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ABSTRACT

This report presents results of an evaluation study on the applicability of current design procedures

(based on p-y curves) to the analysis of large-diameter shafts socketed in rock, and the identifi-

cation of enhanced moment transfer mechanisms not considered in current design methodologies.

For this purpose simplified models, and possible three-dimensional (3D) finite-element method

(FEM) models are studied to shed some light on the response of drilled shafts socketed in rock. A

parametric study using p-y and considering a wide range of rock properties and rock-socket depths,

different criteria to define the soil and rock p-y curves, different beam theories, and different inter-

face frictional resistances are presented and compared with 3D FEM simulations. A new element

is discussed to account for the shaft toe and underlain rock interaction, which could provide benefit

to reduce shear demands when the socket is shallow.
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1 Introduction

1.1 BACKGROUND

Drilled shafts socketed in rock are widely used as foundations for bridges and other important

structures. They are also used to stabilize unsafe slopes and landslides. The main loads applied

to drilled shafts are axial (compressive or uplift) as well as lateral loads with accompanying mo-

ments. Although there exist several analysis and design methods especially for rock-socketed

drilled shafts subjected to lateral loading, these methods tend to be based on simplified assump-

tions that have not been thoroughly validated with field load tests and advanced numerical analysis.

This is particularly true when considering large lateral loads and moments acting on drilled shafts.

Several studies have shown Turner (2006) that p-y analysis of laterally loaded rock-socketed

shafts result in unexpectedly high values of shear and question whether the results are realistic. In

particular, when a rock socket in relatively strong rock is subjected to a lateral load and moment

at its head, values of shear near the top of the socket may be much higher than the applied lateral

load. This result is accepted given the bending moment and load transfer mechanisms that are

commonly used in these types of analyses. When the lateral load has a high moment arm, such

as occurs in an elevated structure, the lateral load transmitted to the top of the drilled shaft may

be small or modest, but the moment may be relatively large. The principal mechanism of moment

transfer from the shaft to the rock mass is through the mobilized lateral resistance. If a large mo-

ment is transferred over a relatively short depth, the lateral resistance is also concentrated over a

relatively short length of the shaft, resulting in shear loading that may be higher in magnitude than

that of the lateral load.

Although this mechanism and resulting shear demands are valid in most cases, there is

some question whether the high values of shear predicted by p-y methods of analysis for such

cases exist in reality or are artifacts of the analysis. Some designers suggest that the structural

model of the shaft does not account properly for shear deformation, resulting in unrealistically

high shear values. Other suggest the p-y curves commonly used for drilled shafts socketed in rock

are not accurate and some researchers indicate that different load-transfer mechanisms are also

possible.

A correct evaluation of shear demand at soil–rock socket interfaces is important since the

shear demand may govern the drilled shaft reinforced-concrete structural design. When shear

occurs in addition to axial compression, the section is then checked by comparing the factored

shear loading with the factored shear resistance. The need for additional transverse reinforcement,

1



beyond that required for compression, can be determined using conventional design procedures as

presented in the AASHTO LRFD Bridge Design Specifications (2004). For the majority of rock-

socketed shafts, the transverse reinforcement required to satisfy compression criteria combined

with the shear resistance provided by the concrete will be adequate to resist the factored shear

loading without the need for additional transverse reinforcement. However, in cases where high

lateral loads or bending moments are to be distributed to the ground over a relatively small distance,

factored shear forces may be high and the shaft dimensions and reinforcement may be governed by

shear; i.e., a short stubby socket in high-strength rock. In these cases, the designer is challenged to

provide a design that provides adequate shear resistance without incurring excessive cost increases

or adversely affecting constructibility by constricting the flow of concrete.

To handle high shear loading in the reinforced-concrete shaft, the designer has several

options: (1) increase the shaft diameter, thus increasing the area of shear-resisting concrete; (2)

increase the shear strength of the concrete; or (3) increase the amount of transverse reinforcing,

either spiral or ties, to carry the additional shear. Although each option has advantages and disad-

vantages, in general they result in more expensive structures and in some case designs that cannot

be constructed.

In this context, the main objective of this research is to better understand the shear and

bending demands in rock-socketed drilled shafts subjected to lateral loads and establish design

recommendations for this case. For this purpose, this report reviews current practices for the

design of socketed piles in rock, takes advantage of current 3D finite element modeling (FEM)

capabilities to evaluate shear demands on drilled shafts, and compares these results with solutions

obtained using conventional methods based on p-y curves. Today’s FEM codes allow for accurate

evaluation of the response of rock-socketed piles subjected to lateral loads. Of particular impor-

tance for the socketed pile case is the estimation of shear and bending demands near the soil–rock

interface. This localized response can be investigated using refined meshes, fiber beam elements

and appropriate contact elements. In contrast, conventional Beam on Nonlinear Winkler Founda-

tion (BNWF) methods based on p-y curves, although very useful, suffer from the fact that the p-y
curves are often based on findings from experimental tests performed on small-diameters piles and

soil conditions that do not account for the presence of a soil–rock interface. They also presume

a load transfer mechanism based solely on shear forces; thus, they tend to overestimate shear and

bending demands and result in overly designed drilled shafts. Although some tests have been per-

formed with the specific goal of estimating the response of socketed piles, more research is needed.

Among them recent studies on this topic several reports and papers are relevant, including:

• V. Ramakrishna K. Rajagopal, and S. Karthigeyan, (2004), Behavior of Rock Socketed Short

Piles under Lateral Loads, IGC 2004.

• C.F. Leung and Y.K. Chow, (2008) Performance of Laterally Loaded Socketed Piles.

• K. Yang, (2006), Analysis of Laterally Loaded Shafts in Rocks, PhD dissertation, University

of Akron, Akron.

This research builds on these studies and aims to evaluate the applicability of current design

procedures (based on p-y curves) to the analysis of large diameters shafts socketed in rock, and then
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identify enhanced moment transfer mechanisms not considered in current design methodologies.

This study is similar to recent research topics conducted at the Pacific Earthquake Engineering Re-

search Center (PEER). In recent years, PEER has funded several projects on the validation and ap-

plication of p-y curves to the analysis of pile foundations subjected to lateral spreading and related

loading conditions. These studies have included analytical/numerical analyses as well as experi-

mental (field /centrifuge) tests. In addition, the California Department of Transportatoin (Caltrans)

has been supporting experimental and analytical studies on pile–soil interaction for many years. In

this context, this project is focused on rock-socketed piles subjected to lateral loads. Results from

this project may provide better insight on how to address this problem.

1.2 OBJECTIVES

This research addresses the following main topics, the findings of which will be summarized and

recommendations presented in a final report:

• Review of recent work on design of rock-socketed drilled shafts

• Review of current numerical modeling strategies for predicting demands on rock-socketed

drilled shafts

• Development of OpenSees 3D models to represent the soil–rock–pile domain

• Parametric analysis using different rock-socketed drilled shaft configurations and soil–rock

material properties

• Identification and evaluation of enhanced moment transfer mechanisms to resist lateral loads

and external bending moments

• Development of practical design recommendations based on the improved modeling strate-

gies

1.3 REPORT ORGANIZATION

This report is organized as follows:

1. Chapter 2 presents different modeling strategies to address the problem of rock-socketed

shafts subjected to lateral loads. These models range from simple beams with simple bound-

ary conditions and beams supported with nonlinear springs (i.e., BNWF), to 3D FEM models

where the pile is represented either by beam elements or brick elements.

2. Chapter 3 presents a parametric analysis study using different p-y spring formulations for

different rock conditions and comparisons with results obtained from OpenSees simulations

using 3D brick elements to represent the rock.
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3. Chapter 4 presents the formulation of a 3D finite element to describe the resisting force and

bending moment at the shaft toe as a function of vertical deformation and rotation. The

model accounts for nonuniform distribution of stresses and toe partial uplift. The chapter

also includes notes on the numerical implementation and results for selected cases.

4. Chapter 5 presents a summary, conclusions and recommendations for future research.
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2 Modeling Rock-Socketed Drilled Shafts

2.1 INTRODUCTION

The response of a drilled shaft socketed in rock subjected to lateral loads can be investigated

using different models including p-y based models and 3D FEM models. p-y based models, i.e.,

BNWF models, have been extensively studied and are extremely easy to use. Three-dimensional

FEM models are computationally more expensive but, when properly done, provide more detailed

information compared to BNWF p-y methods. Independent of the method used, defining proper

boundary conditions are important to accurately represent this problem. This chapter begins with

a presentaton of simplified basic models and then introduces possible 3D FEM models that could

shed some light to the response of drilled shafts socketed in rock.

2.2 PROBLEM STATEMENT AND BASIC MODELS

Figure 2.1 shows a schematic of a typical drilled shaft socketed in rock subjected to lateral loads.

In the figure, the drilled shaft is represented by a cylinder subjected to axial and lateral loads.

The upper section of the shaft is surrounded by soil (represented in yellow in the figure) and its

lower section is embedded (socketed) in rock (represented in brown in the figure). Typical models

used to characterize this problem range from very simple beam models to advanced 3D FE mod-

els. The use of beam theory is natural for this type of problem. By using traditional formulations

(e.g., Bernoulli or Timoshenko) and adequate boundary conditions (representing the rock region or

socket), it is possible to obtain a first representation of the response of socketed drilled shafts sub-

jected to lateral loads. Although very simple, these models can help identify possible mechanisms

that may be useful in understanding the response of rock-socketed drilled shafts. Figure 2.2 shows

three of these simple beam models where the soil is completely eliminated (assuming its resistance

negligible compared to that of the rock), and the rock is represented by different boundary con-

ditions. The model in Figure 2.2(a) represents the socketed portion of the shaft with an enlarged

beam section with much larger area and moment of inertia than the rest of the beam. The model

in Figure 2.2(b) assumes the beam is completely restrained (fixed) in displacements and rotations

at some points along the socketed section, and the model in Figure 2.2(c) uses a series of pins

that prevent displacement in the horizontal direction at localized points to represent the restraint

imposed by the socketed section.
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Figure 2.1 Schematic drawing of rock-socketed shaft under lateral load.

Figure 2.2 Simple models.

Figures 2.3 and 2.4 show more advanced models. Here, the drilled shaft is again rep-

resented by beam elements, and the rock is represented by either nonlinear p-y springs (shown in

Figure 2.3) or 3D solid elements (shown in Figure 2.4). When representing the rock using 3D solid

elements, it is important to properly represent the pile–rock interface, including the development

of frictional forces along the interface surface and the possibility of gap formation. This requires

special contact formulations (in this case between beam and solid elements). Finally, since in this

case the soil portion is not modeled, the resulting overburden stress must be replaced by distributed

loads at the top of the rock socket (representing the self-weight of the soil). Although the models

that include 3D FEM elements are computationally more expensive than those shown in Figure 2.2,

they can provide more accurate results.
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Figure 2.3 Simple beam model(using p-y springs to represent rock).

Figure 2.4 Simple beam model(using 3D solid elements to represent rock).

As mentioned before, beam elements are a natural choice to represent slender structural

elements (e.g., piles or drilled shafts). However, it is also possible to represent the shaft using

solid elements. Figure 2.5 shows a model where both the drilled shaft and the rock are modeled

using 3D brick elements. These models are computationally more expensive and require many

more elements to properly capture the response of the structural system, particularly in the case

when representing the nonlinear response of reinforce concrete (i.e., nonlinear response of steel

and concrete). These models also require special contact formulations to capture the response at

the shaft–rock interface (in this case using solid-to-solid contact elements).

Finally, when the stiffness and strength of the soil above the rock are relevant, e.g., when

the relative stiffness and strength of the soil and the rock are of the same order, it is necessary to
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include the soil in the model representation. Figure 2.6 shows one such model where the soil is

represented by nonlinear p-y springs (i.e., BNWF). Figures 2.7 and 2.8 show two cases where the

shaft is represented by beam and solid elements, respectively, and the soil is represented by 3D

solid elements. These models are computationally more expensive.

Figure 2.5 3D simple model using solid elements to model beam.

Rock

Soil

p-y spring

L

P

Figure 2.6 Beam elements representing the shaft and p-y springs representing the soil and

rock (BNWF).

8



Figure 2.7 Beam elements representing the shaft and solid elements for the soil and rock.

Figure 2.8 3D solid model representing the drilled shaft, the soil and the rock.

All these models have strengths and weaknesses. An evaluatoin of the merits of each

modeling strategy in the light of shear and bending demands estimated by each model is presented

below. First, a typical geometry, rock and soil conditions, shaft characteristics, and rock-socket

depths are presented.
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2.3 MODEL GEOMETRY AND MATERIAL PROPERTIES

The basic geometry chosen to analyzed this problem includes a 1.5-m drilled shaft embedded in

a 10-m soil profile underlain by rock. Different socket depths (ranging from 0.5 to 2.0 m) are

considered to evaluate the socket response. The properties of the rock material are based on each

of five parameter sets shown in Table 2.1 that represent a wide variety of rock properties. These

parameters are based on assumed rock mass rating (RMR) values and the work of Bieniawski

(1989). Elastic modulus values for the rock mass, Em, were computed from the assumed RMR

values using the relation proposed by Serafim and Pereira (1983) where

Em = 10(
RMR−10

40 ) (2.1)

Geologic Strength Indices (GSI) are determined from the RMR values as

GSI =

{
RMR − 5 for RMR ≥ 23

9 lnQ′ + 44 for RMR < 23
(2.2)

and

Q′ =

(
RQD

Jn

)(
Jr

Ja

)
(2.3)

and the assumed values of Jn = 4, Jr = 3, and Ja = 1 represent the hypothetical number, rough-

ness, and fill conditions, respectively, of the joints in the model class V rock mass. The mi terms in

Table 2.1 were estimated based on rock class from the table provided in Hoek et al. (1995). These

rock properties can be used as a proxy to determine constitutive parameters for the constitutive

model used to represent the rock and soil. In this study, a simple Drucker-Prager (DP) and J2 mod-

els were used to capture the rock response. Table 2.2 shows the resulting DP model parameters

for a rock type I. Two approaches were used to model the drilled shaft: elastic and fiber section.

Table 2.3 shows the material properties for the drilled shaft using an elastic approach. These ma-

terial properties represent typical properties for reinforced concrete. A fiber section was used to

incorporate the nonlinear cross-sectional behavior of the drilled shaft. The fiber section model

was discretized into subregions, which were assigned uniaxial constitutive models to represent

the corresponding concrete and steel portions. A 1.5-m diameter section with 32-mm longitudi-

nal reinforcement and 18-mm spiral ties, with equivalent elastic properties to the elastic section,

adapted from McGann (2013) (Fig. 2.10) is used to represent typical behavior of plastic sections.

The material properties for this fiber section are shown in Table 2.4. The uniaxial constitutive

model assumed for the reinforcing steel was a bilinear plasticity model. The parameters defining

the constitutive response of this model were the steel yield stress, σy, elastic modulus, Es, and

strain hardening ratio, b. The compressive behavior of the concrete constitutive model was based

on the work of Kent and Park (1971). The tensile behavior for the concrete constitutive model was

simplified, with a limited linear elastic capacity followed by linear softening. Figure 2.9 shows the

moment-curvature response of a single drilled shaft.

10



Table 2.1 Basic properties assumed for rock materials in numerical models.

Class Number

I II III IV V

RMR 90 70 50 30 10

qu (MPa) 250 175 75 35 5

RQD (%) 95 80 60 35 15

Em (GPa) 100 32 10 3.2 1

GSI 85 65 45 25 24

mi 23 12 10 7 5

Table 2.2 Drucker-Prager assumed for materials in numerical models.

K(MPa) G(MPa) σY (KPa) ρ Unit Weight(kN/m3) Poisson’s Ratio

Rock 67000 40000 12720 0.681 22.0 0.25

Soil 220 95 100 0.362 17.0 0.3

Table 2.3 Beam properties assumed for elastic section in numerical models.

K(MPa) G(MPa) Radius(m) I(m4) Poisson Ratio

Beam 17750 8192.3 0.75 0.249 0.3

Table 2.4 Concrete and steel material properties in drilled shaft fiber section model.

Concrete Properties Steel Properties

f ′

c(kPa) ǫc f ′

cu(kPa) ǫcu ft(kPa) Et(MPa) σy(MPa) Es(GPa) b
24525 0.003 4905 0.0368 3070 -2039 412 200 0.001
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Figure 2.9 Model moment-curvature response for single drilled shaft using different sec-

tions.

36 mm dia. longitudinal

18 mm dia. spiral ties

0.652 m

reinforcement

0.75 m
10 cm spacing

Figure 2.10 Details of the model drilled shaft cross-section using fiber section(after Mc-

Gann (2013)).

2.4 LOADING CONDITIONS

In this study, all models were subjected to axial and lateral loads. The axial loads represented self-

weight and possible superstructure demands. This study considered vertical loads values ranging

from 0 MN to 56.6 MN. The lateral demand was applied in the form of horizontal displacements

enforced at the top of the shaft. In all cases a monotonic horizontal displacement time history

spanning from 0.0 m to 0.5 m was used.
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2.5 COMPUTATIONAL TOOL

2.5.1 OpenSees Finite Element Analysis Platform

The opensource finite element framework OpenSees (http://opensees.berkeley.edu) was

used in this research for all simulations. OpenSees was developed at PEER for use in structural and

geotechnical simulations in one, two, and three dimensions. OpenSees’s programming framework

uses object-oriented programming in C++. The software architecture was created in a manner

such that there is separation of the materials and elements, thus, new materials or elements can be

added without modification to existing material and element classes. Several finite elements and

constitutive models are available in OpenSees that are particularly suited for this research project.

They include:

• advanced fiber beam elements that capture the linear and nonlinear response of structural

elements (shafts, columns, beams)

• conventional and efficient brick elements (e.g. Stabilized Single Point Brick- SSPBrick) that

capture the response of the rock and soil domains

• solid-to-solid 3D contact elements that capture the shaft-to-rock interface response when the

shaft and soil are modeled using solid elements. These elements allow for gap formation and

the development of frictional forces

• beam-to-solid 3D contact elements that capture the shaft-to-rock interface response when

the shaft is represented by beam elements and the rock by solid elements; this element also

allows for gap formation and the development of frictional forces

• beam-end contact elements that capture the shaft-to-rock interface response at the bottom of

the shaft when the shaft is represented by beam elements and the rock by solid elements

• uniaxial p-y, t-z, and q-z springs based on API criteria

• uniaxial nonlinear materials to capture the nonlinear response of steel and concrete (includ-

ing confined and unconfined concrete)

• 3D pressure-dependent and pressure-independent constitutive models that capture the be-

havior of soil (including sands and clays)

• Drucker-Prager and J2 plasticity constitutive models to capture the behavior of the rock

• A general array of possible boundary conditions that allow for independent constraints (loads

or displacements) of any type and in any direction

More information of OpenSees’s modeling capabilities, element and material constitutive

models characteristics, and user manual (including useful examples) can be found at (http://

opensees.berkeley.edu/wiki/).
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2.5.2 Pre– and Post–Processing of Simulated Data

The commercial program GiD (http://gid.cimne.upc.es/) is used during this research as

a graphical pre- and post-processor for OpenSees. All of the input information for the problem,

including everything from mesh generation to material and element assignments, is performed

using this tool. This information is then transferred to an input file and run in OpenSees. After

reformatting, the OpenSees recorder data can be interpreted by GiD, allowing for the program to

function as a visual post-processor for OpenSees, which while perfectly functional as a FE solver,

has only limited visual capabilities. The ability of GiD to function in this capacity greatly simplifies

the creation of the input files and visualization of the results.

2.6 MODEL EVALUATION

This section presents numerical results obtained using the different modeling strategies mentioned

in section 2.3 for the drilled shaft and loading condition indicated in section 2.4. The motivation

of these analyses is to evaluate and compare each modeling strategy to identify their strengths and

weaknesses. An ancillary objective is to identify possible resisting mechanisms appropriate for an

accurate evaluation of shear demands in rock-socketed drilled shafts.

2.6.1 Simple Beam Models

This set of simple models is intended to provide a preliminary framework for the development of

shear demands in rock-socketed shafts. These models are not expected to provide a complete and

accurate representation of the problem; however, they may serve to shed some light on fundamental

phenomena inherent to the problem. In all cases, it is assumed that the effect of the soil is negligible

compared to that of the rock.

Beam with Different Cross-Sectional Properties

The first model strategy attempts to capture the shaft response using an enlarged cross-sectional

area to represent the rock-socket section of the shaft, with larger area and moment of inertia near

this section. Figures 2.11 and 2.12 show results for two different cross-sectional properties. Note

that the larger the cross section, the better the predicted deformation (deformed shape). Indepen-

dent of the size of the cross section, the shear demand stays constant and the bending moment

increases with beam length. This model strategy produces correct deformations but fails to capture

the shear and bending moment demands in the socketed portion.
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Figure 2.11 Displacement, shear, and bending moment in shaft with section radius ratio =

10 (freehead).

el
ev

at
io

n 
(m

)

displacement (cm)
0 20 40

0

2

4

6

8

10

12

shear (MN)
-50 0 50

moment (MNm)
-100 0 100

Figure 2.12 Displacement, shear, and bending moment in shaft with section radius ratio =

100 (freehead).

Beam with Fixed Support

The second model strategy uses fixities to represent the rock–socket constraint. The use of total

or partial fixities to represent the socketed portion of the shaft is common in geotechnical practice

and can help identify the shear and bending demands above the fixity point but fail to indicate how

the resisting shear force and bending moment are generated (or resisted) in the socketed portion of

the shaft. Figures 2.13 and 2.14 show results for two fixity locations: (a) at the bottom of the shaft;
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and (b) near the top of the socketed section. The first case produces incorrect results in terms of

displacements, shear, and bending demands above the fixity point. The second case produces real-

istic displacements, and accurate shear forces and bending moment above the fixity point, but does

not provide any information on how these demands are resisted (i.e., the computational tool only

provides reaction forces at the fixity point). Although very simple and considering its limitations,

the use of fix supports is commonly used in structural design to represent pile foundations (rock

socketed or not), with an appropriate fixity depth being key.
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Figure 2.13 Shear and bending moment in shaft with fixed support at the bottom of rock

layer (freehead).
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Figure 2.14 Shear and bending moment in shaft with fixed support at 2 m from bottom

(freehead).
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Beam with Pinned Supports

The use of pinned supports to model the rock-socketed portion of the shaft render the first model

capable of generating a resisting mechanism for balancing the bending demands that develop at

the top of the socketed portion. The reactions at the pins (shear forces) generate a bending moment

opposite in direction to the one at the top of the socketed portion of the shaft. The resisting moment

in this model is based solely on shear forces. Figures 2.15, 2.16, and 2.17 show results for models

with pinned supports placed at different spacings: as the spacing is reduced, the required shear

force needed to balance the bending moment at the top of the socketed section increases. This

model presumes the rock is infinitely strong and does not deform. Although very simple, this

model provides some insight and possible problems that may arise for those models that use pins

or localized springs to represent the rock-socketed condition. This model implies that the stronger

the rock and the smaller the socketed depth the larger will be the shear demand. Table 2.5 shows

a summary of the results for cases 1 to 7 described above in terms of shear force at the top of the

shaft, maximum shear force, and shear force ratio.

Table 2.5 Shear force summary for simple beam model cases.

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

Case 1 7.94 7.94 1.00

Case 2 7.94 7.94 1.00

Case 3 4.59 4.59 1.00

Case 4 9.26 9.26 1.00

Case 5 6.62 33.08 5.00

Case 6 7.30 91.26 12.50

Case 7 7.61 192.97 25.35
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Figure 2.15 Shear and bending moment in shaft with two pined supports (freehead).
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Figure 2.16 Shear and bending moment in shaft with three pined supports (freehead).
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Figure 2.17 Shear and bending moment in shaft with five pined supports (freehead).

2.6.2 BNWF p-y Analysis

A natural extension to the last model is to replace the pins by springs. These springs can be linear or

nonlinear. Springs that characterize the lateral response between piles and soils are usually referred

as p-y springs. p-y springs are commonly used in geotechnical engineering and foundation design,

and have been researched extensively through physical and numerical tests. Over the last three

decades many analytical and empirical p-y spring formulations have been proposed, several of

which are widely accepted and used in design. Although p-y springs where originally developed

for piles, they are also used in connection with drilled shafts. In general, p-y springs are defined in
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terms of an initial stiffness (k) and an ultimate capacity (pult). Models for different soils (clays and

sands) and rocks have been proposed for monotonic and cyclic loads. Although these springs are

uni-axial in nature, they are intended to capture the 3D interaction effects between the foundation

(pile or drilled shaft) and the surrounding soil/rock, including the formation of soil wedges and

relative soil movement around the pile and possible gapping. Their use in connection with 2D

plane strain FEM analysis is limited since they represent a 3D phenomena. Their use in 3D FEM

analyses is also limited since they are applied in a single direction. A thorough description of p-y
curves is beyond the scope of this study. For more information on p-y curves for soils the interested

reader is referred to the work by Reese and Van Impe (2001) and to the works by Gabr et al. (2002)

and Liang et al. (2009) for p-y curves for rocks.

It is very common to use p-y springs in practice, and extensive research has been done to

define p-y springs for rocks. Therefore, a complete parametric study using recently proposed p-y
curves for rocks, including different rock types and socket depths, is presented in Chapter 3. This

section is limited to showing the effect of using p-y springs for rocks and soils in the response

of rock socketed drilled shafts (in terms of shear and bending moment demands) and evaluate its

benefits compared to the other modeling techniques presented in this chapter. Consider the same

drilled shaft analyzed in the previous section and shown in Figure 2.6, where the soil and rock

are replaced by p-y springs. Figure 2.19 shows results for the case where the effect of the soil is

assumed negligible (no soil p-y springs) and the rock is very strong (using p-y spring properties for

rock Type I). Similar to the pinned model case, the results show the development of a large shear

demand near the soil/rock interface (larger than the applied lateral force). As was the case for the

previous models, this modeling strategy assumes that the resisting mechanism is based solely on

shear forces (and resulting bending moment) and neglects the contribution of vertical loads and

friction. Similarly, Figure 2.20 shows results for the case where the soil is included in the analysis

(in terms of p-y springs for a soft soil). As expected, the shear and bending demands are slightly

smaller than for the other case (since resistance develops along the portion of the shaft embedded

in soil) but the differences are negligible. Maximum shear forces and shear stress ratios for the

last two cases are presented in Table 2.6 showing these differences. Obviously, as the stiffness

and strength of the soil increases relative to the rock, the shear demand at the soil–rock interface

decreases. Because the springs deform, the shear demands are smaller than those obtained using

pins (independent of spring spacing since the p-y material properties are defined per unit length).

Table 2.6 Shear force summary for p-y curve cases.

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

Case 1 7.25 69.23 9.55

Case 2 9.70 56.15 5.79
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Figure 2.18 Schematic drawing of rock-socketed shaft under lateral load p-y model.
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Figure 2.19 Shear and bending moment in shaft using API p-y curves (freehead, rock only).
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Figure 2.20 Shear and bending moment in shaft using API p-y curves (freehead).

2.6.3 3D FEM Analysis Using Beam and Solid Elements

A more fundamental treatment of the problem requires a 3D finite element analysis, including a

better representation of the socket geometry, rock response, and shaft–rock interface behavior. For

this purpose, beam elements and/or solid elements can be used to represent the shaft, and advanced

constitutive models can be used to represent the rock and the soil.

3D Analysis using a Beam Element to Represent the Shaft

Figure 2.21 shows a model where the shaft is represented by beam elements, the rock by 3D brick

elements, the shaft–rock interface by beam-to-solid contact elements, and the soil effect is assumed

negligible. The beam element representing the shaft bottom is restrained in the vertical direction

(although free in all other directions where the rotation may be free or fixed), with a 0.5-m lateral

displacementapplied at the top of the shaft.

Figure 2.22 shows results for a 2.0-m-deep rock socket using 0.5-m elements; Figure 2.23

shows results for the same case using a refined mesh with 0.25-m elements. Both cases assume no

frictional resistance develops at the rock–shaft interface. The figures and the results in Table 2.7(a)

and (b) show shear demands slightly smaller than those obtained using p-y springs, both in terms of

shear force distribution and maximum shear force. Figure 2.24 and 2.25 depict results for the same

case using a plastic-fiber section instead of an elastic section. The "plastic hinge," where curvature

exceeds the curvature corresponding to the peak moment shown in Figure 2.9, is marked in red. In

this particular case, the plastic hinge developed at the soil–rock interface, and the maximum shear

force (shown as case (c) in Table 2.7) was significantly reduced.

21



Figure 2.21 Overview of 3D FEM mesh for 2-m rock profile.

Table 2.7 Shear force summary for 3D cases (shaft and rock).

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

(a) 6.71 47.81 7.12

(b) 6.66 60.00 9.01

(c) 0.73 8.16 11.1

(d) 6.71 48.83 7.27

(e) 6.71 47.81 7.12

(f) 6.97 55.28 7.93
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Figure 2.22 Shear and bending moment in shaft with rock layer only (Case a: freehead,

element size = 0.5).
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Figure 2.23 Shear and bending moment in shaft with rock layer only (Case b: freehead,

element size = 0.25).
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Figure 2.24 Shear and bending moment in shaft with rock layer only (Case c: freehead,

using plastic-fiber section).
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Figure 2.25 Comparison of reaction force at top of the shaft between elastic section and

fiber section.
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Figure 2.26 shows results for a case where the bottom of the beam is fixed in displacement

(for all directions) and rotation.In this case, a fraction of the bending moment is transmitted to the

bottom (that is fixed), reducing the shear forces required to equilibrate the system. Figures 2.27 and

2.28 show results for a case where frictional resistance is accounted for. The frictional resistance

was modeled using a Coulomb-type contact interface model that allows for elastic slip (sticking)

and plastic slip (sliding). Control of the interface frictional behavior required definition of an

interface stiffness, (G0), and an interface strength, µ. Two extreme cases are considered here:

one with small interface stiffness (large sticking) and one with a very large stiffness (negligible

sticking, i.e., extensive sliding). For this particular case (i.e., 2.0-m-deep socket), a small interface

stiffness Go produces very similar results to those obtained assuming a frictionless case. The case

with large interface stiffness, Go, produces larger shear demands comparable to those produced

using p-y springs. Table 2.7(e) and (f) shows maximum shear forces and shear–stress ratios of

these last two cases.
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Figure 2.26 Shear and bending moment in shaft with rock layer only (Case d: freehead,

fixed at bottom).
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Figure 2.27 Shear and bending moment in shaft with rock layer only (Case e: freehead,

considering friction: mu = 0.5, G = 1E3).
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Figure 2.28 Shear and bending moment in shaft with rock layer only (Case f: freehead,

considering friction: mu = 0.5, G = 1E6).
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Figure 2.29 shows a mesh for a case where soil is included. For this purpose, solid ele-

ments and beam-to-solid contact elements were used to represent the soil. The results presented

in Figure 2.30 show a decrease in shear demand due to the presence of the soil. These results are

consistent with what was observed using p-y springs. Figure 2.31 shows results for a case where

the diameter of the rock socket is slightly larger than the diameter of the shaft. Note that a slight

difference in diameter results in toe rotation and a reduction in shear demand. Figure 2.32 shows

results for a case where the shaft is modeled using a plastic-fiber section. Unlike the elastic section

case, use of a plastic section can provide a modest amount of ductility while limiting the maximum

reaction force by forming a plastic hinge; see Figure 2.33 where the plastic hinge is marked in

red. The limit on the maximum moment of the shaft tends to limit the very high shear force at the

rock–soil interface. Table 2.8 shows the maximum shear forces and shear stress ratios for these

cases. In contrast to the case without soil, here the plastic hinge forms in a section of the pile closer

to the surface.

Table 2.8 Shear force summary for 3D cases (shaft, rock, and soil).

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

Case 1 9.39 37.58 4.00

Case 2 8.57 23.28 2.72

Case 3 2.79 4.91 1.76

Figure 2.29 Overview of 3D FE mesh for a profile with 10 m of soil and 2 m of rock.
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Figure 2.30 Shaft bending demands for site profile 1 with rock Class I (free head).
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Figure 2.31 Shaft bending demands for site profile 1 with rock Class I (freehead, with 1-cm

spacing between the shaft and rock layer).
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Figure 2.32 Shaft bending demands for site profile 1 with rock Class I (freehead, using a

plastic-fiber section to model the shaft).

0 0.1 0.2 0.3 0.4 0.5

Displacement(m)

0

2000

4000

6000

8000

10000

R
ea

ct
io

n 
fo

rc
e(

kN
)

Elastic Section
Plastic Section

Figure 2.33 Comparison of reaction force at top of the shaft between an elastic section and

a plastic-fiber section.
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3D Analysis using Solid Elements to Represent the Shaft

As an alternative to beam elements, Figure 2.34 shows a model where both the shaft and the

rock are represented using 3D brick elements, and the shaft–rock interface is represented using

solid-to-solid contact elements. Although computationally more expensive, these models offer

the possibility of evaluating aspects of the shaft behavior where beam theory may be insufficient;

e.g., cases where plane sections do not remain plane or when a detailed response description of a

particular cross section is of interest (e.g., at the bottom of the shaft).

In contrast to beam elements, this model representation does not provide direct information

on shear and bending moment demands. These values must be calculated using the stress informa-

tion recorded at the solid elements. To develop a shear diagram, the shaft must be subdivided into

cross sections at different depths, and at each cross section the shear–stress field (τxz in this case)

must be integrated over the shaft cross-sectional area. By evaluating the shear force at different

locations, it is possible to recreate the shear-force diagram. In this study, fifteen sections were

used along the shaft, concentrating them near the socketed portion of the shaft. Figure 2.35 shows

the shear–stress contours (τxz) for one possible cross section. Figure 2.36 shows shear–stress con-

tours at each of the fifteen locations along the shaft and the resulting shear diagram obtained by

integration. Figure 2.37 shows the shear–stress diagram obtained using this method for a 0.5-m-

horizontal displacement applied at the top of the shaft. The shear-force diagram is very similar to

the one obtained using beam elements thus verifying its accuracy.

Figure 2.34 3D FEM model using solid elements for shaft and rock for 2-m rock profile.

Figure 2.35 Calculation of shear force.
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Figure 2.36 Shear–stress contours at different locations.
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Figure 2.37 Shear demands of a shaft with rock layer only (freehead).

Figure 2.38 shows contours of contact forces at the rock–shaft interface. These forces,

evaluated using contact elements, represent the forces required to prevent penetration of the shaft

into the rock. The results shown in the figure correspond to a frictionless case. As the shaft deforms

in the horizontal direction, it engages the rock socket, generating compressive forces at opposite

points along the contact surface; these forces appear in red in the figure. Zero-force areas indicate

the tendency to gap formation.

31



The resultant of these compressive forces (V ) generate a resisting moment MR = V ×heff

that opposes the demand bending moment MD = L × H . The value of V required to bring the

system to equilibrium depends on the effective height heff that can be formed. Figure 2.39 shows

contours of contact forces and estimated heff for different socket depths; in this case as the socket

depth increases, heff increases, reaching a maximum depth equal to or larger than 2.0. At this

point, a condition of full fixity is reached, and the shear demand remains the same.

Figure 2.40 shows shear-force diagrams for the same shaft and loading condition analyzed

in the previous sections but considering different types of rock (ranging from Type I to Type V -

see Table 2.9 for rock material properties). The results show that shear demands decrease as the

rock quality decreases. Table 2.10 shows maximum shear forces and shear-force ratios for each

case. The weaker the rock, the smaller the shear demand and the larger the shaft rotation. Results

for cases with friction and without friction are also shown in the figure, indicating that the effect

of friction is negligible for this example. These results are consistent with results obtained using

p-y springs; i.e., the p-y spring results are higher than those obtained using 3D FEM models. This

is addressed in more detail in Chapter 3. Although counter intuitive, a weaker socket seems to be

beneficial in terms of shear demands

q

Figure 2.38 Contact force around the bottom of the shaft.

Figure 2.39 heff doesn’t increase when embedment is larger than 1.5 m.
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Table 2.9 Drucker-Prager properties assumed for materials in numerical models.

Rock Types

I II III IV V Soil

K(MPa) 67000 21300 6700 2130 670 220

G(MPa) 40000 12800 4000 1280 400 95

σY (KPa) 12720 12720 12720 12720 12720 100

ρ 0.716 0.696 0.665 0.515 0.296 0.362

I

el
ev

at
io

n 
(m

)

-50 0 50
0

2

4

6

8

10

12
II

-50 0 50

III

shear (MN)
-50 0 50

IV

-50 0 50

V

-50 0 50

Figure 2.40 Shear demands in shaft with different rock types (freehead blue lines show the

cases without friction between shaft and rock, while red lines show the cases

considering friction with µ = 0.5).

33



Table 2.10 Shear force summary for different rock types.

Rock Type Friction Condition
Shear Force Maximum Shear Force

at Top of Shaft (MN) Shear Force (MN) Ratio

I
No friction 6.33 39.85 6.30

µ = 0.5 6.63 32.49 4.90

II
No friction 5.62 36.88 6.56

µ = 0.5 6.08 27.80 4.57

III
No friction 5.00 32.65 6.54

µ = 0.5 5.64 25.13 4.45

IV
No friction 3.66 23.43 6.40

µ = 0.5 4.27 21.48 4.03

V
No friction 2.06 12.75 6.19

µ = 0.5 2.14 12.69 5.93
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Figure 2.41 Shear demands in shaft with different socket depths.

Figure 2.41 shows results for cases with different rock-socket depths (ranging from 2.0 m

to 0.5 m). All cases include a 6.0-m-thick rock layer below the shaft toe; all rock sockets have the

same material properties. The results show that as the socket depth decreases, the shear demand

increases. This is due to the change in effective height, heff , that decreases as the shaft socket

depth decreases (requiring larger shear forces to generate enough resisting moment to equilibrate
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the system). This tendency changes when uplift occurs. This is clear in the 0.5-m case where

the shear demand is smaller than that for a 0.75-m case. The presence of the layer of rock below

the shaft toe and corresponding toe contact surface are very important in the observed response

since the rock stiffness and strength and ability to uplift control the amount of rotation at the

toe influences the amount of shear required to equilibrate the system, i.e., larger rotations means

less shear demand. An advanced model that accounts for the rock stiffness and strength at the

shaft toe is presented in Chapter 4. In general, the results obtained using 3D FEM models imply

shear demands that are smaller than those obtained using p-y springs. Although the differences

are not large, they are noticeable. These discrepancies may be due to: (a) geometric and material

modeling differences between p-y and 3D FEM models; (b) the effect of friction along the socket

shaft; and/or (c) limitations of beam formulations (used in p-y models and beam-solid models).

In terms of geometric and material modeling differences, this study relied on findings from

the recent work by McGann et al. (2012), which shows that it is possible to reproduce drilled-

shaft load-deformation experimental curves and p-y curves using 3D-FEM models together with

advanced constitutive models (e.g., 3D Drucker-Prager model) as long as representative elasto-

plastic properties are used (i.e., shear and bulk modulus, cohesion, friction angle, and hardening

parameters). This study followed McGann’s recommendations to define the constitutive model

material properties to represent the rock and soil. In terms of frictional resistance, all simulations

indicate that the friction along the socket interface has a small effect on shear demands.

In an effort to explore this issue, this study considered several cases with different levels

of frictional resistance along the shaft. Figure 2.43 shows shear stresses (τxz) in the direction of

loading at three locations (labeled I, II, and III) for three frictional cases (i.e., µ = 0, µ = 0.5, and

µ = 1.0, with µ = tan(φi), with φi = interface friction). The results show that the shear–stress

distribution moves down (i.e., less shear demand) as the frictional resistance increases; however,

this effect seems to be small in the overall shear force demand force unless the frictional resistance

is very high (unrealistic). Finally, most beam formulations build of the assumption that plane

sections remain plane. This may not be true for large cross sections confined in competent material

and subjected to large lateral and axial loads. Therefore, in an effort to investigate this issue,

Figure 2.43 shows the distribution of vertical displacements at two cross sections (labeled II and

III in the figure) for two friction coefficients (i.e., µ = 0, µ = 0.5). The results clearly indicate

that plane sections do not remain plane. This effect is more noticeable as friction increases and

for the section more embedded in the rock socket (i.e., section III). The warping observed in

sections II and III contribute to reducing the shear force generated in the rock socket. All these

effects contribute to reduce shear demands obtained using 3D FEM simulations compared to those

obtained using p-y springs validating the conclusions presented herein. Nevertheless, it appears

these effects are smaller and statistically less important compared to the effect of uncertainties

in rock properties and construction deviations in shear demands. These results together with the

analysis presented in Chapters 3 and 4 encourage the use of p-y springs with proper definitions

for the properties of the rock p-y, and proper consideration of the conditions at the shaft toe.
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Figure 2.42 Shear–stress distributions at different locations.
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Figure 2.43 Displacements within shaft cross section showing that the plane surface does

not remain plane.

Finally, the results presented so far assume that shear is the only resisting mechanism that

can be generated and demonstrate that large shear demands must develop in the rock socket to

resist the demanding bending moment. They also show that these shear forces may decrease if

friction is considered around the socket interface or the shaft toe is allowed to rotate (e.g., in the

case of a short socket or weak rock). Given these factors, an improved resisting mechanism is

possible by including the contribution of the axial load P to the resisting bending moment. More

precisely, as a result of the applied lateral load, the normal stress distribution at the shaft toe is not

uniform, resulting in an eccentric normal load P . This is schematically shown in Figures 2.44(a)

and (b). The eccentric load causes a supplemental resisting moment that reduces the required shear

force that is needed to equilibrate the system.
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In principle, the larger the normal load and eccentricity, the larger the resisting moment

and the smaller the needed shear force. Obviously, the non-uniformity in load distribution at the

shaft toe depends on many factors, including axial load magnitude, shaft diameter, socket depth,

and rock properties. In an effort to evaluate this effect, the same drilled shaft example used in the

previous sections was reanalyzed considering different axial loads and rock-socket depths. The ax-

ial loads range from no load (P = 0MN) to a relatively large value (P = 56.55MN) to represent

the weight of a large superstructure. Two additional values were considered: (P = 14.14MN) and

(P = 28.27MN)). The rock-socket depths ranged from 0.5 m to 2.0 m. Figure 2.45 shows shear-

force diagrams for all cases, and Table 2.11 shows the corresponding values for the shear force at

the top of the shaft, maximum shear force, and shear–stress ratio. As expected, the results show

that the shear demands decrease as the axial load and rock socket depth increase. Figures 2.46(a)

and (b) provide additional insight on the relative importance of axial load and rock-socket depth on

the reduction of shear demand. Figure 2.46(a) shows the maximum shear–stress ratios as a function

of socket depth (for all axial loads), and Figure 2.46(b) shows the same information as a function of

axial load (for all rock-socket depths). The results are consistent with the results presented above

and reinforce the possible benefits of a model that includes this resisting mechanism.

q

(a)

e

(b)

Figure 2.44 Effect of axial load on resisting bending moment
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Figure 2.45 Shear demands in shaft with different axial loads.
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Figure 2.46 Influence of axial load and embedment on shear force ratio.
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Table 2.11 Shear force summary for different axial loads.

Embedment Axial Load (MN)
Shear Force Maximum Shear Force

at Top of Shaft (MN) Shear Force(MN) Ratio

2.0m

P = 0 6.10 40.26 6.59

P = 14.14 MN 6.14 37.46 6.10

P = 28.27 MN 6.14 37.55 6.12

P = 56.55 MN 6.14 37.75 6.15

1.5m

P = 0 5.81 48.08 8.28

P = 14.14 MN 5.87 43.86 7.47

P = 28.27 MN 5.90 42.18 7.06

P = 56.55 MN 5.99 38.68 6.45

1.0m

P = 0 4.94 57.66 11.68

P = 14.14 MN 5.19 52.50 10.12

P = 28.27 MN 5.29 47.01 8.88

P = 56.55 MN 5.48 41.23 7.52

0.75m

P = 0 4.00 62.66 15.66

P = 14.14 MN 4.33 56.15 12.97

P = 28.27 MN 4.59 50.75 11.05

P = 56.55 MN 5.00 42.78 8.56

0.5m

P = 0 2.51 52.32 20.86

P = 14.14 MN 2.90 48.71 16.77

P = 28.27 MN 3.43 43.46 12.67

P = 56.55 MN 4.27 34.39 8.43
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2.7 SUMMARY

The analysis presented in the previous sections show that:

1. Although p-y based models predict larger shear demands, they are extremely simple to use.

2. The proper definition of p-y curves for rocks results in reasonable shear demands.

3. A comparison between results from p-y based models and 3D FEM models shows that 3D

FEM models result in less shear force and bending moment demands in the shaft.

4. Beam elements properly capture shear demands.

5. Solid elements representing the shaft produce accurate shear demands. Although friction

along the socket shaft tends to reduce shear demands, the problems examined in this study

show that the effect is minimal. Plane sections do not remain plane (i.e., the results of the

beam effect), but the results presented herein show that this effect is minimal.

6. Modeling the shaft using a plastic-fiber section may cause the shaft to yield after modest

ductility. This limits the extension of shaft deflection and reduces shear demands at the

soil–rock interface; reduction is dependent on the section properties chosen.

7. Rotation at the base of the shaft has an important effect on shear demand.

8. Eccentricity in axial loads provides a resisting bending moment that helps reduce shear de-

mands. This effect is more significant as the axial load increases and heff decreases. It may

also be beneficial for small socket depths where shaft rotation may increase.

40



3 Parametric Study using BNWF p-y Models
and Comparison with 3D FEM Simulations

3.1 INTRODUCTION

Chapter 2 proposed different modeling strategies to address the problem of rock-socketed shafts

subjected to lateral loads. The models range from simple beams to advanced 3D FEM models. The

merits and limitations of each modeling strategy were analyzed using a base-case geometry and

soil–rock properties. The models differ in the way they characterize the structure (drilled shaft) and

the rock–soil interaction effect. The models include cases where the shaft is represented by either

beam elements or solid (brick) elements and models where the interaction effect is captured using

either p-y springs or solid elements (together with advanced contact elements). The results indi-

cate lower shear demands when using 3D solid elements to represent the shaft and soil/rock than

when using beam elements and p-y springs; however, the differences are modest and can be con-

sidered small when compared to aleatoric uncertainties in soil and rock properties and epistemic

uncertainties in the modeling strategy. In this context, it appears that when properly selected, p-y
springs are a good choice and beam elements a natural choice to represent the structural member,

particularly from a computational point of view. To expand on this notion, and in an attempt to

evaluate recent p-y springs for rocks, this chapter presents results from a parametric study consid-

ering a wide range of rock properties and rock-socket depths. The study includes different criteria

to define the soil and rock p-y curves [i.e., Reese (1997) vs. Liang (2009)], different beam theories

(i.e., Euler-Bernouli vs. Timoshenko), different interface frictional resistances, and comparisons

with 3D FEM simulations. For completeness, a brief description of recent p-y criteria for rocks is

presented in the next section.

3.2 DEFINITION OF P -Y CURVES FOR ROCK

3.2.1 Reese (1997)

The interim p-y curve criteria for rocks proposed by Reese (1997) are defined in terms of the shaft

diameter, B, and three engineering properties of the rock mass: the uniaxial compressive strength

of the intact rock, qu, the initial rock mass elastic modulus, Eir, and the rock quality index (RQD).

The curves are defined in terms of three primary equations:
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1. An initial linear portion for y ≤ yA,

p(y) = Kiry (3.1)

with Kir = kirEir where kir is a dimensionless constant given by

kir =






(
100 +

400zr
3B

)
for 0 ≤ zr ≤ 3B

500 for zr > 3B

(3.2)

where zr is the depth below the surface of the rock mass.

2. A nonlinear transitional portion for y ≥ yA and p ≤ pur,

p(y) =
pur
2

(
y

yrm

)0.25

(3.3)

where yrm = krmB, with krm as a constant in the range 0.00005 ≤ krm ≤ 0.0005, and pur
is the rock mass ultimate resistance defined as

pur =




αrquB

(
1 + 1.4

zr
B

)
for 0 ≤ zr ≤ 3B

5.2αrquB for zr > 3B
(3.4)

where αr = 1.0− 2/3 · RQD is a strength reduction factor (0 ≤ RQD ≤ 1).

3. A limiting zero-slope portion for p > pur where

p(y) = pur (3.5)

The displacement, yA, which is the transition between the linear and nonlinear portions of the

curve, is obtained by the intersection of (3.1) and (3.3) and has the form

yA =

(
pur

2Kiry
0.25
rm

)1.333

(3.6)

The Reese (1997) curves are included in the commercial software LPILETM (2010), which

according to Turner (2006) is the program most frequently used by state transportation agencies

for the analysis of laterally-loaded rock-socketed shafts. Reese (1997) also proposed bi-linear

curves for use with strong rock. These curves are included in LPILETM; however, their scope is

limited and non-applicable in many practical scenarios. Due to the limitations of the strong-rock

curves, Turner (2006) reports that some practitioners apply the weak-rock criteria for all cases.

This approach is adopted here to be consistent with the state-of-practice.
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3.2.2 Liang et al. (2009)

The rock p-y curves of Reese (1997) are a commonly used method for representing rock materials

in a BNWF analysis; however, these curves are based on a limited number of field studies. More

recent work (Gabr et al., 2002; Liang et al., 2009) has been conducted with the goal of improving

the definition of p-y curves for weathered rock. Both of these studies present rock p-y curves with

a hyperbolic function

p(y) =
y

1

Kh

+
y

pu

(3.7)

but differ somewhat in their recommended techniques for defining the initial tangent and ultimate

resistance of the curves.

The ultimate lateral resistance for the Liang et al. (2009) curves is taken as the lesser of

two values. The first value is computed based on a failure-wedge analysis of the rock mass, which

generally governs the response near the surface of the rock mass. The ultimate resistance based on

this wedge model is computed as

pu = 2C
1
cos θ sin β + C

2
cos β + C

3
sin β − 2C

4
sin θ − C

5
(3.8)

where

C
1
= H tanβ sec θ (c′ +K

0
σ′

v0 tanφ
′ + 0.5HK

0
γ′ tanφ′) (3.9)

C
2
=

D tanβ(σ′

v0 +Hγ′) +H tan2 β tan θ(2σ′

v0 +Hγ′) + c′(D + 2J tan β tan θ) + 2C
1
cos β cos θ

sin β − tanφ′ cos β
(3.10)

C
3
= C

2
tanφ′ + c′(D sec β + 2H tanβ sec β tan θ) (3.11)

C
4
= K

0
H tan β sec θ(σ′

v0 + 0.5γ′H) (3.12)

C
5
= γ′Ka(H − z

0
)D (3.13)

with H as the depth into the rock mass, σ′

v0 as the vertical effective stress at the top of the rock

mass, γ′ as the effective unit weight of the rock mass, φ′ as the effective friction angle of the rock

mass, c′ as the effective cohesion of the rock mass, and D as the shaft diameter; thus

Ka = tan2(π/4− φ′/2) (3.14)

K
0
= 1− sinφ′ (3.15)

z
0
=

2c′

γ′

√
Ka

−
σ′

v0

γ′
(3.16)

β = π/4 + φ′/2 (3.17)

θ = φ′/2 (3.18)

In computation of these terms, if C
5
< 0, it is set at zero in Equaton (3.8).

The second ultimate resistance value is based on the assumptions that the wedge-type

failure will not occur at greater depths within the rock mass, and that the initial failure mode for

43



the rock at these depths will be tensile in nature. The ultimate resistance at great depth is computed

as

pu =

(
π

4
pL +

2

3
τmax − pa

)
D (3.19)

where pL is the compressive strength of the rock mass, τmax is the maximum horizontal side shear

resistance, and pa ≥ 0 is the active horizontal earth pressure given by

pa = Kaσ
′

v − 2c′
√

Ka (3.20)

with σ′

v as the vertical effective stress at the depth under consideration.

3.3 INITIAL ASSESSMENT OF THE PROBLEM

Analogous to what was done in Chapter 2, a beam using a nonlinear BNWF model of a single

rock-socketed shaft subjected to lateral loading has been developed and analyzed in this section.

The model is similar to previous examples and considers four 12-m-deep site profiles, each with a

homogeneous layer of cohesionless soil with unit weight γ = 17 kN/m3 and friction angle φ = 33◦

above a layer of rock. The configurations of the sites vary only with respect to the thickness of the

soil and rock layers; the shaft is embedded through the entire 12-m profile in all cases. Four site

profiles are considered:

• 10 m of soil with 2 m of rock

• 8 m of soil with 4 m of rock

• 6 m of soil with 6 m of rock

• 4 m of soil with 8 m of rock

The soil and rock materials are incorporated into the BNWF model using p-y curves. The

weak rock curves of Reese (1997) are used for the rock portion of the profile, with ultimate resis-

tance and stiffness values computed for the five considered rock classifications in Table 2.1. Two

techniques were used to define the p-y curves for the cohesionless soil:

• Curves based on the API (2007) recommended values for ultimate lateral resistance and

initial stiffness

• Curves based on the Brinch Hansen (1961) definition for ultimate lateral resistance and the

API initial stiffness value modified for overburden stress after Boulanger et al. (2003)

As before, a 12-m-long, 1.5-m-diameter drilled shaft was embedded in the model soil

profile. Linear elastic behavior was assumed for the shaft. The model parameters for this shaft are

the gross section area, A = 1.767 m2, the gross second area moment, I = 0.249 m4, an elastic

modulus, E = 21.3 GPa, and a shear modulus of G = 8.52 GPa. These parameters are based

on a template nonlinear shaft cross section; however, linear elastic response has been assumed

in order to assess strength-independent demands. Two boundary conditions were considered at
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the top of the shaft: (a) a fixed-rotation condition emulating the presence of a shaft cap or other

superstructure; and (b) A free-rotation condition that assumes no influence from superstructure

elements.

An axial load P = 4120 kN was applied to the shaft to simulate structural loads applied by

superstructure elements. Lateral loads were applied to the shaft–soil system by gradually impos-

ing a 0.5-m displacement to the top of the shaft. Figures 3.1 through 3.8 show the shaft displace-

ment, shear force, and bending moment demands for the considered BNWF pushover analyses. As

shown, there are only minor differences between the results for the two sets of cohesionless soil p-y
curves, with the most significant differences occurring for the weakest (Class V) rock designation.

For all cases, as the quality of the rock increases, the contrast between the upper and lower layer

shear force demands also increases. The shaft head boundary condition changes the magnitude of

the shear force and bending moment demands in the shaft, with the free-head condition inducing

lower demands for an equal amount of lateral head displacement.

The contrast between the maximum shear force demands in the two layers is evaluated as a

ratio of the maximum shear force in the rock layer to the maximum shear force above the rock layer.

The shear force ratios for each of the considered BNWF analyses are shown in Table 3.1, which

demonstrates that the shear force contrast between the two layers is much greater for the free-

rotation boundary condition. The contrasts for the modified soil p-y curve parameters are generally

greater than or equal to the corresponding API soil p-y curve cases, although the differences are

only significant for the free-head cases.

The results of Table 3.1 and Figures 3.1 through 3.8 generally show that as the thickness of

the rock layer is increased in comparison to the thickness of the soil layer, the ratio of the maximum

shear force demands in each layer tends to decrease. This can be attributed to the increased force

required at the shaft head in order to produce 0.5 m of lateral displacement as the rock becomes

closer to the ground surface and begins to control the response of the soil–rock system.

The difference between the shear force ratios for the two sets of soil p-y curves reflects

the differences in the soil strength and stiffness portrayed by each approach. The modified set

of parameters specifies lower ultimate resistance and initial stiffness values for a given depth;

therefore, there is a larger contrast between the soil and rock strength and stiffness for these cases.

Despite the observed differences, the choice of soil p-y curves does not appear to significantly

alter the magnification of shear force observed in the rock layer for a given case. The differences

in the shear force ratios for the two shaft head boundary conditions demonstrate that the shaft

kinematics significantly alter the effects of the rock layer on the system, providing further evidence

of the importance of shaft kinematics in defining the demands in the soil–foundation system during

lateral loading (see McGann et al., 2011).

A comparison of Tables 3.1 and 3.2 shows that while the trends noted in the previous sec-

tion with respect to the shaft kinematics are present in the Liang et al. curve results, the shear

force ratios are much lower. Though the shear force magnification effect is lessened when using

the Liang et al. (2009) rock p-y curves, it does not completely vanish for the stronger rock classi-

fications. It also appears from the results of Figures 3.9 through 3.12 that the Liang et al. (2009)

approach may be underpredicting the strength and stiffness of the weakest rock classifications as

the shaft essentially rotates rigidly in these cases; however, further analysis is required with alter-
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native shaft designs in order to determine if this is a flaw in the p-y curves or a valid result for the

ratio of shaft bending stiffness to rock strength in these cases.

Table 3.1 Shear force ratios for BNWF analyses with Reese (1997) rock p-y curves.

Site Soil Shaft Head Rock Class

Profile p-y Curves Condition I II III IV V

1

API
fixed 3.26 3.12 2.77 2.38 0.73

free 5.63 5.58 5.06 3.93 2.16

Modified
fixed 3.31 3.33 2.91 2.51 0.77

free 6.42 6.33 5.64 4.45 2.40

2

API
fixed 3.04 2.94 2.53 2.19 1.24

free 6.60 6.32 5.42 4.72 2.80

Modified
fixed 3.09 3.00 2.58 2.25 1.30

free 6.87 6.58 5.71 4.95 3.01

3

API
fixed 2.18 2.13 1.90 1.71 1.35

free 5.28 5.11 4.35 4.04 2.79

Modified
fixed 2.20 2.14 1.91 1.72 1.21

free 5.36 5.19 4.44 4.13 2.89

4

API
fixed 1.38 1.33 1.24 1.18 0.98

free 3.29 3.28 2.93 2.82 2.23

Modified
fixed 1.38 1.34 1.25 1.18 0.95

free 3.31 3.30 2.95 2.84 2.27
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Table 3.2 Shear force ratios for BNWF analyses with Liang et al. (2009) rock p-y curves.

Site Soil Shaft Head Rock Class

Profile p-y Curves Condition I II III IV V

1

API
fixed 2.36 1.76 0.81 0.42 0.17

free 3.60 2.96 2.29 1.59 1.22

Modified
fixed 2.51 1.86 0.87 0.42 0.16

free 4.01 3.47 2.55 1.74 1.24

2

API
fixed 1.96 1.50 1.06 0.66 0.22

free 4.00 3.10 2.43 2.07 1.29

Modified
fixed 2.00 1.53 1.10 0.70 0.22

free 4.23 3.30 2.59 2.28 1.44

3

API
fixed 1.51 1.10 0.91 0.70 0.28

free 3.69 2.76 2.18 1.98 1.48

Modified
fixed 1.52 1.12 0.93 0.72 0.29

free 3.76 2.83 2.26 2.10 1.64

4

API
fixed 0.94 0.74 0.64 0.60 0.29

free 2.51 2.02 1.69 1.58 1.48

Modified
fixed 0.94 0.75 0.65 0.61 0.30

free 2.53 2.04 1.72 1.62 1.57
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Figure 3.1 Shaft bending demands for site profile 1 using API soil p-y curves with Reese

rock curves for five rock classifications (I-V).
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Figure 3.2 Shaft bending demands for site profile 1 using modified soil p-y curves with

Reese rock curves for five rock classifications (I-V).
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Figure 3.3 Shaft bending demands for site profile 2 using API soil p-y curves with Reese

rock curves for five rock classifications (I-V).
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Figure 3.4 Shaft bending demands for site profile 2 using modified soil p-y curves with

Reese rock curves for five rock classifications (I-V).
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Figure 3.5 Shaft bending demands for site profile 3 using API soil p-y curves with Reese

rock curves for five rock classifications (I-V).
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Figure 3.6 Shaft bending demands for site profile 3 using modified soil p-y curves with

Reese rock curves for five rock classifications (I-V).
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Figure 3.7 Shaft bending demands for site profile 4 using API soil p-y curves with Reese

rock curves for five rock classifications (I-V).
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Figure 3.8 Shaft bending demands for site profile 4 using modified soil p-y curves with

Reese rock curves for five rock classifications (I-V).
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3.4 EFFECTS OF ROCK P -Y CURVE DEFINITION

This section uses the Liang et al. (2009) approach to develop rock p-y curves that are then applied

to the BNWF model to assess the effects of varying the rock p-y curve definition method on the

rock-socketed shaft problem. Figures 3.9 through 3.12 show the shaft displacement, shear force,

and bending moment demands for each site profile using the Liang et al. (2009) rock p-y curves in

the BNWF pushover model; Table 3.2 provides the corresponding shear force ratios for each con-

sidered case. For a given rock mass, the method proposed by Liang et al. (2009) generally produces

p-y curves that have lower ultimate resistances and initial stiffness values than curves developed

using the Reese (1997) approach. As a result, the maximum shear forces and bending moments in

Figures 3.9 through 3.12 are generally less for identical lateral loadings and site conditions.
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Figure 3.9 Shaft bending demands for site profile 1 using API soil p-y curves with Liang et

al. rock curves for five rock classifications (I-V).
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Figure 3.10 Shaft bending demands for site profile 2 using API soil p-y curves with Liang

et al. rock curves for five rock classifications (I-V).
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Figure 3.11 Shaft bending demands for site profile 3 using API soil p-y curves with Liang

et al. rock curves for five rock classifications (I-V).
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Figure 3.12 Shaft bending demands for site profile 4 using API soil p-y curves with Liang

et al. rock curves for five rock classifications (I-V).
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3.5 EFFECTS OF BEAM ELEMENT FORMULATION

Per Turner (2006), at least one state transportation agency has expressed concern that the magnifi-

cation in shear force observed in the rock layer in BNWF analyses of rock-socketed shafts may be

due to the Euler-Bernoulli beam theory assumptions commonly used in this type of analysis. To

assess this concern, a series of analyses were conducted using beam elements with a Timoshenko

(shear-deformable) formulation. These analyses use the same site profiles, shaft dimensions, and

soil–rock properties discussed previously. The Timoshenko beam elements were assigned shear

correction factors of 0.89 based on the circular cross section of the shaft and the work of Dong

et al. (2010).

Figures 3.13 through 3.16 show the shaft displacement, shear force, and bending mo-

ment demands resulting from the BNWF analyses with the Timoshenko beam element formu-

lation. A comparison with the corresponding results for the Euler-Bernouli beam elements (Fig-

ures 3.1, 3.3, 3.5, and 3.7) shows that the maximum shear force in the rock layer is reduced for

the shear-deformable beam cases. This reduction appears to be most significant for the stronger

rock classifications and for site profiles 1 and 2, where the thickness of the rock-socket is smaller

in comparison to the shaft diameter.

Because the shear force at the ground surface is relatively the same for the two types of

beam formulation, the reductions in maximum shear force observed in the rock layer for the Tim-

oshenko beam cases leads to a lower shear force ratios. Table 3.3 shows the shear force ratios

returned by the Timoshenko beam cases for all of the considered configurations and p-y curve

definitions in the previous sections. Comparison with the corresponding results in Tables 3.1

and 3.2 demonstrates the reductions in shear force magnification brought about by the use of a

shear-deformable element formulation in the shaft.
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Figure 3.13 Shaft bending demands for site profile 1 using API soil p-y curves, Reese rock

curves, and Timoshenko beam elements for five rock classifications (I-V).
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Figure 3.14 Shaft bending demands for site profile 2 using API soil p-y curves, Reese rock

curves, and Timoshenko beam elements for five rock classifications (I-V).
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Figure 3.15 Shaft bending demands for site profile 3 using API soil p-y curves, Reese rock

curves, and Timoshenko beam elements for five rock classifications (I-V).
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Figure 3.16 Shaft bending demands for site profile 4 using API soil p-y curves, Reese rock

curves, and Timoshenko beam elements for five rock classifications (I-V).
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Table 3.3 Shear force ratios for BNWF analyses with Timoshenko beam element formula-

tion.

Site Rock Soil Shaft Head Rock Class

Profile p-y Curves p-y Curves Condition I II III IV V

1

Reese

API
fixed 2.31 2.24 2.26 2.23 0.74

free 4.01 4.00 3.59 3.16 2.15

Modified
fixed 2.42 2.35 2.40 2.44 0.77

free 4.57 4.56 3.98 3.51 2.40

Liang

API
fixed 2.14 1.77 0.82 0.42 0.18

free 3.21 2.80 2.28 1.59 1.22

Modified
fixed 2.29 1.87 0.87 0.43 0.16

free 3.63 3.30 2.55 1.74 1.24

2

Reese

API
fixed 2.21 2.15 1.89 1.80 1.25

free 4.46 4.32 3.98 3.72 2.63

Modified
fixed 2.25 2.19 1.95 1.85 1.31

free 4.65 4.51 4.23 3.92 2.85

Liang

API
fixed 1.80 1.42 1.07 0.67 0.22

free 3.35 2.88 2.38 2.07 1.29

Modified
fixed 1.84 1.46 1.12 0.70 0.22

free 3.55 3.01 2.55 2.28 1.44

3

Reese

API
fixed 1.57 1.54 1.50 1.43 1.17

free 3.67 3.78 3.49 3.29 2.57

Modified
fixed 1.58 1.55 1.51 1.45 1.19

free 3.74 3.85 3.55 3.36 2.68

Liang

API
fixed 1.38 1.06 0.92 0.71 0.28

free 3.29 2.60 2.06 1.95 1.48

Modified
fixed 1.39 1.07 0.94 0.73 0.29

free 3.35 2.66 2.15 2.08 1.64

4

Reese

API
fixed 1.03 1.01 1.01 0.98 0.88

free 2.57 2.53 2.49 2.39 2.08

Modified
fixed 1.03 1.01 1.01 0.98 0.90

free 2.58 2.54 2.51 2.41 2.12

Liang

API
fixed 0.84 0.71 0.64 0.60 0.30

free 2.25 1.89 1.61 1.55 1.48

Modified
fixed 0.85 0.71 0.65 0.61 0.31

free 2.27 1.90 1.63 1.60 1.57
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3.6 3D FINITE ELEMENT MODEL

In an attempt to validate the results from the BNWF models, 3D FEM models were created for

the same single rock-socketed shaft system described in the BNWF analysis sections. The mesh

for the 10-m soil, 2-m rock profile is shown in Figure 3.17, with colors designating the soil and

rock layers. This mesh is typical of those used for all soil–rock configurations. The 3D models

used force-based beam-column elements to represent the shaft, stabilized single-point integration

continuum elements to represent the soil and rock, and the beam-solid contact element of Petek

(2006) to represent the soil–shaft interface.

The cohesionless soil layer was modeled using a nested yield surface constitutive model

with strength based on the initial state of stress in the elements, and the friction angle, φ = 31◦,
assumed for the layer. The elastic properties for this layer, bulk modulus, κ = 220 MPa, and shear

modulus, G = 95 MPa, were assigned based on correlations with the soil-friction angle. Two

approaches were used to model the constitutive response of the rock layer:

• a J2 plasticity model with strength assigned in a similar manner to that used for the Reese

(1997) rock p-y curves

• a Drucker-Prager plasticity model with strength assigned in a manner similar to the p-y
curves of Liang et al. (2009).

Figure 3.17 Overview of 3D FE mesh for 10 m soil, 2 m rock, profile. Meshes for other

profiles (not shown) are similar.
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The elastic parameters for each case are based on the rock mass elastic moduli reported

in Table 2.1 and an assumed Poisson’s ratio of ν = 0.25. The yield strength of the J2 model is

based on the maximum shear stress corresponding to the reduced rock compressive strengths of

Table 2.1, i.e.,

σY = 0.5αrqu (3.21)

where αr is the strength reduction parameter of Equation (3.4) that accounts for the effect of rock

quality index on the strength of the rock mass. The strength parameters for the Drucker-Prager

model are assigned as the effective friction angle and cohesion computed from the Hoek-Brown

strength criterion (Hoek et al., 2002) (with the vertical effective stress taken as the vertical stress at

the interface between the soil and rock layers), and the previously reported Hoek-Brown constants

used to define the Liang et al. (2009) rock p-y curves in the BNWF analysis.

The shaft was modeled in the same manner used in the Euler beam BNWF analyses; linear

elastic behavior is designated with the section and material properties previously reported. The

models were analyzed for both the fixed- and free-head boundary conditions considered previously;

in both cases, the shaft head was displaced laterally by 0.5 m in a pseudo-dynamic (no inertial

forces) pushover analysis.

3.7 COMPARISON OF 3D FE ANALYSIS AND BNWF ANALYSES

The 3D pushover analyses were compared to the BNWF results in terms of the shear force ratios for

the maximum shear demands in the two layers, and graphically in terms of the shaft displacement,

shear force, and bending moment profiles for each set of cases. Table 3.4 provides the 3D FE

analysis shear force ratios for each combination of site profile, rock constitutive model, and rock

classification. As shown, the ratios for the 3D cases with the Drucker-Prager modeling approach

are generally less than those for the BNWF analyses with the Reese rock p-y curves, and greater

than those for the BNWF results using the Liang et al. rock p-y curves. This trend also holds for

most of the site profile 1 and 2 results returned using the J2 rock model; however, the 3D results

for the thicker rock layer cases displayed lower ratios than both sets of rock p-y curves.

Shear force ratios are a useful indicator of the relative shear force demands in each layer

for a given case; however, they do not provide a useful comparison of the relative bending de-

mands between the various analysis approaches. Figures 3.18 through 3.37 show the shaft dis-

placement, shear force, and bending moment demands resulting from each of the two 3D model

cases (3D-J2 for the J2 rock model, and 3D-DP for the Drucker-Prager rock model) as well as

the BNWF cases with the API soil p-y curves and both the Reese and Liang et al. rock p-y
curves. Figures 3.18 through 3.22 provide this comparison for the site profile 1 configurations,

with Figures 3.23 through 3.27 for site profile 2, Figures 3.28 through 3.32 for site profile 3, and

Figures 3.33 through 3.37 for site profile 4.

The form of the shear force and bending moment diagrams are generally similar across

all of the considered cases, though the local maxima occur in different places for each analysis

type. The magnitude of the maximum shear forces in the 3D cases generally falls in between the

values for the Reese and Liang et al. curves, and the maxima for the Drucker-Prager results are

generally greater than those for the J2 rock cases. The J2 rock model appears to under-represent
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the strength of the strongest rock classes, while over-representing the strength of the weaker rock

classes. The Drucker-Prager rock model appears to correct the problem with over-representation of

the weaker rock strength, while perhaps over-representing the strength of rock class I. Overall, the

results presented here demonstrate that the shear force magnification deemed problematic for rock-

socketed shaft design depends on the kinematics of the shaft (free- or fixed-head) and the technique

used to model the rock mass. Although all of the cases display the magnification response, the level

of magnification clearly depends more on the type of rock model used (Reese vs. Liang et al., J2
vs. Drucker-Prager) than on the type of analysis conducted (BNWF vs. 3D).

Table 3.4 Shear force ratios for 3D FEA with two rock constitutive models.

Site Rock Shaft Head Rock Class

Profile Model Condition I II III IV V

1

J2 Plasticity
fixed 2.41 2.07 1.85 1.33 0.41

free 3.98 3.56 3.03 2.51 1.31

Drucker-Prager
fixed 2.44 1.99 1.58 0.92 0.22

free 3.83 3.22 2.57 1.76 0.90

2

J2 Plasticity
fixed 1.98 1.76 1.37 1.18 0.58

free 4.37 3.69 2.90 2.23 1.67

Drucker-Prager
fixed 2.23 1.60 1.10 0.82 0.34

free 4.27 3.28 2.29 1.73 1.15

3

J2 Plasticity
fixed 1.35 1.21 1.10 0.82 0.54

free 3.62 3.07 2.52 2.02 1.46

Drucker-Prager
fixed 1.74 1.21 0.83 0.51 0.34

free 3.79 2.90 2.08 1.39 1.08

4

J2 Plasticity
fixed 0.72 0.72 0.65 0.55 0.41

free 2.24 2.12 1.81 1.52 1.06

Drucker-Prager
fixed 1.12 0.75 0.50 0.30 0.27

free 2.70 2.05 1.51 1.04 0.78
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Figure 3.18 Comparison of shaft bending demands for site profile 1 with rock class I.
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Figure 3.19 Comparison of shaft bending demands for site profile 1 with rock class II.
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Figure 3.20 Comparison of shaft bending demands for site profile 1 with rock class III.

60



el
ev

at
io

n 
(m

)

displacement (cm)

 

 

0 20 40
0

2

4

6

8

10

12

Reese
Liang
3D-J2
3D-DP

shear (MN)
0 20 40

moment (MNm)
-40 -20 0

el
ev

at
io

n 
(m

)

displacement (cm)

 

 

0 20 40
0

2

4

6

8

10

12

Reese
Liang
3D-J2
3D-DP

shear (MN)
0 50 100

moment (MNm)
-100 0 100

Figure 3.21 Comparison of shaft bending demands for site profile 1 with rock class IV.
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Figure 3.22 Comparison of shaft bending demands for site profile 1 with rock class V.
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Figure 3.23 Comparison of shaft bending demands for site profile 2 with rock class I.
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Figure 3.24 Comparison of shaft bending demands for site profile 2 with rock class II.
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Figure 3.25 Comparison of shaft bending demands for site profile 2 with rock class III.
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Figure 3.26 Comparison of shaft bending demands for site profile 2 with rock class IV.
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Figure 3.27 Comparison of shaft bending demands for site profile 2 with rock class V.
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Figure 3.28 Comparison of shaft bending demands for site profile 3 with rock class I.
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Figure 3.29 Comparison of shaft bending demands for site profile 3 with rock class II.
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Figure 3.30 Comparison of shaft bending demands for site profile 3 with rock class III.
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Figure 3.31 Comparison of shaft bending demands for site profile 3 with rock class IV.
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Figure 3.32 Comparison of shaft bending demands for site profile 3 with rock class V.
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Figure 3.33 Comparison of shaft bending demands for site profile 4 with rock class I.
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Figure 3.34 Comparison of shaft bending demands for site profile 4 with rock class II.
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Figure 3.35 Comparison of shaft bending demands for site profile 4 with rock class III.
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Figure 3.36 Comparison of shaft bending demands for site profile 4 with rock class IV.
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Figure 3.37 Comparison of shaft bending demands for site profile 4 with rock class V.
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3.8 SUMMARY

1. There are only minor differences between the results for the two sets of cohesionless soil p-y
curves. For all cases, as the quality of the rock increases, the contrast between the upper and

lower layer shear-force demands also increases. The shaft head boundary condition changes

the magnitude of the shear force and bending moment demands in the shaft, with the free-

head condition inducing lower demands for an equal amount of lateral head displacement.

2. As the thickness of the rock layer increases in comparison to the thickness of the soil layer,

the ratio of the maximum shear-force demands in each layer tends to decrease.

3. The shear force ratio are much lower when using the Liang et al. (2009) approach to develop

rock p-y curves.

4. A comparison of results from BNWF analyses with the Timoshenko beam element formula-

tion to the corresponding results for the Euler-Bernouli beam elements show that the maxi-

mum shear force in the rock layer is reduced for the shear-deformable beam cases.

5. The ratios for the 3D cases with Drucker-Prager modeling approach are generally less than

those for the BNWF analyses with the Reese rock p-y curves, and greater than those for

the BNWF results using the Liang et al. (2009) rock p-y curves, and the maxima for the

Drucker-Prager results are generally greater than those for the J2 rock cases. The level of

magnification depends more on the type of rock model used (Reese vs. Liang et al., J2 vs.

Drucker-Prager) than on the type of analysis conducted (BNWF vs. 3D).

68



4 End-Shaft Finite Element Formulation

4.1 INTRODUCTION

This chapter introduces a simple uplift, single-node FE formulation that can be used together with

BNWF p-y springs to better describe the interaction between the toe of the shaft and the underlain

rock.

4.2 PROBLEM STATEMENT

A schematic of the problem is shown in Figure 4.1, where δ and θ are the vertical displacement

and rotation of the shaft end when subjected to lateral load, and R is the radius of the shaft.

From geometry, the vertical displacement of a point within shaft toe can be calculated as,

u(ξ) = θ · ξ = θ(x+ c) (4.1)

in which c = δ/θ and downward is positive. Written in polar coordinates,

x = r cosφ; y = r sinφ (4.2)

u(r, φ) = θ(c+ r cosφ) (4.3)

If below each point we assume the existence of a spring with stiffness (subgrade reaction modulus)

k, the normal stress σ can be expressed as a fuction of u as,

σ = ku = kθ(c + r cosφ) (4.4)

Using this framework, the stress resultants (i.e., P and M) can be calculated by integration

over the contact area, Ā for which u ≥ 0 (Ā ≤ A, where A is the shaft cross-sectional area),

P =

∫

Ā

σdA (4.5)

My =

∫

Ā

σxdA (4.6)

69



Figure 4.1 Schematic drawing for general cases.

4.3 ELEMENT FORMULATION FOR ROTATION IN ONE DIRECTION

Depending on the area in contact with the rock two cases arise: Case I, with c ≥ R and Ā = A,

indicating the shaft toe is in full contact with the rock; and Case II, with c < R, indicating the shaft

is not fully in contact with rock underlain.

4.3.1 Formulation for Case I (c ≥ R)

Written in polar coordinates

dA = rdrdφ (4.7)

Replacing in 4.5 and 4.6, the resultant forces can be calculated from integration,

P =

∫

Ā

σdA = kθ

R∫

0

2π∫

0

(c+ r cosφ)rdrdφ

= kθ[2πc
R2

2
+ sinφ|2π

0

R3

3
]

= kπR2δ

= kAδ

(4.8)
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My =

∫

Ā

σxdA = kθ

R∫

0

2π∫

0

(c+ r cosφ)r cosφ·rdrdφ

= kθ[
R3

3
c sinφ

∣∣∣∣
2π

0

+
R4

4
(π +

1

4
sin2φ

∣∣∣∣
2π

0

)]

= k
πR4

4
θ

= kIθ

(4.9)

where k is the stiffness (subgrade reaction modulus) of the rock or soil, A is the cross-sectional

area of shaft, and I is the area moment of inertia of the shaft. Representative values of k can be

obtained from the numerical simulations presented in section 4.5.

4.3.2 Formulation for Case II (c < R)

For Case II, only part of the shaft toe is in contact with rock (part of circle on the right side of line

1-2 shown in Figure 4.2); therefore Ā < A. From geometry we have

φ1 = −φ2 = −φ̄ (4.10)

c

R
= cos(π − φ̄) = −cosφ̄ (4.11)

φ̄ = arccos(−
c

R
) (4.12)

b(ξ) = 2Rsin(φ̄)(1−
ξ

c
) (4.13)

where ξ is a natural coordinate measured from line 1-2 as indicated in Figure 4.2

Figure 4.2 Cross section of the base of shaft for case II; c < R.
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Under these conditions, Equation 4.5 becomes

P = 2

R∫

0

φ̄∫

0

kθ(c+ r cosφ)rdrdφ+

c∫

0

kθξb(ξ)dξ

= 2φ̄kθc
R2

2
+ 2kθ

R3

3
sinφ̄+ 2Rsinφ̄(kθ)(

c2

2
−

c3

3c
)

= kθ[R2φ̄c+
2

3
R3sinφ̄ +

1

3
Rc2sinφ̄]

(4.14)

P = k[R2φ̄δ +
2

3
R3sinφ̄ θ

︸ ︷︷ ︸
linear coupling

+
1

3
Rsinφ̄

δ2

θ︸ ︷︷ ︸
nonlinear coupling

] (4.15)

and Equatoin 4.6 becomes

M = 2

R∫

0

φ̄∫

0

kθ(c+ r cosφ)r cos(φ)rdrdφ+

c∫

0

(kθξ)(ξ − c)(2Rsinφ̄)(1−
ξ

c
)dξ

= 2kθ[c
R3

3
sinφ̄+

R4

4
(
φ̄

2
+

1

4
sin(2φ̄)] + 2Rsin(φ̄)kθ(−

c3

12
)

(4.16)

M = k[
2

3
R3sinφ̄ δ +

R4

4
(φ̄+

1

2
sin(2φ̄))θ −

1

6
sin(φ̄)

δ3

θ2
] (4.17)

From Equations 4.15 and 4.17 we see P (δ, θ) and M(δ, θ). By grouping P and M in a

force vector

{
P
M

}
:=

{
F
}

, the kinematic vector (or degree of freedom vector) can be formed as
{
δ
θ

}
:=

{
d
}

. The sequence within these two vectors matters since
{
F
}
·
{
d
}

must result in the

correct work quantity. From Equations 4.15 and 4.17 it is clear the problem
{
F
}

= f(
{
d
}
) is

nonlinear. To evaluate the corresponding tangential stiffness matrix
{
K
}

a linearization process is

required.

4.3.3 Linearization of Case I

From the definition of the differential of a function d
{
F
}
=:

[
K
]
d
{
d
}

is the definition of
[
K
]
.

From Equations 4.8 and 4.9 we obtain:

K11 =
dP

dδ
= kR2π (4.18)

K22 =
dM

dθ
= k

R4π

4
(4.19)
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K12 =
dP

dθ
= 0 (4.20)

K21 =
dM

dδ
= 0 (4.21)

Therefore, the system is decoupled until partial lift-off occurs.

4.3.4 Linearization of Case II

From Equation 4.15 we get

dP = k(R2φ̄+
2

3
Rsin(φ̄)

δ

θ
)dδ

+ k(
2

3
R3sinφ̄−

1

3
Rsinφ̄

δ2

θ2
)dθ

+ k(R2δ +
2

3
R3θcosφ̄+

1

3
R
δ2

θ
cosφ̄)dφ̄

(4.22)

From geometry we know cosφ̄ = − c
R

= − δ
Rθ

. Therefore, differentiation on both sides

gives

−sin(φ̄)dφ̄ = −
dδ

Rθ
+

δdθ

Rθ2
(4.23)

Hence, dφ̄ can be written as:

dφ̄ =
1

Rθsinφ̄
dδ −

δ

Rθ2sinφ̄
dθ (4.24)

Back substituting Equation 4.24 into 4.22 results in

dP = k(R2φ̄+
2

3
R c sinφ̄+

Rc

sinφ̄
+

2

3
R2ctgφ̄+

1

3
c2 ctgφ̄)

︸ ︷︷ ︸
:= K11

dδ

+ k(
2

3
R3sinφ̄−

1

3
Rc2sinφ̄−

Rc2

sinφ̄
−

2

3
R2 c ctgφ̄−

1

3
c3 ctgφ̄)

︸ ︷︷ ︸
:= K12

dθ

(4.25)

and by defining c̄ := c
R
= δ

Rθ
, Equation 4.25 becomes

dP = kR2(φ̄+
2

3
c̄ sinφ̄ +

c̄

sinφ̄
+

1

3
(2 + c̄2)ctgφ̄)

︸ ︷︷ ︸
K11

dδ

+ kR3(
1

3
(2− c̄2)sinφ̄−

c̄2

sinφ̄
−

c̄

3
(2 + c̄2)ctgφ̄)

︸ ︷︷ ︸
K12

dθ

(4.26)
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Similarly, from Equation 4.17 we get

dM = k(
2

3
R3sinφ̄ −

1

2
Rc2sinφ̄)dδ + k(

R4

4
(φ̄+

1

2
sin(2φ̄)) +

1

3
Rc3sinφ̄)dθ

+ k(
2

3
R3δ cosφ̄+

R4θ

4
(1 + cos(2φ̄))−

1

6
Rc2δcosφ̄)dφ̄

= kR3(
1

6
(4− 3c̄2)sinφ̄+

2

3
c̄ctgφ̄+

1

4

1 + cos(2φ̄)

sinφ̄
−

1

6
c̄3ctgφ̄)

︸ ︷︷ ︸
:= K21

dδ

+ kR4(
1

4
(φ̄+

1

2
sin(2φ̄)) +

1

3
c̄3sinφ̄ −

2

3
c̄2ctgφ̄−

c̄

4

1 + cos(2φ̄)

sinφ̄
+

1

6
c̄4ctgφ̄)

︸ ︷︷ ︸
:= K22

dθ

(4.27)

dM = kR3[
1

6
(4− 3c̄2)sinφ̄+

1

4

1 + cos(2φ̄)

sinφ̄
+

c̄

6
(4− c̄2)ctgφ̄]

︸ ︷︷ ︸
K21

dδ

+ kR4[
1

4
(φ̄+

1

2
sin2φ̄) +

1

3
c̄3sinφ̄−

c̄

4

1 + cos(2φ̄)

sinφ̄
−

c̄2

6
(4− c̄2)ctgφ̄]

︸ ︷︷ ︸
K22

dθ

(4.28)

In these equations, c̄ is unitless, and φ̄ = cos−1(−c̄) (for c̄ ≤ 1). Letting K̃ij :=
Kij

kR(i+j) ,

then K̃ij are independent of both the material properties and the size of the shaft (i.e., R). The

variation of K̃ij with c̄ is shown in Figure 4.3. Note that when c̄ ≥ 1, the shaft is fully in contact

with underlain rock, and the rock has full stiffness (maximum values of K̃11 and K̃22) to resist

rotation of the shaft toe. In this case, the problem falls in Case I. As the shaft is being pushed

further, it will try to uplift, and a gap will form between its toe and rock (c̄ < 1), and will becomes

a Case II problem. K̃11 and K̃22 will decrease while K̃12 and K̃21 increase. When c̄ = −1, the

shaft toe is fully detached from rock and the rock provides no resistance to rotation.
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Figure 4.3 Evolution of stiffness with c̄

4.4 3D PROBLEM

To extend the formulation to a full 3D case with rotations and displacements in any direction, the

following projection operator is defined:

θ̃ = θxex + θyey = P
z
θ w/P

z
:= 1− ez ⊗ ez (4.29)

where θ̃ is the rotation vector defined with respect to the axis x and y that describe a plane with

normal n (i.e., normal to the shaft cross section).

Figure 4.4 Schematic drawing for 3D Case.

From this definition the magnitude θ of the rotation vector is,

θ = |θ̃| =
√
θ2x + θ2y (4.30)
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and the displacement δ is

δ = u · n (4.31)

in which u ∈ R
3, n ∈ S

2 are perpendicular to the base. Differentiating,

dδ = n · du (4.32)

dθ =
θx
θ
dθx +

θy
θ
dθy = cosα dθx + sinα dθy (4.33)

dM = dMxex + dMyey = dM cosα ex + dM sinα ey (4.34)

dMx = dMcosα

= (K21 dδ +K22 dθ) cosα

= K21 cosα n · du+K22 cos
2α dθx +K22 cosα sinα dθy

(4.35)

dMy = dMsinα

= (K21 dδ +K22 dθ) sinα

= K21 sinαn · du+K22 sinα cosα dθx +K22 sin
2α dθy

(4.36)

dP = K11 dδ +K12 dθ

= K11 n · du+K12 cosα dθx +K12 sinα dθy
(4.37)

dP = n dP

= K11 n⊗ n︸ ︷︷ ︸
K

11

·du+ (K12 cosα n⊗ ex +K12 sinα n⊗ ey)︸ ︷︷ ︸
K

12

dθ (4.38)

dM = dMx ex + dMy ey

= (K21 cosα ex ⊗ n +K21 sinα ey ⊗ n)
︸ ︷︷ ︸

K
21

·du

= K22(cos
2α ex ⊗ ex + cosα sinα ex ⊗ ey + sinα cosα ey ⊗ ex + sin2α ey ⊗ ey)︸ ︷︷ ︸

K
22

·dθ

(4.39){
dP
dM

}
=

[
K

11
K

12

K
21

K
22

]{
du
dθ

}
(4.40)

where the stiffness coefficients K
ij

are a function of k, φ̄, R, c̄, α, and the norm n. Considering all

these parameters, k is the only material parameter. Evaluation of k can be done using numerical

simulations.

4.5 FINDING THE RIGHT VALUE FOR K

The material parameter k represents the underlain rock’s stiffness (subgrade reaction modulus) and

can be obtained evaluating the deformation of a rigid plate (representing the shaft base) placed on
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the rock surface when subjected to an axial load P that induces vertical displacement δ (Figure

4.5), allowing for the calculaton of k as,

k =
P

a2πδ
(4.41)

Using material properties representing rock types I through V, it is possible to obtain appropriate

stiffness values for k for each rock condition. Since the rock response is nonlinear, the resulting

stiffness, k, is also nonlinear and varies with axial load; as the axial load increases, and the rock

stresses reach the yield stress, the stiffness k reaches a peak value; see Figure 4.6). In this study

peak, values were selected to represent k. For simplicity, in the numerical simulations presented

herein instead of a rigid plate, a uniform load was applied to the rock surface. As a result, the rock

deformation was not uniform, showing larger displacement near the center than around the edges

(Figure 4.5), allowing for an upper bound, a lower bound, and average stiffness to be determined.

The average values are used in the following models (Table 4.1).

Figure 4.5 Deformation of rock under uniform load.

Table 4.1 Stiffness k used for modeling different toe conditions.

Rock Types k(MN/m2/m)

I 9.06E4

II 2.89E4

III 9.06E3

IV 2.89E3

V 9.06E2
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As shown in Equations 4.18 through 4.21, the system is decoupled until partial lift-off

occurs. This means the end shaft resistance element under Case I can be represented by two

springs: one axial spring and one rotational spring (Figure 4.7), with stiffnesses equal to kA and

kI (Table 4.1), respectively, where A is the cross-sectional area, and I is the second moment of

area of shaft. Different embedment depths raging from 0.5 m to 1.5 m are considered; the results

are shown in Tables 4.2 through 4.4 and Figures 4.8 through 4.10. As can be seen, rotational

resistance from underlain rock may be beneficial in reducing shear demand. As the embedment

increases, the benefit decreases. For the 1.5-m case, this effect is negligible because Heff can only

reach a certain depth, and the lateral deformation cannot be transferred to the toe as the embedment

is large; see Chapter 2.
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Figure 4.6 Calculated k for type I rock under different axial loads.
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Figure 4.7 For case I, the end shaft resistance element is equivalent to two decoupled

springs.
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Figure 4.8 Shear demands in beam with different beam end fixities (thickness of rock = 0.5

m).

79



el
ev

at
io

n 
(m

)

displacement (cm)

 

 

0 20 40
0

2

4

6

8

10

12

fixed rotation

free rotation

Type I

Type II

Type III

Type IV

Type V

shear (MN)
-50 0 50

moment (MNm)
-200 0 200

Figure 4.9 Shear demands in beam with different beam end fixities(thickness of rock =

1.0m).

el
ev

at
io

n 
(m

)

displacement (cm)

 

 

0 20 40
0

2

4

6

8

10

12

fixed rotation

free rotation

Type I

Type II

Type III

Type IV

Type V

shear (MN)
-50 0 50

moment (MNm)
-200 0 200
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Table 4.2 Shear force summary for shaft with different types of rock beneath toe (0.5-m

embedment).

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

Fixed Rotation 6.83 15.50 2.12

Type I 6.52 23.24 3.56

Type II 6.06 35.89 5.92

Type III 5.32 54.88 10.32

Type IV 4.68 70.82 15.12

Type V 4.34 79.14 18.23

Free Rotation 4.15 83.85 20.21

Table 4.3 Shear force summary for shaft with different types of rock beneath toe (1.0-m

embedment).

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

Fixed Rotation 6.54 50.05 7.66

Type I 6.49 54.24 8.35

Type II 6.45 59.05 9.16

Type III 6.39 64.40 10.07

Type IV 6.36 67.65 10.64

Type V 6.35 69.18 10.90

Free Rotation 6.34 70.00 11.04

Table 4.4 Shear force summary for shaft with different types of rock beneath toe (1.5 -m

embedment).

Shear Force at
Maximum Shear Force (MN) Shear Force Ratio

Top of Shaft (MN)

Fixed Rotation 6.65 56.11 8.44

Type I 6.65 56.09 8.44

Type II 6.65 56.08 8.43

Type III 6.65 56.06 8.43

Type IV 6.65 56.05 8.43

Type V 6.65 56.04 8.43

Free Rotation 6.65 56.04 8.43
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4.6 SUMMARY

1. The possibility of rotation depends on rock-socket depth and rock characteristics (in partic-

ular, the characteristics of the rock below the shaft toe). It is also affected by the magnitude

of axial load and eccentricity.

2. The rotational stiffness is particularly beneficial when the socket depth is small; this benefit

increases as the stiffness of the rock increases.

3. The stiffness k of rock can be estimated by applying vertical load onto rock. Judgment is

needed in selecting the correct values.

4. The implemented one-node element has the potential to capture accurately the rotational

constraint and uplift effect on shear demand.
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5 Summary, Conclusions, and
Recommendations for Future Work

This report presents an analytical and numerical study of drilled shafts socketed in rock and sub-

jected to lateral loads.

5.1 SUMMARY AND CONCLUSIONS

A summary of the work and associated conclusions of this research is presented in terms of the

following: comparison of different modeling strategies, parametric analysis of BNWF p-y-based

models, and the end-shaft resistance model.

Modeling Rock Socketed Drilled Shafts

1. Although p-y based models predict larger shear demands, they are extremely simple to use.

2. Proper definition of p-y curves for rocks result in reasonable shear demands.

3. A comparison between results from p-y based models and 3D FE models shows the 3D FE

models produced less magnitude of the shear force and bending moment demands in the

shaft.

4. Beam elements properly capture shear demands.

5. Modeling the shaft with a plastic-fiber section may cause the shaft to yield after modest

ductility. This limits the extent of shaft deflection at the rock interface, reducing the shear

demand in the soil rock socket. The reduction depends on the section properties chosen.

6. Friction along the socket shaft tend to reduce shear demands, but as shown herein, it has

little effect.

7. Solid elements representing the shaft produce accurate shear demands.

8. Plane sections do not seem to remain plane (i.e., the beam effect). This does result in smaller

shear demands but based on the results presented, herein, this effect is small.
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9. Rotation at the base of the shaft has an important effect on shear demand.

10. Eccentricity in axial loads provide a resisting bending moment that helps reduce the shear

demands. This effect is more relevant as the axial load increases and heff increases. It may

also be beneficial for small socket depths where shaft rotation may increase.

11. Possibility of rotation depends on rock-socket depth and rock characteristics and character-

istics of the rock below the shaft toe. It is also affected by magnitude of axial load and

eccentricity.

Parametric Study Using BNWF p-y Models and Comparison with 3D FEM Simulations

1. There are only minor differences between the results for the two sets of cohesionless soil p-y
curves. For all cases, as the quality of the rock increases the contrast between the upper and

lower layer shear force demands also increases. The shaft-head boundary condition changes

the magnitude of the shear force and bending moment demands in the shaft, with the free-

head condition inducing lower demands for an equal amount of lateral head displacement.

2. As the thickness of the rock layer is increased in comparison to the thickness of the soil

layer,the ratio of the maximum shear force demands in each layer tends to decrease.

3. The shear force ratio is much lower when using the Liang et al. (2009) approach to develop

rock p-y curves.

4. A comparison of results from BNWF analyses with the Timoshenko beam element formula-

tion to the corresponding results for the Euler-Bernouli beam elements shows that the maxi-

mum shear force in the rock layer is reduced for the shear-deformable beam cases.

5. The ratios for the 3D cases with Drucker-Prager modeling approach are generally less than

those for the BNWF analyses with the Reese rock p-y curves, and greater than those for the

BNWF results using the Liang et al rock p-y curves, and the maxima for the Drucker-Prager

results are generally greater than those for the J2 rock cases. The level of magnification

depends more on the type of rock model used (Reese vs. Liang et al., J2 vs. Drucker-

Prager) than on the type of analysis conducted (BNWF vs. 3D).

End Shaft Resistance Model

1. The possibility of rotation depends on rock-socket depth and rock characteristics and char-

acteristics of the rock below the shaft toe. It is also affected by magnitude of axial load and

eccentricity.

2. Rotational stiffness can be beneficial when the socket depth is small; this benefit increases

as the stiffness of rock increases.

3. The stiffness k of rock can be estimated by applying vertical load onto rock. Judgment is

needed to pick correct values.
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4. The implemented one-node uplift element has the potential to capture the rotational con-

straint effect on the shear demand.

5.2 RECOMMENDATIONS FOR FUTURE WORK

1. The Drucker-Prager and J2 constitutive models used in the simulations are relatively simple

models that do not necessarily represent true rock and soil behaviors. More advanced models

are available to obtain a better representation of the rock response.

2. The implemented one-node uplift element need to be further developed to account for more

complex cases, e.g., uplift induced detachment and 3D effects.

3. The evaluation of the rock stiffness k is simplified and needs further study. An experimental

program to enhance the understanding of the behavior of rock at the shaft toe iis recom-

mended.

4. This research focused on the analysis of a single shaft socketed in a soil and a rock profile in

which there were only two layers and no slope wa assumed. More realistic scenarios should

be studied to take advantage of the lessons learned in this project.
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