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ABSTRACT 

The KEPCO Engineering and Construction Company, Inc. (KEPCO E&C) is developing a 
Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR). Preliminary evaluations of the 
behavior of the isolated PGSFR when subjected to seismic and aircraft impact loading conditions 
were conducted to support design efforts by KEPCO E&C. Results and key findings of these 
analyses are as follows: (i) because isolator deformations are typically quite small for the 
considered seismic excitation levels, the benefit of seismic isolation could be enhanced with 
revised isolator designs that reduce the apparent yield strength and permit greater displacement 
demands; (ii) the amplitudes of acceleration and displacement responses resulting from the 
impact of a large aircraft are similar to or exceed the demands imposed by a seismic event based 
on the NRC hazard with a peak ground acceleration of 0.3g, and (iii) as provided, the isolator 
initial stiffness is poorly conditioned since it leads to fundamental isolation frequencies that are 
not well separated from the plant’s superstructure frequencies, and triggers some resonance that 
significantly increases floor acceleration response spectra.  
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1 INTRODUCTION 

1.1 INTRODUCTION 

In the search for safe, economical, and environmentally friendly sources of electric power, many 
energy providers are turning to new technologies. These include advanced sodium-cooled fast 
reactors, which offer significant benefits in terms of safety, efficiency, and sustainability, and 
seismic isolation, which can substantially reduce demands and improve the performance of 
structures and their mechanical systems and components. 

This report does not discuss any particular advantages and disadvantages of fast reactors. 
It presents the results of a preliminary study aimed at assessing the feasibility of using seismic 
isolation to help safeguard sodium-cooled fast reactors from hazards posed by strong earthquake 
ground shaking and aircraft impact. To focus this report, simplified numerical models were 
examined that are representative in general terms of a Prototype Gen-IV Sodium-Cooled Fast 
Reactor (PGSFR) being considered by the KEPCO Engineering and Construction Company, Inc. 
(KEPCO E&C). Since the details of the plant design and the required seismic and aircraft impact 
hazards are not yet known, the results are preliminary. However, they are useful in the 
conceptual design process of a PGSFR and the possible use of seismic isolation. 

1.2 SCOPE OF REPORT 

This report is divided into 6 chapters as follows: 

 Chapter 1. Introduction 

 Chapter 2. Literature Survey Related to Seismically Isolated Fast Breeder 
Reactors 

 Chapter 3. Parametric study of a Seismically Isolated Rigid Mass 

 Chapter 4. Dynamic Analysis of a Seismically Isolated PGSFR Subjected 
to Earthquake Excitation 

 Chapter 5. Dynamic Analysis of a Seismically Isolated PGSFR Subjected 
to Aircraft Impact 

 Chapter 6. Summary and Recommendations for Future Research 
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2 LITERATURE SURVEY RELATED TO 
SEISMICALLY ISOLATED FAST BREEDER 
REACTORS 

2.1 INTRODUCTION 

Currently, no fast reactor has been constructed using seismic isolation. However, the increased 
safety and sustainability of fast reactors suggests that a comparable effort to increase seismic 
safety margins would be useful. This is consistent with the overall stringent performance goals 
stipulated for Gen-IV reactors. It is thought that seismic loading is more important for fast 
reactors than for conventional commercial nuclear power plants (NPPs) due to the systems, 
components, and equipment used, which are characterized as being heavy and flexible. 

This chapter presents a brief review of previous studies on the application of seismic 
isolation to fast breeder reactors. Included are a detailed introduction of each project and a 
discussion on several key points relevant to the seismic isolation of fast breeder reactors. A list 
of projects reviewed in this chapter is summarized in Table 2.1 below. 

Table 2.1 List of previous projects on the study of seismic isolation for use in fast 
breeder reactors. 

Country 
Project 
Name 

Full name 
Approximate time 

line 

USA 
PRISM Power Reactor Innovative Small Module 1984–1994 

SAFR The Sodium Advanced Fast Reactor 1988–1995 

Japan 
DFBR Demonstration Fast Breeder Reactor 1989–2001 

JSFR Japan Sodium-cooled Fast Reactor 1995–2000 

Korea 
STAR-LM 

The Secure, Transportable, Autonomous Reactor-
Liquid Metal 

2002–2005 

KALIMER Korea Advanced Liquid Metal Reactor 2009–2012 

Europe SILER 
Seismic Initiated events risk Mitigation in Lead-cooled 

Reactor 
2012–present 
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2.3 THE SODIUM ADVANCED FAST REACTOR (SAFR) 

2.3.1 Project Description 

The Sodium Advanced Fast Reactor (SAFR) was designed by Rockwell International. SAFR 
utilizes LMR technology to provide an innovative power system, which is reportedly inherently 
safe, reliable, and cost competitive with alternate energy options [Johnson et al. 1988]. SAFR is 
a modular power system that uses a 900 MW (thermal) reactor to generate superheated steam, 
which drives a 350 MW turbine. The SAFR reactor assembly is shown in Figure 2.5. The vessel 
is 11.9 m (39 ft) in diameter, and 14.6 m (48 ft) high. The reactor assembly module is a 
standardized shop-fabricated unit housed in a building constructed above grade with plan 
dimensions of 37.8 m (124 ft)  25 m (82 ft); see Figure 2.6. The entire SAFR building, which 
weighs 280 MN (63,000 kip) is supported on 100 seismic isolators; see Table 2.3 for a general 
summary of specifications for the SAFR reactor. 

The SAFR design provides vertical as well as horizontal isolation. The design horizontal 
frequency is 0.5 Hz, and the vertical frequency is 3 Hz. This is achieved by using bearings with 
thicker rubber layers bonded to fewer steel shims, resulting in bearings that are flexible both 
vertically and horizontally [Tajirian et al. 1990]. The bearing is 1.08 m (42 in.) in diameter and 
413 mm (16.25 in.) high. Each bearing consists of three layers of 101-mm- (4-in.-) thick rubber, 
resulting in a low shape factor (LSF) of 2.3. The seismic design basis was a SSE with a 
maximum horizontal and vertical acceleration of 0.3g. Additional analysis was performed to 
determine the cost of raising the SSE capability from the original 0.3g to 0.5g for zones of higher 
seismicity. 

Dynamic analyses were performed by Tajirian et al. [1990] to compare the response of 
SAFR with and without isolation. Figure 2.7 compares the horizontal and vertical response 
spectra at the reactor supports. The isolated system resulted in substantial reductions in 
horizontal accelerations at all the equipment resonant frequencies. In the vertical direction, the 
response was amplified at the vertical isolation frequencies but was reduced at frequencies 
greater than 4 Hz, which is the vertical frequency of the range of equipment. The maximum SSE 
horizontal displacement of the bearings was 229 mm (9 in.). Small amounts of uplift due to 
rocking were computed in unanchored corner bearings. 

The same tests done at UC Berkeley for the SAFR project were conducted for the PRISM 
project. The tests for the LSF bearings were performed to demonstrate the feasibility of using 
LSF bearings and to verify the validity of the design equations. Six quarter-scale bearings were 
tested. Two types of rubber compound (filled high-damping rubber versus unfilled rubber) and 
two types of end plate connection (dowelled versus bolted) were investigated [Aiken et al. 1989]. 
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2030 [Ueta et al. 1995]; see Table 2.4 for a general summary of specifications for the DFBR 
reactor. 

The design study for the DFBR was conducted by the Japan Atomic Power Co. (JAPC), 
which is the principal organization entrusted by nine electric power companies and the Electric 
Power Development Co. Ltd. to investigate construction of the DFBR. Construction of a FBR 
plant in a seismically vulnerable country like Japan must be very sensitive to seismic design 
requirements. Given Japan’s seismicity, many consider base isolation as the optimum design 
approach for FBRs [Kato et al. 1991]. 

In 1987, a testing and research program was begun under contract with the Ministry of 
International Trade and Industry (MITI) to verify the reliability and effectiveness of seismic 
isolation for the FBR. It was intended to select appropriate seismic isolation concepts and then 
determine their effectiveness and feasibility, and finally to develop a rough draft of design 
technical guidelines [Sawada et al. 1989]. A schematic of the isolated system is shown in Figure 
2.8. 

In the conceptual design phase, several seismic isolation concepts were proposed and 
compared, including building isolation, component isolation, and combined isolation. From a 
preliminary study of construction costs, the horizontal building isolation requires the smallest 
number of bearings and was expected to result in ample cost-reduction savings. The project 
contained two phases discussed below. 

Table 2.4 General summary of specifications for the DFBR reactor. 

Reactor containment building 
weight: 

10,000 kN (2248 kips) for whole isolated structure 

Dimension: Reactor vessel diameter of 11.9 m (39 ft.), height of 14.6 m (48 ft) 

Design safe shutdown earthquake Horizontal: 0.3g, Vertical: 0.3g 

Bearing type: Laminated rubber bearing 

Base isolation system: Horizontal only; 175 bearings 

2.4.2 Phase 1: Horizontal Seismic Isolation System for the DFBR 

Design and analysis studies have been completed on the seismically isolated reactor containment 
building (RCB). The arrangement of the bearings and a schematic of the isolated RCB are shown 
in Figure 2.9. The isolation system is composed of laminated rubber and steel bar dampers; see 
Figure 2.10. 

The results of the analytical studies show the base-isolated FBR plant is capable of 
resisting very large seismic motions. The study reported that severe seismic loads were not 
transmitted to safety related components [Kato et al. 1991]. The ultimate state of the system was 
also investigated. Studies showed that the isolation layer has an appreciable seismic safety 
margin for the design-basis SSE considered. Torsional response of the plant was investigated 
using a special numerical model consistent with computational capabilities available at the time 
of the study. The analysis results show that torsion had insignificant influence on the total 



 

response
influence

B
begun in
contract 
developm
appropria
develop a

 

Figu

. However, 
e on the ultim

Besides the p
n 1987 by th

with Minis
ment of the 
ate seismic 
a rough draf

Figure 2.

re 2.9 L
fo

the rocking
mate behavio

preliminary 
he Central R
try of Inter
design of t
isolation co

ft of design t

8 Schem

ayout of bea
or the DFBR 

g response o
or [Kato et a

analytical st
Research In

rnational Tra
the demonst
oncepts, to d
echnical gui

matic of seis

aring and sch
[Kato et al. 1

11 

of the isola
al. 1995b]. 

tudies, an ad
nstitute of E
ade and Ind
tration reacto
determine th
idelines [Shi

smic isolated

hematic of is
1991]. 

ated DFBR 

dditional tes
Electric Pow
dustry (MIT
or. The stud

heir effective
iojiri 1991]. 

d system [Saw

solated react

building ha

st and resear
wer Industry 
TI). These s
dies were in
eness and fe

 

wada et al. 1

tor containm

as a much l

rch program
(CRIEPI) u

studies supp
ntended to s
feasibility, an

1989]. 

ment building

larger 

m was 
under 

ported 
select 
nd to 

 

g 



 

Figu

2.4.3 P

The seism
occurred 
horizonta
mitigate 
three-dim

T
based on
Seismic I
the main
(V+2D S

T
major pri
springs w
efficient 
required 
analysis m

T

re 2.10 R
19

Phase 2: De

mic isolatio
largely from

al seismic i
the seismic l

mensional se

Two types of
n practicality
Isolation Sy

n component
SIS). 

The developm
ivate compa
were selecte
from the p
testing of la
methods. 

The three-dim

 A thre
mecha

 A thre
[Kajii

 Doubl
three-
2.11(c

 A cab
et al. 2

Rubber bearin
995a]. 

evelopmen

on technolog
m 1987–199
isolation sys
loads in the 
ismic isolati

f three-dime
y and cost-ef
ystem (3D SI
ts within a 

ment of the 
anies in Japan
ed as the ve
perspective o
arge-scale sp

mensional iso

ee-dimension
anism [Kahi

ee-dimension
i et al. 2000]

le metal bell
dimensional

c). 

ble reinforced
2000]; see F

ng with steel

nt of 3D Iso

gy developed
97. This resu
stem [JEAG
vertical dire
ion system fo

ensional seis
ffectiveness.
IS); the othe
plant alread

3D isolatio
n involved i
ertical isola
of design, l
pecimens to

olated system

nal base isol
wazaki et al

nal seismic i
; see Figure 

lows air pres
l seismic iso

d three-dime
Figure 2.11d.

12 

l damper sys

olation Sys

d for the D
ulted in the p
G 2000]. Ho
ection. There
for FBR bega

smic isolatio
. One approa
er approach 
dy outfitted 

on system w
n the develo

ation device
layout, main
o verify the 

ms studied in

lation system
. 2000]; see 

isolation sys
2.11b. 

ssure springs
olator [Nakam

ensional base
. 

stem for the 

stem for D

FBR projec
publication 
owever, a r
efore, a large
an in 2000 [K

on systems w
ach was an 
was a local 
with a horiz

was establish
opment of FB
. The dish 
ntenance, an
design conc

ncluded: 

m incorporati
Figure 2.11

stem using a 

s with LRBs
mura et al. 2

e isolation a

 

DFBR [Kato 

FBR 

ct in the hor
of a design 
remaining c
e-scale proje
Kato et al. 2

were selecte
integrated th
 vertical iso
zontal base 

hed by colle
BRs. For the
springs wer

nd economy
cept and val

ing a hydrau
a. 

hydraulic cy

s as an integr
2000]; see Fi

ir spring [Ka

et al. 

rizontal dire
guideline fo

challenge w
ect on design
2003]. 

ed for the D
hree-dimens

olation system
isolation sy

ecting ideas 
e V+2D SIS
re thought t
y. Both con
lidate design

ulic 

ylinder 

rated 
igure 

ageyama 

ection 
or the 

was to 
ning a 

DFBR 
sional 
m for 
ystem 

from 
, dish 
to be 

ncepts 
n and 



 13 

 A three-dimensional seismic isolation device with laminated rubber 
bearings and rolling seal-type air springs [Suhara et al. 2000]; see Figure 
2.11e. 

For the DFBR project, extensive testing was conducted. Besides bearing tests, shaking 
table tests were also carried out to prove the effectiveness of base isolation and to study the 
behavior of the isolated system. To grasp the ultimate behavior of the seismically isolated DFBR 
plant under earthquakes at a level beyond the design ground motions and to establish ultimate 
strength design methods for the seismic isolators, a series of shaking table tests were conducted 
on a large seismically isolated test specimen using the “E-Defense” shaking table in Japan. 

The test specimen consisted of concrete mass blocks and an isolation layer with six lead-
plug laminated rubber bearings (LRBs). A superstructure consisting of reinforced concrete (RC) 
walls and additional concrete and steel plate masses was incorporated in the specimen design. 
The gross mass of upper structure of the test specimen was about 5.3 MN (1191 kip). The 
diameter of the 1/3-scale LRBs used was 505 mm (18.9 in.). The test configuration is shown in 
Figure 2.12, and the original reactor schematic considered in the test is shown in Figure 2.13. 

Three behaviors were assumed as the ultimate behavior of the seismic isolation system: 
(1) loss of response reduction function of isolation system by hardening of rubber; (2) nonlinear 
response behavior by the cracking of the concrete wall; and (3) braking of the LRB. The test 
specimen was designed to show the ultimate behavior in the above-mentioned order. 
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2.6.3 Three-Dimensional Isolation System for STAR-LM Reactor 

A three-dimensional isolator was developed whereby HDRBs were designed to isolate horizontal 
seismic loadings, working in tandem with independent vertical isolation device that employed a 
series of disc springs oriented in the vertical direction. The resulting isolator assembly was 
effective in reducing both vertical and horizontal seismic loadings. The vertical design load and 
horizontal isolation frequency was 2.85 MN (640 kip) and 0.5 Hz, respectively. These values are 
the same as that for the two-dimensional isolator case. 

When compared with the conventional fixed-base design, the two- and three-dimensional 
isolation systems reduced the floor accelerations in the horizontal direction by a factor of 4 at the 
upper basement and a factor of 20 at the bottom of the coolant vessel. Compared to the fixed-
base system, the three-dimensional isolation system reduced the floor accelerations in the 
vertical direction by a factor of 2.4 at the upper base mat, and by a factor of 7.4 at the bottom of 
the coolant vessel. 

The maximum shear displacement for the two- and the three-dimensional systems is 
calculated as 19.97 cm (7.9 in.), equivalent to 109% shear strain, which is well within the 
maximum shear failure limit of 300%. The maximum relative displacement in the vertical 
direction for the three-dimensional isolation system was 4.4 cm (1.7 in.). 

2.7 KOREA ADVANCED LIQUID METAL REACTOR (KALIMER) 

2.7.1 Project Description 

The research and development program on the seismic base isolation system for the KALIMER 
NPP began in 1993 as a project by the Korean Atomic Energy Research Institute (KAERI) as a 
national long-term R&D program. The objective of this program is as follows: to enhance the 
seismic safety, produce an economic design, and standardize plant design through the 
development of technologies based on seismic base isolation for liquid metal reactors [Yoo. et al. 
2000]; see Table 2.7 for a general summary of specifications for the KALIMER project. The 
original KALIMER design is shown in Figure 2.20. It produces 333 MW per reactor module. 
Subsequent designs are capable of generating significantly more power. 

The design of the seismically isolated RCB of KALIMER is based on a 0.3g SSE. 
Laminated rubber bearings were proposed for the project. In order to understand the mechanical 
behavior of the proposed bearings, extensive tests on reduced-scale LRB specimens were 
performed [Yoo et al. 1995, 1997; Kelly et al. 1997]. Quarter-scale high-damping LRBs and 1/8-
scale low-damping LRBs were tested. Several of the bearing specimens are shown in Figure 
2.21(a). To investigate the seismic isolation capability and verify the seismic analysis 
methodology, shaking table tests were carried out with a test model designed to simulate the 
KALIMER RCB and structures [Yoo et al. 2000]; Figure 2.21(b). 

Besides these tests, analysis methodologies using finite element (FE) methods were 
developed to predict the behavior of the LRB proposed for isolating KALIMER; the analysis 
results were compared with the test results. Once they were verified, numerical simulation 
models were then used to analyze the response of the seismic isolated KALIMER structure and 
critical systems and components. 
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2.7.2 KALIMER-600 

In recent years, KAERI has extended the development of KALIMER to include the mid-sized 
SFR called the KALIMER-600. Its design was intended to satisfy Generation-IV reactor design 
goals. Its conceptual design was completed in 2007. The main features of the structural design of 
KALIMER-600 were the seismically isolated RCB [Hahn et al. 2007]. The reactor vessel is 18 m 
(59 ft) high and 50 mm (2 in.) thick, with an outer diameter of 11.41 m (37.4 ft). The total 
reactor weight is nearly 24.9 MN (5600 kip). Seismic isolation between the ground and lower 
base mat in the KALIMER-600 uses 164 seismic isolators that are 1.2 m (47.25 in.) in diameter. 

A total of 164 HDRBs are to be installed between ground and the lower base mat in the 
KALIMER-600 reactor and fuel-handling buildings. The seismic gap between the isolated RCB 
and the non-isolated wall is about 1.2 m (47 in.), which is sufficient to avoid contact even when 
the plant is subjected to a beyond-design earthquake with a peak ground acceleration (PGA) of 
1.0g [Forni et al. 2012]. 

2.8 SEISMIC-INITIATED EVENTS RISK MITIGATION IN LEAD-COOLED 
REACTOR (SILER) 

2.8.1 Project Description 

SILER is a project partially funded by the European Commission aimed at studying and 
controlling the risk associated with Generation-IV Heavy Liquid Metal reactors subjected to 
seismic events and developing adequate protection measures in the event of such shaking. 
Attention is focused on evaluating the effects of earthquakes on the structures and most critical 
components, with particular regards to unexpected (beyond-design) events and the identification 
of mitigation strategies [Forni et al. 2012]; see Table 2.8 for a general summary of specifications 
for the SILER reactor. 

Table 2.8 General summary of specifications for the SILER reactor. 

Reactor capacity 600 MW (ELSY) 

Reactor containment 
building weight: 

2800 tons for whole isolated structure 

Dimension: Reactor vessel diameter of 11.4 m (37.3 ft.), height of 18 m (59 ft.), 
thickness 0.05 m (2 in.). 

Design safe shutdown 
earthquake (SSE) 

Horizontal: 0.3g, Vertical: 0.3g 

Bearing type: Laminated rubber bearings 
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Most fast reactor projects that consider vertical isolation use devices capable of providing 
three-dimensional isolation. Several approaches are available to incorporate the vertical isolation 
as part of a larger, comprehensive isolation assembly. One approach has been called partial 
three-dimensional approach as it is achieved by reducing the vertical stiffness of the original 
horizontal isolation system. This is most easily and commonly achieved using laminated 
elastomeric bearings. This was done for the SFAR project, which used LSF rubber bearings 
whereby thicker rubber layers are laminated to fewer steel shims. As a result, the bearings are 
more flexible vertically as well as horizontally [Tajirian et al. 1990]; bearings can be 
manufactured with a vertical design frequency of 3 Hz. 

A number of studies have been carried out in Japan where the overall bearing 
subassembly incorporates a separate horizontal and vertical isolation mechanism. This approach 
was followed for Phase 2 of the DFBR project. Laminated rubber bearings that provide 
horizontal isolation for the superstructure are each supported on vertically oriented metallic, 
hydraulic or air springs (combined with vertical viscous dampers). Shown in Figure 2.31, this 
approach can provide isolation in both the horizontal and vertical direction. As pointed out 
earlier, however, the use of three-dimensional isolation system has the potential to introduce an 
additional rocking movement to the superstructure. Therefore, a detailed investigation is needed 
when considering a three-dimensional isolation system, and supplemental dampers and other 
mechanisms may be needed to suppress the rocking motion introduced. These mechanisms may 
reduce the effectiveness of the horizontal isolation and increase costs. 

2.9.3 Seismic Gap Size and Hard or Soft Stops 

Designers of isolation systems are required to provide a seismic gap to accommodate the relative 
displacements of the isolators; however, the size of the seismic gap is not well established. As 
noted previously, the U.S. NRC is developing guidelines that suggest that a NPP should have 
more than a 90% confidence of not exceeding the deformation capacity of the isolation system or 
contacting a hard stop for a large beyond-design-basis event. This can result in the need for a 
very large isolator capacity. In previous studies, the base isolation system has been sized for the 
design-level SSE. When analyzing the safety evaluation of the whole system, the margin of 
safety in beyond-design-level earthquakes requires providing both a reasonable seismic gap size 
and a suitable “stopping” mechanism. 

Usually, the seismic gap size is selected according to the displacements expected at the 
design event plus some margin of safety. However, if a larger than expected event occurs, the 
resulting displacements may be larger than the size of the seismic gap. In such a case, contact 
between the lower mat of the RCB and the surrounding moat wall may induce large impact loads 
at the base of the isolated structure. This impact will propagate large forces and accelerations up 
the RCB. 

The draft U.S. NRC guidelines for seismic isolated NPPs [Kammerer et al. 2012] require 
a hard stop; many researchers are exploring mechanisms to soften this stop to avoid intense 
impact loads. A solution to this critical problem is still under development. For the reviewed 
SILER project, a rubber bumper stopping mechanism was developed in order to absorb the 
impact energy. In other cases, the deformation hardening characteristics of recrystallizing rubber 
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bearings, HDRBs, and some types of friction bearings are being explored as a soft-stop 
mechanism. 

Several investigations, including the E-Defense tests that were undertaken for the DFBR 
project in Japan, have examined approaches that exploit the behavior of the bearings themselves. 
However, the amount of energy absorbed by these soft-stop mechanisms may not be enough to 
limit the displacements and avoid the hard stop; additionally, the forces developed by the 
bearings may be large enough to still transmit unacceptably large forces and accelerations to 
critical structures, systems and components (SSCs). Therefore, to ensure an appropriate safety 
margin, seismic gap sizes need to be determined according to detailed analysis on the ultimate 
behavior of the isolation system. 
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3 PARAMETRIC STUDY OF A SEISMICALLY 
ISOLATED RIGID MASS 

3.1 INTRODUCTION 

Before investigating multi-degree-of-freedom analysis models, a parametric study was conducted 
using a simplified analysis model to generate nonlinear response spectra of the isolated NPP 
superstructure. This study assumed that the NPP superstructure consists of a rigid mass block 
with one isolator element representing all isolators in the isolation layer. Key design parameters 
of the isolator were studied through bi-directional response history analysis. The purpose of this 
simplified parametric study was to obtain a general sense of how the response of the isolated 
PGSFR will be affected by isolator properties. Furthermore, the parametric study illustrates how 
changing a design parameter of the isolation system influences the seismic response of the NPP 
and also provides guidance on isolation parameters that lead to improved response. 

3.2 ANALYSIS MODEL 

In this phase of the study, a rigid mass representing the reactor facility and one isolator bearing 
representing the whole isolation system, which can capture the bi-directional behavior, are 
defined. Initial isolator parameters were chosen to best capture the dynamic characteristics of the 
original isolation system as provided by KEPCO E&C. The MATLAB programming language 
for technical computing was used for modeling and numerical analysis. 

3.2.1 Reactor Containment building Model 

The RCB was simplified as a rigid mass with a total weight of 152,000 tonf (335,000 kip). Since 
the RCB is typically very stiff in both horizontal directions as well as in the vertical direction, it 
is reasonable to assume for the purposes of this preliminary study that it is a perfectly rigid mass 
block. No supplemental viscous damping was introduced, so the damping of the whole system 
was provided by the hysteretic behavior of the isolator only, which is an ideal case for a base-
isolated structure. The two components of the simulation model are shown in Figure 3.1. 
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3.3 GROUND-MOTION SELECTION FOR ANALYSIS 

To assess the performance of a seismically isolated NPP, it is important to select appropriate 
input ground acceleration histories in order to obtain unbiased estimates of the structural 
response of the isolation system and the plant superstructure. To perform the parameter studies 
described herein, ground-motion ensembles with a fairly large number of records were used. 
Such ground-motion ensembles are essential in performing meaningful studies of the behavior of 
seismically isolated NPPs and to develop a better understanding of the effect of seismic isolation 
on plant performance. 

Regulatory Guidelines issued by the U.S. Nuclear Regulatory Commission (NRC) [NRC 
2014] and European Utility Requirements (EUR) [EU 2012] were used to define target response 
spectra in the horizontal and vertical directions. Based on these target spectra, six different 
ground-motion sets were developed previously for a study on seismic isolation technology 
applied to the APR 1400 NPP, which PEER conducted for KEPCO E&C. For this previous 
study, PEER generated dispersion-appropriate, single-damping spectral-matched and multi-
damping spectral-matched ground-motions sets for both the NRC and the EUR target response 
spectra scaled to a PGA of 0.5g. 

No specific construction sites were given for this preliminary study, and the properties of 
the seismic isolation systems vary widely; therefore, to investigate their effectiveness in the 
application to PGSFR power plants, unconditional (structure- and site-independent) ground-
motion records need to be utilized. Furthermore, in light of the USNRC draft NUREG on 
Technical Considerations for Seismic Isolation of Nuclear Facilities [Kammerer et al. 2013], 
which requires the assessment of probabilistic performance measures and confidence levels, it is 
essential to correctly characterize the dispersion of the ground motions and the dispersion of the 
caused structural response for design as well as beyond-design-level shaking intensities. Hence, 
this work used two of the earlier developed ground-motion sets, namely, the dispersion-
appropriate sets based on the NRC and EUR target spectra. Both of these sets consist of 20 three-
component ground motions; their development is described in detail in Schellenberg et al. 
[2014]. 

For this study, the design-level target spectra for the isolated NPP is set at a PGA of 0.3g, 
and the design-level target spectra for the fixed-base NPP is set at a PGA of 0.1g. It was 
therefore necessary to amplitude scale the ground motions from the previous study by 0.6 for the 
isolated plant analyses and by 0.2 for the fixed-base plant analyses. In addition, the high-
frequency enrichment, which is added to the USNRC RG1.60 target spectrum, was left 
unmodified at 50 Hz instead of reducing it to 40 Hz, so that the NRC ground-motion set did not 
have to be regenerated but could simply be scaled to the required PGA levels. 

The individual and mean pseudo-acceleration spectra and displacement spectra for the 
USNRC RG1.60 set of 20 dispersion-appropriate records scaled to a PGA of 0.3g are plotted in 
Figure 3.3 and Figure 3.4. The individual and mean pseudo-acceleration spectra and 
displacement spectra for the EUR 2.4.6 set of 20 dispersion-appropriate records scaled to a PGA 
of 0.3g are shown in Figure 3.5 and Figure 3.6. For the targeted effective isolation period of 2 
sec, the expected mean isolator displacement demand from the EUR motion set is around 7.6 cm 
(3 in.) and around 25.4 cm (10 in.) for the NRC motion set, which is a factor of 3.3 larger than 
the demands produced by the EUR-motion set. 
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Figure 3.3 Horizontal (top) and vertical (bottom) pseudo acceleration response 
spectra for the set of 20 dispersion-appropriate motions selected to 
match the 5% damped USNRC RG1.60 target spectrum with a PGA = 0.3g 
in an average sense over the frequency range from 0.25 Hz–20 Hz. 
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Figure 3.4 Horizontal (top) and vertical (bottom) displacement response spectra for 
the set of 20 dispersion-appropriate motions selected to match the 5% 
damped USNRC RG1.60 target spectrum with a PGA = 0.3g in an average 
sense over the frequency range from 0.25 Hz–20 Hz. 
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Figure 3.5 Horizontal (top) and vertical (bottom) pseudo acceleration response 
spectra for the set of 20 dispersion-appropriate motions selected to 
match the 5% damped EUR 2.4.6 target spectrum with a PGA = 0.3g in an 
average sense over the frequency range from 0.25 Hz–20 Hz. 
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Figure 3.6 Horizontal (top) and vertical (bottom) displacement response spectra for 
the set of 20 dispersion-appropriate motions selected to match the 5% 
damped EUR 2.4.6 target spectrum with a PGA = 0.3g in an average sense 
over the frequency range from 0.25 Hz–20 Hz. 
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3.4 SUMMARY OF PARAMETERS CONSIDERED 

The parametric study aims to look at the effect of the key bearing design parameters on the 
response of the isolated structure. Different combinations of parameter values were studied, and 
general trends were assessed based on the numerical analysis results. For each of the analysis 
cases with a certain combination of parameters values, the isolation post-yield period was set 
from 0.001 sec to 6 sec—corresponding to the horizontal axis in the nonlinear spectra plots—and 
peak responses were recorded for each of the period values. The wide range of periods 
investigated helped generate useful nonlinear response spectra. Details on each of the cases or 
parameter combinations are shown in Table 3.1. 

Table 3.1 Summary of individual cases considered in the rigid mass parametric 
study and parameter values used for each case. 

 

Bearing 
model 

Qd/W 
Post-yield 

stiffness ratio 
η Post-yield 

period 

Bouc–Wen vs. bilinear 
Bouc-Wen 10% 1% 1.0 

0.001 to 6 

Bilinear 10% 1% NA 

Different Qd 

Bilinear 5% 1% NA 

Bilinear 7.5% 1% NA 

Bilinear 10% 1% NA 

Bilinear 12% 1% NA 

Different K0 

Bilinear 7.5% 0.1% NA 

Bilinear 7.5% 1% NA 

Bilinear 7.5% 5% NA 

Bilinear 7.5% 10% NA 

3.4.1 Comparison of Bouc–Wen and Bilinear Models 

First, the bilinear model and the rounded Bouc–Wen model are compared. The purpose of this 
preliminary comparison is to investigate the effect on the response due to the roundness of the 
analytical hysteresis loops. The comparison can also be interpreted as a comparison of a LRB 
and a single friction-pendulum bearing since the latter gives exact bilinear behavior, while the 
former will bring rounded hysteretic behavior. To compare the two models, the characteristic 
force, Qd, was kept at 10%, and the post-yield ratio was kept at 1%. Different isolation periods in 
terms of post-yield period from 0.001 to 6 sec were considered, and comparisons were made 
based on the peak response for each of the two bearing models. 

3.4.2 Different Bearing Characteristic Strength, Qd 

An important design parameter is the characteristic strength of the bearing. Since the initial 
stiffness is always large, the yielding force of the bearing is almost the same as Qd. Therefore, 
the study can also be considered as a parametric study on yielding force, which indicates the 
threshold needed to begin the movement of the isolation system. In this parameter analysis, Qd of 
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5% W, 7% W, 10% W, and 12% W were considered and compared, where W indicates the total 
gravity force compressing the bearing. Although, the vertical force will change due to vertical 
ground motion and rocking response during the time-history analysis, the assumption was made 
that it remains constant for the simplified model investigated here. For this comparison, the post-
yield stiffness ratio was kept at 1%. For each value of Qd, different isolation periods were 
considered from 0.001–6 sec. 

3.4.3 Different Initial Stiffness K0 

The comparison for this part of the study aims to investigate the effect of the initial stiffness of 
the isolation system on the response. The design-level seismic event of 0.3g PGA for NPPs 
means that the movement of the isolation system is relatively small, and large numbers of cycles 
occur within the elastic range of the bearing. Therefore, the initial stiffness of the bearing is an 
important parameter. To construct the nonlinear response spectra, for each case the study 
investigated the response of the system through a wide range of isolation periods (0.001–6 sec); 
therefore, this part of the analysis used the post-yield stiffness ratio, α, to represent the initial 
stiffness. For the same isolation period that results in the same post-yield stiffness, different α 
values ranging from 0.1%–10% were investigated to represent equivalently different initial 
stiffnesses. 

3.5 ANALYSIS RESULTS AND DISCUSSION 

The responses considered in this parametric study are isolator displacement and rigid mass total 
acceleration. Since the model contains a perfectly rigid mass on top of an isolator element, the 
total acceleration times the mass is equal to the shear force in the isolator. Therefore, the 
response of the total acceleration can be interpreted as approximately the total base shear the 
isolated reactor will experience. Peak response in each parametric study case is plotted against a 
wide range of isolation post-yield periods to generate the nonlinear response spectra for all 20 
ground motions used in these analyses. Median as well as 84th-percentile responses (one standard 
deviation above median) are presented. Since each time-history analysis is a bi-directional 
analysis, the peak response was taken as the norm of the values of the two directions. 

3.5.1 Response Values Determined by Bouc–Wen and Bilinear Models 

Results are compared first in terms of the peak isolator displacement; see Figure 3.7. The 
nonlinear bearing displacement spectrum of the median response under the NRC and EUR 
motion sets were plotted together with the 84th-percentile response spectrum. Results show that 
the total displacement demand of the isolator is around 15.24 cm (6 in.) for the NRC motion set 
if using the isolator post-yield period of 2.1 sec, which is the targeted isolation period used in the 
seismic isolation design of many fast breeder reactors from previous projects. The 84th-percentile 
demand is around 0.25 m (10 in.) under the NRC motion set, which is approximately 1.5 times 
the median response. Considering the dispersion of earthquake loading and uncertainty of ground 
motion, 1.5 seems a reasonable number to move from median response to one standard deviation 
above. 



 

Figu

In
that a lar
since the
However
the isolat
period be
isolator. 
periods. 

A
plots by 

re 3.7  M
h
p
a

n comparing
rger isolation
e lower post
r, the isolato
tion period b
eyond about
From the pl

A comparison
the solid lin

Median and 8
azard. Respo
lotted togeth
re marked in

g the respon
n period will
t-yield stiffn

or displacem
because of t
t 4 sec does
ot, the slope

n of the bilin
ne and the d

4th-percentile
onse values 
her for comp
n the plot. 

nse for differ
l result in lar
ness will ha

ment demand 
the relative 
 not make m

e of the displ

near model a
dashed line, r

40 

e isolator dis
using biline

parison. Valu

rent periods
rger bearing

ave less con
does not in

small groun
much differe
lacement spe

and the Bouc
respectively

splacement s
ear and Bouc
ues at the iso

s along the h
g displaceme
nstraint on t
ncrease expo
nd-motion in
ence on the 
ectrum tend

c–Wen mod
y, demonstra

spectra unde
c–Wen mode
olator period 

horizontal ax
ent demands
the displacem
onentially wi
ntensity. Incr

displacemen
ds to decreas

del, which ar
ates that the 

 

 

er the NRC 
ls are 
of 2.1 sec 

xis, it is obv
. This is intu
ment of bea
ith an increa
rease of isol
nt demand o
e with incre

re indicated i
difference o

vious 
uitive 
aring. 
ase of 
lation 
of the 
easing 

in the 
of the 



 

response 
to the ini
somewha
flexible. 

T
set scaled
design. H
also inve

Figu

is negligibl
itial assumpt
at larger dif

The response
d to 0.3g PG

However, an
estigated, and

re 3.8  M
h
p
a

e in terms o
tion of a rig

fference in r

es shown in 
GA indicate 
nother comm
d the isolator

Median and 8
azard. Respo
lotted togeth
re marked in

f peak displ
gid superstru
response wh

Figure 3.7, 
the anticipa

monly used g
r displaceme

4th-percentile
onse values 
her for comp
n the plot. 

41 

acement resp
ucture. The tw
hen the supe

for the NR
ated respons
round-motio
ent response

e isolator dis
using biline

parison. Valu

ponse. The m
two bearing 
erstructure a

RC dispersion
se under the 
on target spe
e is shown in

splacement s
ear and Bouc
ues at the iso

minor differ
models are 

above the iso

n-appropriat
SSE level c

ectrum, the E
n Figure 3.8. 

spectra unde
c–Wen mode
olator period 

rence may b
expected to 
olation syste

te ground-m
considered i
EUR hazard

 

 

er the EUR 
ls are 
of 2.1 sec 

e due 
have 

em is 

motion 
in the 

d, was 



 

Figu

C
isolation 
compared
0.3g PGA
NRC haz
spectra h
spectrum

re 3.9  M
th
a
se

Comparing th
period of 2

d to 15.24 cm
A. The 84th-p
zard resulted
have the sa

m has much 

Median and 8
he NRC haza
re plotted to
ec are marke

he response 
2.1 sec, the 
m (6 in.) und
percentile re
d in around 2
ame PGA, t

higher valu

4th-percentile
ard. Respons
gether for co
ed in the plot

amplitude in
median resp
der NRC mo

esponse unde
254 mm (10
their freque
ues compare

42 

 

e isolated m
se values usi
omparison. V
t. 

n Figure 3.8 
ponse under
otion, althou
er EUR haza
0 in.). As po
ncy content

ed to the EU

ass total acc
ing bilinear a
Values at the

and Figure 
r EUR moti
ugh the targe
ard is around
inted out ea
ts are very 
UR target, e

celeration sp
and Bouc–W
e isolator per

3.7 for the s
ion is aroun
et spectra we
d 35.6 mm (1
arlier, althou

different. T
especially in

 

 

pectra under 
Wen models 

riod of 2.1 

same system
nd 25 mm (
ere both scal
1.4 in.), whil

ugh the two t
The NRC t

n the long-p

r 

m with 
1 in.) 
led to 
le the 
target 
target 

period 



 

range rel
subseque

F
accelerat
system w
increase 
from 2 to
by 30%. 
response
response
force red
mass and
3.9, it is 
isolation 
2.1-sec p

Figu

3.5.2 C

Characte
indicates
are comp
comparis
bearing m
parametr

levant to the
ent studies w

rom results 
tion or 0.2 W
with a 2.1-se
of the isolat

o 4 sec will r
The differen
. The 84th-p
; the ratio is

duction ratio
d the peak gr

easy to con
period incre

post-yield pe

re 3.10 M
R
to
m

Comparison

ristic streng
 the thresho

pared with Q
son in Sectio
model or a B
ric study in t

e isolation s
will all be car

shown in 
W base shear
ec post-yield
ion period w
reduce the fo
nce between
percentile fo
 consistent w
, which is d

round accele
nclude that t
eases. The f
riod when co

Median force 
Response val
ogether for c

marked in the

n of Respo

gth is an im
old needed f
Qd equal to 5
on 3.5.1 sho
Bouc–Wen b
this section w

system. Bec
rried out with

Figure 3.9 
r is expected
d period und

will reduce th
orce demand

n the bearing
orce deman
with the scal
defined as th
eration, is sho
the effective
force reducti
ompared to t

(total accele
lues using b

comparison. 
e plot. 

onses for D

mportant par
for initiation
%, 7.5%, 10

owed there i
bearing mod
will use the 

43 

ause of the 
h the NRC h

of the peak
d in the isola
der the NRC
he force dem
d by 50% bu
 models is n
d is around
le obtained i

he ratio betw
own in Figu

eness of the 
ion factor is 
the fixed-ba

eration) redu
ilinear and B
Values at the

Different Q

rameter in t
 of post yie
0%, and 12%
is almost no

del in this sim
perfect bilin

large differ
hazard only. 

k total accel
ated RCB wh
C hazard wi

mand. The in
ut only increa
negligible wi
d 0.3g, whic
in the isolato

ween the tota
ure 3.10. Der

isolation sy
 around 2.5 

ase case. 

ction ratio u
Bouc–Wen m
e isolator pe

Qd 

the design 
ld movemen

% of the wei
o difference 
mplified rig
near bearing

rence in resp
 

leration resp
hen using a 
ith 0.3g PGA

ncrease of the
ase the displ
ith respect to
ch is 1.5 ti
or displacem
al acceleratio
rived from th
ystem will in

for an isola

under the NR
models are pl
eriod of 2.1 s

of isolation
nt of the iso
ight on the b
in response

id mass case
g model. Bec

ponse ampli

ponse, 0.2g 
seismic isol
A. An addit
e isolation p
lacement dem
o the acceler
imes the m

ment demand
on in the iso
he trend in F
ncrease whe
ation system

 

RC hazard. 
otted 

sec are 

n systems, w
olator. Four 
bearing. Sinc
e using a bil
e, the subseq
cause of the 

itude, 

total 
lation 
tional 

period 
mand 
ration 
edian 

d. The 
olated 
Figure 
en the 

m with 

which 
cases 

ce the 
linear 
quent 
large 



 

initial sti
of Qd can

F
median a
period is 
period be
ground-m

Figu

ffness, Qd an
n also be inte

irst, peak be
and 84th-perc

pronounced
eyond aroun
motion excita

re 3.11  M
h
7
at

nd Fy values
erpreted as th

earing displa
centile level 
d in this plot
nd 3 sec beca
ation. 

Median and 8
azard. Respo
.5% W, 10% 
t the isolator

s are nearly t
he yield forc

acement resp
responses. T

t, but the dep
ause of the s

4th-percentile
onse values 
W, and 12% 
r period of 2.

44 

the same for
ce of the bea

ponse was in
The depende
pendence de
small displac

e isolator dis
using a bilin
W) are plotte
.1 sec are ma

r the bilinear
aring. 

nvestigated a
ence of isola

ecreases with
cement of th

splacement s
near model w
ed together f
arked in the 

r model. The

as shown in 
ator displace
h the increas
he isolator u

spectra unde
with different
for comparis
plot. 

erefore, the v

Figure 3.11
ement on iso
se of the isol
under this lev

 

 

er the NRC 
t Qd (5% W, 
son. Values 

value 

 with 
olator 
lation 
vel of 



 

T
noticeabl
displacem
yield forc
2.1-sec is
on Qd is 
effective 
defined b

T
response
W–12% 
have littl
displacem
stiffness.
effect is 
Since for
“force de
Comparin
account f

T
mass; thi
around 3
isolation 

Figu

The dependen
le as indicat
ment demand
ce, the displ
solation peri
similar. Sin
period of th

based on the 

The peak tot
s on differen
W, represen
le deviation 
ment demand
 Therefore, 
reversed at 
rce and tota
emand” is us
ng the medi
for the scatte

The force red
is factor is s

3 sec, a larg
system is la

re 3.12  M
u
W
2

nce of the r
ted by diffe
d. Comparin
lacement dem
iod. With th

nce larger iso
he system ca
secant stiffn

tal accelerati
nt Qd is not 

nt a wide ran
as observed

ds imposed b
although Qd

larger isolat
al acceleratio
sed subsequ
ian and 84th-
er of the resp

duction facto
shown in Fig
er Qd will p

arger, the larg

Median effect
sing a biline

W) are plotted
.1 sec are ma

response on 
rent lines in

ng between a
mand drops 
he increase o
olator displa
an be obtain
ness from the

ion response
as significa

nge of pract
d in the figu
by a small Q
d is smaller, 
tor periods w
on are equiv
uently in this
-percentile re
ponses due to

or was com
gure 3.14. F
produce a la
ger Qd has a

tive period sp
ear model wit
d together fo
arked in the 

45 

yield force
n Figure 3.1
a Qd of 5% W
from around

of the isolati
acements res
ned as shown
e origin. 

e is shown 
ant as might 
tical values, 
ure. Interestin
Qd produce la

the total hor
where the lo

valent in the
s section to r
esponses, a 
o the uncerta

mputed by co
From this plo
arger force re
a smaller forc

pectra under
th different Q

or compariso
plot. 

e Fy or chara
11. Larger Q
W and 10% 
d 0.20 m (8.
ion period, t
sult with dif
n in Figure 

in Figure 3
be expected
but the resu

ngly, for low
arger force d
rizontal shea
ower Qd pro
e simplified 
represent the
factor of 1.5
ainty in the i

omparing the
ot, it can be
eduction fac
ce reduction

r the NRC ha
Qd (5% W, 7.5
on. Values at 

acteristic str
Qd results in
W, which is 
2 in.) to 0.1

the dependen
fferences in 
3.12. The e

3.13. The de
d. The param
ulting accele
w isolator p
demands due
ar force mig
oduces lowe
rigid mass 

e total accel
5 is still a re
input excitat

ese results w
e seen that b
ctor. When t

n factor than 

azard. Respo
5% W, 10% W
t the isolator 

rength Qd is
n smaller iso

around twic
3 m (5 in.) a
nce of the re
Qd, the resu
ffective peri

ependence o
meter values
eration respo
eriods, the l

e to the post-
ght be larger
r force dem
system, the 

leration resp
easonable ra
tion. 

with a fixed
below a peri
the period o
a lower Qd. 

 

onse values 
W, and 12% 

period of 

s also 
olator 
ce the 
at the 
esults 
ulting 
iod is 

of the 
s, 5% 
onses 
larger 
-yield 
r. The 

mands. 
term 

ponse. 
atio to 

d-base 
od of 

of the 



 

A
isolator d
A larger 
even if t
already 
displacem

Figu

As demonstra
design. This 
Qd may pro

the effect is
exceed the 

ment demand

re 3.13  M
th
(5
V

ated above, 
balance is a

oduce smalle
s not predom

design for
d is shown in

Median and 8
he NRC haza
5% W, 7.5% W

Values at the 

a force and 
achieved thro
er displacem
minant. How
rce limit. T
n Figure 3.1

4th-percentile
ard. Respons
W, 10% W, an
isolator peri

46 

displacemen
ough design

ment demand
wever, if Qd

The relation
5 to better u

 

e isolated m
se values usi
nd 12% W) a
iod of 2.1 sec

nt tradeoff m
n parameters 
ds, but it may
d is too larg
n between 
understand th

ass total acc
ing a bilinear

are plotted to
c are marked

must be bala
like isolatio

y bring large
ge, the desig

force dema
he relationsh

celeration sp
r model with

ogether for c
d in the plot.

anced in term
on period an
er force dem
gn objective
and and be
hip. 

 

 

pectra under 
h different Qd

omparison. 
 

ms of 
nd Qd. 
mands 
 may 

earing 

r 
d 



 

Figu

Figu

W
identifyin
paramete
identified
represent

re 3.14  M
th
(5
V

re 3.15  F
h
7

When consid
ng appropria
ers is visual
d to determ
ts Qd = 264

Median force 
he NRC haza
5% W, 7.5% W

Values at the 

orce (accele
azard. Respo
.5% W, 10% 

dering the f
ate design pa
lly apparent

mine if they 
4  152 kip

(acceleratio
ard. Respons
W, 10% W, an
isolator peri

eration) versu
onse values 
W, and 12% 

force deman
arameters su
t. Subsequen

are within
s in Figure 

47 

n) reduction
se values usi
nd 12% W) a
iod of 2.1 sec

us bearing d
using a bilin
W) are plotte

nd for desi
uch as isolat
ntly, the be

n an accepta
3.15 will n

 ratio using 
ing a bilinear

are plotted to
c are marked

isplacement
near model w
ed together f

ign purpose
tor period an
earing displa
able range. 
never reach 

isolation sys
r model with

ogether for c
d in the plot.

t relation und
with different
for comparis

s, Figure 3
nd Qd. The in
acement dem

For examp
the force le

 

stem under 
h different Qd

omparison. 
 

 

der the NRC 
t Qd (5% W, 
son. 

3.15 is usef
nfluence of 
mands are e
ple, the line
evel below 

d 

ful in 
these 

easily 
e that 
0.1g. 



 48 

Alternatively, the line for an isolator period of 2.0 sec indicates that a force demand of 0.2g is 
anticipated for any Qd value selected, but the selected Qd will significantly influence the bearing 
displacement demand. 

3.5.3 Comparison of Responses for Different K0 

The parameter used to study the initial isolator stiffness was the post-yield stiffness ratio, α. This 
ratio can capture the intended parameter since at the same post-yield stiffness or isolation period, 
different post-yield ratios produce different initial stiffness. Four values were considered in this 
comparison study: 0.1%, 1%, 5% and 10%. For each post-yield stiffness ratio, Qd was kept 
constant at 7.5% of the weight on the bearing. 

The displacement spectra are shown in Figure 3.16. The amplitude of the peak 
displacement demand is the same as the results presented in Section 3.5.2. A 2.1-sec isolation 
period results in a median displacement demand around 15.24 cm (6 in.), and the 84th-percentile 
demand is around 0.25 m (10 in.). The influence of initial stiffness on peak displacement demand 
is negligible when the isolation period is small. A small isolation period is due to a large post-
yield stiffness, which in turn produces a relatively large initial stiffness for all values of α 
considered. This produced indistinguishable results for low isolation periods. When the isolation 
period is larger, observable differences on the displacement demand occur; see Figure 3.16. 
Larger initial stiffness results in smaller displacement demands. However, in the isolation period 
range of interest—namely the 2-sec range—no significant difference was observed. 

There is negligible difference in terms of force demands among isolators with different 
initial stiffness, see the force spectrum in Figure 3.17. The force demand is dependent on the 
isolation period. Since Qd in this comparison was the same for all four cases, the difference of 
force demand comes from the post-yield stiffness and displacement demand. However, at a given 
isolator period, the post-yield stiffness is identical, and any increase in force demand is a 
consequence of the variation in displacement demand produced by the initial stiffness. Therefore, 
insignificant influence by α is expected—and observed—in terms of force demand. 

The force reduction factor was produced by comparing these results with a fixed-base 
case. The results are shown in Figure 3.18. The impact of α on the force reduction factor had 
only modest influence for isolator periods greater than 3 sec. The force-displacement demand 
relationship is shown in Figure 3.19. From this figure, the initial stiffness only has an effect on 
the displacement demand and almost no influence on force demand, as was observed in Figure 
3.17. For a given displacement demand, a different initial stiffness will not produce different 
force responses. However, for a given force demand, a different initial stiffness will produce 
different bearing displacement demands. 
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3.6 CONCLUSION AND SUMMARY 

This section presented the results of a parametric study conducted using a simplified analysis 
model with a rigid mass representing the superstructure of the PGSFR NPP. The effect of key 
isolator design parameters on the peak response of the supported mass was investigated. Bi-
directional time-history analyses were conducted using NRC and EUR hazards. With this 
preliminary analysis, some key conclusions have been drawn: 

 The two bearing models considered, a bilinear model and a Bouc–Wen 
model, have almost identical responses for the rigid mass superstructure 
model. The roundedness of the Bouc–Wen model did not impact peak 
displacement or acceleration demands. 

 Regarding the two hazards considered, the NRC response was around six 
times larger than the EUR in terms of displacement demand and twice as 
large in terms of force demand. While the two hazards were scaled to the 
same 0.3g PGA, these results reflect the larger demands imposed by the 
NRC hazard spectra. 

 Under the NRC hazard scaled to 0.3g PGA, the median bearing 
displacement demand was approximately 15.24 cm (6 in.), with force 
demands around 0.2g. The force reduction factor when compared to a 
fixed-base case is around 2.5 for a 2.1-sec isolation system. 

 The response of the isolated structure is mainly influenced by the isolation 
period (post-yield stiffness). A large isolation period (smaller post-yield 
stiffness) will reduce force demands but induce larger displacement 
demands as a tradeoff. The initial stiffness of the bearing had little effect 
on the response in this simplified rigid-mass model. 

 Larger characteristic strength Qd, or equivalently larger bearing yield force 
Fy, will decrease the isolator displacement demand but not significantly 
affect the force demand. 

 The initial stiffness of the bearing did not produce significant variation in 
the force demands or the displacement demands in the likely period range 
of interest. 
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4 DYNAMIC ANALYSIS OF A SEISMICALLY 
ISOLATED PGSFR SUBJECTED TO 
EARTHQUAKE EXCITATION 

4.1 INTRODUCTION 

Chapter 3 presented the results of parametric analyses carried out using a rigid-mass model that 
represented the upper reactor and auxiliary building. That simplified model restrained rocking of 
the plant about any horizontal axis and rotation about a vertical axis. As such, it was possible to 
model the plant as being supported on a single isolator unit that represents the whole isolation 
system. Although some key conclusions were drawn from parametric study on the simplified 
model, a more refined model of the PGSFR is needed to capture fully the three-dimensional 
dynamic response characteristics of the facility. 

In this section, a more refined model representing the PGSFR RCB, auxiliary building 
(AUX), and base mat is considered. While the model is more refined than the rigid block model 
used in Chapter 3, it was still based on a simplified lumped-mass “stick” representation when 
modeling upper plant buildings. Given the lack of current details regarding the plant design, and 
the evolving configuration and properties of the superstructure, this model is believed to be 
appropriate for the type of preliminary investigations being carried at this stage of the study. The 
superstructure is supported on an isolation system consisting of 152 LRBs. The overall model 
was developed in OpenSees. In addition to a model of the isolated PGSFR, a fixed-base model 
was developed and analyzed for comparison purposes. Parametric studies were conducted using 
time-history analysis methods considering three components of earthquake excitation. The 
results of these parametric studies are described in this chapter. 

4.2 DEVELOPMENT OF A REFINED 3D MODEL IN OPENSEES 

A more refined lumped-mass stick model was developed in OpenSees to study the dynamic 
behavior of the plant superstructure in terms of isolator displacements and floor response spectra, 
as well as to assess overturning response including possible tension and uplift of the bearings, 
and torsional effects in the isolation system associated with the stiffness and mass eccentricity of 
the current design. The same stick model with some minor modifications is also being used for 
aircraft impact analyses discussed in Chapter 5. 
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 Poisson’s Ratio: 0.2 

 Weight Density: 0.0 kN/m3 (0 pcf) 

Damping was assigned as stiffness proportional damping with the following values: 

 RCB: 5% anchored at 4.3 Hz 

 AUX: 7 % anchored at 5.4 Hz 

 Base Mat: 7 % anchored at 7.0 Hz 

Less damping was assigned to the RCB than the AUX because it was assumed that the 
RCB is a prestressed RC structure, while the AUX is assumed to be constructed from regular 
RC. 

4.2.3 Analysis Model 

In the analysis model shown in Figure 4.4, the left shorter stick represents the AUX and the right 
taller stick represents the RCB. The origin of the coordinate system for the analysis model is 
located at the center of the RCB at ground elevation. Beam–column frame elements were used to 
model the two portions of the lumped-mass plant superstructure. The common base slab was 
modeled using shell elements; therefore, it had distributed weight and mass properties. Beneath 
the base mat, 152 elastomeric bearing elements were defined to model the isolation system. The 
FE mesh of the base mat was created in such a way that it consisted of 152 nodes and isolator 
elements that were connected to each one of these nodes. The other end of the isolator elements 
was fixed directly to the ground, which means that isolator pedestals and soil were not included 
in the analysis model and possible soil–structure interaction (SSI) effects were not considered in 
this preliminary study. 

In order to connect the two lumped-mass sticks to the base mat and to correctly transfer 
axial forces, shear forces, and overturning moments, several additional frame elements were 
created and assigned to the analysis model. For the RCB, a weightless frame element was 
defined with stiffness properties that corresponded to the walls of the RCB, which was assigned 
along the circumference of the RCB. These RCB-wall elements were then connected to the base 
mat, and rigid elements were then used to radially connect the RCB stick to the RCB-wall 
elements. Similarly, for the AUX, a weightless AUX-wall element was defined and assigned to 
the perimeter of the AUX. Diagonal rigid elements were then defined to connect the AUX stick 
to the AUX-wall elements, which were connected to the base mat. Hence, the weightless wall 
elements, which act as imbedded beams in the shell element base mat, provided a means to 
accurately connect the simplified superstructure sticks to the mat; they also accounted for the 
stiffening effect of the base mat along wall lines. The numbering of nodes and elements for the 
two lumped-mass sticks is shown in the bottom subfigure of Figure 4.4. Vertical node locations 
correspond to the elevations called out in the elevation view of Figure 4.3. 

Frame-element section properties are summarized in Table 4.1. As shown in Figure 4.5, 
the RCB section was assigned over the entire height of the RCB stick; similarly, the AUX 
section was assigned over the entire height of the AUX stick; therefore, stiffness properties were 
uniform along the height. RCB-wall elements were assigned at the base mat elevation around the 
circumference of the RCB superstructure, and AUX-wall elements were assigned at the base mat 
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Table 4.2 Initial lead-rubber bearing element properties (kip, in.). 

Direction 

Linear Nonlinear 

Stiffness Damping Stiffness 
Yield 

strength 
Post-yield stiffness 

ratio 

X 73,656.00 90.70 - - - 

Y 51.24 11.27 3070.36 226.98 7.82E-03 

Z 51.24 11.27 3070.36 226.98 7.82E-03 

XX 1.00 0.00 - - - 

YY 1.00 0.00 - - - 

ZZ 1.00 0.00 - - - 

 

Table 4.3 Nodal weight and mass assignments (kip, in.). 

Node W mx my mz mxx myy mzz 

1001 4,993 12.931 12.931 12.931 0 0 2,254,900 

1002.1 4,993 12.931 12.931 12.931 0 0 2,254,900 

1002.2 16,516 42.778 42.778 42.778 6,151,200 6,151,200 701,510 

1003 4,993 12.931 12.931 12.931 0 0 2,254,900 

1007 4,868 12.608 12.608 12.608 0 0 2,198,500 

2001 27,366 70.880 70.880 70.880 0 0 86,694,000 

2002 27,366 70.880 70.880 70.880 0 0 86,694,000 

2003 27,366 70.880 70.880 70.880 0 0 86,694,000 

2004 27,366 70.880 70.880 70.880 0 0 86,694,000 

2005 27,366 70.880 70.880 70.880 0 0 86,694,000 

 

4.2.4 Dead Load and Eigenvalue Analysis Results 

Figure 4.6 depicts the plan distribution of vertical reactions. The distribution due to dead load is 
concentrated around the perimeter and around the RCB. This distribution is not ideal and likely a 
consequence of rigid elements used to distribute loads from the building into the base mat. The 
independence of lateral and axial forces in analytical bearing models used means this distribution 
does not invalidate analysis results. 

Eigen-frequencies and mode shapes of the fixed-base model are provided in Table 4.4 
and Figure 4.7, respectively. The primary mode corresponds to translation of the RCB at a 
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achieved for the design-level ground motion by using seismic isolation; see Section 3.3 for 
additional information on selecting ground-motion time histories and the construction of the 
NRC RG1.60 target spectra. 

4.4 PARAMETRIC STUDY SUMMARY 

The study compares the seismic response of the fixed-base PGSFR and the base-isolated PGSFR. 
Per Section 4.3, two seismic conditions were used in the comparison. The two comparisons are 
performed for different reasons. The purpose of comparing the base-isolated case subjected to 
the 0.3g PGA ground-motion set with the fixed-base case subjected to the same ground-motion 
set is to investigate the benefits obtained from seismic isolation. The purpose of comparing the 
base-isolated case with 0.3g PGA and the fixed-base case with 0.1g PGA is to examine how 
much the seismic hazard can be increased by using isolation while maintaining acceptable plant 
superstructure response levels and safety margins. Similar to the previous chapter, different 
parameters of the isolators are being studied in this chapter but are applied to the refined model 
in OpenSees instead of the rigid-mass model. 

The parameters considered here for the isolators are the initial stiffness (Kinitial), the post-
yield stiffness or the post-yield period (Tiso), and the yield force (Fy) or the characteristic strength 
of the bearing. The detailed summary of each case considered in this parametric study is shown 
in Table 4.6. 

Table 4.6  Summary of analysis cases used in the parametric study. 

 
Seismic Input 

Initial stiffness 
(Kinitial) 

Isolation 
period (Tiso) 

Bearing yield 
force (Fy) 

Parameter 
considered 

Fixed-base 

NRC set with 
PGA of 0.1g 

NA NA NA 
 

NRC set with 
PGA of 0.3g 

NA NA NA 
 

Base-
Isolated 

NRC set with 
PGA of 0.3g 

5 Kpostyield 3 sec 10% W 
Different 

Kinitial 
10 Kpostyield 3 sec 10% W 

100 Kpostyield 3 sec 10% W 

10 Kpostyield 2 sec 10% W 

Different Tiso 10 Kpostyield 3 sec 10% W 

10 Kpostyield 4 sec 10% W 

10 Kpostyield 3 sec 5% W 

Different Fy 
10 Kpostyield 3 sec 10% W 

10 Kpostyield 3 sec 15% W 

10 Kpostyield 3 sec 20% W 
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4.4.1 Comparison of Different Kinitial 

Because of the relatively low value of PGA selected for the design-basis earthquake (SSE), the 
isolator deformations are expected to be small. In a preliminary run using the refined model and 
a representative 0.3g record, the peak bearing response amplitude is around 50 mm (2 in.) for Tiso 
= 3 sec, Fy = 0.1 W, and Kinitial = 10 Kpostyield. During this response, the bearing deformed into the 
post-yield range only a few times; in most of the cycles, and the bearing remained in the elastic 
range; therefore, the isolator and structural response may depend significantly on the initial 
stiffness of the isolator. Thus, in the first part of this parametric study, the post-yield stiffness of 
the isolator is fixed at Tiso equals 3 sec, and Fy is fixed at 10% W. To show the importance of this 
parameter, three different initial stiffness values were considered and the responses compared. 
The initial stiffnesses used here are characterized by the ratio of the post-yield stiffness. The 
post-yield stiffness was held constant, and the initial stiffness was assumed to be 5, 10, and 100 
times stiffer. The reason to choose the ratio of Kinitial to post-yield stiffness instead of a real value 
of the initial stiffness (which is mainly based on the area of a particular lead plug), is to obtain a 
more intuitive sense on the value of the initial stiffness used. The post-yield stiffness is a 
common design-oriented parameter considered in bearing design. The most common ratio used 
in practice is around 10%. The actual values of the initial stiffness are 827, 1655, and 16,550 
MPa (120, 240, and 2400 kips/in.) for each bearing. 

4.4.2 Comparison of Different Tiso 

As discussed in Chapter 3, the isolation period Tiso, which is based on the post-yield stiffness of 
the isolator, is the most important parameter considered in the design of a seismic isolation 
system since it influences both the displacement demands of the isolators and the forces 
transferred to the superstructure. However, because of the small deformations that the isolators in 
the refined model underwent when subjected to the SSE, the effectiveness of Tiso on the response 
may not be as large as for the simplified rigid-mass model discussed in Chapter 3. 

In this part of the parametric study, a Tiso of 2 sec, 3 sec, and 4 sec were evaluated and 
compared, while the isolator yield force Fy was kept at 10% of weight on bearing, and the initial 
stiffness was kept at 10 times the post-yield stiffness. When studying different post-yield 
stiffnesses, the initial stiffness values need to be kept unchanged. Therefore, by changing the 
post-yield stiffness ratio, different post-yield periods can be achieved for the same initial 
stiffness. 

4.4.3 Comparison of Different Fy 

The yield force of the isolator is another parameter considered in this series of parameter studies. 
Per Chapter 3, it was found that Fy has a fairly large influence on the displacement demand but 
has only a minor effect on the force demand for the simplified isolated rigid-mass case. However, 
because of the overall smaller bearing deformations, Fy has a more pronounced effect on the 
superstructure response in this case. The total shear force that propagates up into the 
superstructure from the bearing is the yield force plus the increase of force due to the post-yield 
stiffness of the bearing. Since the isolator deformation is small, the contribution from the second 
part is negligible; therefore, any change of the force demand in the superstructure is directly 
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related to Fy. More detailed results and a discussion of this behavior will follow later in this 
chapter. 

In this section, different isolator yield forces were considered and compared, with Fy 
equal to 5%, 10%, 15%, and 20% of the initial gravity load on the bearing. As mentioned earlier, 
the LRB isolator elements used in these studies do not account for any vertical–horizontal 
coupling effects in terms of forces and bearing kinematics. Hence, changes in the vertical force 
in the isolators due to vertical excitation and rocking during the response history analyses do not 
affect the shear behavior of the isolators. The other two parameters are kept unchanged. The 
post-yield period was kept at 3 sec, and the initial stiffness was kept at 10 times the post-yield 
stiffness, which is 1655 MPa (240 kips/in.). 

4.5 ANALYSIS RESULTS AND DISCUSSION 

Selected results will be shown below and accompanied by an in-depth discussion. With the 
refined analysis model, horizontal floor response spectra and vertical floor response spectra of 
each floor level for both the RCB and AUX were generated and compared. Drift response of the 
RCB and AUX along their height were also analyzed. Isolator hysteresis loops and displacement 
orbits were captured for all of the 152 bearings supporting the plant superstructure. The corner 
bearing and center bearing are shown and compared in detail. 

The described response quantities were analyzed and discussed for the NRC ground-
motion set, which contains 20 ground motion histories either scaled to 0.3g PGA or 0.1g PGA. 
The results shown in this section for the RCB and the AUX are median response quantities as 
well as 84th-percentile response quantities (which are one standard deviation above the median). 

For each of the plots showing response results, peak absolute values over the entire 
response history are reported; however, plots illustrating isolator responses show the entire 
response history. Since the ground-motion input is three-directional, horizontal response 
quantities were calculated by taking the norm of the response values of the two horizontal 
directions at each time step. 

For each of the plots, fixed-base cases for a PGA of 0.1g are represented by black dashed 
lines, fixed-base cases for a PGA of 0.3g are shown as black solid lines, and different base-
isolated cases for a PGA of 0.3g are represents by colored lines. 

4.5.1 Results for Different Kinitial 

A comparison of different Kinitial values was carried out since a reasonable initial stiffness value 
for the isolators is needed for subsequent parameter studies. As an insightful response quantity 
for the design of NPPs, floor acceleration spectra are compared first. The horizontal floor spectra 
of the RCB are shown in Figure 4.9. The RCB model has seven floors, and the floor acceleration 
spectra in the horizontal direction for the first floor, fourth floor, and the roof are shown in 
Figure 4.9. As previously noted, the spectral acceleration value corresponds to the norm of the 
two horizontal directions; therefore, for the spectral acceleration at the largest frequency in the 
graph, the fixed-base peak floor acceleration is not 0.3g because the norm of the two scaled 
components is larger than 0.3g. 
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Comparing the floor spectra of each floor, from the ground floor to the top floor, a 
pronounced amplification of the spectral accelerations can be observed as the floor level 
increases. The largest peak in each spectrum corresponds to the fundamental mode of the RCB of 
the fixed-base model at 4.3 Hz. The peak spectral acceleration at the fixed-base fundamental 
frequency is amplified from 1.2g to almost 5g, whereas the peak floor acceleration at large 
frequencies increases less from 0.5g for the ground level to 1g for the roof level. These large 
amplifications are reasonable around the fundamental frequency of the fixed-base case since the 
fundamental mode shape increases with height and is largest at the top. However, when 
considering the fundamental isolation mode, which is represented by the small spectral 
acceleration peak at around 0.6 Hz, the peak is not amplified much from the ground floor to the 
roof. This is due to the fundamental isolation mode shape being nearly constant along the height. 

In a comparison between the base-isolated cases and the fixed-base cases for the 
horizontal floor acceleration spectra of the RCB, the base-isolated case for the 0.3g PGA design-
level ground motion set generates similar spectral acceleration amplitudes as the fixed-base 
design subjected to the 0.1g PGA ground-motion set. Hence, the isolated PGSFR NPP can 
sustain design-hazard levels that are approximately three times larger than what is possible for 
the fixed-base plant. However, even though the overall spectral acceleration amplitudes are 
similar, the frequency content of the floor spectra is changed. The response for the isolated plant 
is larger for certain parts of the frequency range as compared to the 0.1g PGA fixed-base case, 
especially around the fundamental isolation frequency. Note that most of the equipment will not 
be sensitive to long-period motion except for possible sloshing of free-liquid surfaces. This 
difference may not influence much the design of the plant superstructure and equipment, but it 
needs further investigation. A comparison of the same 0.3g PGA fixed-base case with the base-
isolated case clearly demonstrates the great benefit obtained by using seismic isolation 
technology as can be seen by comparing the colored lines with the black solid line in Figure 4.9 
for each floor level. The reduction in spectral accelerations is approximately by a factor of 3 for 
the base floor and slightly smaller as the floor level increases. 

When comparing floor spectra for each of the base-isolated cases with different bearing 
initial stiffnesses, it is clear that a small initial stiffness produces better results than a large initial 
stiffness. A distinct change of the spectral acceleration peak at the fundamental isolation 
frequency can be seen in the acceleration spectra for all floor levels. For a smaller initial stiffness 
of the isolator, the effective stiffness of the isolator is also reduced, and the spectral acceleration 
peaks corresponding to the effective isolator frequencies are shifted to lower frequencies. For 
higher floor levels, significant amplification of the spectral acceleration peaks occurred around 
the fundamental frequency of the RCB for cases with large isolator initial stiffness. Higher-mode 
peaks in the floor response spectra were also more amplified for cases with the larger isolator 
initial stiffness. 
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Unlike the spectral accelerations of the RCB, the peak around the fundamental frequency of the 
AUX is suppressed instead of amplified. 

This is due to the change of modal characteristics of the isolated structure from the 
original fixed-base structure. For the fixed-base case, the first vibration mode frequency 
corresponding to the deformation of the RCB is around 4 Hz. This is consistent with the results 
shown in Figure 4.9 and Figure 4.10, where the fixed-base response spectra peak is around 4 Hz, 
which is the fundamental frequency of the RCB. When isolated, the vibration mode frequency 
corresponding to the deformation of the RCB is also around 4 Hz; therefore, in Figure 4.9 and 
Figure 4.10, for the floor spectra of the isolated model, the second peak is still predominant, 
which is also around 4 Hz as fixed-base case. 

Because the mode corresponding to the movement of the AUX is around 5 Hz, the peak 
of floor acceleration spectra for the fixed base is around 5 Hz. However, given the interaction 
between the base mat and the two sticks in the model, the mode corresponding to the movement 
of the AUX in the isolated model has shifted; Therefore, the floor spectra response of the 
isolated AUX has a shifted peak compared to the fixed-base model. 

In terms of the peak floor acceleration response value, the PGA of 0.5g for ground level 
can be reduced to around 0.2g by choosing smaller initial stiffness of bearings, and a response 
reduction factor around 2.5 can be achieved. Overall, considering floor spectra for frequencies 
larger than 1 Hz (which we are considering critical in the design of a NPP), the response 
reduction using seismic isolation is more pronounced for the AUX comparing to the RCB. 

In addition to the horizontal spectra, the vertical floor acceleration spectra were also 
investigated; see Figure 4.12. A comparison between different floors demonstrates that the 
amplification effect of the vertical ground motion is not as large as the horizontal ground motion. 
The peak value of the acceleration spectrum increased from 1.0g at the base up to 1.8g at the roof, 
which is approximately double. 

In terms of the amplitude of vertical acceleration compared to the horizontal acceleration, 
the vertical acceleration is around one-half. Comparing the base-isolated case and the fixed-base 
case, amplification is expected for the base-isolated case because the vertical stiffness of the 
bearing is included. Based on modal analysis of the fixed-base model, the original vertical mode 
frequency of the RCB was around 12 Hz. Including the isolation plane and the vertical stiffness 
of the isolation system, the new vertical mode frequency becomes around 9.7 Hz; note the shift 
in peak in Figure 4.12. The amplitude of the new peak is larger than the original peak, around 50% 
higher in amplitude. 
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The response is identical if we compare the vertical acceleration responses of the 
bearings with the different initial stiffness. Since the different parameters used in the bearing 
model only affect the horizontal behavior of bearing, the vertical characteristics of bearing are 
not affected by the horizontal parameters; therefore, the response is not influenced. The response 
of vertical floor spectrum for the AUX is similar and is not shown here. 

Besides the response of floor spectrum, the force or drift demands were evaluated for the 
RCB and the AUX. The maximum story drift value of each floor during the time history was 
recorded, and the median response for each story is shown in Figure 4.13. The floor level or the 
story level is defined based on the discretization of the model representing the RCB and AUX. 
The story may not represent the real story of the facility especially for the RCB, but it will give a 
general view on the distribution of drift deformation along height for both buildings. 

For the RCB, comparing the drift responses of the isolated model and fixed-base model 
for the 0.3g PGA hazard the response is almost the same, with the isolated reactor drift demand 
slightly smaller. Comparing the isolated model to the fixed-base case evaluated at the 0.1g PGA 
hazard, drift demands of the latter are much smaller. Since the isolator deformation is fairly 
small, the benefits of using base isolation are not quite obvious in terms of the force or drift 
demands. Since the seismic load is small, the force demand at the base of the superstructure is 
almost the same as the fixed base. 

When investigating the drift response of the AUX, which is shown in the second subplot 
in Figure 4.13, the drift demand of the base-isolated case is much smaller than the fixed base for 
the 0.3g PGA hazard; the response is almost the same compared to a fixed-base case for the 0.1g 
PGA hazard. This difference in the drift response between the isolated RCB and AUX is 
consistent with the results shown in the floor spectra. The response reduction effect by using 
seismic isolation is not very evident because of the small deformation imposed on the isolator. 
However, the effect of dominate vibration frequency shift due to interaction of AUX, RCB and 
base mat suppressed the original peak response in the fixed-base AUX. Therefore, compared to 
the RCB which only obtains response reduction from the effect of base isolation, the response is 
much smaller for both drift scenarios for AUX. 

A comparison between the drift responses of isolated systems with different initial 
stiffness demonstrates that the larger initial stiffness will result in a larger drift demand. For the 
system with bearing initial stiffness—5 and 10 times the post-yield stiffness—the responses are 
identical since the difference between the two stiffness (120 kips/in. and 240 kips/in., 
respectively) is relatively small. For the other case, corresponding to an initial bearing stiffness 
of 2400 kips/in., the drift is much larger. Overall, however, the drift demand, on the order of 
0.02%, is fairly small. Even though the response may show some minor trends or differences 
between different isolator parameter values considered or even between the fixed-base case and 
base-isolated case, drift response might not control the design of this stiff upper structure. The 
84th-percentile drift response is shown in Figure 4.14. From the plot, the maximum drift response 
is in the order of 0.03%; therefore, even for one standard deviation above the median-level 
design ground motion, drift response is still very small since upper-structure is fairly stiff this 
case. 
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same direction and in phase. Since the distribution of the gravity load was assumed uniform for 
the whole isolation plane, the effect of different vertical loads on the bearings was not considered. 

Based on results of the refined model developed in OpenSees to determine the effect of 
initial bearing stiffnesses on seismic response, some preliminary conclusions can be drawn. 
Some of the conclusions and findings associated with general effect of seismic isolation are not 
only for this specific comparison; they pertain to all the parameter studies conducted in this 
chapter and are summarized below: 

1. Under design-level seismic loading considered, the isolator displacement is small 
for the archetype isolated PGSFR, and the effectiveness of seismic isolation is not 
pronounced, especially for the RCB. 

2. The response of horizontal floor spectrum of the base-isolated case under the 0.3g 
PGA hazard is almost the same as the fixed-base case under 0.1g PGA hazard. 

3. Horizontal floor spectra were largely reduced when using seismic isolation, 
especially for the high-frequency range compared to fixed-base case under 0.3g 
PGA hazard, even though the isolator deformation was small.  

4. Vertical floor spectra responses were not reduced by using seismic isolation, and 
the response is not affected by the initial stiffness of the isolator. 

5. The initial stiffness of the isolation affected the response of the isolated structure; 
a larger initial stiffness produced large floor response spectra and drift demand, 
but smaller bearing displacement demand. 

6. The response reduction with base-isolation was much more significant for the 
AUX than for the RCB. The change of modal frequency of AUX further separated 
the upper plant frequency and isolation frequency. The change is due to the 
interaction of the RCB and base mat with the AUX. 

7. Isolators at different locations behaved almost identically, and no torsion effect 
was observed in the base mat. 

4.5.3 Results for Different Tiso 

Based on the general conclusions outlined in the previous section regarding initial isolator 
stiffness, this section will focus on the difference in response when comparing the post-yield 
stiffness or period of the isolator. The three isolator periods considered were 2, 3, and 4 sec. 

Responses of horizontal floor spectrum are shown in Figure 4.17. The amplitude of 
response is consistent with that obtained under different initial stiffnesses. First, as shown in 
Figure 4.17 for the first peak at around 2.5 sec on the spectrum, there is no shift of the location of 
the peak response among the different cases with different isolation periods; therefore, the 
effective period of the isolation system is not influenced by the post-yield stiffness and is 
dependent on the different initial stiffness. This conclusion is intuitive since the displacement of 
the isolator is small the initial stiffness contributes more to the response. Slight differences can 
be seen for the amplitude of the peak response, whereby a smaller post-yield period results in a 
larger response; however, the difference in the response of the floor spectrum is negligible, 
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especially for the high-frequency response. The different isolation period only affects the floor 
spectrum of the first peak and has no effect on the high-frequency response. 

As demonstrated earlier regarding the amplification of the response from the base to the 
top, the scale comparing the fixed-base case and base-isolated case is similar for different 
isolation periods. The floor spectrum for the AUX when using seismic isolation resulted in an 
almost five-fold reduction; see Figure 4.18. It is clear in this figure that the peak response on the 
original fixed-base floor spectrum is suppressed using base isolation. This is especially true for 
the top floor response, where the isolated response is better than the fixed-base response under 
0.1g PGA hazard; the performance in response to design-level ground motion is far superior 
when using seismic isolation. Despite the larger response in smaller frequency ranges because of 
the isolation period, most of the equipment is in the range larger than 1 Hz. Thus, the 
effectiveness of using base isolation is fairly good. 

Because the vertical response spectrum is not dependent on the horizontal property of the 
bearing, it will not be discussed. This parametric study considered the properties for the 
horizontal behavior of the bearings; therefore, the vertical response acceleration spectrum is the 
same for all cases. Due to the vertical stiffness of the isolators, the floor spectrum was amplified 
slightly when using seismic isolation compared to the original fixed-base case. 

The drift response is shown in Figure 4.19, which is almost identical to the drift response 
shown in Figure 4.13; thus, similar conclusions can be drawn. The effectiveness on reducing 
drift demand or shear demand (since the relation of shear and drift are the same in elastic range) 
is small for the RCB. The drift is almost the same when comparing the base-isolated case and 
fixed-base case for the RCB. For the AUX, the effect is much improved. The base-isolated cases 
under PGA 0.3g ground motion have drift demands even smaller than the fixed-base case under 
the 0.1g ground motion. 

A comparison between the drift response of different post-yield stiffnesses or isolation 
period does not show much difference. The separation for different cases on the plot indicates 
larger isolation period results in a smaller drift response. The 3- and 4-sec responses are almost 
the same, which differs from the 2-sec case.  
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Next, bearing response is considered with respect to ground-motion 4, which is the 
largest ground motion considered in the set. The bearing hysteresis and displacement orbit is 
shown in Figure 4.20 and Figure 4.21. For ground-motion 4, bearing displacement around 25.4 
cm (10 in.) is expected. 

A comparison between the bearing response of different isolation periods demonstrates 
that the displacement demand is similar; however, the force demand is quite different. The 
isolator with 2-sec isolation period exhibited up to a 0.25g maximum horizontal force while the 
3- and 4-sec isolation periods had around a 0.15g peak value, which is consistent with the drift 
responses for these three cases. Note that for the isolator with a 2-sec period, there was a large 
cycle recorded in the positive H1 direction. This may due to the interaction of bi-directional 
motions or the change of previous cycle response. A comparison between the corner bearing and 
the center bearing shows that the responses are identical; therefore, the movement of the whole 
floor mat is almost purely translational, with all the isolators moving together in the same phase. 

Figure 4.22, which shows the top floor spectrum of the RCB subjected to ground-motion 
4, indicates that the difference in isolator responses due to different post-yield stiffness is 
obvious when the isolator displacement is large. Comparing with Figure 4.17, where there is 
almost no difference in responses for different isolation periods, since the isolator displacement 
is fairly small. In Figure 4.22 the red line which indicates the response with isolation period as 2 
secs is more separated from the other two cases. This indicates the larger displacement the 
bearing undergoes the more important the post-yield stiffness is on the response. 

From simplified analysis results in chapter 3, the post-yield stiffness is an important 
parameter considered in design. However, in this case, the effect of isolation period has an 
unexpectedly small influence on the response because isolator displacement is small. Some key 
conclusions obtained from this section are summarized below: 

1. In terms of the floor spectrum, the post-yield stiffness will affect the amplitude of 
the peak response at the isolation period. Larger periods will result in smaller 
responses. Variations between the post-yield stiffness did not influence the 
horizontal floor spectrum responses at high frequency. 

2. The larger the isolator displacement, the greater the dependence will be on 
different isolation periods. With the small isolator displacement in this study, the 
dependence is weak. 

3. In terms of AUX and RCB drift responses, smaller isolation periods will result in 
smaller drift responses. But since the overall drift demand is fairly small, the 
difference can be negligible.  
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An investigation of second peak responses on the floor spectrum reveals that for all cases, 
the second peak location (corresponding to the model frequency of the RCB in the isolated 
system) remained unchanged. However, since a different initial stiffness shifts the location of the 
first peak, with a larger initial stiffness, the distance between the first peak and second peak is 
closer, i.e., the isolation period is not well separated for the original fixed-base period. This 
causes base isolation to be ineffective, and the response of the original fixed-base mode remains 
higher. The amplitude of floor spectrum for those cases with different initial stiffnesses for the 
second peak is much larger for a larger initial stiffness compared to smaller one. 

Variations of Tiso and Fy did not affect the original RCB mode, nor did they shift the 
isolation period. Therefore, the response other than the isolation mode remained unchanged. The 
only differences for these cases are the amplitude in the floor response spectra at the isolation 
mode. For the AUX, the response is shown in Figure 4.24 and similar conclusions can be drawn. 

Because the peak of the fixed-base AUX mode on floor spectrums is suppressed, the peak 
response of the floor spectrum is controlled by the isolation mode. For the RCB, the peak 
response of floor spectrum is controlled by the peak of the RCB mode, which lies in the 
frequency range of most of the equipment. In the case of increasing floor levels, responses at 
higher frequency range is increasing since the upper-structure modes starts to contribute to 
responses. The vertical floor acceleration spectrum will not be discussed again since changing 
isolator horizontal design parameters do not affect vertical responses. 

The drift response along the height of the RCB and the AUX is shown in Figure 4.25. In 
general, the amplitude of drift response is similar for different cases regardless of the initial 
stiffness, post-yield period, or the yield force of the bearing. The relative amplitude relation 
between the base-isolated cases and the two fixed-base cases are similar. 

For different yield forces of the bearing, a smaller Fy results in smaller drifts since drift is 
mostly affected by the isolator force. When the displacement is small, the bearing yield force is 
the most effective way to change the isolator force. Considering the small amplitude of the drift 
responses, the response may already be controlled through other design considerations. 
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 Different bearing yield forces will not affect the high-frequency responses 
on the horizontal floor spectrum. 

 The drift response is similar when using isolators with different Fy. With a 
larger Fy, the drift response will be slightly larger. 

 The bearing displacement demand will be much smaller when a larger Fy 
is used. 

4.6 CONCLUSION AND SUMMARY 

This chapter described the results of a parametric study for different bearing properties including 
initial stiffness, post-yield period, and yielding force using the refined model developed in 
OpenSees. Floor acceleration spectrum, drift response, and bearing response were investigated to 
determine the sensitivity of the response to each of the parameters and the efficiency of the 
isolation system. Some key conclusions were drawn: 

Under the ground-motion level of 0.1g PGA, the fixed-base model response was similar 
to an isolated model evaluated under the ground-motion level of 0.3g PGA. This means the 
design-level ground motion can be increased by a factor of 3 using the isolation system 
investigated. However, the isolation system requires a site-specific design, and an isolated NPP 
designed for a higher PGA cannot be indiscriminately relocated since the isolation system must 
be appropriately tailored. 

The AUX received the most significant benefit from seismic isolation as observed 
through floor response spectra. The peak value was reduced by a factor of 2 on the top of the 
upper mat for both the RCB and AUX. On the top of the AUX, the floor spectrum peak was 
reduced by a factor of 8, and the RCB response was reduced by a factor of 5. 

Vertical acceleration responses were amplified when seismic isolation was used as 
compared to the fixed-base model because of the introduced vertical flexibility of the bearing. 
Once isolated, the original fixed-base mode of the AUX was shifted by interaction with the RCB 
and isolation system. The original peak in the floor spectrum of the fixed-base AUX was 
suppressed as the isolated mode became predominant. Initial stiffness of the bearing had an 
impact on the horizontal floor spectrum. Larger initial stiffness produced a larger response and 
excited the RCB response in the upper floor. Slightly larger drift and smaller bearing 
displacement response was expected for bearings with a larger initial stiffness. 

The post-yield period has less influence on the response than other parameters. Bearing 
yield force had a significant impact on the floor response spectrum; a larger yield force resulted 
in a larger response but much smaller bearing displacement demand. The drift response for both 
the RCB and AUX were small, which should benefit the elastic design of these structures. 

Overall, a seismically isolated structure will perform much better compared to a fixed-
base structure. For the isolated PGSFR considered in this study, because the displacement 
demand was small under the design-level earthquake, the effectiveness of seismic isolation was 
not as beneficial as a seismic isolation system with reduced yield force and larger displacement 
demand. 
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5 DYNAMIC ANALYSIS OF A SEISMICALLY 
ISOLATED PGSFR SUBJECTED TO 
AIRCRAFT IMPACT 

5.1 INTRODUCTION 

It is now generally accepted that the effects of deliberate crashes of large commercial aircraft 
should be considered in the design of critical facilities such as NPPs. Most of the current 
regulatory guides for the design of NPPs now incorporate analysis and design requirements to 
assess or mitigate the effects of a large commercial aircraft impact. 

For instance, the U.S. NRC stipulates in Title 10 CFR Part 50.150 that an applicant for a 
license to construct and operate a NPP 

“…shall perform a design-specific assessment of the effects on the facility of the impact 
of a large, commercial aircraft. Using realistic analyses, the applicant shall identify and 
incorporate into the design those design features and functional capabilities to show that, with 
reduced use of operator actions: 

 The reactor core remains cooled, or the containment remains intact 

 Spent fuel cooling or spent fuel pool integrity is maintained” 

The U.S. NRC further stipulates that the assessment “must be based on the beyond-design-basis 
impact of a large, commercial aircraft used for long-distance flights in the United States, with 
aviation fuel loading typically used in such flights, and an impact speed and angle of impact 
considering the ability of both experienced and inexperienced pilots to control a large, 
commercial aircraft at the low altitude representative of a NPP’s low profile.” 

The Nuclear Energy Institute has also published a methodology for evaluation of aircraft 
impact on new NPPs [NIE 2009]. Its recommendations differ, and, in some cases, are less 
conservative than mandated by the U.S. NRC. 

For a traditional fixed-base design, considerable research and development has been done 
to strengthen and detail the containment structure and other critical structural features of the 
nuclear island necessary to achieve these goals [Riera 1968, Riera 1980, Riera 1982, Chadmail 
1985; Sugano et al. 1993, Arros and Doumbalski 2007, Wilt and Chowdhury 2011, Lee et al. 
2013, and Sadique et al. 2013]. These have had an effect on plant design, including strengthening 
and toughening of the containment structure and other portions of the nuclear island to prevent 
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local penetration or perforation, separation of safety critical internal systems and components 
from structural elements that might undergo large deformations during aircraft impact, and the 
protection of systems and components from the high accelerations that might be associated with 
impact. Other recent studies have focused on special issues of analysis including the 
accelerations imposed on components due to impact [Andronov et al. 2010], and the effect of 
different refinements to the numerical modeling of the response to aircraft impact [Bignon and 
Riera 1980; Abbas et al. 1996; and Siefert and Henkel 2014]. A recent comprehensive review of 
analyses and tests related to aircraft impact, and computer programs used in such analyses is 
available [Jiang and Chorzepa 2014]. 

With the consideration of seismic isolation for nuclear facilities, attention has begun to 
focus on the effect of aircraft impact on isolated facilities [Kulak and Yoo 2003; Blandford et al. 
2009; and Noh and Kim 2012]. Kulak and Yoo [2003] considered a simple single-degree-of-
freedom model of a supported rigid mass on HDRBs intended to be representative of the 
horizontal isolation systems used for the STAR-LM or KALIMER fast reactors. The dampers 
were modeled as equivalent linear springs, giving the plant a frequency of 0.5 Hz and an 
equivalent viscous damping ratio of 12%. Aircraft impacts included a Boeing-720 traveling at 
100 m/sec and a Boeing-747 traveling at 150 m/sec. The impact loading on the plant was 
obtained by simplifying results derived using the methodology suggested by Riera [1968]. The 
results showed that even for the heavier and faster Boeing-747, the bearing displacements were 
limited to about 29 cm (11.4 in.), which corresponds to a shear strain of about 90% for the 
isolation bearings considered. This was very similar to the shear strains expected during the SSE 
and well within the deformation capacity of the bearing (about 300%). 

Blandford et al. [2009] investigated the case of a simplified elastic two-degree-of-
freedom lumped mass stick model supported on a base-isolated raft foundation. The facility was 
intended to be representative of a relatively light small modular reactor. The frequency of the 
plant in its fixed-base configuration was set to 3 Hz. Total isolated weights ranging from 20,000 
to 100,000 metric tons (44,000 to 220,000 kips) were considered. The properties of the bearings 
were held fixed in a way that a plant having a total weight of 50,000 metric tons (110,000 kips) 
would have an effective isolated frequency of 0.5 sec. Considering the variation of plant weights, 
the overall effective frequencies of the plant were 0.3, 0.5 and 0.75 Hz. The bearings in this 
study were assumed to have an effective viscous damping ratio of 10%. The superstructure was 
assumed to have 5% viscous damping. Aircrafts considered included a Boeing-747-400 weighing 
397 metric tons (875 kips) with an impact velocity of 201 m/sec and a Boeing-737-900 weighing 
85.3 metric tons (188 kips) with a velocity of 180 m/sec. Principles of dynamic similitude were 
used to modify a force loading history for these planes based on histories developed by Riera 
[1968] for a smaller and lighter Boeing-707-320. The findings of this study indicated that high 
accelerations, large internal forces, and high bearing lateral displacements would develop for 
light plants. For heavier plants, the accelerations and bearing displacements were more 
reasonable even for the faster and heavier Boeing-747. Since this study focused on light-weight 
small modular reactors, the study then focused on the design of external latticed frames that were 
uncoupled from the main plant as a means of avoiding aircraft impact. 

Noh and Kim [2012] analyzed a detailed FE model of a fictitious pressurized water RCB 
considering fixed-base and isolated conditions, subjected to an impact by a Boeing-767-400. 
They also utilized the force response-history analysis method developed by Riera. The FE model 
incorporated yielding of the concrete containment. For conservatism, the authors assumed that 
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the 400 isolation bearings had no damping and had a stiffness that resulted in a fundamental 
frequency for the isolated NPP of 0.5 Hz. They indicated that the local effect (strains) of the 
aircraft impact on the wall at the impact location was nearly the same for the cases with and 
without the isolation system. 

Thus, it appears that although for heavier NPPs, the global dynamic response may be of a 
similar order of magnitude as considered in seismic analysis, the studies to date that consider 
aircraft impact have been limited in scope. The structural models have been complex, but the 
superstructure has been represented by very simple rigid body or reduced degree-of-freedom 
elastic stick models. In addition, aircraft impact where the direction of impact does not go 
through the center-of-mass of the structure may induce torsional response of the isolated plant 
that can increase isolator displacement demands at the corners of the raft foundation. 

This chapter modifies the refined 3D lumped-mass stick model of the PGSFR developed 
for seismic response analysis in Chapter 4 to simulate behavior under aircraft impact. The 
response for two modern commercial planes impacting the PGSFR at different locations are 
investigated for fixed-base and isolated plant conditions. A parametric study is undertaken to 
assess the effect of effective isolation period, initial isolator stiffness and isolator strength on 
bearing displacements,  hysteresis loops, floor accelerations, floor response spectra, story drifts, 
and floor rotations. The response is examined for the AUX as well as the RCB, considering 
different aircraft types and impact locations. In all cases, the structures above the isolation plane 
are assumed to remain elastic, and the flexibility and energy-dissipation capabilities of the 
supporting soil are not considered. 

5.2 STUDY BACKGROUND 

5.2.1 Force Loading Function for Aircraft Impact 

The impulse load due to an aircraft impacting a structure is a complicated function of (a) the 
mass, stiffness, and strength distribution along the aircraft, its velocity at impact; (b) the material, 
strength, and detailing of the structure at the point of impact. The global stiffness of the structure 
and its dynamic interaction with the aircraft during impact are also expected to influence 
response. Analyses to account for these and other factors are possible but time consuming to 
model and execute, and require detailed information about the plane and structure that are 
typically not yet available during the schematic design process. Thus, for these preliminary 
studies, a simplified force loading function initially proposed by Riera [1968] will be used. 

The loading function proposed by Riera is widely used in the analysis of aircraft impact; 
however, the loading function developed by Riera only considers the impact of a Boeing-707-
320, which was the largest commercial plane at the time of publication. Current planes, such as a 
Boeing-747, 767, or 777, are heavier, wider, and longer than the Boeing-707-320 that Riera 
considered. Furthermore, Riera’s loading function is based on an impact velocity corresponding 
to a controlled takeoff or landing condition, rather than a malicious high-speed collision. As a 
result, velocities corresponding to cruising or higher speeds should be considered. Blandford et 
al. [2009] demonstrated that concepts of dynamic similitude could be used to adjust Riera’s 
linearized force loading functions to correspond to planes of different length and mass, and 
traveling at different velocities. 



 

C
histories 
Boeing-7
when imp
function 
relative a
exerted b
the 747-4
represent
planes tr
these imp
of an iso
other airc

T
addition 
perimeter
additiona

 

Figu

Considering t
for a Boei

737-900 is c
pact occurs.
for a Boein

amplitudes o
by the Boein
400 represen
ts a lower bo
raveling fast
pact force lo

olated PGSF
craft types. 

The analysis 
of rigid lin
r of the bui
al recorders t

re 5.1  F
h
T
B

the scaling m
ng-737-900 

cruising at 1
The resultin

ng-707-320 i
of loading in
ng-747 is m
nts an upper
ound. Higher
er (or slowe

oading funct
FR and provi

model used
nks extendin
ildings wher
to help study

orce loading
istories for a
he forcing fu

Blandford et a

method prop
and Boeing

80 m/sec an
ng force tim
in Figure 5.
n this figure,

much larger t
r bound of im
r and lower 
er). Howeve
tions allow f
ide insight i

d here is iden
ng from the 
re the plane
y the dynam

g functions fo
a Boeing-747
unction for a
al. [2009]). 

98 

posed by Bla
g-747-400 w
nd that the B
e histories a
1 (from Bla
, it can be o
han those fo
mpacts cons
impact force

er, for the pu
for investiga
into the nee

ntical to that
lumped ma

es will be a
ic response o

or aircraft im
7-400 and Bo
a Boeing-707

andford et a
were develo
Boeing-747-
are shown alo
andford et al
observed tha
or the Boein
idered in thi
es can be im
urpose of th
ation of the b
d for more 

at developed 
ass stick mo
assumed to 
of the PGSF

mpact analys
oeing-737-90
7-320 is show

al. [2009], fo
oped. It is a
400 is cruis
ong with the
l. [2009]). B

at the peak fo
ng-737 or B
is study, and

magined for h
his prelimina
basic aspect
refined anal

in Chapter 
odels to the
impact, and

FR during air

sis. Impact lo
0 are used in

wn for referen

orce loading
assumed tha
sing at 201 m
e original loa

By comparin
force and im
oeing-707. T
d the Boeing
heavier (or li
ary investiga
ts of the resp
lyses consid

4, except fo
e location on
d the additio
rcraft impac

 

oading 
n this study. 
nce (after 

g time 
at the 
m/sec 
ading 

ng the 
mpulse 

Thus, 
g-737 
ighter) 
ation, 
ponse 
dering 

or the 
n the 
on of 
t. 



 99 

5.3 AIRCRAFT IMPACT CASES 

The study conducted in this chapter considers the following aircraft impact loading scenarios: 

 Two different aircrafts 

 Three different locations of impact 

For each loading scenario, the fixed-base and seismically isolated structures were analyzed. For 
the isolated PGSFR, the study includes nine different isolator characteristics, due to variation of 
the following bearing parameters: 

 Initial isolator stiffness 

 Post-yield isolator tangent stiffness 

 Isolator strength at initial yield 

More information on these variations is presented below. In the following discussion, “scenario” 
is used to describe the aircraft loading condition, and “case” is used to represent a specific 
structure with specific parameters subjected to a specific loading scenario. 

5.3.1 Impact Force Loading Scenarios 

As discussed above, the two loading functions considered in this report are shown in Figure 5.1. 
In principle, the location of impact can be anywhere on the periphery of the plant. Furthermore, 
impact need not occur with a path perpendicular to the contacting surface. For these studies, it 
was assumed that impact occurred perpendicular to the surface on which impact occurs. This is 
consistent with the assumptions used by Riera to derive the force functions. 

Three locations were selected for the aircraft-impact analysis; all of them occurring on 
the AUX as it has a greater exposed surface. Because of the layout and geometry of the different 
building components of the PGSFR, it is very difficult for an airplane to impact the RCB directly. 
For the fixed-base models, the perfect rigidity of the supporting soil means that the reactor 
containment structure will not vibrate as a result of the impact: only the auxiliary structure will 
move in this scenario. Both will move in the base-isolated case, as they are supported on the 
common raft foundation on top of the isolation system. 

The three impact locations selected were at mid-height of the AUX, i.e., about 25 m (82 
ft) above ground. The impact sites are shown in Figure 5.2. In the traverse direction, the structure 
is relatively symmetric; therefore, impact along longitudinal direction (H1) is imposed along the 
central axis of the building. This condition is not expected to induce significant torsional 
response. Two additional impacts are oriented in the H2 (traverse) direction. The RCB is not 
symmetrically placed within the building in longitudinal direction. As such, an impact by a plane 
flying in the global H2 (traverse) direction is likely to induce torsion about a vertical axis. To 
investigate this, two impact locations were considered; see Figure 5.2 These are roughly at the 
one-third point of the building. 

For all three impact-loading locations, both planes were considered. Therefore, six 
different aircraft impact loading scenarios were analyzed in this study. For these six scenarios, 
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The details of the parametric study cases are shown in Table 5.1. The values used for 
each of the bearing properties are the same as previously used in Chapters 3 and 4 for the seismic 
evaluation of the PGSFR. 

Table 5.1 Summary of analysis cases and loading scenarios considered in the 
parametric study. 

Structures  AIA loading scenarios 
Initial 

stiffness 
(Kinitial) 

Isolation 
period 
(Tiso) 

Bearing 
yield 
force 
(Fy) 

Primary 
isolator 

parameter 
considered 

Fixed Base 
3 locations,  

2 planes each 
NA NA NA NA 

Base 
Isolated 

3 locations,  
2 planes each 

5 Kpostyield 3 sec 10% W 

Kinitial 10 Kpostyield 3 sec 10% W 

100 Kpostyield 3 sec 10% W 

10 Kpostyield 2 sec 10% W 

Tiso 10 Kpostyield 3 sec 10% W 

10 Kpostyield 4 sec 10% W 

10 Kpostyield 3 sec 5% W 

Fy 
10 Kpostyield 3 sec 10% W 

10 Kpostyield 3 sec 15% W 

10 Kpostyield 3 sec 20% W 

 

5.4 ANALYSIS RESULTS AND DISCUSSION 

Similar to the analysis results presented in Chapter 4, results in terms of the three parameters 

(Kinitial, Tiso, and Fy) are presented. For each key bearing parameter, results are discussed for the 
various loading scenarios as well as for the fixed-base cases. Since the aircraft impacts are either 
in the H1 or H2 directions, the response results are evaluated separately in the H1 and H2 
directions. Response quantities presented include: 

1. Floor accelerations and floor response spectra in the AUX and RCB 

2. Maximum drift demands in the AUX and RCB 

3. The peak angle of rotation about a vertical axis for each floor for the AUX and RCB 

4. Bearing displacement demands 

5. Bearing hysteresis loops for individual bearings at the corners of the base mat. 



 102

5.4.1 Responses Considering Different Kinitial 

Responses of the study on different bearing initial stiffness are discussed next. The values 
considered for initial stiffness are summarized in Table 5.1. Tiso and Fy were kept constant for all 
of the cases presented in this section. 

Note that the displacement demands on the isolation system were quite small for this 
scenario (see Section 5.4.4.1); none of the bearings reached a shear force equal to the nominal Fy 
value, and some only reached half or less of this value. Nonetheless, the use of Bouc–Wen 
hysteretic models for the bearings resulted in signification nonlinear hysteretic behavior even for 
low-amplitude excursions. However, for these low levels of response, the behavior was 
dominated by the initial “elastic” loading stiffness of the bearings. Thus, the value of Kinitial had a 
significant influence on the behavior of the PGSFR (and other loading scenarios); note that the 
behavior of the Bouc–Wen hysteretic models may not be well calibrated to actual bearing 
properties for this level of excitation, and the model has several well-known difficulties (e.g., 
ratcheting under asymmetric loading conditions) in simulating cyclic behavior in the nominally 
elastic range. 

5.4.1.1 Response of Auxiliary Building: Scenario 1 

The first loading scenario considered was for the Boeing-737 impacting the AUX at location 1, 
on the left side of the building in the H2 direction; see Figure 5.2. Because the loading direction 
was in the H2 direction, torsional response was expected. Results show that the acceleration 
response in the H1 direction was insignificant. The peak pseudo-acceleration in the horizontal 
floor spectrum at the fifth floor of the AUX, which is the floor level at which impact occurred, 
was only 4  10-5g; see Figure 5.3. Similar results were observed for all other Scenario 1 loading 
cases. As a result, only results parallel to the loading direction will be presented below. 

The corresponding floor spectra for the AUX in the H2 direction is shown in Figure 5.4 
for the second, fifth, and sixth (top) floors. Comparing the response spectra in Figure 5.4 and the 
peak total acceleration responses over the height in Figure 5.5, the fixed-base case had total 
accelerations that tended to increase linearly with elevation. For the base-isolated case, the peak 
total accelerations were similar to the fixed-base case. Figure 5.5 shows that the case with a very 
stiff initial stiffness resulted in somewhat lower floor accelerations in the upper levels. Since the 
isolation system moved during the impact, the lower floors had higher accelerations than did the 
fixed-base case. 

The portion of the plant above the isolation plane responded nearly as a rigid body, and 
all floors had nearly the same peak floor total acceleration. Again, the case with a very stiff 
initial stiffness had somewhat lower accelerations; for the isolated model, the response was 
almost uniform along the height. 

From Figure 5.4, it can be seen that pseudo-accelerations in the high-frequency range 
followed the trend shown by the peak floor total acceleration. Between 5–10 Hz, the isolated 
systems had higher pseudo-accelerations at the second floor than the fixed-base structure, 
especially in the case of the bearings with very high initial stiffness values. This is again likely 
due to the nearly rigid body movement of the isolated structure; it is expected that the lower 
floors will move more than in the fixed-base case. At the fifth and sixth floors, the isolated 
systems all tended to have similar spectral pseudo-acceleration values between 5–10 Hz; these 
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The peak story drift response for Impact Scenario 1 is shown in Figure 5.7. As shown in 
the plot, the amplitude of the maximum drift response is very small: on the order of 0.01% for all 
cases considered. In a comparison between the base-isolated case and the fixed-base case, the 
base-isolated case had significantly smaller drift, especially in the lower stories. Note that drift 
response of the fixed-base case was larger at the lower part of the building and smaller on the top, 
whereas for the base-isolated cases, the lower part of the building had smaller drift responses. 
The difference of the drift shape was due to the movement of the base mat. A smaller initial 
stiffness had a better drift response when comparing different base-isolated cases. This trend is 
different compared to floor accelerations and floor response spectra, where the isolated systems 
respond more severely in the lower stories. 

Since the loading for this scenario is eccentric with respect to the center-of- stiffness of 
the structure, the rotation of each floor and the twist within the AUX were investigated. The total 
rotation angle of each floor is shown in Figure 5.8. The rotation of each floor increased 
continuously with elevation for the fixed-base building, i.e., the floor rotation was larger on the 
top; however, the amplitude of twisting was small, with the maximum rotation at the top being 
less than 0.002. 

In comparison, the base-isolated cases had much higher floor rotation, e.g., the total 
rotation of the roof for the bearings with the smallest Kinitial value was nearly 0.05; however, the 
rotation of the base mat was nearly the same as that at the top floor for the base-isolated cases. 
This is because of the significant rotation of base mat about the vertical axis. Because the fixed-
base model cannot rotate at the base and the buildings are torsionally stiff, only small twisting 
occurs. For the base-isolated cases, all the floors above the base have nearly the same rotation; 
Figure 5.8. Thus, the AUX and the base mat rotate as a nearly rigid block. As a result, the 
relative twist that occurred within the elevated portion of the AUX was smaller than that 
experienced by the fixed-base structure. 

The rotation reached 0.03 for the baseline model with Kinitial = 10 Kpostyield and was 
uniformly distributed along the height. Note that the twist that occurred between floors was 
smaller for all of the isolated structures shown than for the fixed-base structure. In all cases, the 
twist that developed as a result of Impact Scenario 1 was rather small. A comparison between 
bearings with different initial stiffness showed a large difference of the floor rotation about the 
vertical axis. Because the vertical rotation is governed by the torsional resistance of the isolation 
plane, this is mainly influenced by the shear stiffness of the isolator. Therefore, a larger bearing 
initial stiffness will result in smaller rotations of the base mat and thus of the supported super-
structure. 
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5.4.1.2 Response of Reactor Containment Building: Scenario 1 

The RCB is separated from the AUX above the base mat by a gap. Therefore, for the fixed-base 
model, assuming the gap between the AUX and the RCB is sufficient to avoid pounding as a 
result of aircraft impact, theoretically, the RCB will be undisturbed. However, in a real structure, 
vibration of the ground will transmit forces to the RCB. For the base-isolated case, because the 
RCB and the AUX share a common isolated base mat, the movement and the rotation of the base 
mat result in movement of the RCB. Consequently, the isolated RCB will also vibrate when an 
aircraft impacts the AUX. 

The floor spectra for the RCB are shown in Figure 5.9. Floor spectra in the H2 direction 
are shown for the first floor, fourth floor, and top floor of the RCB. The peak absolute floor 
accelerations for the RCB along the height are shown in Figure 5.10. 

The acceleration response at the base is the same as the base response of the AUX since 
they sit on the same base mat. The peak acceleration response is nearly constant up until the fifth 
floor, at which point the accelerations increase sharply with height. In fact, the peak 
accelerations are larger for the RCB than for the AUX. The peak pseudo-acceleration in the floor 
spectra for the upper-most floor is nearly 1g, which is about 40% larger than the peak spectral 
acceleration in the AUX that bears the brunt of the impact. This behavior is different than the 
anticipated rigid body response of the structure. It is likely that modes in the RCB and AUX 
interact through the isolated mat, and that the impulsive excitation caused by the 
yielding/unloading of the isolators triggers response of certain modes in the RCB. Note: although 
the isolators considered in this scenario all have Tiso = 3 sec, the low level of response in the 
isolators means that behavior is dominated entirely by the value of Kinitial. Thus, the bearings in 
this scenario are likely to transmit more high-frequency vibrations into the supported 
superstructure than what is typically associated with relatively long-period isolators. This can be 
seen by the localized peaks in the floor spectra near 2.5 Hz and 8 Hz, where the bearing model 
with higher initial stiffness resulted in higher floor response spectra for all frequencies above 
about 2 Hz. However, the initially stiff bearing had lower spectral accelerations for frequencies 
less than 2 Hz. 

The drift response is shown in Figure 5.11. In general, the amplitude of the peak story 
drift is small, on the order of 0.01%. The drift response of the RCB is uniform along the height, 
and the amplitude is larger than the drift of the AUX. As noted for the AUX, the bearings with 
large initial stiffness resulted in larger drift; see the green line in Figure 5.11. This is because the 
bearings with higher initial stiffness develop greater shear forces, which are transmitted upward 
into the superstructures, which in turn, develop larger drifts. 

Since some torsion occurred about a vertical axis in the base mat, the isolators that were 
located on the four corners of the base mat responded differently; see plots in Figure 5.12 where 
they are plotted in the same relative location as their placement shown in Figure 5.2. In Figure 
5.12, both the hysteresis loops and the horizontal displacement orbits of the four bearings are 
shown and compared for the different isolator initial stiffnesses. The peak lateral displacements 
of the bearings were relatively small; for the most flexible bearing, the displacement was less 
than 50 mm (2 in.), and for the bearings with the highest initial stiffness, it was less than about 
10 mm (0.4 in.). 
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From the first two sets of hysteresis loop plots, it can be seen that none of the bearings 
reached the nominal yield strength of 0.1 W. Thus, their behavior was dominated by Kinitial. Note 
that the Bouc–Wen model results in some nonlinearity for the bearings that absorbs energy 
during the impact. The bearings with larger initial stiffness developed smaller lateral 
displacements and higher shear forces. The bearing displacement was on the order of 25.4–
51.8 mm (1–2 in.), which is a similar value as the demand under seismic loading. 

The loading of location 1 is in the H2 direction; however, because of rotation of the base 
mat, isolators not only moved in the H2 direction, but in the H1 direction as well. The bearing 
displacement amplitude in the H1 direction was nearly half of the amplitude in the H2 direction 
for the corner bearings shown. As illustrated in the displacement orbit plots in Figure 5.12, it can 
be imagined from the orientation of the orbits at each corner that the movement of the bearings 
was heavily influenced by the clockwise rotation of the base mat. 
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5.4.1.3 Response of Auxiliary Building: Scenario 4 

Impact Scenario 4 was the same as Scenario 1, but the impact was due to the heavier and faster-
moving Boeing-747 (instead of the Boeing-737). A comparison between the two scenarios will 
provide insight regarding the effect of the amplitude of the impulse loads on the dynamic 
response. Some of the results for this case are similar to those already noted for Scenario 1, and 
thus they will not be discussed again. This section focuses on the differences of response 
between Impact Scenarios 1 and 4. Here, the bearings will have much larger displacement 
demands, reaching more than 30 cm (12 in.) in the H2 direction for the bearings with the 
smallest Kinitial. All of the bearings developed shear demands in excess of Fy. 

Floor response spectra for the AUX are shown in Figure 5.13. The peak total floor 
accelerations over the height of the AUX are shown in Figure 5.14. These figures can be 
compared to Figure 5.4 and Figure 5.5 for Impact Scenario 1. Note that the peak floor total 
accelerations (Figure 5.14) increased linearly with height for the fixed-base building as they did 
for Impact Scenario 1, but the peak accelerations increased from about 0.24g to nearly 1g. The 
trends for the base-isolated case differ significantly. Rather than being similar to the fixed-base 
case near the top of the building and higher than the fixed-base case near the bottom of the 
structure (as was the case for Impact Scenario 1), the total accelerations were nearly constant for 
the full height. This is consistent with an almost rigid structure on flexible seismic isolators. The 
accelerations decreased by nearly a factor of two at the top of the structure. As a result of the 
rigid-body-like motion of the isolated PGSFR, the accelerations increased at the base to about 
0.6g for all of the Kinitial values. Thus, once the impact loading becomes severe enough, the 
sensitivity to Kinitial decreases. As shown in Figure 5.14, the case with the highest initial stiffness 
tended to develop floor accelerations that are consistently slightly smaller than those for softer 
bearings. 

The floor response spectra for levels 5 and 6 for all base-isolated cases (near the impact 
location) show substantially reduced pseudo-accelerations for frequencies higher than about 
2.5 Hz; see Figure 5.13. For floor 5, where the impact occurred, the peak pseudo-acceleration 
was reduced by a factor of nearly 5 when employing seismic isolation; the spectral accelerations 
became greater than for the fixed-base case at lower frequencies that approached the frequency 
of the isolation system. These trends are similar to what might be expected in a traditional 
isolated structure. 

For the response spectra for the first floor shown in Figure 5.13, the pseudo-accelerations 
for the base-isolated case were higher as compared to the fixed-base case for nearly all 
frequencies. For a building subjected to large earthquake ground accelerations, the in-structure 
floor accelerations would be expected to be smaller than the ground acceleration. But for the 
impact loading case, the ground does not accelerate (based on the assumptions made in this 
study); therefore, the rigid body motion of the isolated superstructure tended to amplify the 
accelerations in the lower stories compared to a fixed-base structure. At the peak in the spectra 
between 5–6 Hz, isolation was still effective in reducing the worst of the pseudo-acceleration 
peaks. Even though the spectral accelerations were not reduced significantly when compared to 
the fixed-base case, they were comparable to the spectra at other levels for the isolated structure. 
Thus, demands on components and equipment in the isolated building were nearly uniform over 
the height of the AUX.  



 

Figure 5.13  F
Im
is

.

loor accelera
mpact Scena
solated cases

ation spectra
ario 4 (Boeing
s with differe

114

a in the auxil
g-747 at loca
ent Kinitial (Tis

liary building
ation 1): fixed
so = 3 sec; Fy

 

 

 

g in the H2 d
d-base and b

y = 0.1 W). 

direction. 
base-



 

Figu

In
frequenc
this low-
regardles

A
accelerat
dominate
very low
response 
increased
accelerat

T
impact o
the floor 
fixed-bas
isolated c
were larg
at the bo
isolated 
tended to
and Figu
base isol
decreases

R
discussed
AUX for

re 5.14  P
S
w

nterestingly,
ies lower tha
-frequency r
ss of the valu

A compariso
tion-related r
ed by the Ki

w response l
and under 

d disproporti
tions in the i

The drift resp
f a Boeing-7
response an

se cases rem
cases, they w
ger for the fi
ttom story, t
cases. As n

o have slight
ure 5.15, as 
ation becom
s. 

Rotation of e
d for Scenar
r the base-iso

Peak floor acc
Scenario 4 (B
with different 

 the value of
an about 2.5
range. In th
ue of Kinitial. 

n between t
response of 
nitial selected
levels. More

high rates 
ionately as t
solated syste

ponse of the
747 versus a
nd the relativ

mained uncha
were all on t
ixed-base ca
the drifts in 

noted for Im
tly larger in
the impulse

mes more app

ach floor du
rio 1, the ro
olated cases.

celerations a
Boeing-747 at

Kinitial (Tiso = 

f Kinitial has a
 Hz. A large

he higher fr

the results i
the isolated 

d and the mo
e work is n

of loading
he impulse i
ems are far l

e AUX is s
a Boeing-737
ve response 
anged. Drift 
the order of 

ase, especiall
the fixed-ba

mpact Scenar
n-structure st
e associated 
parent, and t

ue to Impact 
tation of the
. On the othe

115

along height 
t location 1):
3 sec and Fy

a significant 
er initial stiff
requency ran

in Figure 5.
PGSFR is c

odeling of th
needed to im
g. Note that
increased wi
ess sensitive

hown in Fig
7 (Figure 5.7
amplitude b
responses re

f 0.03% and 
ly away from
ase structure
rio 1, the be
tory drifts. A
with aircraf

the sensitivi

Scenario 4 i
e floors was
er hand, the r

of the auxili
: fixed-base a

Fy = 0.1 W). 

t influence o
ffness produc
nge, the res

13 and Figu
complex, lar
he hysteretic

mprove bear
t for the fix
ith heavier a
e to increase

gure 5.15. T
7) is almost 

between diff
emained sma
less than 0.

m the impac
e were 2.5 ti
earings with
As can be se
ft impact in
ity of the res

is shown in 
s highly unif
rotation for 

 

iary building
and base-iso

n floor spec
ced smaller s
sponse was 

ure 5.4 dem
rgely becaus
c behavior o
ring models 
xed-base ca
and faster m
es in impulse

The drift res
5 times larg

ferent base-is
all for all cas
02% at the b

cted floor lev
mes larger t

h the highes
een by comp
ncreases, the
sponse to K

Figure 5.16 
form along 
the fixed-ba

g. Impact 
olated cases 

tra for only 
spectral valu
almost iden

monstrate tha
se the respon
of the bearin

in this rang
ase, accelera

moving plane
e magnitudes

sponse unde
ger. The sha
solated case
ses. For the 
base. Story 
vel. For exam
than for the 
st initial stif
paring Figur
e effectivene

Kinitial substan

for the AUX
the height o

ase case incre

those 
ues in 
ntical 

at the 
nse is 
ngs at 
ge of 
ations 
s; the 
s. 

er the 
ape of 
s and 
base-
drifts 
mple, 
base-

ffness 
re 5.7 
ess of 
ntially 

X. As 
of the 
eased 



 

from the 
smaller. 
the super
between 
rotation o
small. 

Figu

Figu

bottom to th
Recall that t
rstructures w
0.15–0.3, w

occurred at t

re 5.15  P
1)
a

re 5.16  M
lo
3 

he top; how
the superstru

were not con
which is not
the isolation 

Peak story dr
): fixed-base
nd Fy = 0.1 W

Maximum floo
ocation 1): fix

sec and Fy =

wever, the am
ucture was a

nducted. For 
t insignifica
plane, and h

rifts along he
e and base-is
W). 

or rotations a
xed-base and
= 0.1 W). 

116

mplitude of r
assumed to r
the three ba

ant. However
hence the in

eight. Impact
solated cases

along height
d base-isola

rotation of th
remain elast
ase-isolated 
r, as noted p
-structure tw

t Scenario 4 
s with differe

t. Impact Sce
ated cases w

he fixed-bas
tic and chec
cases, the f
previously, 

wisting of the

 

(Boeing-747
ent Kinitial (Tis

 

enario 4 (Boe
ith different 

se case was m
cks of yieldin
floor rotation
nearly all o
e AUX was 

 at location 
so = 3 sec 

eing-747 at 
Kinitial (Tiso = 

much 
ng of 
n was 
f this 
quite 



 117

In a comparison between different base-isolated cases, larger initial bearing stiffness will 
result in a small rotation response. The amplitude of floor rotations was almost 8 times larger for 
the base-isolated cases under impact of a Boeing-747 compared to a Boeing-737. Thus, 
additional work may be useful in identifying different distributions of bearing types and 
properties to help mitigate torsional response. Also, the efficacy of adding supplement energy-
dissipation devices to help resist torsion, or the use of bearing systems that may be more resistant 
to torsion, should be investigated. 

5.4.1.4 Response of Reactor Containment Building: Scenario 4 

The response of the RCB under the Aircraft Impact Scenario 4 is described below. Given 
previous discussions, the behavior trends examined earlier will not be revisited. Plots of the floor 
response spectra and floor total accelerations for Impact Scenario 4 are shown in Figure 5.17 and 
Figure 5.18. These may be compared to Figure 5.9 and Figure 5.10 for Impact Scenario 1. As 
was the case with Impact Scenario 1, the isolated RCB vibrated significantly, unlike the idealized 
fixed-base power plant. The total accelerations at the base increased from about 0.16g for the 
smaller Boeing-737 to about 0.5g for the larger Boeing-747. In both cases, accelerations in the 
upper three levels increased substantially. For the top floor level accelerations increased from 
about 0.35g for the Boeing-737 to about 1g for the Boing-747 .  

Considering the floor response spectra, there was very little variation among the floor 
spectra for different values of Kinitial for frequencies greater than about 2 Hz. Below that 
frequency, there was a systematic increase of spectral amplitudes relative to the fixed-base case. 
Spectra for each Kinitial were higher than others at a particular frequency. Again, as seen for other 
response quantities (except for base rotation), the increase in the peak of the pseudo-acceleration 
floor spectra was only on the order of 2, even though it was on the order of a factor of 5 for the 
fixed-base AUX when considering the heavier and faster Boeing-747. 

The trends regarding floor rotation of the RCB were the same as shown for the AUX. The 
magnitude of rotation was highly amplified due to the rotation of the isolation plane. The rotation 
of floors increased significantly for the Boeing-747 compared to the Boeing-737. The floor 
rotation of the RCB was almost the same compared to the floor rotation of the AUX. Both 
rotations were nearly constant over the height, indicating a nearly rigid body motion of the upper 
part of the structure. 

The hysteresis loops and displacement orbits for isolators at the four corners of the 
PGSFR under Impact Scenario 4 are shown in Figure 5.20. The bearing displacement demand in 
the impact direction was about 30 cm (12 in). For the perpendicular direction, the peak bearing 
displacement demand was about half that value. These displacements are about 5 to 6 times those 
for Impact Scenario 1. The hysteresis loops for the heavier and faster Boeing-747 appear more 
like those expected for an isolation bearing. This was not the case for Impact Scenario 1, where 
the bearings did not reach their nominal yield value. 

The effect of torsion on the bearing behavior was far more pronounced for Impact 
Scenario 4 than for Scenario 1. This can be seen in the displacement orbits shown in Figure 5.20. 
The two bearings on the left side of the plot, corresponding to the side of the building hit by the 
aircraft, were displaced far more than those on the right side. The direction of principal 
movement of the bearings was again skewed relative to the H2 impact direction. This is 
suggestive of an initial clockwise torsional movement of the plant. The bearings on the left side 
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of the model moved more in the H2 direction than in the H1 direction, but the opposite was true 
for the two bearings on the right side of the building; see Figure 5.2. 

The displacement demand of the isolator reached 30.5 cm (12 in.) for the smallest value 
of Kinitial. Peak displacements were about 60% of these values for the stiffest values of Kinitial 
considered. For the SSE level seismic events considered in Chapters 3 and 4, isolator demands 
were smaller. The seismic displacement demands on the bearings will be larger if 
recommendations currently being developed in the U.S. NRC regulatory guideline for 
seismically isolated structures will be followed in the future. In this case, the bearing capacities 
might be expected to be on the order of 1.67  1.6 (or 2.67 times) larger than the median SSE 
displacement demands. This increased displacement capacity for seismic design considering 
beyond-design-basis earthquake events will help the PGSFR mitigate beyond-design basis 
aircraft impacts. 
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5.4.1.5 Conclusions Regarding the Effect of Different Kinitial 

In terms of acceleration and drift, the primary response appears to have occurred in the direction 
of the impact loading. However, given the significant torsional response of the structure, some 
reduced response perpendicular to the direction of impact may occur locally. Further study is 
needed to better assess this response, considering likely locations of critical equipment and 
components. 

For the AUX, the floor acceleration spectra due to aircraft impact were larger at the top 
of the building and smaller at the lower part for the fixed-base case, but almost uniform for the 
base-isolated case. This is mostly true for large impulses that represent stiff structures above the 
isolation plane moving as a nearly rigid body. The value of Kinitial had a small or secondary 
importance on the horizontal accelerations that developed due to impact, especially for the 
heavier and faster Boeing-747. 

The reduction of floor spectrum amplitudes for cases using base isolation was more 
pronounced for larger impact loading scenarios. The reduction of the peak value in the floor 
spectrum was around 5 considering the larger impact of the Boeing-747. 

In-structure story drift values were generally small. This study assumed the structure 
above the isolation plane remained elastic. 

Because of the eccentricity of the loading for Impact Scenarios 1 and 4, it was expected 
that rotation of the building and the base mat would occur. For the fixed-base model, minor 
torsion was observed with the twist of the AUX from the base to the top. For the base-isolated 
case, rotation of the whole AUX occurred as a result of rotation of the isolated base mat about a 
vertical axis. Rotations as large as 0.2 were computed for Impact Scenario 4, with the lowest of 
the Kinitial values considered. Larger values of Kinitial effectively reduced the rotations. 

Since the RCB is not attached to the AUX, for the fixed-base case, no response was 
observed due to impact loading on the AUX. However, for the base-isolated case, the RCB 
shares the same isolated mat foundation as the AUX, and the RCB vibrated considerably as a 
result of aircraft impact. For the base-isolated case, the RCB had greater floor response spectra in 
comparison to the AUX. There was a large amplification of accelerations above floor 4 in the 
RCB. This was assumed to be associated with the relatively light and flexible structure used in 
this region of the plant. 

The rotation of the RCB appears to be primarily a result of the rotation of the underlying 
isolated mat foundation. It is assumed that when the aircraft impact occurs eccentrically, the 
isolated mat foundation will rotate significantly, and the bearings will move not only in the 
direction of the aircraft impact but also in the orthogonal direction. In reality, the principal 
direction of motion is skewed to the principal directions of the building, corresponding to the 
relative significance of the torsional and translational movement of the isolation plane. For the 
cases studied herein, the bearing displacement perpendicular to the direction of impact was 
around 50% of that occurring in the direction of the impact. 

For the smaller impact loading, the isolator displacement demand was around 5 cm (2 in.), 
which is similar to the demand for the design-level earthquake (SSE) loading. For larger impact 
loading due to the faster and heavier Boeing-747, the displacement demand reached about 30 cm 
(12 in.). This is much larger than the displacement demand at the SSE; therefore, the design of 
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the isolator should take into account the response under aircraft impact. With a larger Kinitial, the 
bearing displacement demand can be cut in half. Other methods to reduce the torsional and 
translational response of the PGSFR were mentioned and should be investigated in future studies. 

5.4.2 Responses Considering Different Tiso 

Selected results comparing the effect of different isolation periods Tiso on the response to aircraft 
impact are discussed below. Impact Scenarios 2 and 5 are considered as follows: 

Impact scenario 2: Loading location 2 for a Boeing-737 

Impact scenario 5: Loading location 2 for a Boeing-747 

The discussion in this section focuses on the response differences due to three isolation 
periods (Tiso = 2, 3, and 4 sec) and the difference of responses because of the change of loading 
location. For these case studies, Kinitial = 10 Kpostyield and Fy = 0.10 W remain constant. 
Observations determined in previous sections will not be repeated. 

The second loading case is similar to the first loading case; however, the second loading 
location is closer to the centroid of the RCB, thereby nearer to the overall center-of-mass of the 
PGSFR. This scenario considers the smaller of the two aircrafts. As presented earlier, the bearing 
response is relatively small, with the peak forces not exceeding about 70% of the nominal yield 
strength, and the peak displacement being less than 3.5 cm (1.5 in). When compared to scenario 
1, there was far less torsional response for impact location 2. 

5.4.2.1 Response of Auxiliary Building: Scenario 2 

The general trends in the floor response spectra for Impact Scenario 2 are similar to those for 
Impact Scenario 1, as can be seen by comparing Figure 5.4 and Figure 5.21. The peak total 
accelerations developed at each floor are similar, as can be seen by comparing Figure 5.5 and 
Figure 5.22. The amplitude and trends for the total acceleration response is very similar. A 
comparison of the response spectra for different Tiso shows little difference. The three base-
isolated cases have almost identical responses. The reason that Tiso does not have more influence 
on the plant and bearing behavior is that the responses for this impact scenario are not sufficient 
to raise the forces in the bearings to Fy or above. As such, changing the slope of the post-yield 
force-displacement relationship has little (essentially no) effect on response. 

 Unlike seismic loading, the aircraft impact loading does not have many 
loading cycles. The isolator will stay in the initial stiffness range for most 
of the cycles. Therefore, the responses of bearings with different post-
yield stiffness are almost the same since the behavior is mainly influenced 
by the initial stiffness. Because of the use of the Bouc-–Wen isolator 
model, the value of Fy has only a very small effect on the shape of the 
hysteresis loops prior to reaching Fy.  

 The peak accelerations for impact Scenarios 1 and 2 were nearly identical. 
The primary difference between these two scenarios was that the 
eccentricity of Scenario 2 was much smaller, and its sign was opposite to 
that of Scenario 1. 
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 The drift responses shown in Figure 5.23 were very small as before for the 
Boeing-737. In these cases drift does not depend on the post-yield stiffness 
of the bearing. The amplitude of drift was about the same as for impact 
Scenario 1. 

Rotation of the AUX is shown in Figure 5.24. The trends are very similar to those for 
Impact Scenario 1, except that the rotations were slightly less for Impact Scenario 2. For 
example, for Impact Scenario 1, a representative rotation was about 0.033 but only about 0.025 
for Impact Scenario 2. Since the impact force history is the same for both cases, the difference is 
due to the reduced eccentricity of impact location 2. A comparison of Figure 5.8 and Figure 5.24 
shows that the torsional response is much less sensitive to Tiso than to the initial elastic stiffness. 
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displacements compared to the two bearings on the left side. This differs from the trend observed 
under Impact Scenario 1. Because the loading is to the right side of the AUX, the displacements 
in the right-hand side bearings were larger since they are nearer to the impact on the side where 
torsion tended to increase displacement demands. 

The rotation direction under Loading Case 2 was opposite to that of Loading Case 1, as 
illustrated by the displacement orbits of the bearings. The rotation was counter-clockwise instead 
of clockwise like in Loading Case 1 since the loading location was to the right of the center of 
rotation. This resulted in the skewed direction of the principle direction of motion of the bearing 
displacement orbits. The skew is consistent with a rotation of the plant about a vertical axis. 
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5.4.2.3 Response of Auxiliary Building: Scenario 5 

Impact Scenario 5 is discussed in this section. The impact location is the same as for Impact 
Scenario 2, but with the larger and faster Boeing-747 instead of the Boeing-737. As was 
observed for Impact Scenario 4, the impact of the larger and faster plane resulted in lateral 
displacements in some of the bearings in excess of 255 mm (10 in.) and forces far in excess of Fy. 

The floor acceleration response spectra for the AUX are shown in Figure 5.29. The 
associated distribution of total accelerations with height is shown in Figure 5.30. The total 
accelerations were very similar to those computed for Impact Scenario 4. There is virtually no 
difference between the accelerations and acceleration spectra for the different Tiso values used in 
the analyses except in the lowest level shown at frequencies less than 2 Hz. At this location, a 
smaller post-yield period had a slightly larger response. 

Response of floor peak acceleration is shown in Figure 5.30. Comparing the responses 
between Impact Scenario 5 and Impact Scenario 2, the amplification of responses due to the 
larger plane was similar when comparing Impact Scenario 4 to Impact Scenario 1. There was no 
difference in acceleration response of the AUX comparing Impact Scenarios 2 and 1 as long as 
the loading function and direction were the same. The floor acceleration response was the same 
for the AUX for all the normal impacts with the same loading function. The drift response is not 
shown because the response was similar to Impact Scenario 4 and the response value was small. 

The rotation response of the AUX is shown in Figure 5.31. Compared to the rotation 
response of AUX under Impact Scenario 4, the response under Impact Scenario 5 is smaller. The 
response for the same case, which has a 3-sec isolation period and initial stiffness 10 times the 
post-yield stiffness, is around 0.18 for Impact Scenario 5 but around 0.23 for Scenario 4. The 
difference is due to the change in the distance of the loading location to the center-of-mass and 
stiffness, because these are not uniformly distributed along the H1 direction and the RCB is not 
centered in the layout of the AUX. 

A comparison of responses with different isolation periods demonstrates that the 
difference shown in Figure 5.31 is more noticeable compared to the response shown in Figure 
5.24 for Impact Scenario 2, which involved the impact of a smaller and slower plane. Since the 
loading impulse was larger for Impact Scenario 5, the post-yield stiffness was affected, resulting 
in different displacement demands of the bearings for different cases; therefore, the rotation of 
the base mat, which depends on the movement of the bearings, will be different. The post-yield 
period for smaller bearings will result in a smaller rotation response of the AUX. 

5.4.2.4 Response of Reactor Containment Building: Scenario 5 

The floor acceleration spectra for the RCB are shown in Figure 5.32. As demonstrated earlier, 
there is virtually no difference between base-isolated cases with different isolator post-yield 
periods. Comparing spectral acceleration values against the response spectra for Impact Scenario 
4 in Figure 5.17, the values for Impact Scenario 5 are much larger. The peak amplitudes of the 
spectra were almost twice those when considering the Boeing-747 impacts at location 2 instead 
of location 1. As discussed previously, the floor accelerations of the AUX, which received the 
impact directly, were not sensitive to whether impact occurred at location 1 or 2. The RCB was 
sensitive to the location of the impact on the AUX due to the movement of the base mat. 
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The same conclusion can be drawn from the response of peak floor acceleration; see 
Figure 5.34. When compared to the peak floor acceleration due to Impact Scenario 4, the 
responses were larger. 

The floor rotation of the RCB was the same as the floor rotation of the AUX. A smaller 
rotation was obtained compared to Impact Scenario 4 where the loading location was further 
from the center-of-mass. The bearing displacement orbit and the hysteresis loops for this loading 
case are shown in Figure 5.35. First, the displacement demand for the isolator was around 250 
mm (10 in.) in the H2 direction and 120 mm (5 in.) in the H1 direction. The displacement of the 
bearing is similar to Impact Scenario 4. However, since the impact loading was at the right side 
of the AUX, the center of rotation was located at the left side of the impact location. The right 
two bearings experienced much larger displacements compared to the left two bearings since the 
distance to the center of rotation of the two right-side bearings was larger than the two left-side 
bearings. 

The direction of rotation of the displacement orbit was counter-clockwise. It is clear that 
the displacement demand was affected by the isolation period as shown in the second plot in 
Figure 5.35. The displacement demand can be reduced to around 120 mm (5 in.) by using an 
isolation period of 2 sec instead of 4 sec. In general, the bearing displacement demand due to 
Boeing-747 impact was larger than the demand from seismic analysis under design-level 
earthquake. Therefore, when considering the design of the isolator, the displacement capacity 
might be controlled by aircraft impact loading. 
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5.4.2.5 Conclusions Regarding the Effect of Different Tiso 

Varying Tiso did not significantly affect the acceleration response but slightly influenced the 
rotation of the base slab about a vertical axis during larger impact loading. A smaller Tiso resulted 
in smaller rotation response. The floor acceleration responses of the AUX for different loading 
locations were the same as long as the loading direction and function were the same. Under 
Impact Scenario 2 and 5, where the loading location was near to the center-of-mass, the system 
experienced smaller rotation of the isolation plane than for Impact Scenarios 1 and 4, where the 
impact location was relatively far from the center-of-mass. 

 The floor acceleration response of the RCB was larger for Impact Scenario 
5. Because there was less eccentricity of the impulse with respect to the 
center-of-mass, less of the energy of the impact was directed to the 
torsional response of the system and more was directed to translational 
movement of the system. 

 Displacement demands on the isolators were similar when comparing 
Impact Scenarios 1 and 2, and 4 and 5. Under larger impact due to the 
Boeing-747, the displacement demand in the H1 and H2 directions were 
120 mm (5 in.) and 250 mm (10 in.), respectively. 

 The rotation of the base mat was clockwise for Impact Scenario 1 and 
counter-clockwise for Impact Scenario 2. The isolators near the loading 
location experienced larger displacement compared to the isolators far 
from the loading location. 

5.4.3 Responses Considering Different Fy 

In the previous two sections, the responses of Loading Scenarios 1 and 4 (corresponding to 
loading location 1) and responses of loading scenarios 2 and 5 (corresponding to loading location 
2) were discussed. This section discusses loading scenarios 3 and 6 (corresponding to loading 
location 3). These loading cases correspond to: 

Impact Scenario 3: Impact location 3 for Boeing-737 

Impact Scenario 6: Impact location 3 for Boeing-747 

Both of these scenarios were oriented in the longitudinal H1 direction of the PGSFR and 
acted through the center-of-mass of the system. Since the impact load was directed through the 
center-of-mass and the structure is symmetric in that direction, no torsional response was 
expected. For the lighter Boeing-737, very little response was expected for this excitation. 
Therefore, only Impact Scenario 6 will be discussed in detail. 

5.4.3.1 Response of Auxiliary Building: Scenario 6 

Since the force time history for Impact Scenario 6 is applied through the center-of-mass in the 
H1 direction, the acceleration response only occurred in the H1 direction. The amplitude of the 
computed floor spectrum and magnitudes of the total floor accelerations was very similar to the 
other two loading cases of the impact of a Boeing-747, which can be seen by comparing Figure 
5.36 with Figure 5.13 and Figure 5.29, and Figure 5.34 with Figure 5.14 and Figure 5.30. The 
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reduction in response is larger in higher floors when using base isolation; the response of the 
fixed-base model was large. 

 For bearings with different yield forces, the difference of the acceleration 
related response was not significant. The only difference in the floor 
spectrum was near the frequency of the isolation mode: the larger the 
bearing yield force, the larger the acceleration response. 

 Floor peak accelerations are shown in Figure 5.37. The acceleration 
response of the AUX was nearly constant over height for the isolated 
structure and varied linearly with height for the fixed-base case. The 
amplitude of the acceleration was similar for Impact Scenarios 4 and 5 
despite the location of the impacts being different. 

 The drift response is not shown here as the values are small and similar to 
results presented earlier. The main difference was that due to the impact 
loads being applied in a plane of symmetry, no torsional response was 
observed. 

5.4.3.2 Response of Reactor Containment Building: Scenario 6 

The acceleration floor spectrum and floor accelerations for the RCB are shown in Figure 5.38 
and Figure 5.39. Compared to the response of the AUX, the floor spectrum of the RCB is larger, 
almost twice the response values of AUX. Minor differences can be seen for isolators with 
different yield forces. Isolators with large yield strengths resulted in a slightly larger peak 
acceleration response. As shown in Figure 5.39, the difference between different bearing yield 
forces in terms of peak floor acceleration was negligible, and the amplitude of responses was 
larger than the peak floor acceleration of the AUX. 

For the response of the corner isolators shown in Figure 5.40, only the H1 direction 
hysteresis is shown since there is no response in the H2 direction. For the bearing hysteresis in 
the H1 direction, all of the isolators exhibited the same behavior because they moved in phase. 
The displacement demand of the isolator depends on the bearing yield force; with a smaller yield 
force, the displacement demand will be larger. Overall the displacement demand was around 127 
mm (5 in.), which is similar to the response determined from seismic analysis. 

A comparison between the isolator displacement and the other loading cases including 
torsion effects shows that although the loading function is the same, the bearing displacement 
demand was significantly smaller without the torsional response. The bearing displacement orbit 
is shown in the second plot in Figure 5.40. Clearly, only translation in the H1 direction is 
recorded for the isolator movement since there is no torsion to introduce the movement in the H2 
direction. 
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5.4.3.3 Conclusions Regarding the Effect of Different Fy 

This part of the parametric study considered the effect of different bearing yield strengths. Only 
Impact Scenario 6 was examined, where no torsional response developed. 

 The floor acceleration spectrum for the AUX and the RCB were similar 
compared to the response under the other loading cases with the same 
loading function. 

 The response of the RCB was larger than the AUX even without evidence 
of torsion. 

 The dependence of response on different isolator yield forces was small 
for the acceleration response of the two buildings even though the smaller 
yield force of bearing resulted in larger bearing displacement demands. 
The peak bearing displacement demand was around 127 mm (5 in.). This 
is larger than that required to withstand the SSE. 

5.5 SENSITIVITY OF RESPONSES TO IMPACT LOADING CONDITIONS 

The response of isolated PGSFR due to aircraft impact under different loading conditions was 
investigated, with a particular focus on the response due to different aircraft speeds and different 
loading-function shapes. 

5.5.1 Sensitivity of Responses to Change of Impact Velocity 

First, the response of the base-isolated PGSFR model under aircraft impact of a Boeing-747-400 
at different flying speeds was investigated and the results compared. For the different loading 
cases considered, the aircraft weight and length were kept the same but with different impact 
velocity; the cruising speeds were varied from 20% to 110%. Using the same scale method based 
on Riera’s loading function, the force scale and time scale were calculated. The resulting loading 
force curves are shown in Figure 5.41 for all cases considered. 

As shown in Figure 5.41, the plane lengths were the same, but because the speeds at 
impact were different for each case, the loading durations varied. Note that the loading function 
for aircraft impact of a Boeing-747 used previously assumed the speed was 100% of the cruising 
speed. The impact location considered in this part of analysis is location 1 shown in Figure 5.2. 
The response of the isolated PGSFR under each of the aircraft impact loading scenarios was 
determined and the maximum response shown for each case. The response was normalized by 
the absolute response value at 100% cruising speed. The vertical axis of the plot shows the ratio 
between the response at a specific impact velocity compared to the response of the standard case 
of impact at 100% of cruising speed. The horizontal axis indicates different impact velocities. 

The response of maximum drift and rotation of the AUX and the RCB are shown in 
Figure 5.42 through Figure 5.43. Note that the increase of the response was between linear and 
quadratic, with a linear increase as the impact velocity increased. Note that the response 
investigated here in Figure 5.42 and Figure 5.43 is the response for the AUX and RCB. Since the 
dominant frequencies of this response are similar to the fundamental frequency of the building, 
~10 Hz in the model, it cannot be treated as an impulse even though the loading duration due to 



 

aircraft i
forces de
pattern w
amplitud

Figu

 

Figu

impact is sh
etermined fr
with linear i
de of force, a

re 5.41  L
w

re 5.42  M
m
re

hort. The res
rom structur
increasing v

a quadratic in

oading funct
with different 

(a) 

Maximum drif
maximum drif
esponse of t

sponses amp
ral dynamics
velocity; the
ncrease patte

tions used fo
impact spee

ft ratios unde
ft response o
he reactor co

147

plitudes are 
s. The scalin
refore, since

ern occurs. 

or aircraft im
eds. 

 

er different i
of the auxilia
ontainment b

dependent 
ng of the fo
e the respon

mpact analys

mpact veloc
ary building a
building. 

on the amp
orce increase
nse is more

is due to Bo

(b) 

cities of aircr
and (b) maxi

litude of loa
es in a quad

e sensitive t

 

eing-747-400

raft: (a) 
imum drift 

ading 
dratic 
to the 

0 

 



 

Figu

T
AUX for
response
response 
range inc
response 
quadratic

T
dominant
the isola
loading. 
loading m
generatin
velocity 
more sen

T
pattern w
impulse b
of the ve
increase 
range. 

T
amplitud
increase 
since the
much lar

re 5.43  M
(a
ro

The response
r different fr
s were cons
at different

creased almo
at the freq

c pattern. 

The reason 
t frequency 

ation domina
Therefore, 

momentum 
ng loading fu
scale. There

nsitive to the

The floor acc
with linearly
because it is
elocity scale
pattern is ex

The isolator m
de and the re

of the bearin
e response o
rger compar

(a) 

Maximum rota
a) maximum 
otation respo

e of the max
frequency ra
idered here.
t frequency 
ost linearly;
quency rang

for the diff
and the airc
ant period r
in this case
instead of t
unctions for 
efore, it incr
 momentum

celeration at
y increasing 
s insensitive 
e because o
xpected and

maximum di
esponse amp
ng displacem
of the isolat
red to the l

ation respon
rotation resp

onse of the r

ximum floo
anges are sh
 From the r
ranges. Pea
 see the red

ges of RCB

fference is t
craft loading
range the ai
e, the respon
the amplitud
different im

reases linear
m, shows a lin

t the superst
velocity. G

to the loadin
of its sensiti
d observed fo

isplacement 
plitude ratio
ment respons
tion displace
oading dura

148

 

nses under d
ponse of the
reactor conta

or acceleratio
own in Figu
esults shown

ak floor acce
d line in Fig
 and AUX 

the differen
g frequency o
ircraft loadin
nse amplitu
de of loadin

mpact speeds
rly with risin
nearly increa

tructure freq
Given that it
ng momentu
ivity to the 
for the peak 

response is 
o are plotted
se was almo
ement is sen
ation of airc

different impa
e auxiliary bu
ainment build

on spectrum
ure 5.44 and
n, the increa
eleration aro

gure 5.44 an
fundamenta

nt relative s
or duration. 
ng can be 

ude is sensit
ng force. In 
s, the momen
ng velocities
asing pattern

quency range
t cannot ch

um, the respo
force ampl
floor accele

shown in Fi
d together in
ost linear wit
nsitive to th
craft impact

(b) 

act velocities
uilding and (b
ding. 

m value of t
d Figure 5.4
ase rate was
ound the iso

nd Figure 5.4
al frequency

scale betwe
Since the p
characterize
tive to the a
the scaling 

ntum scale i
s, and the re
n. 

e shows a q
aracterize th
onse was sca
itude; there

eration in th

igure 5.45. T
n Figure 5.4
th increasing

he isolation 
t: this is con

s of aircraft: 
b) maximum

the RCB an
45. The top 
s different fo
olation frequ
45. Note tha
y increased 

een the resp
eriod is larg

ed as an im
amplitude o
system use

is the same a
esponse, whi

quadratic inc
he loading a
aled as the sq
fore, a quad

he high-frequ

The real resp
45. Note tha
g impact vel
period, whi
nsistent with

 

m 

nd the 
floor 

or the 
uency 
at the 

in a 

ponse 
ger, at 

mpulse 
of the 
ed for 
as the 
ich is 

crease 
as an 
quare 
dratic 
uency 

ponse 
at the 
locity 
ich is 
h the 



 

previous 
increases

 

Figu

 

Figu

conclusion.
s linearly wit

re 5.44  M
c
ve
b
c

re 5.45  M
(a
d

. The respon
th increasing

(a) 

Maximum top
ontainment b
elocities: (a)
uilding and (
ontainment b

(a) 

Maximum iso
a) real displa
isplacement

nse is more
g impact velo

p floor horizo
building and
) maximum to
(b) maximum
building. 

lator displac
acement resp
t amplitude r

149

e sensitive to
ocity. 

 

ontal accelera
d the auxiliary
op floor acce

m top floor ac

 

cement respo
ponse amplit
relative to 10

o the mome

ration spectr
y building un
eleration spe
cceleration s

onses at diff
tude and (b) 
0% cruising 

entum of the

(b) 

um value for
nder differen
ectrum of the
spectrum of 

(b) 

ferent impact
normalized 
speed. 

e loading, w

r the reactor 
nt impact 
e auxiliary 
the reactor 

t velocities: 

which 

 

 



 

5.5.2 

This part
functions
function 
represent
loading-f
loading 
compared
loading s
to a real 
loading s

B
considere
Similarly
functions

T
maximum
First, the
investiga
these figu

Figu

Sensitivity

t of study in
s were cons

for the Bo
ted by the re
function sha
force shape
d to the orig
shapes were 

aircraft loa
shape on the 

Besides the 
ed, which ha
y, the force 
s remained th

The response
m value of th
e response o
ated as show
ures was the

re 5.46  D
lo

y of Respo

nvestigated d
structed so t
oeing-747 a
ed line in Fig
apes—numb
es, respectiv
ginal aircraft

the same. N
ading functio

response. 

three loadin
ad the same 
amplitudes 

he same as t

 of the isola
he response
f the maxim

wn in Figure
e real respon

Different load
oading funct

onses to C

different loa
that they ha
at cruising 
gure 5.46. T
ers 5 and 6
vely. The a
ft loading fun
Note that the
on; they are 

ng functions
loading sha
were adjust

the original t

ated PGSFR 
s discussed 

mum drift an
e 5.47 and F
se amplitude

ding-function
ions had the

150

hange of L

ading-functio
ad the same 
speed corre

Then, with th
6—were con
areas undern
nction, indic
e rectangular

used in thi

s described,
apes as the f
ted so that t
three. 

under each 
and compar

nd rotation r
Figure 5.48. 
e and not the

n shapes con
e same mome

Loading-Fu

on shapes; s
 total mome
esponded to
he same dura
nstructed w
neath the f
cating that th
r and triangl
s part of stu

, another th
first three bu
the moment

of the scena
red for differ
response of t

Note that th
e normalized

nsidered in th
entum value

unction Sh

see Figure 5
entum. The 
o loading s
ation of load

with rectangu
force curve 
he momentu
le loading d
udy to exam

hree loading
ut twice the 
tums for the

arios was det
rent loading
the AUX an
he response

d response ra

 

his section. A
e. 

hapes 

5.46. The loa
original loa

shape numb
ding, anothe
ular and tri

were the 
um of these 
do not corres
mine the effe

g functions 
loading dura
ese three loa

termined, an
g-function sh
nd the RCB 
e characteriz
atio. 

All the 

ading 
ading 
er 4, 
r two 
angle 
same 
three 

spond 
ect of 

were 
ation. 
ading 

nd the 
hapes. 

were 
zed in 



 

Figu

Figu

T
momentu
However
relative l
for these
larger tha
loading s
larger tha

re 5.47  M
m
re

re 5.48  M
m
ro

The response
ums are the s
r, if we comp
loading force
e two are the
an loading s
shape 5, wh
an Scenario 

(a) 

Maximum drif
maximum drif
esponse of t

(a) 

Maximum rota
maximum rota
otation respo

e shown in F
same for all 
pare the rela
e amplitude 
e same. For 
shape 6, whi
hich was rec

4, which w

ft response u
ft response o
he reactor co

ation respon
ation respon
onse of the r

Figure 5.47 
cases, the re

ative respons
of the six lo
example, th

ich had a tri
tangular in 

was larger tha

151

 

under differe
of the auxilia
ontainment b

 

nse under dif
nse of the au
reactor conta

and Figure 
esponses are
se amplitude
oading funct
he maximum
angular load
shape, and t
an loading S

ent loading-f
ary building a
building. 

fferent loadin
uxiliary build
ainment build

5.48 indicat
e different fo
e among the 
tions, it is cl
m loading fo
ding-functio
the response
Scenario 5. 

(b) 

unction shap
and (b) maxi

(b) 

ng-function s
ing and (b) m
ding. 

tes that alth
or different lo
six loading 
lear that the 
orce for load
n shape, and
e for loading
If the loadin

pes: (a) 
imum drift 

shapes: (a) 
maximum 

ough the loa
oading funct
scenarios an
relative rela

ding shape 4
d was larger
g scenario 6
ng function 

 

 

ading 
tions. 

nd the 
ations 
4 was 
r than 
6 was 
has a 



 152

higher maximum loading force, then the response of the AUX and the RCB is larger. This is 
consistent with the previous conclusion, i.e., the responses of the AUX and the RCB are sensitive 
to the force amplitude. Although we had the same momentum for different loading-function 
shapes, because the force amplitudes were different, the responses in the high-frequency range 
were different. 

The responses of the floor acceleration for the RCB and the AUX are shown in Figure 
5.49. Per the previous part of the study of different impact velocities, the response at the isolation 
dominant period should be sensitive to the loading momentum, and the responses at the 
superstructure frequency range should be sensitive to the force amplitude. As shown in Figure 
5.49, the floor acceleration response at the isolation period—represented by the red line—
changed only slightly for different loading-function shapes since all the loading scenarios had the 
same loading momentum. However, for floor accelerations in the superstructure frequency 
range—represented by the blue and black lines—the responses varied considerably for different 
loading-function shapes. The relative response amplitudes for each loading shape was the same 
as the relative loading force amplitudes since the response at this high-frequency range is more 
sensitive to the loading force. 

Finally, maximum isolator displacements are shown in Figure 5.50. It is clear that for 
loading shapes 4, 5, and 6, the amplitudes of the response are almost the same, while for the first 
three loading shapes the response is slightly different. Note that for loading shapes 1, 2, and 3, 
the loading duration is doubled and around 0.6 sec; the impulse effect is much smaller since the 
loading duration is approaching the effective fundamental period of the isolator. Therefore, the 
responses of the isolator displacement for these three loading scenarios tended to be more 
sensitive to the amplitude of force. For loading shapes 4, 5, and 6, the loading duration was twice 
as short; therefore, the loading was more like an impulse to the isolation system as the response 
for the isolator displacement is more sensitive to the loading momentum. Therefore, the response 
amplitudes of the maximum isolator displacement of loading scenarios 4, 5, and 6 were similar 
since the momentum of different loading shapes were the same. 
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total momentum of the loading increases at a linear rate. Since the loading duration is short, the 
response with the fundamental frequency around the isolation period, such as the total isolator 
displacement and the floor spectrum at the isolation dominant frequency range, will be sensitive 
to the momentum of the loading, and the loading can be treated as an impulse. However, the 
response with fundamental frequencies around the superstructure period, such as the responses of 
the RCB and the AUX above the isolation plane, amplitudes are sensitive to the maximum 
loading force since the loading cannot be treated as an impulse. 

For the linearly increasing aircraft impact velocities, the isolator displacement and floor 
acceleration spectrum at the isolation period increased linearly, while the floor accelerations at 
the high-frequency range increased more or less at a quadratic rate. For different loading-
function shapes with same loading momentum, the response of the isolator displacement and the 
floor acceleration spectrum at the isolation period range remained similar, while the amplitudes 
of the responses of auxiliary and RCB changed according to the maximum force amplitudes of 
the loading functions. 

5.6 RESPONSE COMPARISON BETWEEN THE AIRCRAFT IMPACT ANALYSIS 
AND SEISMIC ANALYSIS 

Responses under aircraft impact are compared in this section with results for seismic excitations 
under PGA 0.3g events. Comparisons were made in terms of the peak drift response, floor 
acceleration response, and the isolator deformation response. Both the fixed-base and the base-
isolated cases were included in the comparison. For the base-isolated case, the fundamental 
parameter combinations used are: Tiso = 3 sec, Fy = 10% W, and Kinitial/Kpostyield = 10. In this 
section, only aircraft impact load scenarios 1 and 4 (which correspond to a Boeing-737-900 
impact and a Boeing-747-400 impact both in the H2 direction) were compared with the median 
response under seismic event for the PGA set at 0.3g. 

For the fixed-base case where the aircraft impacts with the AUX, there was no effect on 
the RCB in the simplified model; the base was assumed to be completely rigid. The response of 
the AUX in the H2 direction under the Boeing-737 impact and the dynamic response under PGA 
0.3g seismic excitation were compared. The drift responses for these conditions are shown in 
Figure 5.51, where the response under aircraft impact of a Boeing-737 was about one-third of 
that under a PGA of 0.3g. 

In terms of the floor acceleration spectra, it is clear that the response under aircraft impact 
of Boeing-737 was small compared to the seismic event considered here, as shown in Figure 
5.52. The shapes of the floor spectra are similar for the two loading cases, but the spectral 
ordinates for the AIA were smaller than for the seismic loading case. For the base-isolated case, 
the RCB drifts and floor spectra are compared in Figure 5.53 and Figure 5.54. Since aircraft 
impact on AUX also triggered a response of the RCB, one can see significant response in the 
RCB compared to the fixed-base case. Nonetheless, the overall response in the RCB under 
aircraft loading is smaller than for the seismic response (PGA 0.3g). For the AUX (Figure 5.55 
and Figure 5.56), the story drifts near the floor where the aircraft impact occurred were slightly 
larger than the maximum drift response obtained from seismic condition. For the floor 
acceleration response in the high-frequency range, the aircraft impact loading was similar 
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compared to the seismic response. At the lower frequency range, the response was much smaller 
compared to the seismic response. 

The largest isolator displacement for the aircraft impact loading is around 38 mm (1.5 in); 
for the seismic analysis, the median bearing displacement demand was 107 mm (4.2 in). 
Therefore, for the aircraft impact of the smaller-sized plane, the bearing size considered in the 
seismic design is adequate. 

Aircraft load scenario 4 corresponds to the impact of a Boeing-747 in the H2 direction. 
The response to this impact is compared to the response to a seismic event having a PGA of 0.3g. 
Both fixed-base and base-isolated cases were considered. The maximum drift response is shown 
in Figure 5.57 for the fixed-base AUX. For the larger and faster aircraft, drift response was larger 
than the response to seismic excitation, although the overall drift response for both cases was 
relatively small. 

For the floor acceleration response, the peak of the floor spectra lies around the AUX’s 
fundamental frequency. The floor spectra for the AIA and seismic analyses are almost the same; 
however, because of the very short duration of the impact loading, the floor spectrum for the 
aircraft impact is much smaller in the low-frequency range than the seismic excitation; see 
Figure 5.58. 

For the base-isolated cases, the RCB responses are compared in Figure 5.59 and Figure 
5.60. Even if the aircraft does not directly impact the RCB, the drift response due to aircraft 
impact is still larger than for the seismic response. For the floor pseudo-acceleration response 
spectrum, the RCB has a smaller response due to aircraft impact than for seismic excitation in 
the low-frequency range (near the isolation period). The opposite is true in the higher frequency 
ranges; see Figure 5.60. For the AUX, aircraft impact also results in much higher floor 
acceleration responses in the higher frequency range but a smaller response at the lower 
frequency range; see Figure 5.62. The drift response due to the Boeing-747 aircraft impact is 
larger in comparison to the seismic response; see Figure 5.61. 

The largest isolator displacement for the aircraft loading Case 4 is around 280 mm (11 
in.), while the median bearing displacement demand for the seismic analysis is 107 mm (4.2 in.). 
Therefore, the demand from aircraft impact is much larger than the seismic demand. Thus, the 
design of the isolator is governed by the AIA for this specific case. Note: beyond DBE 
excitations might result in larger seismic isolator demands. These were not considered herein. 
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5.7 SUMMARY OF OBSERVATIONS AND CONCLUSIONS 

In this chapter, a preliminary and simplified AIA was conducted using a fixed-base and base-
isolated model of the PGSFR. Three impact locations were considered. At these locations two 
simplified force functions were imposed to simulate the impact of Boeing-737 and Boeing-747 
planes flying at their cruising velocities. For the isolated condition, several different sets of 
isolation bearings were considered to explore the effect of a range of initial (elastic) bearing 
stiffnesses, post-yield stiffness, and the bearing yield strength. The numerical model consisted of 
two elastic, lumped-mass “stick” models representing the RCB and the surrounding AUX, where 
the RCB was idealized as being significantly offset from the center of the AUX. Detailed 
modeling at the location of impact was not included. 

In terms of the global response of the PGSFR, the NPP is able to resist aircraft impact 
when the structure is seismically isolated. For the impact scenarios considered, peak bearing 
displacements ranged from 25 mm (1 in.) to about 300 mm (12 in.). While these beyond-design-
basis events were beyond the demands posed by the postulated SSE, bearing technology exists to 
easily achieve these displacement demands. Moreover, current regulatory trends and 
considerations of subsequent siting of the PGSFR in locations of higher seismic hazard would 
suggest that bearing capacities greater than the median SSE demands should be provided. 

The results illustrate some interesting behavior of the seismically isolated PGSFR when 
impacted by a large commercial aircraft. In terms of in-structure accelerations that might 
adversely affect sensitive equipment and components, it appears that for impact scenarios 
involving fast-moving heavy aircraft, the peak accelerations in the isolated AUX were 
significantly reduced in the upper levels and at levels where impact occurred. However, since the 
isolated structure tends to move as a rigid block, the lower levels in the plant also experienced 
roughly the same accelerations. For a conventional fixed-base facility, the floor accelerations 
tended to be high at the roof and zero at the base. In the isolated PGSFR, the accelerations in the 
AUX were nearly uniform over the height of the structure, being lower at the top and higher at 
the bottom compared to the fixed-base design. The isolation system was particularly effective in 
reducing the peaks in floor spectra that may occur near the fundamental frequency of the 
structure. The peaks of response spectra at upper floors of the AUX were reduced by factors up 
to and including five compared to the fixed-base structure. 

Impact by lighter and slower moving aircraft resulted in behavior far more complex: the 
bearing displacements were generally quite low, and the bearings responded in what might be 
considered the nominal elastic range of behavior. Thus, the effectiveness of the isolation system 
was controlled by the initial elastic stiffness of the bearings. Nonetheless, the design of the 
system is likely to be controlled by the impact of heavy, fast-moving aircraft. 

In the case of an idealized rigid foundation for the fixed-base PGSFR, a plane impacting 
the surrounding AUX did not result in any vibration of the RCB; however, because in the base-
isolated PGSFR the AUX and RCB were supported on a common, seismically isolated, raft 
foundation, the RCB vibrated as a result of the aircraft impact with the AUX. In fact, the 
accelerations developed in the RCB were often significantly larger than in the AUX. This 
counterintuitive behavior seems to be a result of the dynamics of the current model of the RCB, 
which is characterized by high mass in its lower levels and a lighter and more flexible shell 
structure above the fourth level. As a result, the upper levels tended to amplify the acceleration 
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responses considerably in a manner reminiscent of a “penthouse” effect. Thus, some special 
design consideration may be desirable in the design of the RCB. 

Drifts and other distortions of the structures above the mat level were relatively small. 
Significant internal forces may result, but at this point the general layouts and structural details 
of the PGSFR are not known well enough to justify more detailed analyses than presented herein. 
Note that the asymmetry of the PGSFR and the eccentricity of several of the impact scenarios 
resulted in substantial torsional response of the plant. These torsional movements doubled the 
isolator demands in some cases. Thus, various approaches for mitigating torsion by increasing 
the resistance of the isolation plane to torsional motion should be explored. 

There is a disproportionate increase in the response of the fixed-base structure for 
increases in the aircraft’s weight or velocity. The isolated system was much more effective at 
mitigating these increases than the fixed-base structure. The isolation system was relatively 
effective in limiting the growth of accelerations, drifts, and other in-structure actions. That said, 
bearing displacements and torsional deformations may become quite large. 

Some more specific observations and findings in this chapter are:  

 The floor accelerations in the isolated PGSFR due to aircraft impact from 
Boeing-747 are similar to those resulting from the response under the 
design-level earthquake. 

 There is a large difference in response between the impact from a Boeing-
737 and a Boeing-747. The response to impact of the Boeing-747 was 
almost five times larger than the response to impact of the Boeing-737. 

 Offset of the impact relative to the center-of-resistance of the PGSFR 
introduces torsional response. It is expected that the rotation for base-
isolated case is on the order of 0.2. 
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6 SUMMARY AND RECOMMENDATIONS FOR 
FUTURE RESEARCH 

6.1 SUMMARY 

This report presents the results of a preliminary investigation of the feasibility of seismically 
isolating the Prototype Gen-IV Sodium Cooled Fast Reactor (PGSFR) being designed by 
KEPCO Engineering and Construction Company, Inc. A series of analytical studies were carried 
out to assess the dynamic response of simplified models of the PGSFR to SSE-level seismic 
events and aircraft impacts. 

The literature review in Chapter 2 discussed the work done to date that has been carried 
out globally to move various types of fast reactors from being theoretical concepts to commercial 
production facilities. The special features of fast reactors, which typically include complex 
equipment that is delicate and heavy, and operate at high temperatures, raise safety concerns in 
the event of an earthquake. For that reason, nearly all of the literature suggests that fast reactor 
facilities be seismically isolated. 

Based on the literature, seismic isolation of these facilities is indeed feasible and 
desirable. However, there is no consensus currently on the best approach to seismically isolate 
these structures, and engineering details of how certain technical issues can be resolved for a 
particular plant design are not publicly available. Some designs propose isolation for the 
horizontal components of motion only. Other designs address the vertical components of ground 
motion through the use of isolator subassemblies that provide 3D isolation capabilities, or by 
providing separate mechanisms for horizontal and vertical isolation. There is no general 
agreement on the optimum type of isolator devices to be used or on the mechanical properties of 
the devices selected. Similarly, only a few studies have addressed regulatory concerns, including 
consideration of beyond-design-basis seismic events and aircraft impact. 

Two relatively simple but comprehensive computational studies were undertaken to 
facilitate this assessment. Since few general arrangement details are currently available, the 
numerical models used in these studies were simplified to provide as much information as 
possible about the general effects of seismic isolation on the PGSFR. In keeping with the 
preliminary nature of this investigation, SSI effects were disregarded, the superstructure was 
assumed to remain elastic. 

As reported in Chapter 3, a rigid body representative of the estimated weight of the 
PGSFR was used as part of a large parametric study that examined the effect of a wide variation 
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of isolator properties on seismic response. For strong and stiff structures supported on seismic 
isolators, the supported structure tends to respond as a rigid body. This approximation is 
reasonable for studies focused on the global response of the isolation system. As such, a wide 
range of bearing properties was investigated. These studies indicate that a wide range of seismic 
isolation systems is likely to be practicable for SSE-level events. Although isolator 
displacements for SSE events of the type considered do not require large displacement capacities 
and are capable of reducing seismic demands by a large amount, there are tradeoffs: weaker or 
softer isolators result in higher lateral displacements of the bearings, while stronger and stiffer 
bearings result in higher forces transmitted to the superstructure. 

With that background, the second set of analyses was carried out (see Chapter 4) based 
on a refined, yet simplified numerical model of the PGSFR. The model consisted of traditional 
lumped-mass stick models for the RCB and AUX. These were developed based on current 
information available about the general layout of the PGSFR. The two models were in turn 
supported on a mat foundation. This foundation was supported on a distributed set of seismic 
isolators or rigidly attached to the ground (the fixed-base condition). Comparisons were made 
between the fixed-base model and models having an informed set of bearing modeling 
parameters based on the rigid body analyses of Chapter 3. These parameters represented the 
initial loading “elastic” stiffness, the effective yield strength, and post-yield stiffness of the 
bearing. Results were evaluated in terms of bearing response, the peak story drifts, peak total 
accelerations, floor response spectra, and peak floor level rotations about a vertical axis. Results 
were examined separately for the RCB and AUX. 

It was found that including seismic isolation lowered substantially the seismic demands at 
the SSE level. The predicted demands on the seismic isolators were well within the capabilities 
of current isolator technologies. Story drifts and floor level accelerations were generally reduced, 
sometimes substantially, by the many isolation systems considered. Torsional response of the 
eccentric layout of the superstructure was significant. It was noted that the initial stiffness of the 
bearings was very important as recommended values aligned with the natural frequency of the 
supported structure. Fine-tuning of bearing properties, and perhaps modification of the plant 
layout, can optimize performance. Comparisons of floor response spectra (and other response 
parameters) for the isolated plant at the SSE-level excitation, with the fixed-base plant at the 
OBE level of excitation, indicated that in many cases isolation was able to achieve OBE-like 
performance when the plant was subjected to an earthquake three times larger than the OBE. 
Note: this was not always the case, and fine tuning of the isolation design is needed considering 
the specific SSCs of concern in the facility. The maximum responses for each case considered in 
the parametric analysis presented in Chapter 4 are summarized in Table 6.1. 
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Table 6.1(a) Summary of results of seismic analysis for different cases.* 

Parameters considered Max. drift (%) 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kposty. Fy/W Rec. Bld. Aux. Bld. Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.022 0.008 0.57 0.81 0.42 0.58 1.16 0.72 
3 10 10% 0.022 0.008 0.64 0.82 0.44 0.65 1.18 0.79 
3 100 10% 0.026 0.009 0.75 0.85 0.57 0.90 1.31 1.03 
2 10 10% 0.023 0.009 0.75 0.82 0.45 0.77 1.19 0.78 
3 10 10% 0.022 0.008 0.64 0.82 0.44 0.65 1.18 0.79 
4 10 10% 0.022 0.007 0.61 0.82 0.44 0.62 1.18 0.79 
3 10 5% 0.019 0.006 0.35 0.79 0.41 0.36 1.15 0.74 
3 10 10% 0.022 0.008 0.64 0.82 0.44 0.65 1.18 0.79 
3 10 15% 0.022 0.009 0.82 0.83 0.46 0.84 1.20 0.81 
3 10 20% 0.024 0.011 0.99 0.84 0.48 1.02 1.21 0.81 

Fixed-base PGA 0.1g 0.009 0.010 0.37 0.61 0.36 0.40 1.13 0.45 
Fixed-base PGA 0.3g 0.028 0.031 1.10 1.84 1.08 1.20 3.40 1.36 

Table 6.1(b) Summary on results of seismic analysis for different cases [continuation of Table 6.1(a)].* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing disp. 
[mm (in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso 
(sec) 

Kinitial/ 
Kposty. 

Fy/W 
Iso (0.5–2 

Hz) 
Rec (4.5–10 

Hz) 
Aux (11–13 

Hz) 
Iso (0.5–2 

Hz) 
Rec (4.5–10 

Hz) 
Aux (11–13 

Hz) 
Iso (0.5–2 

Hz) 
Rec (4.5–10 

Hz) 
Aux (11–13 

Hz) 

3 5 10% 0.56 0.51 0.30 0.56 0.38 0.29 0.56 0.39 0.35 151(5.96) 
3 10 10% 0.61 0.52 0.31 0.61 0.37 0.29 0.62 0.38 0.35 107(4.20) 
3 100 10% 0.64 0.76 0.49 0.69 0.42 0.37 0.72 0.57 0.44 65(2.56) 
2 10 10% 0.72 0.53 0.33 0.72 0.39 0.30 0.73 0.42 0.34 101(3.99) 
3 10 10% 0.61 0.52 0.31 0.61 0.37 0.29 0.62 0.38 0.35 107(4.20) 
4 10 10% 0.59 0.51 0.32 0.59 0.37 0.29 0.59 0.39 0.35 113(4.47) 
3 10 5% 0.35 0.50 0.29 0.36 0.36 0.27 0.36 0.38 0.34 133(5.23) 
3 10 10% 0.61 0.52 0.31 0.61 0.37 0.29 0.62 0.38 0.35 107(4.20) 
3 10 15% 0.79 0.53 0.32 0.78 0.39 0.30 0.79 0.42 0.35 97(3.84) 
3 10 20% 0.95 0.55 0.34 0.93 0.40 0.31 0.95 0.44 0.37 92(3.61) 

Fixed-base PGA 0.1g 0.33 0.39 0.31 0.35 0.84 0.29 0.36 1.21 0.34 NA 
Fixed-base PGA 0.3g 1.00 1.18 0.92 1.06 2.51 0.88 1.09 3.63 1.03 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range. 
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Recommendations on selecting specific bearing properties were made based on the 
results for the seismic event level considered. For the initial bearing stiffness, a smaller value 
will reduce the horizontal floor acceleration spectrum at all frequency ranges. Smaller values of 
the post-yield stiffness and the bearing strength will reduce significantly the floor spectrum at the 
isolation predominate frequency range (0.5–2 Hz), but it will have little effect on the response at 
other frequency ranges; therefore, for seismic considerations, smaller initial stiffness, smaller 
bearing strength, and larger isolation period are desired as long as the resulting bearing 
displacement is acceptable. Since the seismic input considered in the study is fairly small, the 
selection of smaller parameters for the isolator will result in a reasonable bearing displacement 
demand. 

An issue of recent regulatory concern has been the effect of aircraft impact. Few studies 
have been made of the effects of aircraft impact on any type of structures. While considerable 
work has been undertaken to analyze and design nuclear facilities to resist aircraft impact, it is 
prudent to carefully identify any special or new issues introduced by seismically isolating a 
nuclear facility such as the PGSFR. A series of numerical studies similar to those undertaken in 
Chapter 5 was done to assess the effect of aircraft impact on the seismically isolated PGSFR. In 
this preliminary study, two different planes and three impact locations were considered. As in 
Chapter 5, several combinations of bearing characteristics were considered, including one having 
different initial stiffness, yield strength, and post-yield tangent stiffness. As shown in Chapter 5, 
although the demands on the isolators due to the aircraft impact scenarios considered were 
modest, they were larger in some cases than seismic demands at the SSE level. Nonetheless, the 
bearing displacement demands predicted were well within the capabilities of modern bearings. 
Generally, no major problems were identified in this study. 

Some interesting observations regarding aircraft impact on an isolated PGSFR include: (1) 
that for lighter, and slower moving aircraft, the response is likely to remain in the elastic range of 
isolator behavior, so that the initial elastic stiffness of the bearing is a more important 
consideration than it is for large seismic excitations; (2) the isolated plant moves as a nearly rigid 
body, so while the accelerations in the upper parts of the AUX are significantly reduced by 
isolation, accelerations in the lower part of the plant increased compared to the fixed-base 
PGSFR. In terms of aircraft impact, the RCB was largely shielded by the surrounding AUX and 
ideally would not vibrate at all if the impact occurred on the AUX. However, since the isolation 
system considered herein placed the RCB and AUX on a common isolated base mat, an aircraft 
striking the AUX would trigger strong vibrations in the RCB. Typically, the global responses of 
the superstructure are within the range developed under the SSE motions, so aircraft impact may 
not control the design. Further study is needed on this topic. 

Another observation regarding aircraft impact is that off-center strikes may result in 
significant torsional global response of the plant. These deformations were seen to double the 
demands on some of the isolators. Thus, studies to assess methods to help the isolation layer 
resist torsional movement are desired. Although off-center aircraft impact by a heavy, fast 
moving aircraft was seen to lead to bearing displacements significantly larger than demands for 
the SSE, it is expected that aircraft impact bearing displacements may not control the design if 
procedures like those being considered by the U.S. NRC are followed that require isolation 
bearings to be able to withstand with high confidence a beyond-design-basis earthquakes without 
hitting a hard stop. Thus, it seems that the PGSFR concept lends itself to seismic isolation, but 
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continued investigations related to the specifics of the plant design and underlying technological 
basis are needed. 

The responses for the different cases considered for the aircraft impact analyses in 
Chapter 5 are summarized in Table 6.2–Table 6.7. By comparing responses for different bearing 
properties, recommendations for bearing selection can be made relative to aircraft impact. 
Smaller initial stiffness, larger isolation period, and lower bearing strength will result in smaller 
floor acceleration spectrum for the AUX but will have little effect on the RCB—although large 
bearing displacement demand and rotational response will be expected. Since the bearing 
displacement demand under impact of a Boeing-747 considered herein is larger than the demand 
from seismic consideration, displacement capacity of isolator in design is controlled by aircraft 
impact response. In closing, in terms of either a seismic event or aircraft impact, as long as the 
resulting bearing displacement under the aircraft-impact evaluation is smaller than the allowable 
displacement capacity of bearing, a smaller initial stiffness, lower strength, and larger post-yield 
isolation period are recommended. 
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Table 6.2(a) Summary of results of aircraft impact analysis of Boeing-737 impact at location 1.* 

Parameters considered Max. drift (%) 
Max. rotation 

() 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kposty. Fy/W Rec. Bld. Aux. Bld. Rec. Bld. 
Aux. 
Bld. 

Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.009 0.008 0.044 0.045 0.14 0.34 0.30 0.14 0.81 0.64 

3 10 10% 0.009 0.008 0.033 0.033 0.17 0.35 0.31 0.17 0.81 0.64 

3 100 10% 0.012 0.009 0.010 0.010 0.18 0.42 0.38 0.25 0.94 0.70 

2 10 10% 0.009 0.008 0.031 0.032 0.18 0.35 0.31 0.19 0.81 0.64 

3 10 10% 0.009 0.008 0.033 0.033 0.17 0.35 0.31 0.17 0.81 0.64 

4 10 10% 0.009 0.008 0.033 0.034 0.16 0.35 0.31 0.17 0.81 0.64 

3 10 5% 0.009 0.008 0.038 0.038 0.13 0.34 0.31 0.14 0.81 0.64 

3 10 10% 0.009 0.008 0.033 0.033 0.17 0.35 0.31 0.17 0.81 0.64 

3 10 15% 0.009 0.008 0.031 0.032 0.19 0.35 0.31 0.20 0.81 0.64 

3 10 20% 0.009 0.008 0.030 0.031 0.20 0.35 0.32 0.22 0.81 0.64 

Fixed base 0.000 0.010 0.000 0.002 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.2(b) Summary of results of aircraft impact analysis of Boeing-737 impact at location 1.* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing disp. 
[mm (in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso (sec) 
Kinitial/ 
Kposty. 

Fy/W 
Iso (0.5–2 

Hz) 
Rec (4.5–10 

Hz) 
Aux (11–13 

Hz) 
Iso (0.5–2 

Hz) 
Rec (4.5–10 

Hz) 
Aux (11–13 

Hz) 
Iso (0.5–2 

Hz) 
Rec (4.5–10 

Hz) 
Aux (11–13 

Hz) 

3 5 10% 0.13 0.52 0.38 0.13 0.27 0.24 0.12 0.46 0.30 51(2.02) 
3 10 10% 0.15 0.53 0.38 0.15 0.28 0.23 0.15 0.46 0.31 38(1.51) 
3 100 10% 0.09 0.56 0.40 0.13 0.35 0.28 0.15 0.42 0.33 12(0.49) 
2 10 10% 0.17 0.53 0.38 0.15 0.28 0.23 0.15 0.46 0.31 36(1.43) 
3 10 10% 0.15 0.53 0.38 0.15 0.28 0.23 0.15 0.46 0.31 38(1.51) 
4 10 10% 0.15 0.53 0.38 0.14 0.28 0.23 0.14 0.46 0.31 39(1.54) 
3 10 5% 0.12 0.52 0.38 0.13 0.27 0.23 0.13 0.46 0.31 44(1.75) 
3 10 10% 0.15 0.53 0.38 0.15 0.28 0.23 0.15 0.46 0.31 38(1.51) 
3 10 15% 0.17 0.53 0.38 0.16 0.28 0.23 0.16 0.46 0.31 36(1.43) 
3 10 20% 0.19 0.53 0.38 0.16 0.28 0.23 0.16 0.46 0.31 35(1.38) 

Fixed base 0.00 0.00 0.00 0.04 0.51 0.38 0.07 0.82 0.45 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range.  
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Table 6.3(a) Summary of results of aircraft impact analysis of Boeing-737 impact at location 2.* 

Parameters considered Max. drift (%) Max. rotation () 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kposty. Fy/W Rec. Bld. Aux. Bld. Rec. Bld. Aux. Bld. Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.018 0.008 0.036 0.036 0.26 0.36 0.30 0.35 1.09 0.70 

3 10 10% 0.019 0.008 0.025 0.025 0.28 0.38 0.32 0.38 1.10 0.72 

3 100 10% 0.018 0.009 0.008 0.008 0.22 0.52 0.32 0.30 1.11 0.80 

2 10 10% 0.019 0.008 0.024 0.024 0.29 0.39 0.33 0.39 1.11 0.73 

3 10 10% 0.019 0.008 0.025 0.025 0.28 0.38 0.32 0.38 1.10 0.72 

4 10 10% 0.019 0.008 0.025 0.026 0.28 0.38 0.32 0.37 1.10 0.72 

3 10 5% 0.018 0.008 0.030 0.030 0.27 0.37 0.31 0.36 1.09 0.71 

3 10 10% 0.019 0.008 0.025 0.025 0.28 0.38 0.32 0.38 1.10 0.72 

3 10 15% 0.019 0.008 0.024 0.024 0.29 0.39 0.33 0.39 1.11 0.73 

3 10 20% 0.020 0.008 0.023 0.023 0.30 0.39 0.33 0.39 1.12 0.73 

Fixed base 0.000 0.010 0.000 0.002 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.3(b) Summary of results of aircraft impact analysis of Boeing-737 impact at location 2.* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing disp. 
[mm (in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso (sec) 
Kinitial/ 

Kpostyield. 
Fy/W 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

3 5 10% 0.16 0.64 0.36 0.14 0.24 0.21 0.14 0.54 0.35 48(1.88) 
3 10 10% 0.17 0.65 0.37 0.17 0.25 0.21 0.17 0.55 0.36 35(1.36) 
3 100 10% 0.12 0.63 0.43 0.14 0.32 0.26 0.15 0.45 0.36 11(0.45) 
2 10 10% 0.18 0.65 0.38 0.18 0.25 0.21 0.18 0.55 0.36 33(1.29) 
3 10 10% 0.17 0.65 0.37 0.17 0.25 0.21 0.17 0.55 0.36 35(1.36) 
4 10 10% 0.17 0.65 0.37 0.16 0.25 0.21 0.16 0.55 0.36 35(1.39) 
3 10 5% 0.16 0.64 0.36 0.13 0.25 0.21 0.13 0.54 0.35 40(1.59) 
3 10 10% 0.17 0.65 0.37 0.17 0.25 0.21 0.17 0.55 0.36 35(1.36) 
3 10 15% 0.19 0.65 0.38 0.18 0.25 0.21 0.19 0.55 0.36 33(1.28) 
3 10 20% 0.20 0.65 0.38 0.20 0.25 0.21 0.20 0.55 0.36 31(1.24) 

Fixed base 0.00 0.00 0.00 0.04 0.51 0.38 0.07 0.82 0.45 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor b containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range.  
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Table 6.4(a) Summary of results of aircraft impact analysis of Boeing-737 impact at location 3.* 

Parameters 
considered 

Max. drift (%) Max. rotation () 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kpostyield. Fy/W 
Rec. 
Bld. 

Aux. 
Bld. 

Rec. 
Bld. 

Aux. Bld. Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.011 0.006 0.000 0.000 0.18 0.44 0.41 0.24 0.94 0.73 

3 10 10% 0.012 0.007 0.000 0.000 0.20 0.45 0.42 0.27 0.95 0.75 

3 100 10% 0.013 0.007 0.000 0.000 0.18 0.48 0.38 0.25 0.93 0.75 

2 10 10% 0.012 0.007 0.000 0.000 0.21 0.46 0.43 0.27 0.96 0.75 

3 10 10% 0.012 0.007 0.000 0.000 0.20 0.45 0.42 0.27 0.95 0.75 

4 10 10% 0.012 0.007 0.000 0.000 0.20 0.45 0.42 0.26 0.95 0.74 

3 10 5% 0.012 0.006 0.000 0.000 0.19 0.45 0.41 0.25 0.95 0.74 

3 10 10% 0.012 0.007 0.000 0.000 0.20 0.45 0.42 0.27 0.95 0.75 

3 10 15% 0.012 0.007 0.000 0.000 0.21 0.46 0.43 0.27 0.96 0.75 

3 10 20% 0.012 0.007 0.000 0.000 0.21 0.46 0.43 0.27 0.96 0.75 

Fixed base 0.000 0.008 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.4(b) Summary of results of aircraft impact analysis of Boeing-737 impact at location 3.* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing disp. 
[mm (in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso (sec) 
Kinitial/ 

Kpostyield. 
Fy/W 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

3 5 10% 0.14 0.52 0.40 0.14 0.26 0.22 0.14 0.43 0.32 21(0.84) 
3 10 10% 0.16 0.53 0.41 0.16 0.27 0.23 0.16 0.44 0.33 16(0.61) 
3 100 10% 0.10 0.49 0.42 0.13 0.33 0.29 0.14 0.38 0.34 5(0.20) 
2 10 10% 0.17 0.53 0.41 0.18 0.27 0.23 0.18 0.44 0.33 15(0.59) 
3 10 10% 0.16 0.53 0.41 0.16 0.27 0.23 0.16 0.44 0.33 16(0.61) 
4 10 10% 0.15 0.53 0.41 0.16 0.27 0.23 0.16 0.44 0.33 16(0.62) 
3 10 5% 0.12 0.53 0.40 0.12 0.26 0.22 0.12 0.43 0.32 18(0.69) 
3 10 10% 0.16 0.53 0.41 0.16 0.27 0.23 0.16 0.44 0.33 16(0.61) 
3 10 15% 0.18 0.53 0.41 0.18 0.27 0.23 0.18 0.44 0.33 15(0.59) 
3 10 20% 0.19 0.53 0.41 0.20 0.27 0.23 0.20 0.44 0.33 15(0.57) 

Fixed base 0.00 0.00 0.00 0.03 0.55 0.39 0.06 0.87 0.51 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range.  
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Table 6.5(a) Summary of results of aircraft impact analysis of Boeing-747 impact at location 1.* 

Parameters 
considered 

Max. drift (%) Max. rotation () 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kpostyield. Fy/W 
Rec. 
Bld. 

Aux. 
Bld. 

Rec. 
Bld. 

Aux. Bld. Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.032 0.031 0.285 0.285 0.38 0.94 0.93 0.51 2.31 1.71 

3 10 10% 0.031 0.032 0.239 0.240 0.38 0.95 0.94 0.53 2.31 1.72 

3 100 10% 0.030 0.032 0.157 0.157 0.42 0.97 0.93 0.56 2.23 1.64 

2 10 10% 0.031 0.032 0.197 0.198 0.47 0.97 0.95 0.56 2.31 1.72 

3 10 10% 0.031 0.032 0.239 0.240 0.38 0.95 0.94 0.53 2.31 1.72 

4 10 10% 0.032 0.032 0.264 0.265 0.37 0.94 0.93 0.52 2.30 1.71 

3 10 5% 0.032 0.031 0.308 0.308 0.36 0.94 0.92 0.51 2.31 1.71 

3 10 10% 0.031 0.032 0.239 0.240 0.38 0.95 0.94 0.53 2.31 1.72 

3 10 15% 0.031 0.032 0.210 0.211 0.50 0.96 0.95 0.55 2.31 1.72 

3 10 20% 0.031 0.032 0.192 0.193 0.58 0.97 0.96 0.62 2.31 1.72 

Fixed Base 0.000 0.049 0.000 0.006 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.5(b) Summary of results of aircraft impact analysis of Boeing-747 impact at location 1.* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing 
disp. [mm 

(in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso (sec) 
Kinitial/ 

Kpostyield. 
Fy/W 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

3 5 10% 0.37 1.40 1.03 0.50 0.82 0.80 0.48 1.17 0.77 337(13.27) 
3 10 10% 0.36 1.42 1.03 0.50 0.84 0.79 0.49 1.17 0.76 288(11.32) 
3 100 10% 0.30 1.38 1.00 0.45 0.87 0.78 0.44 1.11 0.73 195(7.69) 
2 10 10% 0.44 1.43 1.03 0.57 0.88 0.78 0.55 1.22 0.80 233(9.18) 
3 10 10% 0.36 1.42 1.03 0.50 0.84 0.79 0.49 1.17 0.76 288(11.32) 
4 10 10% 0.35 1.40 1.03 0.47 0.83 0.79 0.45 1.15 0.76 319(12.54) 
3 10 5% 0.24 1.39 1.03 0.46 0.81 0.80 0.45 1.15 0.78 366(14.40) 
3 10 10% 0.36 1.42 1.03 0.50 0.84 0.79 0.49 1.17 0.76 288(11.32) 
3 10 15% 0.47 1.43 1.03 0.53 0.87 0.78 0.52 1.20 0.78 251(9.87) 
3 10 20% 0.354 1.44 1.03 0.57 0.89 0.77 0.56 1.21 0.80 229(9.01) 

Fixed base 0.00 0.00 0.00 0.18 2.66 1.33 0.31 4.31 1.75 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range. 
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Table 6.6(a) Summary of results of aircraft impact analysis of Boeing-747 impact at location 2.* 

Parameters 
considered 

Max. drift (%) Max. rotation () 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kpostyield. Fy/W 
Rec. 
Bld. 

Aux. 
Bld. 

Rec. 
Bld. 

Aux. Bld. Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.032 0.031 0.285 0.285 0.38 0.94 0.93 0.51 2.31 1.71 

3 10 10% 0.031 0.032 0.239 0.240 0.38 0.95 0.94 0.53 2.31 1.72 

3 100 10% 0.030 0.032 0.157 0.157 0.42 0.97 0.93 0.56 2.23 1.64 

2 10 10% 0.031 0.032 0.197 0.198 0.47 0.97 0.95 0.56 2.31 1.72 

3 10 10% 0.031 0.032 0.239 0.240 0.38 0.95 0.94 0.53 2.31 1.72 

4 10 10% 0.032 0.032 0.264 0.265 0.37 0.94 0.93 0.52 2.30 1.71 

3 10 5% 0.032 0.031 0.308 0.308 0.36 0.94 0.92 0.51 2.31 1.71 

3 10 10% 0.031 0.032 0.239 0.240 0.38 0.95 0.94 0.53 2.31 1.72 

3 10 15% 0.031 0.032 0.210 0.211 0.50 0.96 0.95 0.55 2.31 1.72 

3 10 20% 0.031 0.032 0.192 0.193 0.58 0.97 0.96 0.62 2.31 1.72 

Fixed Base 0.000 0.049 0.000 0.006 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.6(b) Summary of results of aircraft impact analysis of Boeing-747 impact at location 2.* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing disp. 
[mm (in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso (sec) 
Kinitial/ 

Kpostyield 
Fy/W 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

3 5 10% 0.61 1.91 1.02 0.40 0.79 0.72 0.40 1.28 0.83 310(12.20) 
3 10 10% 0.60 1.89 1.04 0.39 0.82 0.71 0.39 1.27 0.81 264(10.40) 
3 100 10% 0.52 1.76 1.04 0.37 0.87 0.70 0.35 1.16 0.81 177(6.98) 
2 10 10% 0.68 1.93 1.07 0.48 0.84 0.71 0.48 1.29 0.83 215(8.45) 
3 10 10% 0.60 1.89 1.04 0.39 0.82 0.71 0.39 1.27 0.81 264(10.40) 
4 10 10% 0.57 1.87 1.02 0.38 0.81 0.71 0.38 1.26 0.82 287(11.32) 
3 10 5% 0.56 1.87 1.02 0.35 0.79 0.72 0.34 1.27 0.84 332(13.08) 
3 10 10% 0.60 1.89 1.04 0.39 0.82 0.71 0.39 1.27 0.81 264(10.40) 
3 10 15% 0.64 1.90 1.06 0.49 0.83 0.71 0.49 1.27 0.82 232(9.11) 
3 10 20% 0.66 1.91 1.08 0.57 0.85 0.70 0.57 1.28 0.83 209(8.25) 

Fixed Base 0.00 0.00 0.00 0.18 2.66 1.33 0.31 4.31 1.75 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range. 



 181

Table 6.7(a) Summary of results of aircraft impact analysis of Boeing-747 impact at location 3.* 

Parameters 
considered 

Max. drift (%) Max. rotation () 

Floor acceleration spectrum (Unit: g) 

Reactor containment building 

MF MF MF TF TF TF 

Tiso (sec) Kinitial/ Kpostyield. Fy/W 
Rec. 
Bld. 

Aux. 
Bld. 

Rec. 
Bld. 

Aux. Bld. Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13 Hz) Iso (0.5–2 Hz) Rec (4.5–10 Hz) Aux (11–13Hz) 

3 5 10% 0.038 0.024 0.000 0.000 0.71 1.24 1.23 0.95 2.78 1.84 

3 10 10% 0.040 0.025 0.000 0.000 0.72 1.26 1.25 0.96 2.79 1.87 

3 100 10% 0.040 0.026 0.000 0.000 0.64 1.29 1.24 0.86 2.80 1.85 

2 10 10% 0.042 0.025 0.000 0.000 0.78 1.29 1.28 1.02 2.82 1.90 

3 10 10% 0.040 0.025 0.000 0.000 0.72 1.26 1.25 0.96 2.79 1.87 

4 10 10% 0.039 0.025 0.000 0.000 0.70 1.25 1.24 0.94 2.78 1.86 

3 10 5% 0.038 0.024 0.000 0.000 0.67 1.23 1.21 0.90 2.76 1.83 

3 10 10% 0.040 0.025 0.000 0.000 0.72 1.26 1.25 0.96 2.79 1.87 

3 10 15% 0.041 0.025 0.000 0.000 0.76 1.28 1.27 1.00 2.81 1.89 

3 10 20% 0.043 0.025 0.000 0.000 0.79 1.29 1.29 1.03 2.83 1.91 

Fixed Base 0.000 0.041 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 

Table 6.7(b) Summary of results of aircraft impact analysis of Boeing-747 impact at location 3.* 

Parameters 
considered 

Floor acceleration spectrum (Unit: g) 

Bearing 
disp. [mm 

(in.)] 

Auxiliary building 

BF BF BF MF MF MF TF TF TF 

Tiso (sec) 
Kinitial/ 

Kpostyield. 
Fy/W 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

Iso (0.5–2 
Hz) 

Rec (4.5–10 
Hz) 

Aux (11–13 
Hz) 

3 5 10% 0.46 1.25 1.02 0.44 0.80 0.76 0.43 0.95 0.86 133(5.22) 
3 10 10% 0.47 1.27 1.04 0.45 0.81 0.74 0.44 0.96 0.88 108(4.26) 
3 100 10% 0.42 1.29 1.08 0.42 0.85 0.70 0.41 1.00 0.90 59(2.32) 
2 10 10% 0.52 1.29 1.05 0.50 0.85 0.74 0.49 0.99 0.90 95(3.74) 
3 10 10% 0.47 1.27 1.04 0.45 0.81 0.74 0.44 0.96 0.88 108(4.26) 
4 10 10% 0.45 1.26 1.03 0.43 0.81 0.74 0.42 0.95 0.87 114(4.49) 
3 10 5% 0.42 1.24 1.01 0.40 0.78 0.75 0.39 0.94 0.85 138(5.44) 
3 10 10% 0.47 1.27 1.04 0.45 0.81 0.74 0.44 0.96 0.88 108(4.26) 
3 10 15% 0.50 1.28 1.05 0.48 0.83 0.74 0.49 0.98 0.89 98(3.84) 
3 10 20% 0.54 1.29 1.06 0.55 0.85 0.73 0.56 0.99 0.91 91(3.58) 

Fixed Base 0.00 0.00 0.00 0.14 2.51 1.27 0.24 4.04 1.81 NA 

*MF = middle floor, TF = top floor, BF = base floor, Rec.Bld. = reactor containment building, Aux.Bld. = auxiliary building; Iso (0.5 Hz–2 Hz) = isolation frequency 
range, Rec (4.5 Hz–10 Hz) = reactor containment building frequency range; and Au (11 Hz–13 Hz) = auxiliary building frequency range.. 
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6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

To design a cost-effective and efficient design for the PGSFR with the desired margin of safety, 
additional research and development is needed. Both simple and more refined studies are 
recommended. An extension of the simple studies presented herein will help identify optimal 
isolation strategies in terms of geometry, location, type of isolation system, etc., for the PGSFR. 
More refined studies and analytical models will help fine tune design strategies and develop 
simplified design and analysis methods. More detailed performance-based design studies can 
identify the economic as well as performance benefits of various design alternatives, and formal 
probabilistic risk assessments would be useful in obtaining licensing approval from regulatory 
agencies. Some specific recommendations are offered below for future research. 

The studies presented herein and nearly all of the literature on fast reactors has been 
based on rigid-base conditions without consideration of soil. This is likely conservative in terms 
of the demands on the isolation system and response of the superstructure. But as shown 
previously in studies by the UC Berkeley research team, embedment and SSI can substantially 
reduce the demands on a fixed-base and seismically isolated plant. Thus, SSI for many sites of 
interest may reduce the demands sufficiently that seismic isolation may not be necessary. 
However, when considering a beyond-design-basis event, seismic isolation is likely still quite 
beneficial. Prior studies have shown that the sensitivities of response to soil conditions are 
greatly reduced by using seismic isolation. This is an important motivation for using seismic 
isolation when the plant design is being considered at many sites with different seismic hazard 
and soil conditions. Given the sensitivity of the PGSFR to seismic motions, SSI analyses should 
be an integral part of any research plan. 

Because many of the systems and components used in a sodium-cooled fast reactor have 
not been tested under earthquake or other dynamic conditions, analyses and tests to develop data 
that can be used validate analytical models and develop fragility models may be desirable, in 
particular, assessing the dynamic behavior of thin walled vessels and piping systems at elevated 
temperatures. 

Currently, little information is available about the expected performance of various SSCs 
and suitable acceptance criteria. This report presented comparisons between the response of a 
fixed-base plant versus a comparable base-isolated plant to several different scenarios. Although 
such results are useful, this approach is very limited since the facility is in its preliminary design 
phase. That said, incorporating isolation in the design phase can be used to avoid problems and 
issues that may be difficult to overcome with a fixed-base plant. 

Thus, work to identify quantitative performance goals and acceptance criteria are 
essential. In the U.S., non-nuclear buildings designed according to performance-based design 
procedures permitted by current building codes need to develop a basis of design. Such a 
document would be useful in developing efficient and effective isolation strategies for the 
PGSFR. This effort might simply be a review of the seismic design component of a Preliminary 
Safety Information Document (PSID). 
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6.2.1 Seismic Hazard Characterization 

These preliminary studies have been based on a large set of three-component ground-motion 
records spectrally matched to the US NRC RegGuide 1.60 spectrum anchored to a PGA of 0.3g. 
Although these studies provided useful information, it is not clear whether this is the appropriate 
SSE spectrum for use with the PGSFR; several other earthquake conditions should be evaluated, 
i.e., as a licensing strategy is developed, a particular SSE spectrum for design may be developed. 
This might result in a different spectral shape, one that is more appropriate for anticipated 
locations of the PGSFR or anchored at a different PGA. 

Similarly, other spectra representative of different hazard levels should be considered. 
Two other levels should be considered as a minimum. The first of these would be for a beyond-
design-basis seismic event. The U.S. NRC is developing guidance on the selection of extended 
ground-motion response spectra for defining such events, but Korea and other countries where 
the PGSFR might be located may require different definitions. The U.S. NRC is likely to require 
a probabilistic estimate of the peak bearing displacement; therefore, studies using spectrum 
compatible motions and appropriately selected motions considering the median target spectrum 
and the expected dispersion of spectral ordinates about the median should be studied to quantify 
bearing displacement capacities. 

Although seismic isolation is very effective for high levels of seismic excitation, strong 
and stiff isolators may not be very effective at lower levels of excitation. Thus, studies may be 
warranted that consider earthquake excitations representative of an OBE. These are not likely to 
affect the safety of the NPP, but studies based on these motions might help avoid the need to stop 
a plant for inspection; i.e., the OBE event might be raised if floor spectra and stresses in 
components and systems are small enough. 

For all hazard levels, it is likely that the vertical component of motion is very important. 
These motions will be critical in assessing the need for vertical isolation of the PGSFR. The 
traditional U.S. NRC RegGuide 1.60 anchors the vertical target spectrum to two-thirds of the 
horizontal spectrum. Recent research at PEER and elsewhere indicates that the two-thirds value 
is perhaps too conservative for many sites located at moderate to long distances from many 
earthquakes. Thus, some studies of selecting and modifying ground motions to represent the 
vertical component of motion are desired. 

6.2.2 Aircraft Impact Characterization and Parametric Studies 

This report described two simplified models that were developed to simulate force time histories 
representative of impacts by Boeing-737 and 747 aircraft. These models were adapted 
considering dynamic similitude considerations based on a much lighter and slower Boeing-707 
developed by Riera [1968]. The variation observed in parametric studies and importance of this 
loading scenario suggests that improved force time histories are needed. In particular, the 
Boeing-747 aircraft considered in this study is not the largest plane flying today, and our 
assumption of the plane flying at its cruising velocity is not the most conservative assumption. 
Aircraft impact models are available from various regulatory agencies and industry associations, 
and the models used should be consistent with those standards. Understandably, these models are 
not publicly available. 
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In addition, Riera’s models are based on a number of simplifying assumptions. For this 
study, one of the key assumptions was the rigidity of the structure being struck by the aircraft. 
With an isolated structure, this assumption is no longer entirely valid. Some literature exists 
related to the use uncoupled analyses based on determining a force time history resulting from an 
aircraft impacting a rigid surface and the response of a stiff system to that force time history; 
however, the adequacy of this uncoupled analysis for a stiff nuclear facility on isolators is not 
well studied. Thus, validity of the Riera approach compared to more realistic coupled FE and 
other analyses that consider the physical impact of the plane with an isolated structure would be 
desirable. 

Because of the movement of the structure during the impact of the aircraft, it may be 
desirable to conduct local penetration and perforation analysis for the region of impact. The 
duration of load on the structure and the energy absorption by the isolation system may alter the 
local damage condition expected for a fixed-base plant. 

Parallel efforts with those outlined above would be useful to extend the work begun in 
this report. This would include as appropriate studies related to: 

 The accuracy of the Riera force model when isolator movement is 
significant. 

 Examine rate dependency effects on bearings since the rate of movement 
associated with aircraft impact may be much higher than considered for 
seismic loading. There may be a need for additional testing to identify 
appropriate bearing properties. 

 Any beneficial effects associated with energy dissipation due to SSI and 
local damage at the impact location. 

 Practical methods of estimating twist about a vertical axis and methods to 
avoid large torsional movements in the case of off-center impacts. This 
might include placing stronger LRBs around the perimeter of the structure, 
and more flexible or NR bearings in the center of the structure. Similarly, 
various types of dampers can be place on the perimeter. In some instances, 
pantograph mechanisms have been used (in Japan) to reduce torsional 
response of the isolation layer. Friction pendulum bearings have been 
shown to be particularly good at reducing torsional motion of the isolation 
layer. From the results presented herein, it would seem that reducing the 
mass and stiffness eccentricities of the superstructure would help reduce 
but not eliminate these motions as well. 

 Configuration studies to develop countermeasures to mitigate the effects 
of aircraft impact, e.g., structural design configurations of the draft 
chimney, addition of sacrificial elements, and strengthening or toughening 
of components, etc. 

6.2.3 Improved Numerical Modeling of PGSFR 

As noted at the beginning of this section, it is desirable to carry out both simplified and refined 
analysis of the PGSFR. Simplified models can be useful for various conceptual, schematic, or 
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preliminary design studies. Thus, the models used in this study should be validated based on 
other more refined models used by KEPCO E&C’s engineering staff and improved where 
needed. In particular, some anomalies noted in this study should be addressed. For example, the 
top levels of the RCB were seen to amplify greatly accelerations and floor spectrum, especially 
in the case of aircraft impact. The models may be inadequate or the mechanical properties of 
these regions of the structure may promote “penthouse” resonance behavior, and design 
modifications or different isolator properties could be used to mitigate these types of responses. 
Simplified modes that allow rapid modeling of various issues are desired. Thus, the current 
lumped mass, the stick models used herein should be refined. 

Recent trends in seismic analysis of nuclear facilities focus on the use of more realistic FE 
models as they produce realistic predictions of response and provide much more information 
about the local dynamic behavior of the structure. As such, it would be useful to develop one or 
more detailed FE models of the PGSFR to assess differences between the simplified “stick” and 
FE models. The models should be able to account for cracking of concrete elements, thermal 
effects, and various heavy equipment items attached to the structure. In such models, issues of 
modeling viscous damping, especially in isolated configurations, require study. 

6.2.4 Improved Modeling of Isolation Bearings and Isolation Systems 

Current work by KEPCO, UC Berkeley, and other engineers aims at improving the cogency of 
numerical models for isolation bearings. These models tend to be simple and are used for large 
numbers of runs by engineering designers. To assess the adequacy of these simplified design 
models, and to develop research data to substantiate the behavior of a nuclear facility under 
severe loading conditions, more refined models are needed. For the PGSFR project, only the 
types of bearings relevant to the project need to be assessed and improved when necessary. 

This work should include a range of activities, including: 

 Calibrate models currently available or newly developed with the 
appropriate experimental data considering various ranges of behavior 
(small as well as large deformations). For many of the analyses undertaken 
in this project, the bearing displacement demands were quite small 
compared to typical cases, and it is not certain that the behavior exhibited 
by isolators in these analyses were as realistic as desired. 

 Because of the sensitivity of isolation bearings to axial load and of 
sodium-cooled fast reactors and associated components and equipment to 
vertical excitations, it is desirable to assess and improve the modeling 
capabilities of isolators of interest to combined horizontal and vertical 
loading, especially to vertical excitations and transient vertical loads. As 
noted in previous tests, isolators are highly nonlinear and somewhat 
inelastic under vertical loading. Similarly, geometric nonlinearities serve 
to couple horizontal and vertical responses of the supported system when 
vertical loads are applied. These models will be important for seismic and 
aircraft impact analyses. 
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 For all types of elastomeric bearings, analytical models should be 
evaluated to assure that they represent the behavior of the bearings as they 
approach their stability limits under vertical loading. 

 Assess and improve the rate dependency of models, especially with 
regards to loading rates associated with aircraft impact. 

 Assess and improve as necessary the ability of bearings to represent 
behavior under elevated temperatures related to the energy dissipated 
during inelastic cyclic loading. 

 Modeling of hardening behavior in LRBs and other bearings. The 
hardening that occurs in many elastomeric bearings and friction pendulum 
bearings as they approach their displacement capacity may be an effective 
method of slowing the superstructure prior to impact with a hard-stop 
mechanism. This needs to be modeled accurately to assess its stopping 
capabilities but also the forces and accelerations transmitted by the bearing 
up into the superstructure. 

 Modeling of hard and/or soft stops. The U.S. NRC is considering requiring 
hard stops for NPPs. Currently these are not required for conventional 
building structures. A hard stop can transfer a substantial load to the 
structure, resulting in local damage at the impact location but also 
transferring significant forces and accelerations to the superstructure. 
Thus, realistic modeling of effective hard stops or softer stops that more 
gradually slow a structure prior to impact is a priority. 

 Consideration of special models for bearings that allow vertical isolation. 
Special efforts are needed to model elastomeric bearings where thicker 
rubber sheets are used to decrease the vertical stiffness of the bearing, 
thereby providing a form of vertical isolation to the supported structure. 
Since most fast reactors have considered the use of vertical isolation, 
realistic numerical models are needed. 

 Consider hybrid systems that provide isolation in vertical direction. As 
noted in the literature survey, many different types of systems have 
attempted to provide both vertical and horizontal isolation. In some cases, 
a hybrid approach is taken where conventional isolation bearings are used 
to provide isolation in the horizontal direction, and isolation in the vertical 
direction is achieved by a set of hydraulic, air or metallic springs (and 
dampers). The ability to model such hybrid systems may be useful in 
studies that consider vertical isolation. 

 Develop methods to model systems that can restrain rocking motions of 
vertically isolated structures. Unless it is possible to isolate a structure or 
component from the elevation of its center-of-mass, a vertically isolated 
structure may have significant rocking motion. To allow vertical and 
horizontal movement of the isolated structure and prevent rocking motion 
requires complex mechanical or hydraulic anti-rocking systems. Very few 
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efforts have been made to model such systems, and additional work will 
be needed if this type of system is used. 

 Conduct a test program to confirm models. Quasi-static, hybrid, and 
shaking table tests may be useful to validate numerical models used and 
demonstrate the effectiveness of any new isolation concepts developed. 

6.2.5 Parametric Investigations for Isolation Systems 

Even in cases like those considered here, where seismic isolation is only provided to protect 
against horizontal components of motion, additional research and development studies are 
desirable. For instance: 

 Studies to assess the implications of different isolator layouts and different 
numbers of isolators on cost and performance. 

 Studies comparing simple and refined isolator models in order to develop 
an understanding of the importance of different bearing properties on 
system performance, and to develop useful design simplifications and 
guides. 

 Studies comparing simplified lump-mass stick models to various FE 
models having different resolution and properties. 

 Studies assessing the effect of various ground motion, isolator, and 
structural characteristics on the vertical response of the PGSFR based on 
refined FE models. 

 Studies that examine differences in seismic performance under OBE, SSE, 
and beyond design-basis events and other levels of hazard. From the 
perspective of evolving regulatory requirements, information on the 
dispersion of responses under beyond design-basis events is needed. 

 Studies to investigate the effects of soft or hard stops and different gap 
sizes. The focus would be to develop economical and effective methods of 
achieving safety goals, i.e., can a larger gap be more cost-effective than 
using a soft or hard stop? 

 Studies that fine tune bearing design or alter the properties of the structure 
to best match performance criteria. 

Ideally, these studies will be undertaken in such a way that SSI effects can be assessed and 
compared to fixed-base cases. Soil–structure interaction, including embedment effects, may have 
a significant effect on the response of heavy and stiff structures. 

Studies similar to those reported herein are needed for three-dimensional isolation 
systems, but additional studies are needed related to: 

 Use of softer vertical elastomeric bearings. 

 Use of separate systems that isolate the whole plant, but use hybrid 
bearings or a separate system for horizontal and vertical isolation. 
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 The effect of hard and soft stops on systems with vertical isolation. A 
sudden stop may cause the structure to pitch suddenly, resulting in tension 
or uplift in the bearings. 

In some designs, although a complete horizontal isolation system is provided for the 
entire plant, portions of the plant are isolated. In other designs, only localized isolation is 
provided in a fixed-base NPP. These may be quite useful strategies for the PGSFR. Thus, 
additional studies should explore: 

 Horizontal isolation of whole structure plus local vertical isolation. 

 A fixed-base plant with local horizontal or horizontal and vertical isolation 
of equipment and a small region of plant. 

6.3 General Recommendations 

A wide variety of risk-based and performance oriented studies will help to identify what aspects 
of the structural design contribute most to the response and its uncertainties, and the economic 
tradeoffs associated with alternative designs. Thus, research related to several topics is 
recommended. 

 Sensitivity analyses to identify parameters used in modeling the isolated 
and fixed-base system that most influence performance and uncertainties 
to aid in devising design strategies for improving performance. 

 Cost-benefit analysis: the expert panel strongly advised conducting a 
simplified cost-benefit study early in the project. Investigations of 
expected construction and repair costs, and downtime associated with 
post-event inspection, design, permitting, and repair. To provide a basis 
for comparison, it would be ideal to repeat the parametric studies done 
above for cases where the structure is assumed to be fixed to the ground. 

In addition to considerable expertise related to seismic, structural, and geotechnical 
engineering, the development of the PGSFR may benefit from advice and research related to 
nuclear and safety engineering. 

Several other types of studies may be useful, including: 

 Development of step-by-step design and analysis examples, workshops 
and short courses, and videos to help train design engineers about seismic 
isolation, computational modeling and nonlinear analysis, performance-
based design, etc. 

 Simplified design-oriented studies to seismically isolate emergency 
operations buildings and other structures associated with the PGSFR 
power station. 
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