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ABSTRACT 

An empirical ground-motion model (GMM) for shallow crustal earthquakes in California and 
Nevada based on the NGA-West2 database [Ancheta et al. 2014] is presented. Rather than the 
traditional response spectrum GMM, this model is developed for the smoothed effective 
amplitude spectrum (EAS) as defined by PEER [Goulet et al. 2018]. The EAS is the orientation-
independent horizontal component Fourier amplitude spectrum (FAS) of ground acceleration. 
The model is developed using a database dominated by California earthquakes, but takes 
advantage of crustal earthquake data worldwide to constrain the magnitude scaling and 
geometric spreading. The near-fault saturation is guided by finite-fault numerical simulations and 
non-linear site amplification is incorporated using a modified version of Hashash et al. [2018]. 
The model is applicable for rupture distances of 0–300 km, M 3.0 – 8.0, and over the frequency 
range 0.1–100 Hz. The model is considered applicable for Vs30 in the range 180–1500 m/sec, 
although it is not well constrained for Vs30 values greater than 1000 m/sec. Models for the 
median and the aleatory variability of the EAS are developed. Regional models for Japan and 
Taiwan will be developed in a future update of the model. A MATLAB program that implements 
the EAS GMM is provided as an electronic appendix. 
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1 Introduction 

The traditional approach for developing ground-motion models (GMMs) for engineering 
applications is to use response spectral values for a range of spectral periods. The response 
spectra GMMs can be used in either deterministic or probabilistic seismic hazard analyses to 
develop design response spectra. The response spectral values represent the response of a simple 
structure to the input ground motion and does not directly represent the ground motion itself. As 
an alternative, Fourier spectral values can be used instead of response spectral values. There are 
several advantages to using Fourier spectra in place of response spectra: (1) the scaling of 
Fourier spectra in the GMM is easier to constrain using seismological theory, (2) linear site 
response remains linear at all frequencies and does not depend on the spectral content of the 
input motion, as is the case for response spectra [Bora et al. 2016], and (3) for calibrating input 
parameters and methods for finite-fault simulations based on comparisons with GMMs, Fourier 
spectra are more closely related to the physics in the simulations. 

 An empirical Fourier spectrum GMM for shallow crustal earthquakes in California and 
Nevada based on the Pacific Earthquake Engineering Research Center (PEER) Next Generation 
Attenuation-West 2 (NGA-West2) database [Ancheta et al. 2014] is developed. The ground-
motion parameter used in the GMM is the smoothed effective amplitude spectrum (EAS), as 
defined by PEER [Goulet et al. 2018]. The effective amplitude spectrum EAS is the orientation-
independent horizontal component Fourier amplitude spectrum (FAS) of ground acceleration that 
can be used with random vibration theory to estimate the response spectral values. 

This paper describes the development of the empirical model using ground-motion data 
as the foundation, along with finite-fault simulations computed using the SCEC Broadband 
Platform [Maechling et al. 2015] to constrain the near-fault large-magnitude scaling, and the 
analytical site response modeling to capture the nonlinear site amplification [Hashash et al. 
2018]. Rather than simply fitting the empirical data, emphasis is placed on building the model 
using both the empirical data and analytical results from these seismological and geotechnical 
models so that the GMM extrapolates in a reasonable manner. A MATLAB program that 
implements the EAS GMM is provided in an electronic appendix. A model for the inter-
frequency correlation of residuals derived from this GMM is presented in Bayless and 
Abrahamson [2018]. 
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1.1 EFFECTIVE AMPLITUDE SPECTRUM GROUND-MOTION INTENSITY 
MEASURE 

The EAS, defined in Kottke et al. [2018] and used in the PEER NGA-East project [PEER 2015; 
Goulet et al. 2018], can be calculated from an orthogonal pair of FAS using Equation (1.1): 

     2 2
1 2

1
EAS FAS FAS

2
HC HCf f f     (1.1) 

where 1FASHC  and 2FASHC are the FAS of the two orthogonal horizontal components of the 
ground motion and f is the frequency in Hz. The EAS is independent of the orientation of the 
instrument. Using the average power of the two horizontal components leads to an amplitude 
spectrum that is compatible with the use of random vibration theory (RVT) to convert Fourier 
spectra to response spectra. The EAS is smoothed using the Konno and Ohmachi [1998] 
smoothing window, which has weights and window parameter defined by Equations (1.2) and 
(1.3): 

   
 

4
sin log

log

      
  

c

c

b f f
W f

b f f
 (1.2) 

2


w

b
b


  (1.3) 

The smoothing parameters are described in Kottke et al. [2018]: “W is the weight defined 
at frequency f for a window centered at frequency fc and defined by the window parameter b. The 
window parameter b can be defined in terms of the bandwidth, in log10 units, of the smoothing 
window, bw.” The Konno and Ohmachi smoothing window was selected by PEER NGA-East 
because it led to minimal bias on the amplitudes of the smoothed EAS when compared to the 
unsmoothed EAS. The bandwidth of the smoothing window, b = 1.88.5, was selected such that 
the RVT calibration properties before and after smoothing were minimally affected [Kottke et al. 
2018]. For consistency with the PEER database used to develop empirical FAS models, the 
smoothed EAS is used with the same smoothing parameters as described in Kottke et al. [2018]. 

1.2 ON THE SELECTION OF FOURIER AMPLITUDES 

In seismic hazard and earthquake engineering applications, the pseudo-spectral acceleration 
(PSA) of a 5% damped single degree of freedom (SFOF) oscillator is a commonly used intensity 
measure (IM). The PSA is useful for many applications; however it has drawbacks which are 
discussed here. The EAS component of the FAS is used as the IM for this study, because the 
FAS is a more direct representation of the frequency content of the ground motions than PSA 
and is better understood by seismologists. This leads to several advantages, both in the empirical 
modeling and in forward application. The reasoning behind these claims is explained in this 
section. 
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The PSA calculation involves solving the differential equation for the response of a 
SDOF oscillator (with given damping) due to a specified forcing function, selecting the peak 
response of the oscillator, and scaling the peak oscillator displacement by the square of the 
oscillator natural frequency, . This calculation can be repeated for a range of oscillators with 
different natural frequencies to develop a response spectrum. The elastic SDOF oscillator 
response is described by the following second order, linear, inhomogeneous differential 
equation: 

       m a t c v t k u t p t       (1.4) 

where m is the SDOF lumped mass, a(t) denotes the SDOF lateral acceleration, c denotes the 
viscous damping coefficient, v(t) denotes the SDOF lateral velocity, k denotes the lateral 
stiffness, u(t) denotes the SDOF lateral displacement relative to the ground, and p(t) denotes the 
time-dependent forcing function due to the earthquake ground motion [Chopra 2007]. 

Duhamel’s convolution integral, also known as the unit impulse response procedure, is 
one approach to solving a linear differential equation, such as the one given by Equation (1.4). 
With this method, the response of the system (initially at rest) to a unit impulse force is shown 
(e.g., in Chopra [2007] to be: 

     1
sin ,t

d
d

h t e t t
m

     


        (1.5) 

where  is the time instance of the impulse, d  is the damped natural frequency, and  is the 
fraction of critical damping. The entire loading history (such as that due to ground acceleration) 
can then be represented as a succession of infinitesimally short impulses, each producing its own 
response of the form of Equation (1.5). Since the system is linearly elastic, the total response is 
the superposition of the responses to all impulses which make up the entire loading history. 
Taking the limit of the sum as the width of the impulse approaches zero leads to the general 
expression of Duhamel’s integral for an arbitrary forcing function: 

               
0 0

1
sin

t tt
d
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where  is the convolution operator. Equation (1.6) is called the convolution integral because 
convolution is performed in the time domain between the unit impulse response (h), and the 
force due to ground acceleration (p). Then, by the convolution property of the Fourier transform, 
the time-domain convolution of h and p can be expressed in the frequency domain as the point-
wise multiplication of the Fourier transforms of h and p. 

In Figure 1.1, these steps are shown using an example recorded acceleration time history. 
In the figure, the thin solid black line is the FAS of the recorded acceleration time history, or 

 F p , where F denotes the Fourier transform operator. The solid heavy lines are the FAS of 

the SDOF oscillator impulse response, or  F h .  F h  is plotted for three different oscillator 

frequencies: 0.5, 2.0, and 10.0 Hz, as identified in the figure legend. The dashed lines are the 
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In summary, PSA provides the spectrum of peak response from a SDOF system, which is 
influenced by a range of frequencies, and the breadth of that range is dependent on the oscillator 
period. The FAS provides a more direct representation of the frequency content of the ground 
motions, and since the Fourier transform is a linear operation, the FAS is a much more 
straightforward representation of the ground motion. As a result, recordings from small 
earthquakes can be used to constrain path and site effects without dependence on response 
spectral shape. Numerous seismological models of the FAS are available (e.g. Brune [1970] and 
Boore et al. [2014]) to provide a frame of reference during model development. Additionally, 
using FAS more easily facilitates future calibration of the inter-frequency correlation of ground-
motion simulation methods because there is not a strong reversal of the correlation coefficients at 
high frequencies, as described in Bayless and Abrahamson [2018]. 
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2 Ground-Motion Data 

The PEER NGA-West2 strong-motion database includes over 21,000 three-component strong-
motion records recorded worldwide from shallow crustal earthquakes, including aftershocks, in 
active tectonic regimes since 2003 [Ancheta et al. 2014]. Earthquake magnitudes in the full 
database range from 3 to 7.9 and rupture distances extend to over 1500 km. Earthquakes and 
recordings identified as questionable in quality or with undesirable properties are excluded; see 
Abrahamson et al. [2014] for a complete list of criteria for exclusions. At distances under 100 
km, recordings from crustal earthquakes worldwide are retained to constrain the magnitude 
scaling and geometric spreading. At the larger distances (up to 300 km), region-specific anelastic 
attenuation and linear site effects due to the regional crustal structure are accounted for by 
including recordings only from California and Nevada. Only events with at least five recordings 
per earthquake are included. 

The EAS has been calculated for each record in the database up to the Nyquist frequency 
by PEER [Kishida et al. 2016]. The usable frequency range limitations of each record are 
accounted for by applying the recommended lowest and highest usable frequencies for response 
spectra determined from Abrahamson and Silva [1997] as: 

 1 2Lowest usable frequency (LUF) 1.25 max HPF , HPFHC HC   (2.1) 

 1 2
1

Highest usable frequency (HUF) min LPF , LPF
1.25

HC HC   (2.2) 

where HPF is the record high-pass filter frequency, LPF is the record low-pass filter frequency, 
and HC1 and HC2 are the two horizontal components of a three-component time series. The 
factors of 1.25 in Equations (2.1) and (2.2) were originally used by Abrahamson and Silva 
[1997] to ensure that the filters did not have a significant effect on the response spectral values. 
By limiting the usable period range using these factors, the frequency interval of the impulse 
response of a 5% damped oscillator will not exceed the filter values. And retaining this usable 
frequency range maintains consistency with the response spectrum calculations. Based on 
inspection of the usable frequency range of the data, the LUF was restricted to a minimum value 
of 0.1 Hz, and the HUF was restricted to a maximum value of 24 Hz for all recordings. 
Therefore, the regressions were performed between 0.1–24 Hz. 

After screening for record quality, recording distance, minimum station requirements, 
and frequency limitations, the final dataset consists of 13,346 unique records from 232 
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3 Median Model Functional Form 

The model parameters are defined in Table 3.1. The scaling of the source is primarily described 
by moment magnitude (M). Source effects are also modeled using the depth to the top of the 
rupture plane (Ztor), and a style-of-faulting flag for normal faults (FNML). These source effects can 
be considered as proxies for stress drop scaling. The closest distance to the rupture plane, RRUP is 
used as the distance measure for path scaling. The linear and nonlinear site effects are 
parameterized using Vs30, the time-averaged shear-wave velocity in the top 30 m of the soil 
column below the site. Use of Vs30 does not imply that 30 m is the key depth range for the site 
response, but rather that Vs30 is correlated with the entire soil profile [Abrahamson and Silva 
2008]. The scaling with respect to soil depth is parameterized by the depth to the shear-wave 
velocity horizon of 1 km/sec, Z1. 

 

Table 3.1 Model parameter definitions. 

Parameter Definition 

EAS 
Effective amplitude spectrum (g-sec). The EAS is the orientation-independent 
horizontal component Fourier amplitude spectrum (FAS) of ground 
acceleration, defined in Goulet et al. [2018]. 

M Moment magnitude 

Ztor Depth from the surface to the top of the rupture plane (km) 

FNM Style of faulting flag; 1 for Normal faulting earthquakes, 0 for all others. 

RRUP Rupture distance (km) 

Vs30 Time averaged shear wave velocity in the upper 30 meters (m/sec) 

Z1 Depth from the surface to shear wave velocity horizon of at least 1 km/sec (km) 

Ir Peak ground acceleration for the Vs30 = 760 m/sec condition (g) 
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The model prediction for the EAS (units g-sec) ground motion is given by Equation (3.1): 

medln EAS =ln EAS   (3.1) 

where  is the total aleatory variability, and the standard-normal random variable  is the number 
of standard deviations above or below the median. The median estimate of the EAS (EASmed, 
with units g-sec) can be calculated from Equation (3.2), where each of the model components are 
described in the following sections. 

1medln EAS
torM P S Z NM Zf f f f f f       (3.2) 

3.1 MAGNITUDE SCALING, fM 

To capture the effects of energy radiated at the source, the formulation of the magnitude scaling 
is adopted from the Chiou and Youngs [2008; 2014] GMMs for response spectra. A polynomial 
magnitude scaling formulation was tested (e.g., Abrahamson et al. [2014]), and after evaluating 
the data found that both formulations fit the data well, but the Chiou and Youngs [2014] 
formulation would extrapolate more reasonably. Additionally, the Chiou and Youngs [2014] 
formulation has undergone several years of testing and refinement and is based on seismological 
models for the source FAS [Chiou and Youngs 2008], which translates directly to this 
application. The expression for the magnitude scaling is given by Equation (3.3): 

    1 2 36 ln 1 n Mc c
Mf c c c e      MM  (3.3) 

The components of fM are described in Chiou and Youngs [2008]. To recap, the 
formulation captures approximately linear magnitude scaling at low frequencies (well below the 
source corner) and high frequencies (well above the source corner) with a nonlinear transition in 
between, where the transition shifts to lower frequencies for larger magnitudes. The coefficient 
c1 works jointly with the c2 and c3 terms to approximately represent the mean spectral shape after 
correcting for all other adjustments. The coefficient c2 is the frequency independent linear M 
scaling slope for frequencies well above the theoretical corner frequency. The term with 
coefficient c3 captures both the approximately linear scaling of the FAS below the theoretical 
corner frequency, and the non-linear transition to that scaling. The coefficient cn controls the 
width of the magnitude range over which the transition between low- and high-frequency linear 
scaling occurs, and the coefficient cM is the magnitude at the midpoint of this transition. All of 
the magnitude scaling terms were determined in the regression. 

3.2 PATH SCALING, fP 

Together with the magnitude scaling, the extensively-tested path scaling formulation of Chiou 
and Youngs [2014] is utilized: 

      4 RUP 5 6 4 7 RUP
ˆln cosh max ,0 0.5 lnP hmf c R c c c c R c R        M  (3.4) 
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2 2
RUP

ˆ 50R R   (3.5) 

The components of Equation (3.4) are described in Chiou and Youngs [2008]. To recap, 
the term with coefficient c4 captures near-source geometric spreading, which is magnitude and 
frequency dependent. The magnitude and frequency dependence on the geometric spreading is 
introduced by adding a term to the rupture distance inside the log-distance term, expressed by the 
term with coefficient c5. This additive distance is designed to capture the near-source amplitude 
saturation effects of the finite-fault rupture dimension. This term is a frequency-dependent 
constant for small magnitudes, and transitions to be proportional to exp (M) for large 
magnitudes, with the largest additive distance at high frequencies. Since the hyperbolic cosine is 
a monotonically increasing function, the coefficient c5 controls the scaling of this term, and 
coefficients c6 and chm control the gradient. 

Since the coefficients c5, c6, and chm are multiplied with c4, there is potential for trade-off 
between them. The regression procedure is started with the values for coefficients c5, c6, and chm 
from Chiou and Youngs [2014] to obtain c4 from the data, ensuring the model did not over-
saturate. Using Equations (3.3) and (3.4), the full saturation condition (no magnitude scaling at 
zero distance) leads to the following constraint on the coefficients: c2 = c4 c6. For c2 values 
larger than the full saturation value, there will be a positive magnitude scaling at zero distance 
(i.e., not full saturation). It is reasonable for the EAS to have some scaling at zero distance even 
though the PSA is nearly fully saturated at high frequencies. The PSA saturates in part because 
the procedure involves selecting the peak response of the oscillator over all time, meaning it is 
not affected by duration. Conversely, the EAS is not a peak response operator, and so it will 
continue to scale for large magnitudes at short distance due to the longer source durations. This 
is the contribution of the lower amplitudes over the duration of the signal. 

The near-source saturation of magnitude scaling is checked against the data and against 
finite–fault simulations (see Section 6 for more details) and the EAS saturation in this model 
does not disagree with those from the simulations. In later stages of the regression, the 
coefficients c5, c6, and chm are also determined empirically. The values from the regression do not 
change enough to impact the model, so coefficient values are fixed from Chiou and Youngs 
[2014] for c5, c6, and chm in the final model. Thus, the coefficients c2 and c4 control the saturation 
in the model development. 

Following Chiou and Youngs [2014], at large distances, the distance scaling smoothly 
transitions to be proportional to R-0.5 to model surface wave rather than body wave geometric 

spreading effects. This effect is introduced with the  ˆln R  term, which controls at distances 

greater than 50 km by subtracting the c4 coefficient and imposing a -0.5 slope. Effects of crustal 
anelastic attenuation (Q) are captured through the term with the frequency-dependent coefficient 
c7. The Q scaling does not require magnitude dependence for the EAS. 
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3.3 SITE RESPONSE, fS 

The VS30 (m/sec) dependence of site amplification is modeled using Equation (3.6): 

S SL NLf f f   (3.6a) 

 30
8

min ,1000
ln

1000
s

SL

V
f c

 
  

 
 (3.6b) 

3
2

3

ln R
NL

I f
f f

f

 
  

 
 (3.6c) 

    5 30 ref 5 refmin , 360 360
2 4

sf V V f Vf f e e      (3.6d) 

   refln 1.238 0.846ln EAS 5 HzRI f      (3.6e) 

where the linear site amplification is given by fSL, and the nonlinear site amplification is given by 
fNL, which is the analytical site amplification function for FAS in the western United States 
(WUS) modified from Hashash et al. [2018]. 

The linear site term, fSL, is formulated as a linear function of ln(Vs30) and is centered on 
the reference Vs30 of 1000 m/sec. The fSL term is determined in the regression analysis. 
Abrahamson et al. [2014] observed that at long periods, the scaling of PSA with Vs30 became 
weaker for higher Vs30 values, and, therefore, selected a model that does not scale with Vs30 above 
some maximum value, V1 = 1000 m/sec. Inclusion of this feature is based on evaluation of the 
data (Figure 3.1), which implies that above 1000 m/sec, the correlation between Vs30 and the 
deeper profile no longer holds. Below 1000 m/sec, the linear site amplification terms 
approximately scales linearly with ln(Vs30), so the regional linear Vs30-based site amplification is 
modeled with a single frequency-dependent coefficient, c8. 

The nonlinear site amplification, fNL, is constrained using a purely analytical model rather 
than obtaining it from the data. Empirical evaluations of the nonlinear effects are limited by the 
relatively sparse sampling of ground motions expected to be in the nonlinear range in the NGA-
West2 database [Kamai et al. 2014]. Therefore, the Hashash et al. [2018] nonlinear site 
amplification term, fNL, was adopted to model nonlinear soil amplification. This model was 
developed analytically by performing large-scale 1D site response simulations of input rock 
motions propagated through soil columns representative of WUS site conditions. Hashash et al. 
(2018) produced linear and nonlinear site amplification models for the PSA and FAS. Equations 
(3.6c) and (3.6d) are the nonlinear FAS amplification components of the Hashash et al. [2018] 
model developed for the WUS. In these equations, f3, f4, and f5 are frequency-dependent 
coefficients, IR is the peak ground acceleration (PGA, in units g) at rock outcrop, and Vref is the 
limiting velocity beyond which there is no amplification relative to the reference rock condition, 
set to 760 m/sec [Hashash et al. 2018]. In this model, almost no nonlinearity is applied at 
frequencies below 1.0 Hz and the modification approaches zero for small values of the input 
motion (IR) and as Vs30 approaches Vref. 
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3.5 NORMAL STYLE OF FAULTING EFFECTS, fNM 

To model the differences in ground motions for normal style faults, the normal faulting term is: 

10NM NMf c F  (3.8) 

where FNM is 1 for normal style faults and 0 for all others, and c10 is determined in the regression. 
A style of faulting term for reverse events was considered but not included, because this term 
was highly correlated with Ztor. Therefore, the reverse style of faulting scaling is captured in 

tor
.Zf  

3.6 SOIL DEPTH SCALING, f Z1 

To model the scaling with respect to sediment thickness, the Abrahamson et al. [2014] 
formulation is adopted, which is parameterized by the depth to shear wave velocity horizon of 
1.0 km/sec, Z1 (units of km). This model takes the form: 

 
1

ref

1
11

1

min , 2.0 0,01
ln

0.01
Z

Z
f c

Z

 
   

 (3.9a) 

11 30

11 30
11

11 30

11 30

for 200 m / sec

for 200 300 m / sec

for 300 500 m / sec

for 500 m / sec

a s

b s

c s

d s

c V

c V
c

c V

c V


     
 

 (3.9b) 

ref

4 4
30

1 4 4

1 7.67 610
exp ln

1000 4 1360 610
sV

Z
   

     
 (3.9c) 

where 
ref1Z is the reference Z1 for the regional model for California and Nevada. Equation (3.9c) 

was developed by Chiou and Youngs [2014] to account for regional differences in the Vs30  Z1 
relationships in the data. Abrahamson et al. [2014] showed that the Z1 scaling is dependent on the 
Vs30 value and used the Vs30 bins in Equation (3.9b) to model this dependence; the same bins are 
used here. The soil depth scaling is capped to Z1 = 2 km based on the range of the data and to 
avoid unconstrained extrapolation. 
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4 Regression Analysis 

The random-effects model is used for the regression analysis following the procedure described 
by Abrahamson and Youngs [1992]. This procedure leads to the separation of total residuals into 
between-event residuals ( B) and within-event residuals ( W), following the notation of Al Atik 
et al. [2010]. For large numbers of recordings per earthquake, the between-event residual is 
approximately the average difference in logarithmic-space between the observed IM from a 
specific earthquake and the IM predicted by the GMM. The within-event residual ( W) is the 
difference between the IM at a specific site for a given earthquake and the median IM predicted 
by the GMM plus  B. By accounting for repeatable site effects,  W can further be partitioned 
into a site-to-site residual ( S2S) and the single-station within-event residual ( WS, also called 
the within site residual) (e.g., Villani and Abrahamson, 2015). Using this notation, the residuals 
take the following form: 

 , 2es e s esY g X B S S WS        (4.1) 

 total , 2es e s esY g X B S S WS        

 total

2 2 2
2

, 2es e s es

S S SS

Y g X B S S WS    

   

    

  
 (4.2) 

where Y is the natural log of the recorded ground motion IM, g(Xes,  ) is the median GMM, Xes 
is the vector of explanatory seismological parameters (magnitude, distance, site conditions, etc.), 
 is the vector of GMM coefficients, and  total is the total residual for earthquake e and site s. 

The residual components B,  S2S, and  WS are well-represented as zero-mean, 
independent, normally distributed random variables with standard deviations , S2S, and SS, 
respectively [Al Atik et al. 2010]. The total standard deviation, , is expressed as: 

2 2 2
2S S SS       (4.3) 

The regression is performed in a series of steps to prevent trade-off of correlated model 
coefficients and to constrain different components of the model using the data relevant to each 
piece. These steps are given in Table 4.1, along with the data used and parameters determined 
from each step. In Step 1-a, a dataset consisting of larger magnitudes and shorter distances is 
used to constrain the large magnitude scaling and near-source finite–fault saturation, using data 
from all regions. In Steps 1-b through 1-d, the same data set is used, and the remaining source 
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effects are determined. In Step 2, the regionalized linear site amplification parameters are 
determined using the data from California and Nevada at distances within 100 km. In Steps 3-a 
through 3-c, data from California and Nevada are included out to 300 km distance. In these 
regression steps, the regional soil depth scaling, anelastic attenuation, and mean spectral shape 
coefficients are determined. For all steps the regression is performed independently at each of 
239 log-spaced frequencies spanning 0.1–24 Hz. 

Table 4.1 Regression steps. 

Step Data used 
Parameters free in the 

regression 

Parameters 
smoothed after the 

regression 

1-a M > 4, RRUP  100 km, all regions 
c1, c2, c3, cn, cM, c4, c7, c8, c9, c10, 

c11 
c2, c4 

(M, path) 

1-b Same as 1-a c1, c3, cn, cM, c7, c8, c9, c10, c11 
c3, cn, cM 

(M) 

1-c Same as 1-a c1, c5, c6, chm, c7, c8, c9, c10, c11 
c5, c6, chm 

(path) 

1-d Same as 1-a c1, c7, c8, c9, c10, c11 
c9 

(Ztor) 

1-e Same as 1-a c1, c7, c8, c10, c11 
c10 

(FNM) 

2 M > 4, RRUP  100 km, from CA/Nevada c1, c7, c8, c11 
c8 

(VS30) 

3-a M > 3, RRUP  300 km, from CA/Nevada c1, c7, c11 
c11 

(Z1) 

3-b Same as 3-a c1, c7 
𝑐଻ 

(Q) 

3-c Same as 3-a c1 c1 

4.1 SMOOTHING  

The model coefficients are smoothed in a series of steps as outlined in Table 4.1. Smoothing of 
the coefficients is performed to assure smooth spectra and, in some cases, to constrain the model 
to a more physical behavior where the data are sparse [Abrahamson et al. 2014]. Tables of the 
values of the final smoothed coefficients are available in Electronic Appendix B. 

Figure 4.1 through Figure 4.10 show the regressed model coefficients plotted versus 
frequency, before and after smoothing. The coefficients c2 and c4 are frequency independent and 
are determined from regressions in the high frequency range. The coefficients c3, cn, and cM 
require only minor smoothing to assure smooth spectra in the final model, including 
extrapolation outside the ranges well constrained by data. The smoothing of c7 (the anelastic 
attenuation term) is constrained to be non-positive at all frequencies so that the model does not 
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unintentionally increase in amplitude at very large distances. Minimal smoothing is required for 
the coefficient c8 (the linear VS30 term). The coefficient c9 (the Ztor term) takes on negative values 
at low frequencies implying small de-amplification of low frequency ground motions with 
increasing Ztor. The data lead to a large drop in c10 (the normal faulting term) at low frequencies, 
but this is not included in the model because the theoretical basis is not clear; instead a 
frequency-independent constant is used (uniform scaling across frequencies) for normal style-of-
faulting earthquakes. The c11 terms are smoothed as shown in Figure 4.8, where the uncertainty is 
largest for c11a, which corresponds to the lowest VS30 bin with relatively fewer data. 

The c1 coefficient works collectively with the c3 term to represent the mean spectral shape 
after correcting for all other adjustments. In the regression, unexpected behavior of c1 at low 
frequencies is observed, as shown in Figure 4.10. At frequencies below about 0.3 Hz, the 
regressed coefficient values are equal to or larger than the 0.3 Hz value. If unmodified and 
combined with the c3 term, this would lead to an irregular spectral “bump” at f < 0.3 Hz. 
Following Aki [1967], the mean spectrum should be approximately linear with a slope = 2 in this 
frequency range. Therefore, the c1 coefficient is modified at low frequencies by constraining the 
slope from f  1.0 Hz down to 0.1 Hz, as shown in Figure 4.10. The difference between the 
regressed values of c1 and the constrained values of c1 is denoted c1a; this adjustment coefficient 
is plotted in the lower portion of Figure 4.10. By introducing the c1a term, the model predicts 
smooth, theoretically appropriate spectra at low frequencies. This also allows for residuals which 
are zero-centered, which is required for computing the correlations of the residuals between 
frequencies. To account for this modification, the c1a term must be added to the total standard 
deviation using Equation (2.21). The standard deviation model is discussed further below. 

This unexpected behavior of c1 may be due to bias in the data. At low frequencies, the 
signal to noise ratio is commonly low [Douglas and Boore 2011]. This contributes to the drop off 
in data at low frequencies shown in Figure 2.1. Additionally, at low frequencies, the large 
epsilon (above average) ground motions are more likely to be above the signal to noise ratio, and 
therefore, be included in the database. Likewise, the below average ground motions are more 
likely to be below this ratio and be excluded. The net effect may be that, for the FAS at low 
frequencies, the database is biased towards higher ground motions. Observing the data, the mean 
spectra for certain binned magnitude and distance ranges contain this feature. As an example, 
Figure 4.11 shows the geometric mean spectra of a subset of the data used in the analysis. This 
figure is created using recordings from strike-slip earthquakes with RRUP < 50 km, for M bins 
one unit wide, and adjusted to the reference VS30 condition. Below about 0.3 Hz, the bump in the 
spectral shape in the data that causes the increase of c1 is evident, especially for the data with M 
> 7 and M < 5. 

Other physical explanations of the cause of the increase in coefficient c1 are not apparent. 
To check that long period basin effects are not the cause, the mean spectra are examined in the 
same way, but only including records with Z1 < 0.15 km, and the same behavior is observed. To 
further test if basin effects are not adequately captured by the model, c1 is fixed to the 
constrained shape and the residuals are mapped. We do not see regional or spatial trends in the 
mapped residuals, implying that basin effects are not the culprit. Understanding the physical 
cause of the long-period shape of the spectrum will be evaluated further in a future study. 
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 ( , ) expD f f    (4.4a) 

  30ln 0.4 ln 3.5
760

sV      
 

 (4.4b) 

     max max maxEAS EAS ,f f f D f f     (4.4c) 

where ( , )D f  is the Anderson and Hough [1984] diminution operator, and fmax is the frequency 

beyond which the extrapolation occurs; fmax = 24 Hz. The parameter  is estimated from 𝜅 is 
estimated from VS30 using the relationship given by Equation (4.4b). This relationship is selected 
based on the range of 0VS30 correlation models presented in Figure 2 of Ktenidou et al. [2014]. 
The scatter observed in these correlations is large, as described in Ktenidou et al. [2014]. 
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5 Residuals 

The model is evaluated by checking the residuals from the regression analysis as functions of the 
main model parameters. Example figures are included below, and a larger set of residual figures 
are available in Electronic Appendix A. 

5.1 BETWEEN-EVENT AND BETWEEN-SITE RESIDUALS 

Examples of the dependence on the source parameters of the between-event residuals at f = 0.2, 
1.0, and 5.0 Hz are given in Figure 5.1 through Figure 5.3. In these figures, the diamond-shaped 
markers represent events from California and Nevada, and circles represent events from all other 
regions. There is not a strong magnitude dependence of the B. For Ztor, there is no trend in the 
residuals at high frequencies, where the model increases the ground motion with increasing Ztor. 
There is a potential difference in Ztor scaling between regions at low to moderate frequencies, an 
effect which should be evaluated further in the future. For FNM, there is also no trend in the 
residuals at high frequencies, but at the lower frequencies, potential regional differences exist. 
The normal faulting term is constrained by sparse data (only 10 events at 0.2 Hz, including six 
from Italy), so this term is not refined further. Figure 5.1 through Figure 5.3 also show the 
dependence of the between-site residuals on VS30. Overall, there is no trend in S2S versus VS30. 
The standard deviation of these residuals (S2S) is comparable to  at frequencies greater than 
about 2 Hz. The standard deviations are discussed further in Section 6.2. 
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5.2 WITHIN-SITE RESIDUALS 

Examples of the dependence on the model parameters of the within-site residuals at f = 0.2, 1.0, 
and 5.0 Hz are given in Figure 5.4 through Figure 5.6. The filled circles are individual residuals, 
and the black diamonds with whiskers represent the mean and 95% confidence interval of the 
mean for binned ranges of the model parameter. Overall, there is no trend observed in WS 
versus moment magnitude. The linear site response model is evaluated through the VS30 and Z1 
dependence of the residuals. Overall, no strong trends are observed against VS30, except for the 
highest VS30 values at low frequencies, where the residuals are slightly positive, indicating model 
under-prediction. The data are very sparse in this range (six records with VS30 > 1500 m/sec and 
106 records with VS30 >1200 m/sec. No strong Z1 dependencies on the residuals are observed. 

The distance scaling of the model is evaluated using the distance-dependence of WS as 
shown in Figure 5.4 through Figure 5.6. Additionally, the distance dependence is evaluated using 
magnitude binned residuals. Examples of the distance dependence binned by magnitude are 
shown in Figure 5.7 through Figure 5.9, where the magnitude bin ranges are given in the figure 
legends. In the distance range of about 5–100 km, there are no strong trends or biases of the 
residuals. At low frequencies, for distances beyond 100 km and in the M 5.5–6.5 bin, the WS 
residuals are biased positive. This is likely due to the relatively limited data within this bin, and 
that the model scaling is appropriate even though these particular residuals are not zero-centered. 
Thus, neither the magnitude nor distance scaling are adjusted to center these residuals. At 
distances shorter than 1 km and for frequencies greater than about 2 Hz, there is a small 
systematic negative bias in the residuals (Figure 5.6). This means the near-fault saturation in this 
model is not as strong as indicated by the data. Graizer [2018] chose to incorporate 
oversaturation (a peak in the distance scaling at about 5 km) into his ground motion models. The 
oversaturation of distance scaling is intentionally avoided in this model. Because the available 
ground-motion data is extremely sparse at such close distances, this model is compared with the 
saturation from finite–fault earthquake simulations (see Model Summary section of this paper for 
more details). Based on these results, and on the sparsity of the data, the small bias in the short-
distance residuals is accepted. 

The distance dependence of the model is also compared with data from four well-
recorded WUS earthquakes in Figure 5.10 through Figure 5.13: the 1989 M 6.9 Loma Prieta, 
2010 M 7.2 El Mayor-Cucapah, 1992 M 7.3 Landers, and 1994 M 6.7 Northridge. In these 
figures, the top panels compare the recorded EAS with the model-predicted EAS at each site, 
including the event term for that earthquake. The lower panels show the within-event residuals 
for the same sites versus RRUP. Residuals for El Mayor-Cucapah, the most well-recorded large 
earthquake in California, show no bias or trend at either frequency. Besides a few outliers, the 
remaining three events have attenuation which does not disagree with the median model and is 
captured on average. 
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6 Model Summary 

6.1 MEDIAN MODEL 

In this section, the median model behavior is summarized. In Figure 6.1, the median EAS spectra 
from this model (solid lines) are compared with spectra from the additive double-corner-
frequency source spectral model (dashed lines) described in Boore et al. [2014]. The double-
corner-frequency spectra are computed using typical parameters for the WUS given by Boore 
[2003], including shear-wave velocity ൌ 3.5 km/sec, density ൌ 2.72 gm/cm3, stress parameter  
= 50 bars, and  = 0.025 sec. Also used are the Boore and Thompson [2015] finite-fault distance 
adjustment, the Boore and Thompson [2014] path duration for western North America, and the 
Boore [2016] crustal amplification model. The point-source spectral models are calculated using 
the software package SMSIM [Boore 2005]. The median model spectra are computed for a 
strike-slip scenario at RRUP = 30 km and Ztor = 0 km, and with the reference Vs30 and Z1 

conditions. Figure 6.1 shows overall good agreement between the median model and the additive 
double-corner-frequency source spectral model with typical WUS parameters, including a well-
defined decrease in corner frequency with increasing M. At frequencies well below the corner 
frequency, the spectra should be directly proportional to seismic moment (M0), and since M0 = 
101.5M-16.05, the spectra in this range should scale by 101.5  31.6 for one magnitude unit. This 
approximate scaling is evident in Figure 6.1. At frequencies between 10–30 Hz, there is a dip in 
the model spectra compared with the point source spectra. This may be related to the region-
specific attenuation parameters (geometric spreading and Q), where the point source spectra use 
generalized models for these attenuation parameters. The -based extrapolation in the model 
spectra begins at 24 Hz. 

In Figure 6.2, the median EAS spectra from this model are shown for a set of scenarios. 
Panels (a) and (b) show the spectra for a vertical strike–slip scenario at RRUP = 30 km with Vs30 = 
1000 and 500 m/sec, respectively. In (c) and (d) are the spectra for the same Vs30 but at 𝑉௦ଷ଴ but 
at RRUP = 1 km. 

In Figure 6.3, the distance scaling of the median model is shown for f = 0.2, 1, 5, and 20 
Hz. All spectra in this figure are from a strike–slip earthquake rupturing the ground surface with 
reference Vs30 and Z1 conditions. The distance scaling is compared with the Chiou and Youngs 
[2014] model for PSA (dashed lines) by scaling the PSA values to the RRUP = 0.1 km EAS 
values. At 0.2 Hz, where the Q term coefficient (c7) is very small, the distance scaling is 
controlled by the geometric spreading terms, which includes a transition to R-0.5 scaling to model 
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surface wave geometric spreading at larger distances. At increasing frequencies, the effect of the 
Q term becomes more pronounced. In Figure 6.3(d), the distance scaling is shown to deviate 
significantly from the Chiou and Youngs [2014] model, which has a magnitude dependence on 
Q. This difference can be explained by the differences between EAS and PSA. At high 
frequencies, the PSA is strongly influenced by the predominant ground-motion frequency, as 
discussed above. Because of this, the PSA scaling at 20 Hz and 5 Hz are similar, but since the 
EAS at 20 Hz is directly representative of the ground motions in that frequency range, the 
distance scaling is much stronger for 20 Hz than for 5 Hz. 

The M scaling of the median EAS is shown in Figure 6.4 for a strike–slip surface 
rupturing scenario with reference Vs30 and Z1 conditions, for f = 0.2, 1, 5, and 20. In Figure 6.5 
through Figure 6.7, the median M scaling is compared with that from a set of broadband finite-
fault simulations. The simulations were performed on the SCEC Broadband Platform, 
[Maechling et al. 2015] version 17.3, using simulation methods Graves and Pitarka [2015] (also 
known as GP) and Atkinson and Assatourians [2015] (also known as EXSIM). Both simulation 
methods were used to develop broadband time histories for vertical strike–slip scenarios with a 
range of M 6.5 to 8 and with stations arranged on constant RRUP bands. In these figures, the M 
scaling is shown for RRUP = 3, 10, 20, and 30 km for the median EAS model, the GP simulations, 
the EXSIM simulations, and for the Chiou and Youngs [2014] (CY14 hereafter) model for PSA. 
For the CY14 PSA, the amplitudes are scaled to the EAS model values at M 6.5 for this 
comparison. The symbols identified in the legend represent the mean simulated EAS over all 
stations on a given RRUP band, and the standard error of the mean. 

The simulations are used to evaluate the near-source saturation of the M scaling and to 
compare with the scaling implied by the data. Overall, there is less saturation in this GMM than 
there is in CY14 at all frequencies. At very close distances, there is stronger high-frequency 
saturation in EXSIM than in GP. Interestingly, this relationship is inverted at low frequencies. 
Based on these and other comparisons, it is determined the EAS saturation in this model is not 
inconsistent with the saturation from the simulations. The EAS should have some scaling at zero 
distance even though the PSA is nearly fully saturated at high frequencies because the PSA 
procedure involves selecting the peak response of the oscillator over all time, meaning it is not 
affected by duration. Conversely, the EAS will continue to scale for large magnitudes at short 
distance due to the longer source durations. 

The site response scaling of the median model is summarized for a set of example 
scenarios in Figure 6.8. Panel (a) shows the Vs30 scaling of the median model for a M 7 strike–
slip earthquake rupturing the surface with reference Z1 conditions at RRUP = 30 km. The solid 
lines represent the total (linear and nonlinear) 𝑉௦ଷ଴ scaling and the dashed lines represent only the 
linear portion of the Vs30 scaling. Panel (b) shows the Z1 scaling of the median model for the 
same scenario with Vs30 = 300 m/sec. Panel (c) shows the scaling of the modified Hashash et al. 
[2018] nonlinear site term with M, for a scenario with RRUP = 30 km and Vs30 = 300 m/sec. 
Similarly, panel (d) shows the scaling of the modified Hashash et al. [2018] nonlinear site term 
with RRUP, for a scenario with M 7 and Vs30 = 300 m/sec. 
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The magnitude dependence of each aleatory term is fit as shown in Figure 6.10 and is 
given by Equation (6.2). At low frequencies, the small-magnitude data have higher between-
event standard deviation. This is also consistent with the Abrahamson et al. [2014] response 
spectrum model, and could be related to the steeper magnitude scaling slope at low magnitudes 
and the uncertainty in small-magnitude source measurements [Abrahamson et al. 2014]. The 
standard deviations of the two within-event residuals do not have strong magnitude dependence 
at low frequencies. At higher frequencies,  does not show strong magnitude dependence, but 

2S S  and SS  are larger for the small-magnitude data, which is again consistent with the 

Abrahamson et al., [2014] and Chiou and Youngs [2014] models. Higher within-event variability 
for small magnitudes may be related to the increased effect of the high-frequency radiation 
pattern, which is reduced for larger magnitude events due to destructive interference 
[Abrahamson et al. 2014]. 
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At frequencies above approximately 20 Hz, the model is constrained to smoothly 
transition to be flat in frequency space for all components of . The frequency dependence of the 
standard deviation model is shown in Figure 6.11, and examples of the total standard deviation 
model for a set of scenarios are shown in Figure 6.12. Coefficients s2 through s2 are given in 
Appendix B. In Figure 6.13, the components of the standard deviation model are compared with 
those from Bora et al. [2015] and Stafford [2017]. The Bora et al. [2015] model was developed 
for smoothed FAS from data in Europe, the Mediterranean, and the Middle-East, and the 
Stafford [2017] model was developed for unsmoothed FAS from a subset of the NGA-West1 
database [Chiou et al. 2008]. 

The standard deviation model developed here is linear, meaning it does not account for 
the effects of nonlinear site response. As discussed in Al Atik and Abrahamson [2010] and 
Abrahamson et al., [2014], the nonlinear effects on the standard deviation are influenced by the 
variability of the rock motion, leading to a reduction in the soil motion variability at high 
frequencies. In Abrahamson et al. [2014], the standard deviation of the rock motion is estimated 
by removing the site amplification variability (determined analytically) from the surface motion, 
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remaining parameters) are assumed to represent the variability of the ground motions over time 
for a given site in the target region. With this approach, the model is expected to be appropriate 
for general use in California and Nevada but will be biased for a particular site. In an ergodic 
model, systematic site, path, and source effects are the dominant parts of the aleatory variability, 
making fully or partially non-ergodic models attractive [Abrahamson 2017]. Developing a 
partially non-ergodic model requires repeated observations of source, path, or site effects. For 
example, in this model, with multiple recordings at a site, the median site-specific amplification 
for the site is separated and the intra-event residual is partitioned, shifting that component of 
aleatory variability into an epistemic uncertainty [Walling 2009]. To get a fully non-ergodic 
model, all of the components of the total ground-motion variability that are not representative of 
the variability of future observations of ground motion at a single site must be removed 
[Abrahamson and Hollenback 2012]. 

Incorporating regional differences into a GMM is a first step towards a partially non-
ergodic assumption [Kuehn and Scherbaum 2016]. To account for the known differences in 
regional crustal structure, regionalized models for Japan and Taiwan can be developed in a future 
model update. This will involve regionalizing the linear 𝑉௦ଷ଴ scaling (𝑐଼ሻ, soil depth scaling 
(𝑐ଵଵ), anelastic attenuation (𝑐଻) and spectral shape (𝑐ଵ) coefficients.  

At frequencies above 24 Hz, this model uses a 𝜅-based extrapolation. This approach 
required selecting a 30sV   relationship from the literature. Future improvements to the model 
relationship, or calculating one directly from the database used. 

The effects of rupture directivity and hanging-wall scaling are not explicitly included in 
the model. Therefore, these effects are accounted for in the total aleatory variability. The 
hanging-wall effect, characterized by increased ground motion amplitudes on the hanging-wall 
side of dipping ruptures, is not well constrained by the data. For NGA-West2, Donahue and 
Abrahamson [2013] investigated these effects for response spectra using finite-fault simulations, 
and the results were incorporated in the Abrahamson et al. [2014] model. In a future update, a 
similar study for the EAS could be incorporated into this model. The effects of rupture directivity 
on the EAS is also a potential future research topic. Finally, the effects of nonlinear site response 
on the standard deviation are not accounted for in this model, which can be addressed in a future 
update. 
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Appendix A Residual Figures (Electronic) 

This appendix contains a larger set of residual figures. Between-event, between-site, and within-
site residuals are shown for the following frequencies: 0.1, 0.15, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 
8, 10, 15, 20, and 24 Hz. 

A.1	 Between-Event and Between-Site Residuals	

A.2	 Within-Site Residuals	

A.3	 Within-Site Residuals Binned by M	
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Appendix B MATLAB Program for the Effective 
Amplitude Spectrum GMM 
(Electronic) 

This appendix contains a MATLAB program to implement the EAS GMM. The program 
includes tables of model coefficients. The program is included as an electronic appendix. 
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