measure computations, and verification.  

2.1 SIGNAL PROCESSING 

Because acceleration time series in the NGA-West2 database are instrument-corrected and filtered, 
the only required signal processing pertains to accurate identification of peak oscillator response 
given the signal time step.  

Figure 2.1(a) illustrates the problem with peak identification; the figure shows a short 
window in time of an acceleration time series at its native resolution with time step dt = 0.01 sec 
(100 samples per sec, sps) and a decimated version of the record with dt = 0.05 sec (20 sps). There 
are two notable differences between the 100 and 20 sps records: (1) the peak of the decimated 
version is lower than that of the native record, which demonstrates that had the resolution of the 
data acquisition unit been 0.05 sec or higher, the peaks would be mis-identified with simple linear-
interpolation between observations; and (2) some high-frequency features of the record, like the 
undulation in the negative peak near 12.9 sec, are lost in the decimation. 

To address the peak identification problem, Sinc interpolation is applied [Shannon 1998; 
Wikipedia, 2017]. Sinc interpolation is a method of obtaining an acceleration time series at a higher 
sample rate than the input time series by resampling the input acceleration under the condition that 
the resampled time series has no energy above the Nyquist frequency (fNyq) of the original record. 
The interpolation factor (IF) is defined as the factor by which the original time step is divided to 
provide the desired level of resolution. Sinc interpolation requires that IF is a power of 2. Figure 
2.1(a) shows a Sinc-interpolated version of the 20 sps record with IF = 8. It captures the majority 
of peaks better than the decimated version of record with 20 sps, but it does not capture the high-
frequency features of the record seen in the 100 sps signal. 

One of the principal benefits of Sinc interpolation is for the computation of oscillator 
responses. Figure 2.1(b) shows the response for a 0.1-sec oscillator with 5% of critical damping 
near the time of its peak response. Responses are shown for the 20 sps signal with IF = 1, 2, 4, 8, 
and 16. Not only do the responses obtained with the sinc-interpolated records with IF ≥ 4 capture 
the peak reasonably consistently, they provide a result nearly matching the PSA that would have 
been obtained using the 100 sps record. This demonstrates that Sinc-interpolation improves the 
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resolution of oscillator responses relative to the original 20 sps records, and that there is a 
saturation effect whereby beyond some limiting value of IF, further interpolation is not helpful. 

Because an acceleration time series cannot have energy above fNyq, the time series of 
oscillator responses for oscillators with natural frequencies above fNyq should be very similar to 
one with an oscillator frequency of fNyq.(The only reason for differences would be the effect of 
energy at lower frequencies than oscillator frequency on the responses.) As a result of these 
considerations, when selecting IF, it is sensible to seek to resolve oscillator responses only up to a 
maximum frequency of fNyq. 

 

Figure 2.1(a) Original time series with 100 samples per sec (sps), decimated version of original 
with 20 sps, and Sinc-interpolated time series of 20 sps record using IF = 8. All 
time series are shown over a narrow time interval encompassing the peak 
acceleration. Original acceleration time series is the first horizontal component 
recorded at LA–Pico and Sentous in the 1994 Northridge, California, earthquake 
(NGA-West2 RSN 1000). 
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Figure 2.1(b) Oscillator responses at 0.1 s for 20 sps record sinc-interpolated with IF = 1, 2, 4, 8, 
and 16. PSA shown for the original 100 sps record. Rd = relative displacement of 
oscillator. 

A common rule of thumb is to use 10 sample points for the response of an oscillator of 
period T (e.g., Nigam and Jennings [1969]; Alford, et al. [1974]; and Ebeling, et al. [1997]). To 
resolve oscillator responses to the maximum frequency of fNyq would then require a new sample 
rate dt  of 

1

10 10
Nyq

Nyq

T
dt

f
    (2.1) 

Because  1/ 2Nyqf dt , the time step becomes 

5

dt
dt   (2.2) 

and the interpolation factor is then, 

IF 5
dt

dt
 


 (2.3) 
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However, because IF must be a power of two, the next highest power of two beyond 5 is 
recommended, which is 8. 

The influence of IF on oscillator responses for a wide period range was evaluated using the 
example time series from Figure 2.1. Figure 2.2 shows the resulting pseudo-spectral accelerations 
(PSA) obtained using the 20 sps record with IF varied from 1 to 64. The plot shows no clear 
difference in PSA. Figure 2.3 magnifies the results from Figure 2.2 for a period range of 0.01 sec 
to 0.2 sec, and shows no clear difference in PSA when IF is greater than 4. Figure 2.4 shows the 
ratio of PSA for different IF values relative to PSA for IF = 8. Figure 2.4 shows that sensitivity of 
PSA to IF disappears for IF ≥ 8. This confirms the hypothesis presented earlier: that the maximum 
frequency that can be reasonably resolved is fNyq, which in turn justifies no greater level of 
interpolation than 8. 

 

Figure 2.2 RotD50 PSA using decimated record in Figure 2.1 at time step 0.05 sec with 
different interpolation factors. 

 

Figure 2.3 Magnified plot of Figure 2.2 from 0.01 to 0.2 sec. 
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Figure 2.4 Ratio of RotD50 PSA referenced to the results with interpolation factor IF = 8. 

Returning now to the notation of the RCTC code, following application of the Sinc-
interpolation procedures, the modified time series (with time step dt  are denoted 1in

a  and 2in
a ). 

The interpolation scheme greatly increases the number of data points in both the ground 
accelerations used to compute oscillator responses and the oscillator displacement time series 
(denoted 1in

Rd  and 2in
Rd ). To save memory and speed up calculation, a subset selection function 

is applied to oscillator displacement time series 1in
Rd  and 2in

Rd , where only data points with 
amplitudes greater than or equal to a threshold value are retained. The threshold is defined by: 

    1 2level min max , max
in in

c Rd t Rd t          (2.4) 

where c is a fraction that defaults to 0.7, and  1max
in

Rd t    and  2max
in

Rd t    are the peak or 

trough values for the two components of oscillator response. The portions of the oscillator response 
time series that are retained for the computations are then identified as: 

       2 2
1 1 2 2 1 2, if level;

skip, otherwise;

in in in inout outRd j Rd Rd j Rd Rd i Rd i   

 (2.5) 

where 1out
Rd  and 2out

Rd  are the output time series after subset selection. 

2.2 DEFINITIONS OF GMROTIXX AND ROTDXX 

GMRotIxx is an orientation-independent geometric mean ground motion intensity measure 
[Boore, et al, 2006], where xx denotes the percentile within the set of geometric means for a given 
period. NGA-West1 uses GMRotI50. The procedure to compute GMRotI50 is as follows:  

1. Apply Sinc interpolation with IF = 64 to obtain 1 ( )
in

a t  and 2 ( )
in

a t ; 
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2. Using 1 ( )
in

a t  and , compute 5%-damped oscillator displacements within the 

usable range of oscillator periods Ti, to obtain  1 ;
in iRd T t  and  2 ;

in iRd T t ; 

3. Utilize the subset selection function to obtain a subset of oscillator response time 

series for the subsequent calculations,  1 ;
out iRd T t  and  2 ;

out iRd T t ; 

4. For applicable time intervals in which both  1 ;
out iRd T t  and  2 ;

out iRd T t are 

defined, multiply the two oscillator time series by the rotation matrix, 

cos sin

sin cos
k k

k
k k

R
 
 

 
   

 (2.6) 

where k , is an angle of rotation relative to the as-recorded accelerometer azimuth 
of the first horizontal component, taken from 1 to 90 in 1 increments (the 1 
increment is fixed in RCTC). 

The rotated components can be expressed as: 

     1 1 2; ; ; cos( ) ; sin( )
out outROT k i i k i kRd T t Rd T t Rd T t     (2.7a) 

     2 1 2; ; ; sin( ) ; cos( )
out outROT k i i k i kRd T t Rd T t Rd T t      (2.7b) 

5. Find the maximum amplitude for each rotated oscillator time series for different 
periods Ti. The two components corresponding to the response spectral acceleration 
RotPSA1 and RotPSA2 with rotated angle k  can be obtained by multiplying the 

maximum amplitude of displacement by 
2 2i iT   below: 

   2
11 ; max ; ;k i i ROT k iRotPSA T Rd T t       (2.8a) 

   2
22 ; max ; ;k i i ROT k iRotPSA T Rd T t       (2.8b) 

6. Calculate the geometric mean of two components of response spectral acceleration 
RotPSA1 and RotPSA2 using Equation (1.1) for the different periods Ti and rotation 

angles  so that the  ;k iGMRotD T matrix is obtained. The  ;k iGMRotD T  

matrix has a length (number of rows) to accommodate the realizations of k  and a 
width (number of columns) to accommodate the number of periods Ti. In the TCTC 
code, there are 90 rows and 111 columns; 

7. Compute the penalty function for each rotation angle by the equation: 

   
 

2

1

;1
penalty 1

50

h
k i

k
per ii

GMRotD T

N GMRotD T






 
   

 
  (2.9) 

where Nper is the number of usable oscillator periods and  50 iGMRotD T  is the 

median value of  ;k iGMRotD T for each specific oscillator period Ti; [Note that 

2 ( )
in

a t

k
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the penalty function in Equation (2.9) is set up for median response, but alternative 
percentiles could in principal be used]; 

8. Find the rotation angle min  that minimizes the penalty function; and  

9. GMRotI50 is taken as the row of  ;k iGMRotD T  for which min  . 

RotDxx is a period-dependent, component-based (not geometric mean) measure of ground 
motion [Boore 2010], which was used in the NGA-West2 project. RotDxx uses the two 
orthogonal-component horizontal time series to compute ground motions for a range of azimuths. 
Beginning with the Sinc-interpolated ground motions, the component of ground motion rotated by 
angle k  from two as-recorded azimuths is calculated as: 

     1 2; ( )cos ( )sin
in inROT k k ka t a t a t     (2.10) 

We consider k  from 1 to 180 in 1 increments. 

Traditionally, response spectra would be computed from time series  ;ROT ka t . Instead, 

we compute response spectral displacements for the 1in
a and 2in

a  time series, apply subset 
selection, and then compute oscillator displacements for rotation angle k  using the following 
modified form of Equation (2.10): 

     1 2; ; ; cos( ) ; sin( )
out outROT k i i k i kRd T t Rd T t Rd T t     (2.11) 

Pseudo spectral accelerations are then taken as: 

   2; max ; ;k i i ROT k iRotPSA T Rd T t       (2.12) 

This operation produces the same result as directly computing spectral displacements from 

 ;ROT ka t  because the oscillator response operation is linear1. 

The steps in the computations, as implemented in RCTC are as follow: 

1. Apply the same procedure as in steps 1 to 3 of the GMRotI50 calculation to obtain 
 and ;  

2. Apply Equation (2.11) to obtain oscillator displacements  ; ;ROT k iRd T t  for k  = 

1 to 180 in 1 increments., as well as pseudo-spectral accelerations 

 ;k iRotPSA T ; 

3. Form a RotPSA matrix with a length (number of rows) to accommodate the 
realizations of k  and a width (number of columns) to accommodate the number 
of periods Ti. The RCTC code uses 180 rows and 111 columns; 

4. Take RotD00, RotD50, and RotD100 as the minimum, median, and maximum 
values in the RotPSA matrix for each oscillator period Ti. 

                                                 
 
1 http://www.daveboore.com/daves_notes/notes_on_revisions_to_smc2psa_rot_gmrot_v1.0.pdf. 

 1 ;
out iRd T t  2 ;

out iRd T t



10 

Note the Step 2 in this procedure is similar to Step 4 in the GMRotI50 calculation. In 
particular, the first 90 rows of RotPSA are the same as RotPSA1, and rows 91–180 in RotPSA are 
the same as RotPSA2. This occurs because for 90 < k  < 180, 

   1 2; cos( ) ; sin( )
out outi k i kRd T t Rd T t  =    1 22; sin( ) 2; cos( )

out outi k i kRd T t Rd T t     , 

where the left side is from Equation (2.11), and the right side is what would be provided by 
Equation (2.7b) for 90 < k  < 180. In RCTC, we take advantage of this result and use the 
intermediate values from the calculation of GMRotI50 to compute RotDxx. 

2.3 VERIFICATION  

We verified the RCTC code against a Fortran code prepared by the fourth author using 500 pairs 
of horizontal ground motions for 111 different oscillator periods from 0.01–20 sec. We used c = 
0.7 for these computations; see Equation (2.4). The ground motions were randomly selected from 
the NGA-West2 database. The misfit between the two codes was quantified by the relative 
difference, which is calculated as: 

ref trial

ref

100%
V V

V
 
   (2.13) 

where Vref is the reference value (for the present calculation, this is the result returned by the 
Fortran code), and Vtrial is the trail value from RCTC being assessed in the verification exercise. 
The median and maximum relative differences for both GMRotI50 and RotDxx are shown in Table 
2.1. The differences are small, and we consider the RCTC implementation to be verified. 

Next, we investigate the sensitivity of results to scalar , which is used in Equation (2.4) to 
set subset size. If  were set to zero, the entire time series will be used in the component 
combination calculations. This is computationally intensive due to the large number of time steps 
introduced by Sinc interpolation but provides the most rigorous point of comparison. We consider 
scalars  = 0, 0.5, and 0.7. Table 2.2 shows error terms computed taking the reference as 0.5 and 
the trial as 0.7, and the reference as 0 and trial as 0.5. We use 496 pairs of randomly selected time 
series for the 0.5 to 0.7 comparison and 190 pairs of time series for the 0 to 0.5 comparison. 

The use of  = 0.5 produces error only for RotD00 and exact results otherwise. Use of  = 
0.7 gives very small errors for RotD50 and RotD100 but larger errors otherwise. Fraction  = 0.7 
(default value in RCTC) is recommended if the user is mainly interested in RotD50 and RotD100, 
while fraction  = 0.5 is recommended if GMRotI50 is also of interest. Calculation of RotD00 
requires setting fraction  = 0. 
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Table 2.1 Relative differences between Fortran and R codes for intensity 
measured computations using 500 randomly selected ground 
motions. 

 GMRotI50 RotD00 RotD50 RotD100 

Maximum   (500 motions, 111 periods) 2.210-3% 4.110-3% 1.810-3% 2.010-5% 

Median   (500 motions, 111 periods) 8.210-6% 1.010-5% 9.010-6% 9.310-8% 

Maximum   (500 motions, usable periods) 7.210-5% 1.110-4% 8.510-5% 7.910-7% 

Median   (500 motions, usable periods) 0% 0% 0% 0% 

 

Table 2.2 Comparison of results in the form of error terms for alternate values 
of scaling parameter  = 0, 0.5, and 0.7 

 GMRotI50 RotD00 RotD50 RotD100 

Maximum   (0.5 vs 0.7;  

496 motions, 111 periods) 
47.2% 69.6% 1.6510-11% 1.6610-13% 

Median   (0.5 vs 0.7; 

496 motions, 111 periods) 
0% 0% 0% 0% 

Maximum   (0 vs 0.5; 

190 motions, 111 periods) 
0% 51% 0% 0% 

Median   (0 vs 0.5; 

190 motions, 111 periods) 
0% 0% 0% 0% 
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3 Input and Output files of RCTC 

3.1 INPUT FILES 

RCTC can accept input time series formatted in different ways. The default is the PEER-formatted 
paired horizontal-component acceleration time series data downloaded from the NGA-West2 
database, each component of which has an “.AT2” extension. As shown in Table 3.1, other 
available input data formats include COSMOS, SMC, and a simple single column of data with a 
time step provided in the first row of the file (the examples of each format are showed by 
screenshots in Appendix A). PEER-formatted data matches that of NGA-West2 data, but is given 
its own column in Table 3.1 due to the present lack of a flatfile implemented into RCTC for non-
NGA-West2 PEER data. 

To use RCTC, a folder named Inputdata needs to be created. All data should be placed into 
this folder. Any number of time series pairs can be used. An example is showed by screen shot in 
Figure 3.1. In the case of PEER-formatted data for the NGA-West2 project (for which a flatfile is 
currently available), the file naming protocol is RSNxxx_textstring1_textstring2.AT2 (or 
RSNxxx_textstring1.AT2), with two files per recording (one for each horizontal component). RSN 
indicates record sequence number, where xxx is the number. RCTC reads the RSN, which allows 
the record to be located in a flatfile (e.g., from NGA-West2) and to obtain usable frequencies. 
RCTC then cross-checks the subsequent text strings (separated by underscores _) against azimuths 
in the flatfile, allowing the azimuth associated with the file to be identified. 

Ground-motion data generated as part of the NGA-Sub and NGA-East projects also follows 
the PEER format. Accordingly, the RSN in the file names are used to pair two horizontal-
component ground motions. However, because flatfiles for these data are not implemented in 
RCTC, azimuths and usable frequencies cannot be recognized automatically. We expect to add 
these flatfiles to RCTC in the future when they become public; in the meantime, ground motions 
from these projects can be analyzed with some additional data entry in the same manner as non-
PEER data, which is described below. 
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Table 3.1 The summary information for each of the input data formats. 

 NGA-West2 PEER formatted COSMOS SMC 
Single column 

data 

Resource 
NGA-West2 

database 
NGA-Sub, NGA-

East 
Strong-Motion 

Virtual Data Center 
USGS Users collected 

Need to change 
filenames? 

No, two 
separate files, 
one for each 
horizontal 
component  

No, two separate 
files, one for each 

horizontal 
component 

Yes, one file 
contains all 
components  

Yes, two separate 
files, one for each 

horizontal 
component 

Yes, two separate 
files, one for each 

horizontal 
component 

Time step 
Read from 

headers 
Read from headers Read from headers 

Read from 
headers 

Read from data 

Azimuth angle  
Read from 

flatfile 
Users defined, 
Otherwise zero 

User defined, 
Otherwise zero 

User defined, 
Otherwise zero 

User defined, 
Otherwise zero 

Usable periods 
Read from 

flatfile 

Users defined, 
otherwise 0(min) 
and 10s(max) are 

used 

Users defined, 
otherwise 0(min) 
and 10s(max) are 

used 

Users defined, 
otherwise 0(min) 
and 10s(max) are 

used 

Users defined, 
otherwise 0(min) 
and 10s(max) are 

used 

Unit of input 
acceleration 

g g cm/sec2 cm/sec2 g 

 

For non-PEER data, the file names uploaded to the Inputdata folder should contain station 
identifiers so that the code can identify paired components from the filenames. This will generally 
require the re-naming of files. These station identifiers can be text or numerical strings. This file 
re-naming enables RCTC to identify paired horizontal component files (two per recording, except 
for COSMOS format). This can be undertaken for individual files by renaming filenames as 
xx_xx_xx, where xx represents station name, sensor number, and component index, respectively, 
with text strings separated by underscores. For instance, LA-BH_1_H1 and LA-BH_2_H1 are two 
recordings by the first horizontal component from station LA-BH. The former was recorded by 
sensor 1 and the later by sensor 2. This occurs when two sensors are installed at the same station 
in a vertical array. For the more typical case of a single sensor at a given station, no sensor number 
need be specified. For COSMOS format in which all components of ground motions are included 
in one file, then RCTC will only read one file for all calculations instead of two paired files. In this 
situation, the filenames can be LA-BH_1_H12 and LA-BH_1_H12 for two recordings from station 
LA-BH. Component index “H12” indicates that both horizontal components are contained in the 
file. 

For non-NGA-West2 data, including NGA-East and NGA-Sub data, azimuths and usable 
periods are specified as arguments in the IMplot function in RCTC. This function is described 
further in Section 4.2. Time steps of all these data can be read from headers or data of the data file; 
see Table 3.1. Except for COSMOS (since it contains everything in one file), vertical motion data 
files should not be loaded into the Inputdata folder. 
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For relatively automated processing of large amounts of files, native file names can be 
converted to standardized file names using the nametransfer function in the RCTC package, as 
described further in Section 4.2. 

Figure 3.1 shows an example of Inputdata folder, which is created and placed in the folder 
of test on the desktop. There are three pairs of horizontal component ground motions downloaded 
from NGA-West2 database are saved in Inputdata folder. 

 

Figure 3.1 Screen shot showing Inputdata folder. 

3.2 OUTPUT FILES 

RCTC has two folders containing output files: Outputdata and Outputplot. These two folders will 
be generated in the same directory as the Inputdata folder when running the function IMplot in the 
RCTC package. The Outputdata folder contains two csv files for each horizontal ground motion 
pair and a summary file. One csv file is named as “xx_dep.csv”, and another is named as 
“xx_indep.csv” (xx stands for RSN for NGA-West2 data or station name and sensor number for 
others). The parameters in these two files are explained in Table A.1 of the Appendix B. Figure 
3.2 shows the resultant files after running the function of IMplot. 

 

Figure 3.2 Screen shot showing generated Outputdata and Outputplot folders. The 
spreadsheets in the Outputdata folder and the figures in the Outputplot folder are 
obtained by running the IMplot function. 
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The summary file includes RSN, EQID, maximum and minimum usable frequencies, and 
RotD50 values for PGA, PGV, PGD, and pseudo spectral ordinates. These median outputs can be 
changed to other percentiles (00 or 100) by changing the input argument combine_index in the 
function IMplot. This function is also illustrated in Section 4.2. 

Outputplot also contains pseudo-spectral acceleration versus periods plots using 
GMRotI50, PSA for two as-recorded horizontal components, and RotDxx for xx = 00, 50, and 
100. 
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4 Installing and Using RCTC 

4.1 INSTALLATION 

The required steps to install RCTC are presented below and are accompanied by screen shots. 

Mac users:  

1. Make sure the required packages, Rcpp and pracma, are installed. They can be 
installed by executing the following command in R: 

install.packages(c('Rcpp', 'pracma')) 

2. Download and install Xcode in App Store. 

3. Change directory in Terminal to the folder where the main RCTC file was saved 
following download (RCTC_0.1.0.tar.gz file). Execute the following command:  

R CMD INSTALL RCTC_0.1.0.tar.gz 

This will install the RCTC package. Then users can type and run the following 
command to load and use RCTC library: 

library(RCTC) 
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Figure 4.1 Screen shot showing installing Rcpp and pracma packages in R console, and 
navigating directory and installing RCTC in Terminal. 

 

 

Figure 4.2 Screen shot showing adding path of Rtools into system environment path during 
installation by selecting checkbox. 
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In Figure 4.1, the left side of the screen shows the R console, and the right side shows the 
Terminal. In the Terminal, the first command navigates to the directory containing the RCTC file 
(the desktop in this case). Subsequent lines in the Terminal execute the command to install RCTC. 

Windows users:  

1. Make sure the required packages, Rcpp and pracma, are installed. The procedure 
to install these packages is the same as that in Mac. 

2. Download and install Rtools. The link to download Rtools is here: https://cran.r-
project.org/bin/windows/Rtools/. Select the version compatible with the local 
version of R. For example, download Rtools34.exe if you are using R 3.4.x. Select 
the checkbox for adding the path into the system; see Figure 4.2. 

3. Add the file path for R into the system environment path, which can be done using 
Windows CMD. An example for adding the R path is shown in Figure 4.3. Note 
the actual path of R will vary and is user-specified. For instance, the path of R in 
Figure 4.3 is C:\Program Files\R\R-3.4.3\bin.  

If the path for Rtools was not established during step 2 showing in Figure 4.2, this 
path can be added using the same procedure shown in Figure 4.3. The applicable 
paths from the root directory are: C:\Rtools\bin; C:\Rtools\perl\bin; 
C:\Rtools\MinGW\bin. Actual paths should be modified to reflect the location of 
Rtools.  

4. Go to Windows CMD, and navigate to the folder where the main RCTC file was 
saved following download (RCTC_0.1.0.tar.gz).  Execute the following command: 

R CMD INSTALL RCTC_0.1.0.tar.gz 

This will install the RCTC package so that it can be used by issuing the following 
command: 

library(RCTC) 
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Figure 4.3 Screen shot showing Windows CMD and three commands for installing RCTC. 

Figure 4.3 shows three commands. The first command adds R into the system environment. 
The second command navigates to the directory where the RCTC downloaded file is saved. The 
last command installs the RCTC package. 

 

4.2 IMPLEMENTATION 

There are seven functions in the RCTC package. If data are PEER formatted, only the IMplot 
function is needed. For other formats, if only response spectra are needed, the required functions 
are IMplot and, if files re-naming is to be automated, nametransfer. An additional two functions 
are provided for users interested in outputting Sinc-interpolated acceleration time series and/or 
spectral displacements. Details of the four functions are given below. 

IMplot: This is the main function to compute response spectra and generate spreadsheets and plots. 
There are nine input arguments, as follows: 

1. inputpath specifies the location of the Inputdata folder where all data are saved; 

2. datatype is a string, containing options “ngaw2”, “nga”, “cosmos”, “smc”, or 
“timeseries”. “ngaw2” represents the downloaded data from NGA-West2 database, 
while “nga” stands for the PEER formatted NGA-Sub and NGA-East data. The 
reason we distinguish them is that flatfiles for NGA-Sub and NGA-East data are 
not presently included in the RCTC package, and their azimuths and usable 
frequencies cannot be recognized by RCTC automatically. “cosmos” and “smc” are 
data formats from Strong-Motion Virtual Data Center and USGS, respectively. 
“timeseries” consists of a one column array. The array has the time step in the first 
row of the column and acceleration values below. The units of each data format are 
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summarized in Table 3.1. Data not in the right units should be converted before 
using RCTC. Data that are not downloaded from PEER should have files names 
adjusted as described in Section 3.1, which can be automated by using the 
nametransfer function. The operation of this function is described further below. If 
an error occurs that is related to data format, the easiest remedy is to format the data 
as a column vector (“timeseries” option); 

3. tmax4penalty_in and tmin4penalty_in are the maximum and minimum periods 
used for calculation of the penalty function [Equation (2.9)] (default values are 10 
and 0, respectively). The specification of these variables is only needed if the 
maximum and minimum usable frequencies for the ground motion are not available 
from NGA-West2 flatfile. Their values will be obtained from NGA-West2 flatfile 
automatically if the input data are from NGA-West2 database; 

4. combine_index is used to specify the value of xx for RotDxx. 00 is used for 
RotD00, 50 is for RotD50, and 100 is for RotD100. The default is 50; 

5. ang1 is the as-recorded azimuth angle of the first horizontal component. It can be 
obtained automatically from NGA-West2 flatfile if the input data are downloaded 
from NGA-West2 database. Otherwise, users need to provide this angle. The 
second component is assumed to be 90 clockwise from ang1. If ang1 is not 
specified, a default value of zero is used; 

6. damping is the fraction of critical damping for which the oscillator response is 
computed (expressed as decimal). The default is 0.05; 

7. fraction is the scalar  (Section 2.1) used to select the subset size. The default is 0.7 
and guidance on selection is provided in Section 2.3; and 

8. Interpolation_factor specifies the degree of interpolation, as described in Section 
2.1. The default is “auto”, meaning the desired value of interpolation factor will be 
computed automatically. Users can also specify a value, which should be a power 
of 2. 

An example script could be: 

IMplot(inputpath = "/Users/PFW/Desktop/test/Inputdata", datatype = "ngaw2", 
tmax4penalty_in = 10, tmin4penalty_in = 0, combine_index = 50, ang1 = 0, damping = 
0.05, fraction = 0.7,  Interpolation_factor = "auto") 

nametransfer: This function changes filenames into standard forms that can be read by RCTC. 
This operation is not required for the “ngaw2” and “nga” data type (data downloaded from PEER) 
or if users manually rename data files as instructed in Section 3.1. There are five input arguments: 

1. filedir1 and filedir2 are file paths (directory + filenames) of the first and the second 
horizontal component of ground motions; 

2. stationname is the station name; 

3. sn is the sensor number. If there is more than one sensor at the station, users should 
enter separate sns for each; 
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4. outputdir is the directory where renamed files are saved. It can be the Inputdata 
folder.  

An example application of the nametransfer function is illustrated in Figure 4.4. In this 
example, there two sets of three-component time series, from one event and two different sensors 
at the same station. There are two horizontal components and one vertical component for each 
sensor. They are placed in '/Users/PFW/Desktop/RCTC' directory. The file 20160101231556A1 
and 20160101231556A2 are paired horizontal ground motions for the first sensor, 
20160101231556A4 and 20160101231556A5 are paired horizontal ground motions for the second 
sensor. File 20160101231556A3 and 20160101231556A6 are their corresponding vertical ground 
motions. Inputdata folder is the destination directory for renamed files. The scripts in R for using 
nametransfer to change filenames and place the renamed files into Inputdata are as follows: 

nametransfer(filedir1 = '/Users/PFW/Desktop/RCTC/20160101231556A1', filedir2 = 
'/Users/PFW/Desktop/RCTC/20160101231556A2', stationname = 'LA-BH', sn = 1, 
outputdir = '/Users/PFW/Desktop/RCTC/Inputdata') 

nametransfer(filedir1 = '/Users/PFW/Desktop/RCTC/20160101231556A4', filedir2 = 
'/Users/PFW/Desktop/RCTC/20160101231556A5', stationname = 'LA-BH', sn = 2, 
outputdir = '/Users/PFW/Desktop/RCTC/Inputdata') 

Figure 4.5 shows the files in the Inputdata folder after execution of the above commands. 

 

 

Figure 4.4 Screen shot showing time series files that will be renamed and moved to the 
Inputdata folder. 
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Figure 4.5 Screen shot showing the files that have been renamed and placed into the 
Inputdata folder by the nametransfer function 

Note that if the file names of COSMOS format data need to be renamed (one file contains all 
ground-motion components), just set filedir1 and filedir2 the same file path, then RCTC will 
standardize their file names. 

The following functions are subroutines called by the main function IMplot. Users do not 
need to use these directly unless spectral displacements or Sinc-interpolation acceleration time 
series are desired as outputs.  

PS_cal_cpp: This function computes pseudo-spectral accelerations and spectral displacements. 
There are five input arguments: 

1. data is an acceleration time series array; 

2. period_t is an array of oscillator periods; 

3. damping is damping ratio, expressed as a decimal (default value is 0.05); 

4. time_dt is the time step in seconds; and 

5. type_return is a dummy variable controlling output type, set to either 1 or 2. If 1 is 
selected, it returns a two-row matrix with actual spectral acceleration in the first 
row and PSA in the second row. If 2 is selected, it returns a row vector of spectral 
displacements. 

Interpft: This function applies Sinc interpolation to reduce the time step and returns a time series 
with more data points than in data. This function has two inputs: 

1. data is as defined above; and 

2. interpolation_factor specifies the degree of interpolation and should be a power of 
two. 

Please contact github (https://github.com/wltcwpf/RCTC/issues) with any issues or suggestions. 
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5 Summary and Conclusions 

The standard of practice for representing the horizontal amplitude of ground motions recognizes 
the range that occurs with changing azimuths. These variable amplitudes can be generically 
denoted as RotDxx, where xx represents a percentile ranging from null to 100%. This definition 
was introduced by Boore [2010] and adopted by the NGA-West2 project [Bozorgnia et al. 2014]. 
Software for computing RotDxx was originally developed by the fourth author as a Fortran code. 
The purpose of the work described in this report was to summarize in one document the complete 
analysis procedure, including the computation of response spectral ordinates using Sinc-
interpolation and the RotDxx ordinates, and to introduce an open-source package presented in R 
and referred to as Rotated Combination of Two-Component ground motions (RCTC). 

RCTC computes pseudo-spectral acceleration for each horizontal component, RotDxx for 
xx = 0, 50, 100%, GMRotI50, and other period-independent variables by inputting two horizontal 
components of ground motion, their azimuths, and their time step. It implements the Sinc-
interpolation and subset selection algorithms to recover accurate peak quantities from digital data. 
The code was verified with the original Fortran code for RotDxx calculation developed by the 
fourth author. The instructions for installation and usage of RCTC are given in Chapter 4 of this 
report. 

The package and report can be downloaded from PEER website. Updates of RCTC in the 
future are planned when flatfiles for the NGA-East and NGA-Sub projects are publically released.  
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Appendix A Screenshots of each Data Format 

 

Figure A.1 Screen shot of acceleration time series in PEER format. 

 

 

Figure A.2 Screen shot of acceleration time series formatted as a vector with time step in first 
row (‘timeseries’ option). Units are in g. 
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Figure A.3  Screen shot of acceleration time series in COSMOS data format as described here2. 
Data downloaded from Strong-Motion Virtual Data Center is formatted in this 
manner and contains three components of acceleration. Units are cm/sec2. Data in 
this format should use files renamed manually or with nametransfer function. 

 
 

                                                 
 
2 https://www.strongmotioncenter.org/vdc/cosmos_format_1_20.pdf. 
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Figure A.4  Screen shot of acceleration time series in SMC data format as described here3. 
Units are cm/sec2. Data in this format should use files renamed manually or with 
nametransfer function. 

  

                                                 
 
3 https://escweb.wr.usgs.gov/nsmp-data/smcfmt.html. 
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Appendix B Parameters Explanations 

Table A.1 Period dependent and period independent variables calculated by 
RCTC in spreadsheets. 

Notations in 
spreadsheet 

File name 
(xx stands for 

recording’s name) 
Descriptions 

PSA_1, PSA_2 xx_dep.csv Pseudo spectral acceleration of two ground motions; unit 

is in g. 

Absoulte_acc_1, 

Absolute_acc_2 

xx_dep.csv Spectral acceleration of two ground motions; unit is in g. 

PSA_gm_ar, 

PSA_larger_ar 

xx_dep.csv Geometric mean and the larger of two PSAs; unit is in g. 

GMRotI50, RotD00, 

RotD50, RotD100 

xx_dep.csv The orientation-independent geometric mean, and the 

minimum, median, and maximum of orientation-

dependent parameters; unit is in g. 

RotD00_ang, 

RotD100_ang 

xx_dep.csv The azimuth angles of minimum and maximum 

orientation-dependent combinations of two ground 

motions; unit is in g. 

Num_points xx_dep.csv The number of subset selected points in the response 

displacement time series  

npts1, npts2 xx_indep.csv The number of points in Sinc-interpolated acceleration 

time series 

tmax4penalty, 

tmin4penalty 

xx_indep.csv The maximum and minimum periods used to calculation 

penalty function. They are from NGA-West2 Flatfile if 

available, otherwise, they are user defined; unit is in sec. 

Damping,  

Lowest usable freq, 

Highest usable freq 

xx_indep.csv The damping ratio (in decimal), and the minimum and 

maximum usable frequencies (in Hz). 

GMRotI50angle xx_indep.csv The azimuth angle which minimizes the penalty function 

(in degrees). 

PGA_GMRotI50, 

PGV_GMRotI50, 

PGD_GMRotI50,  

xx_indep.csv The orientation-independent geometric mean of two 

ground motions for peak ground acceleration (g), peak 

ground velocity (cm/sec), and peak ground displacement 

(cm)  
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Notations in 
spreadsheet 

File name 
(xx stands for 

recording’s name) 
Descriptions 

PGA_GMRot50, 

PGV_GMRot50, 

PGA_GMRot100, 

PGV_GMRot100 

xx_indep.csv The median and maximum of orientation-dependent 

geometric mean of two ground motions for peak ground 

acceleration (g) and peak ground velocity (cm/sec). 

PGA_GMRot100angle, 

PGV_GMRot100angle 

xx_indep.csv The azimuth angles for the maximum of orientation-

dependent geometric mean of two ground motions of 

peak ground acceleration and velocity; unit are in 

degrees. 

PGA_1, PGA_2, 

PGV_1, PGV_2, 

PGD_1, PGD_2  

xx_indep.csv The peak ground accelerations (g), peak ground velocities 

(cm/sec), and peak ground displacements (cm) of two 

ground motions. 

n_a_subset, 

n_v_subset, 

n_d_subset 

xx_indep.csv The number of subset selected points in acceleration, 

velocity, and displacement time series. 

PGA_Rot00, 

PGA_Rot50, 

PGA_Rot100, 

PGV_Rot00, 

PGV_Rot50, 

PGV_Rot100, 

PGD_Rot00, 

PGD_Rot50, 

PGD_Rot100 

xx_indep.csv The minimum, median, and maximum orientation-

dependent parameters of two ground motions for peak 

ground accelerations (g), peak ground velocities (cm/sec), 

and peak ground displacements (cm) 

PGA_Rot00angle, 

PGA_Rot100angle, 

PGV_Rot00angle, 

PGV_Rot100angle, 

PGD_Rot00angle, 

PGD_Rot100angle 

xx_indep.csv The azimuth angles of minimum and maximum of 

orientation-dependent parameters of two ground motions 

for peak ground accelerations, peak ground velocities, 

and peak ground displacements; units are in degrees. 
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