
PACIFIC EARTHQUAKE ENGINEERING
RESEARCH CENTER

Ground-Motion Directivity Modeling for 
Seismic Hazard Applications

Jennifer L. Donahue, Ph.D., P.E.
JL Donahue Engineering Inc., Kentfi eld, California

Jonathan P. Stewart, Ph.D., P.E.

Department of Civil and Environmental Engineering
University of California, Los Angeles

Nicolas Gregor, Ph.D.
Consultant, Oakland, California

Yousef Bozorgnia, Ph.D., P.E.
Department of Civil and Environmental Engineering

University of California, Los Angeles

Project Review Panel

Jonathan D. Bray, Ph.D., P.E., and Stephen A. Mahin, Ph.D.,
University of California, Berkeley

I. M. Idriss, Ph.D., P.E.
University of California, Davis

Robert W. Graves, Ph.D. and Nicolas Luco, Ph.D.
U.S. Geological Survey

Tom Shantz, P.E.
California Department of Transportation

PEER Report No. 2019/03
Pacifi c Earthquake Engineering Research Center

Headquarters at the University of California, Berkeley

May 2019
PEER 2019/03

May 2019



Disclaimer

The opinions, fi ndings, and conclusions or recommendations 
expressed in this publication are those of the author(s) 
and do not necessarily refl ect the views of the study 
sponsor(s), the Pacifi c Earthquake Engineering Research 
Center, or the Regents of the University of California.



 

Ground-Motion Directivity Modeling for 
Seismic Hazard Applications 

Jennifer L. Donahue, Ph.D., P.E. 
JL Donahue Engineering Inc., Kentfield, California 

 

Jonathan P. Stewart, Ph.D., P.E. 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 

Nicolas Gregor, Ph.D. 
Consultant, Oakland, California 

 

Yousef Bozorgnia, Ph.D., P.E. 
Department of Civil and Environmental Engineering 

University of California, Los Angeles 
 
 

Project Review Panel 

Jonathan D. Bray, Ph.D., P.E., and Stephen A. Mahin, Ph.D., 
University of California, Berkeley 

 

I. M. Idriss, Ph.D., P.E. 
University of California, Davis 

 

Robert W. Graves, Ph.D. and Nicolas Luco, Ph.D. 
U.S. Geological Survey 

 

Tom Shantz, P.E. 
California Department of Transportation 

PEER Report 2019/03 
Pacific Earthquake Engineering Research Center 

Headquarters at the University of California, Berkeley 

May 2019  



ii 

   



iii 

Executive Summary 

We reviewed five models for modifying the natural log mean and within-event standard 

deviation of ground-motion models (GMMs) to account for directivity effects in the near-fault 

environment. We found broad consistency for strike–slip ruptures, with positive and negative 

directivity effects for cases of rupture towards and away from a site of interest, respectively. We 

found substantial divergence among directivity models for reverse slip, with some providing 

maximum directivity for sites positioned to experience the peak alignment of rupture direction 

with the fault-slip direction (this occurs in the up–dip direction), while others optimize directivity 

based on the amount of fault rupture towards the site (even if the azimuth of rupture propagation 

does not align with the fault-slip direction).  

We found four of five NGA-West2 GMMs to be centered on a condition of null 

directivity. Therefore, we consider those GMMs suitable for use in combination with similarly 

centered directivity models.  

We present two deterministic methods for adjusting ground-motion hazard results for the 

effects of directivity: one modifies ground motions for a specified hazard level based on 

location-specific (relative to fault) changes in mean and standard deviation; and the second 

produces a directivity-compatible conditional mean spectra. We also provide recommendations 

for incorporating directivity effects into calculations within the hazard integral by either (1) 

modifying the mean and standard deviation of ground motion to approximately account for the 

effect of variable hypocenter location; (2) integrating over a location-specific distribution of the 

directivity parameter, which also indirectly accounts for variable hypocenter location; or (3) 

integrating directly over alternate hypocenter locations. 

 

Keywords: conditional mean spectra, directivity, ground-motion prediction, near-fault ground 

motions, probabilistic seismic hazard analysis 
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1 Introduction 

Ground-motion models (GMMs) estimate the log mean and standard deviation (𝜇௟௡ and 𝜎௟௡ if 

natural log is used) of earthquake ground-motion intensity measures (IMs) conditional on 

independent variables such as earthquake magnitude (M), site-to-source distance, and various 

site parameters. For horizontal-component ground motions, the 𝜇௟௡ and 𝜎௟௡ provided by modern 

GMMs are for the median-component IM, which is denoted the RotD50 component [Boore 

2010]. Similar definitions, such as geometric mean, have also been used. 

Ground-motion models are updated periodically to reflect new knowledge from study of 

recorded and simulated ground motions. The NGA-West2 project [Bozorgnia et al. 2014] is such 

a research effort, which focused on active shallow crustal regions. While NGA-West2 GMMs 

can be used to predict ground motions at short rupture distances from large M earthquakes, those 

GMMs are generally not formulated to capture near-fault effects, which include:  

1. Rupture directivity effect on RotD50-component ground motions. In general, directivity 

produces larger long-period ground motions when rupture occurs towards the site of 

interest and smaller motions when rupture propagates away from the site. 

2. Orientation of maximum component. Whereas the orientation of maximum-component 

ground shaking is generally random and variable across oscillator periods, for some near-

fault sites, acceleration response spectral ordinates for long periods are likely to be 

stronger than RotD50 in the fault-normal (FN) direction. This is sometimes referred to as 

polarization of ground motion in the FN (or nearly FN) direction. 

3. Pulses. Ground motions for sites subject to forward rupture directivity or “fling” step 

have an increased likelihood of containing pulse-like characteristics in their velocity-time 

series. 
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As seismic hazard analyses are typically performed for the RotD50 component of 

horizontal ground motion, Consideration (1) creates a potential for biased estimates of hazard 

when GMMs are used as-published for near-fault sites. Strategies for removing this bias are the 

subject of this manuscript. Considerations (2) and (3) affect ground-motion selection and 

application of the motions to structural models; guidelines for addressing these effects can be 

found in Chapter 16 of ASCE 7-16 [ASCE 2016] and in Chapter 3 of the Tall Buildings 

Initiative report [PEER 2017]. 

While this document emphasizes the topic of rupture directivity, it should be recognized 

that fling step effects also have the potential to affect near-fault ground motions. Currently 

available models consider its effects as modifications to ground-motion time series [Kamai et al. 

2014; Burks and Baker 2016]. Hence, our recommendation is to perform hazard analysis in 

consideration of directivity effects and, as appropriate, modify selected time series for fling step 

effects. 

To address the potential for bias in the RotD50-component (or similar definitions, such as 

geometric mean) ground motions, engineering practice has applied modifications to the moments 

from GMMs to account for directivity effects. Some models that apply these modifications 

include: Somerville et al. [1997] and Abrahamson [2000] (pre-NGA-West1); Spudich and Chiou 

[2008] (NGA-West1); and a series of models summarized in Spudich et al. [2014] from NGA-

West2. 

Table 1 lists five models for directivity developed in NGA-West2 along with their key 

attributes (model explanations provided in Chapter 3). As described by Spudich et al. [2014], 

these model developers sought to address the principle problems with pre-NGA-West2 

directivity models as follows:  

1. Sampling bias: The near-fault sampling of data in NGA-West1 was biased towards sites 

with forward directivity. Therefore, GMM medians at close distance reflected a degree of 

forward-directivity effect. We refer to this subsequently as a problem of centering, i.e., 

the GMM median is not centered on a null directivity effect. The term can also be applied 

to the directivity models: do they produce on average (i.e., for the central value of their 

directivity parameter) a null change in 𝜇௟௡? 

4. Source dimension normalization: Some pre-NGA-West2 directivity models normalized 

the along–fault distance over which rupture propagates towards a site by the full fault 
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Table 1  Attributes of NGA-West2 directivity models. 

 

Model 
Bayless and 
Somerville 

(2013): bay13 

Chiou and 
Spudich /Chiou 

and Youngs 
(2013): cscy 

Rowshandel 
(2013): row13 

Shahi and 
Baker (2013): 

sb13 

Spudich and 
Chiou (2013): 

sc13 

Directivity term fgeom DPP ξ s, θ, d, Φ IDP 

Data used for 
development 

NGA-West2 
flatfile, no sims 

NGA-West2 
flatfile, FF sims 

NGA-West2 
flatfile, FF sims 

NGA-West2 
flatfile, records 

1-8163 

NGA-West2 
flatfile 

Period range 0.5–10 sec 0.4–10 sec 0.3–10 sec 0.6–10 sec 0.5–10 sec 

Bandwidth1 Broadband 0.5545 0.6 0.61 0.6132 

M range 5.0–8.0 5.5–7.9 5.5–8.0 5–7.9 5.75–7.9 

M taper 5.0–6.5 5.5–6.3 None n/a2 None 

Distance range 

Rrup 0–200 km Rrup 0–70 km 

Rrup 0–40 km (1 
sec) 

0–86 km (10 sec) 

Rrup 0–-70 km2 Rrup 0–70 km 

Distance taper (L or W)/2 to 

(L or W) 
40–70 km 

Taper applies to 
last half of Rrup 

range 
n/a2 40–70 km 

Distance 
qualifier 

Closest point Direct point 
Integration over 
rupture surface 

Closest point Closest point 

Centered No Yes Yes Yes Yes 

Components of 
motion 

RotD50, FN, FP RotD50 RotD50 RotD50, FN3 RotD50 

Physical basis Intuitive model Isochrone Intuitive model Intuitive model Isochrone 

Discontinuous 
fault segments 
allowed?  

No Yes Yes No Yes 

Reverse/ normal 
fault distinction 

No No Yes No No 

1 For narrow-band models, bandwidth taken as log standard deviation of pulse period, Tp. For broadband models, bandwidth is 
undefined.  

2 sb13 model does not have linear tapers to zero adjustment at a specific magnitude and distance. Magnitude and distances ranges 
are provided here based on the range of values associated with identified pulse-like motions, to approximately represent the ranges 
over which the model may predict an adjustment. 

3 Model for FN/RotD50 in Shahi and Baker [2014]. 



5 

 

2 Current Practice 

The traditional understanding of rupture directivity is as follows: the propagation of rupture 

toward a site at a velocity that is almost as large as the shear-wave velocity and with a slip 

direction that coincides with the direction of rupture causes most of the seismic energy from the 

rupture to arrive in a single large pulse of motion at the beginning of the record [Benioff 1955; 

Boore and Joyner, 1978; Singh 1985; and Somerville et al., 1997]. An early model for this 

process by Somerville et al. [1997] is illustrated in Figure 2. Two key aspects of this model are: 

(1) directivity parameters (Xcos and Ycos) represent the degree to which the component of 

fault rupture aligned with the slip direction is towards a site of interest (X and Y for strike– and 

dip–slip faults, respectively) and the effect of the along–fault radiation pattern (cosine terms); 

and (2) it modifies response spectral ordinates using functions conditional on directivity 

parameters. Abrahamson [2000] modified the model to saturate the directivity effect for Xcos > 

0.4 and to reduce directivity effects through the use of tapers for distances > 30 km and M < 6.5; 

see also Bozorgnia and Campbell [2004]. 

Despite the presence of more recent models developed with far larger datasets (e.g., 

NGA-West1 and NGA-West2), our experience has been that in practice the Somerville et al. 

[1997] model in conjunction with the Abrahamson [2000] modification continues to be applied 

to analyze directivity effects on response spectral ordinates. It is most often applied a posteriori 

to modify the uniform hazard spectra in a subjective manner (specifically, analyst judgment is 

required on hypocenter locations that control directivity parameters). Listed below are three 

reasons why, in our opinion, the use of these models should be discontinued: 

 The models are developed from residuals of late-1990s era GMMs, which are not 

properly centered for near-fault conditions. 
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3 NGA-West2 Directivity Models 

Five directivity models were analyzed (and in some cases developed) by the Directivity Working 

Group as part of the NGA-West2 project. As shown in Table 1, these models are: Bayless and 

Somerville [2013] (bay13), Chiou and Spudich/Chiou and Youngs [2013/2014]) (cscy), 

Rowshandel [2013] (row13), Shahi and Baker [2013] (sb13), and Spudich and Chiou [2013] 

(sc13). Most of the NGA-West2 directivity models have not been significantly changed since 

their release in 2013. An exception is the row13 model for which a number of revisions from 

2013 through approximately 2016 were considered as part of the Panel’s work; additional 

subsequent refinements are described by Rowshandel [2018a,b]. These models were developed 

to estimate the change in the RotD50 ground motion at a site given a known hypocenter location. 

These models were previously compared and summarized by Spudich et al. [2013; 2014]. Our 

objectives in this section are as follows: (1) to explain several attributes that were considered in 

forming recommendations for practical application; (2) demonstrate differences in model-to-

model variability for various source types; and (3) provide recommendations for model selection 

given the current state of model development. 

3.1 Model Attributes 

The directivity models in Table 1 predict changes in 5%-damped pseudo-spectral acceleration 

(PSA) as a function of oscillator period. In natural log units, the additive change to the mean 

PSA is denoted fD. Most models are narrow-band such that the PSA change is concentrated 

around a pulse period, Tp, although the bay13 model is broadband for oscillator period T > 0.5 

sec. In these models, PSA changes are related to the effects of geometric parameters that, in 

different ways, capture (1) the degree to which rupture on the fault occurs towards the site of 

interest; (2) slip on the fault is aligned with the rupture direction; and (3) the extent to which the 
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site would be expected to see a pulse given the source radiation pattern. Further details on these 

parameters are provided in the source reports. A brief summary for each follows: 

 The bay13 model is parameterized similarly to the Somerville et al. [1997] model 

(Figure 2), except that the dimension of the fault rupturing towards the site is used 

without normalization. Effects (1–3) above are considered. 

 The cscy model is rooted in isochrone theory [Bernard and Madariaga 1984; Spudich 

and Frazer 1984, 1987], with the fault represented as a line source between the 

hypocenter and the direct point (PD), which is defined in consideration of the site 

location as shown in Figure 4. In that figure, PP indicates the projection of the site to 

the plane containing the fault on a line perpendicular to that plane. The direct point is 

defined by the intersection of a line connecting the hypocenter (PH) and PP with the 

edge of the ruptured fault. Fault slip along the line source occurs at the rake angle. 

The effects of slip direction are accounted for by a radiation pattern term computed as 

the average over the source length. Directivity is associated with the component of 

slip that aligns with the line source. 

 The row13 model uses a geometric parameter computed as the weighted sum of two 

dot products for a given section of the fault. The first dot product is computed from 

the fault-to-site vector and a vector representing direction of rupture. The second dot 

product uses the fault-to-site vector and slip vector. When these weighted sums for a 

given section of the fault are summed over the fault surface (for a given site), 

directivity parameter  is obtained. The directivity parameter  is scaled to attain a 

maximum value of +1 when the directions of rupture and slip are both toward the site. 

As long as the fault-to-site vector and slip vector both have a component toward the 

site, however small,  has a non-zero value in the range (+0, +1) and directivity 

effects exists. If either component does not exist, no directivity effect is predicted. 

 The sb13 model, which is similar to Shahi and Baker [2011], describes the effects of 

pulses on PSA; for forward application, the PSA change is scaled by a model for 

pulse probability. Pulse probability, in turn, is related to geometric parameters similar 

to those in Figure 2, although like bay13, the fault dimension rupturing towards the 

site is not normalized. 



 

 

Figu

 

The sc13 

path in Fi

distance D

pattern is 

aligns wit

re 4 S
p
(P
p
ra
s
as

model is sim

igure 4 is no

D between p

taken from 

th the PH-to-

Schematic rep
oint (PD) and
PH). The cscy
ath) and its a
adiation patt
imilarly com
s represente

 

milar to cscy

ot used, the 

points PH (h

point PH an

-PC path.  

presentation
d closest poi
y model direc
alignment w
ern over tha
puted from t

ed by radiatio

11 

y in that it is

directivity p

hypocenter) 

nd directivity

n of ruptured
nt (PC) given
ctivity param
ith fault slip,
t length. The
the PH-to-PC 
on pattern at

s based in iso

parameter is

and the clo

y results from

d fault indicat
n site locatio
meter is base
, as represen
e sc13 mode
path and its 
t the hypoce

ochrone theo

s computed 

osest point (

m the comp

ting location
on (PS) and hy
ed on path PH

nted by the a
l directivity p
 alignment w
nter. 

ory. While th

from along–

(PC). A radi

onent of slip

ns of direct 
ypocenter 
H-to-PD (E-

average 
parameter is

with fault slip

he E-

–fault 

iation 

p that 

 

s 
p 



12 

An important model attribute listed in Table 1 is that of centering. As noted in Chapter 1, 

directivity model centering refers to whether a model produces on average (i.e., for the central 

value of their directivity parameter) a null change in ground motion. Directivity model 

developers have used two general approaches to achieve centering. One approach is to ensure 

that if the directivity term calculated for a rupture is averaged over potential hypocenters and 

“racetracks” having constant rupture distance, the resulting average should be zero. This is 

typically accomplished by simply taking the directivity parameter as the difference between its 

value for a point and the racetrack average, e.g., for cscy, we have: 

 
______

DPP DPP DPP    (1) 

where DPP is the point value, and 
______

DPP  is the racetrack average. The cscy and sc13 models are 

centered in this manner. 

A second approach to achieve centering is empirical. Models developed with this 

approach are regressed against ground-motion data and are centered with respect to the 

directivity effects implied by that data. Such models are best viewed as being conditionally 

centered in the sense that their centering depends on the degree to which the data itself is 

centered. The centering of the NGA-West2 GMMs at close distance—and by extension the data 

those models are based on—is investigated in Chapter 4. The sb13 and row13 models are 

centered in this manner. Our summary of model centering in Table 1 records a model as 

“centered” according to either approach. Only the bay13 model is not centered according to one 

of these approaches. The use of centered directivity models with GMMs is discussed 

subsequently. 

All of the directivity models in Table 1 apply tapers that reduce the directivity effect at 

large distances and/or small magnitudes. As shown in Table 1, only bay13 and cscy apply 

magnitude tapers; all the other models with the exception of sb13 apply distance tapers. Bay13 

based their tapers on residuals analysis, while cscy based their magnitude taper on interpretation 

of simulated ground motions. In other cases, tapers either are not applied or are assumed from 

prior models.  

A commonly encountered problem with application of prior directivity models (e.g., 

Somerville et al. [1997] and Spudich and Chiou [2008]) is fault complexity. Whereas the model 

development was conceptualized using relatively simple fault geometries (e.g., Figure 2), 
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applications may involve changes in strike and/or dip along their length as well as discontinuous 

segments. The NGA-West2 directivity models (Table 1) were developed with this in mind: all 

models allow changes in strike (generally < 90º) for contiguous segments along the fault length, 

and cscy and row13 allow offset fault segments (Table 1). Bay13 calculate the weighted average 

of the directivity adjustment terms fD for each segment using the seismic moments of the 

individual segments as the weights; hence, the weighting is based on slip distribution. A similar 

approach can be used for sb13 because this model uses the same directivity parameters as bay13. 

The cscy, row13, and sc13 models are based on geometric parameters that can readily span 

across fault segments. Figure 5 shows three examples of directivity parameters computed for the 

complex fault model of the 1999 Chi Chi, Taiwan, earthquake mainshock [Zeng and Chen 2001]: 

IDP for sc13,DPP for cscy, and  for row13. There is a relatively smooth variation of the 

DPP and  directivity parameters around the fault, which is an improvement over the stronger 

spatial variations of IDP (these features of IDP partially motivated development of the 

alternate DPP parameter). 
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3.2 Model-to-Model Variability 

Figures 6–8 show directivity model mean predictions for three rupture scenarios: 

1. Vertically-dipping strike–slip fault, rake = 180º, hypocenter near south end. M7.8 

(Figure 6). 

2. 45º-dipping reverse fault, rake = 90º, hypocenter at base near south end. M7.0 (Figure 

7) 

3. 45º-dipping oblique rupture, rake = 135º, M7.0 (Figure 8) 

All results are shown in arithmetic units [exp ( )]Df . The strike–slip results (Figure 6) have 

broadly similar patterns, with negative directivity near the south end of the rupture and positive 

to the north. The amplitude of the directivity effects vary to some extent between models, in 

particular whereas the bay13 directivity is relatively consistent for T = 1.0–10 sec (broadband), 

the other models are narrow band and hence vary more strongly with period. 

The reverse-slip scenarios have significant model-to-model variability, which can be 

understood by their parameterization of directivity. Models parameterizing directivity in a 

manner similar to Figure 2 (bay13, sb13), only consider fault dimension in the direction of slip, 

which is up–dip in this scenario. Because this dimension does not change along the fault strike, 

there is no variation along strike in the directivity until the ends of the fault are passed. In 

contrast, cscy, row13, and sc13 consider the component of slip in the direction of rupture, which 

allows directivity to accumulate both in the up–dip direction and the along–strike direction. This 

is most evident in the cscy and row13 models, which have the strongest directivity at the upper 

corner of the fault opposite the hypocenter. The use of the closest point in the sc13 model 

diminishes this effect relative to cscy and row13. All three models have strong along-strike 

variations in directivity. 

The oblique-slip scenario (Figure 8) shows a directivity pattern that is more similar to 

that for the strike–slip than the reverse–slip cases. This demonstrates the stronger directivity 

from the along-strike component of rupture, which results from fault lengths generally exceeding 

fault widths for large M crustal events. 
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3.3 Recommendations for Directivity Model Selection 

We consider each of the models listed in Table 1 to be a defensible choice for modeling of 

rupture directivity effects on the RotD50 component of ground motion. However, we recognize 

that many users will prefer to select a reduced number of models for practical application. In 

contemplating these selections, we considered whether the physical parameterizations, the level 

of model documentation, and whether the model has been widely applied previously on 

engineering projects. It is also important for the selected models to reasonably capture epistemic 

uncertainties, a major driver of which is whether directivity is parameterized primarily using 

fault dimension parallel to the slip direction (referred to as Group 1 models: bay13, sb13) or fault 

dimension in the rupture direction (Group 2: cscy) (variations of which also consider the slip 

direction, and are also included in Group 2; row13, sc13). These effects are especially important 

for application to reverse-slip earthquakes. 

In consideration of these factors, we would ideally suggest that four models be used, 

providing two models in each group: bay13 and sb13 (Group 1), as well as cscy and row13 

(Group 2). Models in the first group have been used on engineering projects, and, in general, are 

reasonably well documented and understood within the earthquake engineering profession. 

Models in the second group have seen limited application (the only application of which we are 

aware is the row13 model in Shakemap [Worden and Wald 2016] [usgs.github.io/shakemap], are 

not as well documented, and, in general, are not familiar to earthquake engineers. Despite these 

drawbacks, these models have a sound physical basis and are needed to capture epistemic 

uncertainties. 

Given challenges with model implementation in hazard codes, we recognize that use of 

four models may be impractical and a reduced set of two models may often be needed. In this 

case, our current recommendation is to use bay13 and cscy, which stems in part from the extent 

to which they have been implemented in prior work and have a history of being subjected to 

project-level peer review. 

The primary motivation for not selecting sb13 in the reduced set is the linking of 

directivity to pulse probability; we consider these two issues as not necessarily being fully 

correlated (e.g., it is possible to have a directivity effect on PSA without detectable pulse features 

in the time series). The motivation for not including sc13 is that the DPP parameterization in 

cscy has to some extent replaced the IDP parameterization in sc13. Although the row13 model 
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has many attractive features, its implementation has been limited. All of the models have 

attractive features and we hope to see them develop further and find utilization in practice in the 

future.  
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4 NGA-West2 Ground-Motion Model Centering 

Recall from Chapter 1 that two centering issues are at play when using directivity models with 

GMMs. In the previous section we described centering of the directivity models. Here we 

address the related issue of GMM centering for the prediction of near-fault ground motions. 

Four of the five NGA-West2 GMMs do not include a directivity term [Abrahamson et al. 

2014; Boore et al. 2014; Campbell and Bozorgnia 2014; and Idriss 2014], whereas Chiou and 

Youngs [2014] incorporate the cscy directivity model. Because cscy is centered, when the Chiou 

and Youngs [2014] GMM is applied with DPP = 0, it presumably produces directivity-neutral 

ground motions. By comparing model predictions for other GMMs to Chiou and Youngs [2014] 

(with DPP = 0), we evaluated the extent to which these models may also estimate directivity-

neutral ground motions such that they also could be considered as approximately centered. 

Figure 9 illustrates ground-motion selection among the five GMMs for the approximate 

range of conditions relevant for near-fault ground motions: M > 6.5 and distance Rrup < 40 km. 

Other than Idriss [2014] (for which most soil recordings were not selected), data selection among 

the remaining models was similar. This similarity of the datasets is important because it suggests 

that differences between Chiou and Youngs [2014] and other GMMs (with exception of Idriss 

[2014]) are unlikely to result from differences in the underlying data but rather from the model 

formulation. 

Figure 10 compares GMM median predictions for reference rock (VS30 = 760 m/sec) for 

the ASK, BSSA, CB, CY, and Idriss models using the same three scenarios considered in 

Figures 6–8. These plots and many others for different scenarios generally do not support a 

finding of systematic bias of the CY model relative to the others at close distance. One exception 

is for oscillator periods of 5 and 7.5 sec, where CY plots below the others for distances >  3–5 

km. If this difference were a result of implicit directivity (from lack of centering) in non-CY 
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4. Mean of DPP values for events with ≥ 10 recordings and Rrup < 20 km: 0.13 ± 0.035 

(14 events) 

These small values of mean DPP indicate that the data sampling of near-fault records is 

not biased (i.e., on average, the data reflect a directivity-neutral condition). For reference, a value 

of DPP = 0.1 provides a maximum change in natural log ground motion of approximately 

0.025 for 3-sec spectral acceleration. Our conclusion, based on the model comparisons and mean 

DPP checks, is that non-directive NGA-West2 models ASK, BSSA, CB, and Idriss can be 

considered to reflect a directivity-neutral condition. 
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5 Application in Seismic Hazard Analysis 

We have defined five alternative approaches by which rupture directivity effects, computed 

using models of the type in Table 1, can either be directly incorporated into probabilistic seismic 

hazard analysis (PSHA) or can be used to adjust PSHA results developed using relatively 

standard (without directivity) GMMs. These approaches consider alternate hypocenter locations 

within the finite area of a fault rupture in different ways. Those alternate hypocenters produce 

some degree of ground-motion variability, termed 𝜙ௗ௜௥. The symbol  is used because it 

modifies the within-event variability in hazard calculations. Hypocenter locations and their 

associated ground-motion variabilities (𝜙ௗ௜௥) are not considered in conventional PSHA. In 

concept, the availability of additional information on hypocenter location and its effect on 

ground motions may reduce within-event variability (𝜙௟௡); because this effect is sufficiently 

small (and poorly developed) in the literature, it is not considered herein. The alternative 

methods, along with a baseline condition in which directivity is not considered, are described in 

the following subsections. 

5.1 Baseline Directivity Neglected 

Our baseline is composed of a PSHA that neglects directivity. This is typically calculated by 

either using: (1) GMMs that do not consider directivity; or (2) GMMs that include a directivity 

parameter, but with the value of the parameter set at the central value.  

Figure 11 shows the location of reference sites in Hayward and Richmond, California. 

The Hayward site is located 0.5 km off the fault near the center of the fault. The Richmond site is 

located 0.5 km off the fault and 10 km south of the northern end of the fault. We performed 

PSHA using the ASK, BSSA, CB, and CY GMMs with the UCERF3 source model [Field et al. 

2013]. The site conditions were taken as VS30 = 270 m/sec and default basin depths. Figure 12(a) 

and 12(b) show hazard curves for PSA at periods of 1, 3, and 10 sec for Hayward and Richmond, 
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from Step (2) produces directivity effects at the site. As noted by Watson-Lamprey [2018], the 

effect of standard deviation change is often small. 

For the Hayward site shown in Figure 11, deaggregation results are shown in Figure 

15(a). The relative contribution of the Hayward fault to the 3.0-sec hazard at the 475 year return 

period is 81%. Using the composite distribution models by Watson Lamprey [2018], and the site 

location relative to the fault indicated in Figure 15(b), the spatial pattern maps provide 

0.048    and dir 0.0142  . These effects largely offset each other, and the resulting change 

on the uniform hazard spectrum is negligible in this case, as shown in Figure 15(c). The 

ordinates shown in Figure 15(c) follow the procedure given above for each spectral period and 

both return periods. Figure 15(d) shows that this site location has a stronger mean directivity 

effect using the Rowshandel model. To develop the composite distribution spectra in Figure 

15(e), we use 𝜙ௗ௜௥ from Watson-Lamprey, although the effect of applying this uncertainty is 

very small. The larger mean directivity effect ( 0.060)    from the Rowshandel model is 

apparent in the spectra [Figure 15(e)], which are appreciably increased relative to the non-

directive spectra for periods greater than 1.0 sec.  

For the Richmond site shown in Figure 11, deaggregation results are shown in Figure 

16(a). The relative contribution of the Hayward fault to the 3.0-sec hazard at the 475 year return 

period is 74%. Using the composite distribution models by Watson Lamprey [2018], and the site 

location relative to the fault indicated in Figure 16(b), the spatial pattern maps provide 

0.03   and dir 0.0471  . The resulting change on the uniform hazard spectrum is again 

small, as shown in Figure 16(c). This occurs because the composite distribution model only 

provides significant forward directivity off the end of the fault, and the Richmond site is about 5 

km inward from the end of the fault. The composite distribution spectra for the Rowshandel 

model are developed as described above, with the mean directivity effect being 0.068  . As 

with the Hayward site, the directivity effect is stronger when the Rowshandel model is used, 

although the differences between the two sites is modest. 

The deterministic application of the change in mean and standard deviation that is 

proposed in this section is an approach that is suggested by the authors of this report and 

endorsed by the Panel. No endorsement by the developers of the underlying relations (Jennie 
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Watson-Lamprey and Badie Rowshandel) is implied. Their development of these procedures was 

intended for a different implementation approach (Option 3, Section 5.3). 

Option 2. Scenario Event Incorporating Directivity: The conditional mean spectrum 

(CMS) [Baker 2011] is sometimes used to provide a more realistic representation of seismic 

demand for a particular structure than the UHS. The CMS is computed for a scenario event 

identified through disaggregation of the hazard at a matching period (T*) where the CMS 

ordinate matches the uniform hazard spectral ordinate. As such, the scenario applies for a 

specific magnitude and distance, which can usually be attributed to a particular fault. We suggest 

the following modification of the scenario event for the effects of directivity in the CMS 

computation: 

        ln ( )|ln ( *) ln ( ) ln( ), , , , , , , , * *PSA T PSA T PSA T D TR F site f R F T T T T        M M h  (3) 

where ln ( )|ln ( *)PSA T PSA T is the CMS ordinate at period T; ln ( )PSA T  is the natural log mean ground 

motion from a non-directive GMM; M and R are the magnitude and distance for the scenario 

event, respectively; F represents the style of faulting for the source of that event; site represents 

suitable site parameters; h represents an assumed hypocenter location used for calculation of the 

directivity term; *, ( )Df T  is the mean epsilon value from disaggregation at matching period 𝑇∗ 

(which causes the CMS ordinate at 𝑇∗ to match the UHS); and *( , )T T  is the correlation 

coefficient between PSA ordinates at different oscillator periods; see Baker and Jarayam [2008]).  

Equation (3) has been modified from the standard CMS calculation through the use of the 

additive 𝑓஽ term, which requires the specification of a hypocenter location. Previous studies 

[e.g., Abrahamson [2000]) have shown that if the return period of essentially full-segment 

ruptures on a fault is substantially less than the return period of ground motions being considered 

in the hazard analysis, the hazard will be controlled at long periods by scenarios producing 

forward directivity. Until further research can be completed to provide more detailed guidance, 

we suggest to conservatively assume that the hypocenter is located relative to the site at the 

furthest location along–strike for strike–slip earthquakes or along–strike and down–dip for dip–

slip earthquakes. Note that 𝜙ௗ௜௥ does not appear in Equation (3); this is because the directive 

CMS applies for a single (assumed) hypocenter. 
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Returning to the examples introduced in Figure 11, the baseline (directivity-neutral) 

UHS, their associated (directivity neutral) CMS using a matching period of 3 sec, and CMS 

computed using Equation (3) in which rupture is assumed to occur from the southern-most end 

of the Hayward fault towards the sites are plotted in Figure 17. The bay13 directivity model was 

used for this calculation. As expected, the directive CMS at long periods has spectral ordinates 

exceeding those from the non-directive CMS. Note that the directive CMS ordinate at 𝑇∗ does 

not match the UHS if the 𝑓஽ correction at that period is non-zero. Relative to the non-directive 

CMS, the increase at 𝑇∗ (3.0 sec) is larger than that observed with the composite distribution 

approach (approximately 10% for Hayward site and 20% for the Richmond site). 

We recognize that some engineers prefer the use of the UHS to the CMS for use in 

seismic demand characterization. Other publications discuss the relative merits of each approach; 

see NIST [2011] and Haselton et al. [2017]. For the present application of incorporating 

directivity into a posteriori spectra, the CMS is preferred because the scenario event is defined 

from deaggregation of a specific IM, which is inherently compatible with the use of a 

conditioning period in CMS. Nonetheless, an approach similar to that described above can be 

adapted to UHS under some circumstances. In cases where a single fault dominates the hazard at 

long periods, an approximate adjustment to the mean UHS can be made by adding (in natural log 

units) the 𝑓஽ term that is produced by the dominant fault for an assumed hypocenter location. 

The hypocenter would be assumed in a conservative manner, as described above. The result of 

this adjustment for the example sites are shown in Figure 18. 
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5.3 Incorporation of Directivity into Hazard Integral 

The standard hazard integral that is used for conditions where directivity is not considered can be 

written as follows for a single fault (modified from Kramer [1996]): 

 
0PSA ( ) [ , ] ( ) ( )M R

R

v psa P PSA psa r f f r d d r  M

M

m m m  (4) 

where PSA ( )v psa is the time rate of exceedance of target spectral acceleration level (psa), and 

0
M  is the time rate of earthquakes with M > M0. The integrations in Equation (4) are over 

magnitude and distance. A further integration over  is implicit to computation of the ground-

motion probability term. The standard hazard integral in Equation (4) is extended below to 

incorporate directivity effects by considering, directly or indirectly, variability in hypocenter 

location on the fault. 

Option 3. Modified Moments from Randomized Hypocenter: The adjustments to the 

natural log mean (Δ𝜇) and standard deviation 𝜙ௗ௜௥ produced by the composite distribution 

approach can be utilized within the hazard integral. These adjustments affect the mean and 

standard deviation of the probability density function for an IM as follows:  

 ln lnPSA PSA       (5) 

 2 2
ln ln dir      (6) 

where the prime () indicates the modified GMM moment, and Δ𝜇 and 𝜙ௗ௜௥ are evaluated for 

each fault considered in the hazard analysis using mapped values as in Figures 13–14 and the 

Appendix. Moments ln PSA  and 𝜎୪୬ are the natural log mean and standard deviation from a non-

directive GMM. This approach has not been implemented in hazard codes as of this writing. 

Option 3 requires only modest additional computational burden relative to a standard hazard 

analysis. Options 4 and 5 involve additional loops in the hazard integral and are more 

computationally intensive. Option 3 is the originally intended approach for implementation of 

the recommendations in Watson-Lamprey [2018]. 

Option 4. Directivity Parameter Randomization: An additional integration loop is added 

to the hazard integral to sample the range of the directivity parameter that is realizable given the 

site location relative to the fault. A suite of directivity parameters on racetracks around the fault 
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The resulting hazard integral can be written: 

 
0PSA ( ) [ , , ] ( ) ( ) ( ) ( )M R DP

R DP

v psa P PSA psa r dp f f r f dp d d r d dp   M

M

m m m  (7) 

Note that the ground-motion probability computation in Equation (7) includes conditioning on 

dp; the underlying model includes a non-directive GMM modified with a directivity model 𝑓஽௉. 

The use of location-specific probability density function ( )DPf dp  accounts for variability in 

hypocenter location. 

Option 5. Hypocenter Randomization: Relative to Equation (4), an additional loop in the 

hazard integral is provided based directly on hypocenter location, as follows: 

 ( ) [ | , , ] ( ) ( ) ( )PSA M R HYP

R

psa P PSA psa r hyp f f r f d drd    0M

M

m m mh h
H

 (8) 

where h represents hypocenter location, which affects the calculation of directivity parameters. 

Variants on Equation (8) have been presented previously by Abrahamson [2000], Chioccarelli 

and Iervolino [2013], and Spagnuolo et al. [2016]. Equation (8) is more computationally 

demanding than Options 1–4 due both to the looping over hypocenter locations and the 

computation of directivity parameters (and their effect on ground motions) for each location. 

Results of hazard calculations using Equation (8) are considered to be the most accurate, 

and, as such, it is useful to compare outcomes of more approximate procedures (e.g., Options 1 

and 2) to those for Option 5. For this purpose, we performed PSHA using the same GMMs and 

source model as for the non-directive case; see Figure 12. The directivity model used in the 

calculation is bay13, and the hypocenter distribution was taken as uniform. 

Figure 20 shows hazard curves at periods of 1, 3, and 10 sec and UHS for return periods 

of 475 and 2475 years for each site. Table 2 shows % changes in the 1.0-, 3.0-, and 10-sec hazard 

relative to the non-directive case for the two hazard levels. The results indicate an amplifying 

effect of directivity at long periods, which is slightly stronger for the Richmond site than the 

Hayward site. This occurs because ruptures producing forward directivity (i.e., originating near 

the ends of the fault) dominate the hazard, as found previously by Abrahamson [2000]. The 

effect of directivity is qualitatively similar in trend to that found in the Option 2, although 

without the spectral peak associated with the use of the CMS. The effect is markedly different 

from that found with Option 1. There are two potential causes of these differences: (1) the 
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approximation implicit to the composite distribution approach; and (2) the use of different 

directivity models in the two alternative composite distribution maps (cscy and row13). Of these, 

cause 1 is likely to be more significant, given the general similarity of directivity models for 

strike–slip faults (Figure 6). Based on these preliminary results, the use of the composite 

distribution approach may be unconservative for sites along (not off the ends of) strike–slip 

faults, like in the two example sites. Different results may be obtained for sites off the ends of 

faults. 

Table 2 For the Hayward and Richmond sites: percent change in spectral 
accelerations for two hazard levels when directivity is considered in the 
hazard calculation (change is computed relative to the non-directive 
hazard). 

Site and Return Period Sa (1.0 sec) Sa (3.0 sec) Sa (10 sec) 

Hayward, 475 year 10 7.7 10 

Hayward, 2475 year 11 9.5 16 

Richmond, 475 year 11 11 11 

Richmond, 2475 year 13 12 16 
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6 Conclusions 

This report reviewed the available directivity models, as developed in the NGA-West2 project 

and summarized in Table 1. Based on this evaluation, guidance for their implementation using 

probabilistic and deterministic procedures was provided. There are some notable differences in 

the parameterization of these models, with the principal difference being that some quantify 

directivity based strictly on the direction of the fault rupture propagation aligning with the slip 

direction, while others only consider the amount of fault rupture towards the site (even if the 

azimuth of rupture propagation does not align with the fault-slip direction). The significance of 

this difference is realized most strongly for dip–slip faults, where the former approach produces 

directivity in the up–dip direction, while the latter tends to accumulate these effects in the 

direction of rupture propagation provided it is not orthogonal to the slip direction. 

There is broad similarity between model predictions for strike–slip ruptures, but, 

consistent with previous studies, substantial differences are evident for dip–slip ruptures due to 

the different directivity parameterizations. We consider all of the models to be suitable for 

application to capture directivity effects on the RotD50 component of ground motion. We 

understand that a reduced set of models will typically be used for practical applications. To 

capture epistemic uncertainties in such a reduced set, it is important to include models with both 

types of directivity parameterization: (1) primarily using fault dimension parallel to the slip 

direction (bay13, sb13) or (2) primarily using fault dimension in the rupture direction (cscy) 

(variations of which also consider the slip direction, e.g., row13 or sc13). These differences are 

especially important for application to reverse-slip earthquakes. In consideration of these factors, 

we suggest that four models be used, providing two in each group: bay13 and sb13 for the first 

group) and cscy and row13 for the second. Models in the first group have seen widespread use 

by the engineering profession, and are generally reasonably well documented and understood. 

Models in the second group have not been widely applied within the earthquake engineering 
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profession and are not as well documented or understood, but they have a sound physical basis 

and should be represented in model selection to capture epistemic uncertainties. For cases where 

a reduced set of two models is needed, our current recommendation is to use bay13 and cscy, 

which stems in part from the extent to which they have been implemented in prior work and 

subject to project-level peer review. Further discussion of these recommendations is provided in 

Section 3.3. 

We present five alternative means by which directivity effects may be considered in 

ground-motion hazard analysis. Two of these are deterministic methods that modify PSHA 

results derived using traditional (non-directive) GMMs. The composite distribution approach 

considers the effect of variable hypocenter locations in location-specific (relative to fault) 

changes to the ground-motion mean and standard deviation, which in turn are used with 

disaggregation results to make approximate a posteriori ground-motion adjustments. The second 

deterministic method modifies the properties of scenario (conditional mean) spectra to account 

for rupture directivity. The three probabilistic methods consider the effects of variable 

hypocenter location within the hazard integral in different ways. Only one of these, in which 

hypocenter location is directly considered (at some computational cost), is implemented in 

hazard codes as of this writing. 

Implementation of the two deterministic methods and the fully probabilistic method for 

example sites along the Hayward fault show variable effects of directivity. Some caveats need to 

be considered when comparing these results, the most important of which is the fully 

probabilistic implementation uses a different directivity model from those used in the composite 

distribution approach. Nevertheless, given the qualitative similarity between models of 

directivity results for strike–slip earthquakes (Section 3.2), probabilistic versus deterministic 

method comparisons, while imperfect, are not without merit. 

The composite distribution approach as implemented using the Watson-Lamprey model 

substantially under-predicts the directivity effect relative to that from the fully probabilistic 

analysis for the two considered sites. This result occurs for sites located along strike–slip faults; 

different results would be expected for sites off the end of the fault (not considered in the 

examples presented here). The Rowshandel model, as implemented in the composite distribution 

approach, estimates directivity effects for along–fault sites in much better agreement with fully 

probabilistic analysis. The changes in spectral ordinates at 3.0 sec relative to non-directive 
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analysis are about 6–7% (similar to the ∆𝜇 values given in Section 5.2), which under-predicts to 

a less significant extent the directivity effects given in Table 2.  

The conditional mean spectra approach (Option 2), implemented with the hypocenter in 

an unfavorable position to produce a strong forward directivity effect, produces stronger 

directivity effects than either the composite distribution approach (Option 1) or the fully 

probabilistic analysis (Option 5). The increases at 3.0 sec of approximately 10% for the Hayward 

site and 20% for the Richmond site can be compared to those in Table 2 (8 to 10% for Hayward, 

11 to 12% for Richmond). Such differences are expected given the conservative assumption of 

hypocenter location made in Option 2. 
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Appendix Additional Scenarios for Change of 
Mean Ground Motion and Increase of 
Within-Event Dispersion for Use with 
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