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ABSTRACT 

The time-dependent seismic risk of bridges is assessed while accounting for the effect 
of aftershocks and the uncertainty in the damage state after a mainshock event. To achieve this, a 
Markov risk-assessment framework is adopted to account for the probabilistic transition of the 
bridge structure through different damage states and time-dependent aftershock hazard. The 
methodology is applied to three typical California bridge configurations that differ only based on 
their era of design and construction. Era 11, Era 22, and Era 33 designations are used for the 
three bridges, which are designed and detailed to reflect pre-1971, 1971–1990 and post-1990 
construction. In addition to mainshock-only evaluations (used as a benchmark to quantify the 
additional risk posed by aftershocks), pre-mainshock (to account for the uncertainty in the 
occurrence of mainshock and aftershock events) and post-mainshock (which are based on a 
conditioning mainshock event and bridge damage state) seismic risk assessments are performed. 
To support these assessments, a set of 34 pairs of ground motions from as-recorded mainshock–
aftershock sequences is assembled. Sequential nonlinear response history analyses (including 
incremental dynamic analyses) are used to obtain the response demands when the structural 
models of all bridges are subjected to mainshock-only records or mainshock–aftershock record-
pairs. Physical damage in both the mainshock and mainshock–aftershock environments is 
defined using the following mutually exclusive and collectively exhaustive limit states: Intact, 
Slight, Moderate, Extensive, and Complete. For both the pre- and post-mainshock assessments, 
the additional risk caused by aftershock hazard is found to be higher for the older bridges (i.e., 
Era 11 and Era 22) and more severe conditioning damage states. A direct correlation between the 
bridge’s age and the increase in seismic risk due to aftershock hazard was also observed for the 
pre-mainshock assessment. It is suggested that the proposed methodology be used to make 
informed decisions regarding the appropriateness and timing of bridge closures (partial and 
complete) following a seismic event while considering aftershock hazard. 
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1 Introduction 

Bridges are an essential part of transportation systems, and the mobility of emergency responders 
in the event of a seismic event is highly dependent on a functioning transportation network. 
Determination of the structural integrity and functionality of earthquake-damaged bridges is a 
critical part of post-event response and recovery. Due to their high rate of occurrence within a 
short time window after the causative mainshock, aftershocks could further hamper the 
functional restoration of bridges and, in addition, threaten their structural integrity after their 
lateral load-carrying capacity is reduced under the mainshock. 

Currently, the California Department of Transportation (Caltrans) uses a set of system-
level damage states as the basis for classifying the post-earthquake operability of bridges. The 
damage states are based on HAZUS [FEMA 2012] classifications (minor, moderate, extensive, 
and complete), and each one is assigned a “likely post-event traffic state” [Mangalathu et al. 
2016; Mangalathu 2017]. Despite HAZUS being the primary tool used as the basis for post-
earthquake decisions regarding the partial or complete closure of bridges, the extent to which 
knowledge of residual structural capacity and time-dependent aftershock hazard and risk, and 
how these factors inform these damage-traffic-state relationships is unclear.  

Although significant advances have been made in estimating bridge seismic vulnerability 
and risk under mainshock events (e.g., Mackie and Stojadinovic [2001]; Nielson [2005]; Mackie 
and Stojadinović [2006]; Banerjee and Shinozuka [2008]; Zhang et al. [2008]; Vosooghi and 
Saiidi [2010]Ramanathan [2012]; Mangalathu et al. [2017]; Soleimani et al. [2017]; Mangalathu 
and Jeon [2018]; and Mangalathu et al. [2018]), research to quantify the time-dependent 
vulnerability and risk in the aftershock environment is still in its infancy. A few studies have 
been carried out to estimate the vulnerability of bridges that have been damaged by mainshocks 
[Franchin and Pinto 2009; Alessandri et al. 2013; Ghosh et al. 2015; Jeon et al. 2016; and 
Omranian et al. 2018].  

Franchin and Pinto [2009] suggested an approach to determine when to open or close 
mainshock-damaged bridges in the presence of aftershock hazard by estimating the transition 
probability from a mainshock damage state to collapse state. The authors combined mainshock 
and aftershock fragilities with probabilistic seismic hazard analysis (PSHA) to assess the 
collapse risk, which was used as the basis for closure decisions; this methodology was applied in 
a case study of a viaduct bridge in Italy. 
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Alessandri et al. [2013] proposed a methodology for evaluating the feasibility of 
continuing bridge operations after a mainshock while accounting for the effect of aftershocks. 
The damage state of the bridge following the mainshock is estimated by combining the analytical 
fragility curves with information gleaned from in situ visual inspections. The authors proposed 
usability criteria for the bridge based on the expected aftershock risk. For California bridges, 
Jeon et al. [2016] investigated the effect of successive earthquakes on mainshock-damaged 
bridges. The study concluded that the additional damage to columns caused by aftershocks is 
more pronounced when the bridge undergoes higher mainshock damage states. The authors also 
evaluated the effect of various retrofitting strategies for mitigating aftershock vulnerability. 

Recently, Omranian et al. [2018] investigated the effect of skew angle and ground-motion 
orientation on the fragility curves of skewed bridges under mainshocks and aftershocks. The 
study revealed that the skew angle and angle of incidence have a significant influence on the 
aftershock fragility curves of a California bridge. Note, to date the aftershock studies for bridges 
in California have been limited to two-span bent bridges, and there have been no investigations 
on the effect of time-dependent aftershock hazard on the seismic risk. As noted in Mangalathu 
[2017], single-column bent bridges occupy a significant portion of the California inventory. 
Although several studies have highlighted the time-dependent nature of seismic hazard in the 
post-mainshock environment and its impact on the seismic risk evolution for buildings, none 
have been conducted on the time-dependent seismic risk of typical California bridges in the post-
mainshock environment. The specific objectives of the research reported herein was a follows: 

1. Select mainshock and aftershock ground motions for single-site time-dependent 
risk assessment of California bridges. 

2. Investigate the seismic risk in California highway bridges under mainshock-
aftershock sequences using sequential nonlinear response history analyses 
(RHAs). The first ground motion in the sequence will be used to induce a 
specified level of damage in the structure, and the second will be used to evaluate 
the response of the mainshock-damaged bridge. Post-mainshock states ranging 
from intact to imminent collapse are considered. These states will be used to 
define the possible damaged condition of the bridge after being subjected to 
mainshock or aftershock ground motions. The results from nonlinear RHAs will 
be used to populate the elements of a set of Markov transition matrices. These 
Markov matrices are central to the time-dependent bridge seismic risk analysis. 

3. Explore the effect of construction era on the time-dependent seismic risk of 
California bridges, which can be grouped into three categories based on the 
adopted design philosophy: constructed before 1971 (Era 11, hereafter), 
constructed between 1971 through 1990 (Era 22, hereafter) and constructed after 
1990 (Era 33, hereafter). To date, no studies have been carried out on the effect of 
these design eras on aftershock risk for bridges located in California . 
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The report is organized as follows: Chapter 2 outlines the ground-motion selection for 
mainshock and aftershock performance assessment. The seismic hazard evaluation (mainshock 
and aftershock) of a selected site in California is also presented. Chapter 3 outlines the proposed 
framework, and the nonlinear structural modeling approach is presented in Chapter 4. The results 
from the seismic risk evaluation are detailed in Chapter 5.
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2 Ground-Motion Selection and Probabilistic 
Seismic Hazard Analysis 

2.1 INTRODUCTION 

The best way to obtain reasonable estimates of a structure’s seismic response is to perform 
nonlinear RHAs using a representative set of ground motions based on the site of interest. The 
objective of the current study is to evaluate the seismic performance of individual bridges when 
they are subjected to a major mainshock event and subsequent aftershocks. As such, it is 
necessary to first recognize the likely differences in the attributes of mainshock and aftershock 
ground motions, and then select a representative group of record pairs. 

Significant differences in the frequency content of mainshock and aftershock ground 
motions have been reported in literature (Chiou and Youngs [2008]; Ruiz-García and Negrete-
Manriquez [2011]; and Abrahamson et al. [2013]). Several factors affect the characteristics of 
aftershock ground motions. Aftershocks are generally smaller in magnitude [Shcherbakov and 
Turcotte 2004] and, for the same site, have larger source-to-site distances (possibly as a result of 
having a smaller rupture area) than their causative mainshocks. Second, even when source and 
path differences are considered, there is evidence of a mild correlation between the 
characteristics of mainshock and aftershock records belonging to the same sequence [Boore et al. 
2014]. Selecting mainshock-aftershock (MS–AS) record pairs from the same sequence is 
considered “ideal” because the inherent relationship between the sequential ground motions will 
be explicitly captured. When considering other constraints that might rise in selecting ground 
motions for sequential RHAs (e.g., matching target magnitude (M), distance (R), and Vs30 to 
target a specific  value from hazard deaggregation), it may not be possible to find an adequate 
number of record pairs from the same sequence. Selection of MS–AS record pairs that do not 
necessarily belong to the same sequence or pairs of mainshock-only records (which are usually 
much more readily available compared to aftershock records) would allow access to a broader 
pool of ground motions, which has obvious benefits, but at the cost of possibly not preserving the 
within-sequence ground-motion correlations [Boore et al. 2014]. 

A few studies have investigated differences in the dynamic response of structures 
subjected to mainshock-mainshock (MS–MS) versus MS–AS ground-motion sequences. Goda 
[2012] compared the ductility demands imposed by MS–MS and MS–AS sequences. The MS–
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MS sequences were selected such that the distribution of the magnitudes of the events producing 
the second motion in the pair would match the aftershock magnitude distribution predicted by 
Omori’s law [Utsu et al. 1995]; the effects of different rupture distances were not considered. A 
third foreshock–MS–MS sequence was also considered (originally proposed by Hatzigeorgiou 
and Beskos [2009]) in which the foreshock and aftershock records are scaled versions of the 
mainshock records (by a factor of 0.85). The probability distribution of the peak ductility 
demands developed for a set of single-degree-of-freedom (SDOF) structures with different 
periods showed slight differences between responses obtained from the MS–AS record pairs and 
the MS–MS sequences generated based on Omori’s law; the triad sequence produced 
significantly higher peak ductility demands. In a separate study, Goda [2015] compared the 
collapse performance of a two-story wood-frame building under both MS–MS and MS–AS 
ground-motion pairs. In contrast to the earlier study [Goda 2012], the MS–MS sequence used the 
same records in the second event as in the first. Not surprisingly, the MS–MS sequence produced 
higher collapse probabilities than the one with MS–AS records. Ruiz-García [2012] conducted a 
similar study considering two low- and mid-rise steel frames, and reached the same conclusion. 

The difference in the frequency content of mainshock and aftershock ground motions has 
also been investigated in the development of recent ground-motion models (GMMs). Using a 
systematic approach to compare ground motions that allows for controlling for source and site 
characteristics (e.g., M and R), Boore et al. [2014]) examined the correlation of event terms from 
parent mainshocks and their children aftershocks using the PEER NGA-West 2 database [Chiou 
et al. 2008]. A mild correlation between the event terms was observed. No adjustment for 
aftershocks was included in the final functional form of their GMM as the difference between the 
event terms of mainshocks and average of event terms from aftershocks was practically zero and 
independent of magnitude. For the original NGA project [Chiou et al. 2008], functional forms 
used in some of the GMMs included a term to distinguish mainshocks from aftershocks. 
Abrahamson et al. [2013] found that the median spectral values of aftershocks at short periods 
were smaller than those from similar mainshocks, whereas the aftershock spectral ordinates were 
larger at longer periods (> 0.75 sec). 

As shown in Figure 2.1, Chiou and Youngs [2008] reached a similar conclusion, but the 
transition from lower to higher spectral ordinates (of aftershocks relative to mainshocks) was 
about 2.0 sec. Such a relationship between Sa values of mainshocks and aftershocks needs to be 
viewed in the context of the different M and R expected for these two event types. Whereas 
aftershock demands will generally be smaller (due to lower M and larger R), their spectral shape 
is different from that of mainshocks; see Figure 2.1. Chiou and Youngs also found that the style 
of faulting for aftershocks had a smaller influence on the predicted spectral values when 
compared to mainshocks, but the depth to top of rupture (ZTOR) had a stronger influence on the 
predictions made for aftershocks. 
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Figure 2.1 Comparing the spectra of mainshock and aftershock records with similar 
magnitudes obtained from the Chiou and Youngs [2008] GMM. 

2.2 RECORD PAIRS FOR RESPONSE HISTORY ANALYSIS 

Given the previously mentioned measurable differences in the frequency content of mainshock 
and aftershock ground motions and their implications for RHA, the mainshock–aftershock record 
pairs in this study are selected from ground motions that are specifically identified through the 
use of time and distance windowing algorithms, as the actual seismic sequences of major 
earthquakes [Knopoff and Gardner 1972; Wooddell and Abrahamson 2014]. The ground-motion 
pairs are from the Class 1 (mainshock) and Class 2 (aftershock) records of the Imperial Valley 
06, Northridge, Livermore, Coalinga, Landers, Mammoth Lake, Chalfant Valley, Whittier 
Narrows, Darfield, Umbria Marche, and Chi-Chi earthquakes, which are available in the PEER-
NGA-West2 database [Chiou et al. 2008]. A magnitude-dependent time window and a distance 
threshold of 40 km measured in terms of the centroidal Joyner–Boore distance [Wooddell and 
Abrahamson 2014] was used to identify the aftershock ground motions. The magnitudes of the 
events that produced the selected ground motions range from 5.80 and 7.62 for mainshocks, and 
5.01 and 6.46 for aftershocks. Pulse-like ground motions were excluded from the set of 34 record 
pairs. Table 2.1 summarizes the properties of the records in each ground-motion sequence. The 
response spectra of the mainshock and aftershock ground motions are shown in Figures 2.2 and 
2.3, respectively. 
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Table 2.1 Attributes of the mainshock-aftershock ground-motion sequences. 

Sequence 
ID 

Event name 

Mainshock ground motion 

 

Aftershock ground motion 

Mw R (km) 
Vs30 

(m/sec2) 
Mw R (km) 

Vs30 

(m/sec2) 

1 Imperial Valley 06 6.53 22 242  5.01 24 237 

2 Northridge 6.69 12 546  5.20 20 508 

3 Northridge 6.69 9 356  5.93 22 450 

4 Northridge 6.69 20 450  5.28 18 379 

5 Northridge 6.69 10 706  5.28 14 409 

6 Livermore 5.80 15 378  5.42 28 517 

7 Coalinga 6.36 24 275  5.09 24 467 

8 Landers 7.28 24 354  6.46 35 297 

9 Mammoth Lakes 01 6.06 13 537  5.69 14 537 

10 Chalfant Valley 02 6.19 22 371  5.44 24 303 

11 Whittier Narrows 5.99 10 267  5.27 22 316 

12 Whittier Narrows 5.99 20 321  5.27 24 297 

13 Whittier Narrows 5.99 15 371  5.27 23 271 

14 Whittier Narrows 5.99 18 301  5.27 21 347 

15 Whittier Narrows 5.99 11 329  5.27 17 325 

16 Whittier Narrows 5.99 17 241  5.27 19 345 

17 Whittier Narrows 5.99 25 303  5.27 34 318 

18 Whittier Narrows 5.99 19 412  5.27 29 400 

19 Whittier Narrows 5.99 7 969  5.27 17 371 

20 Whittier Narrows 5.99 0 401  5.27 12 545 

21 Umbria Marche 6.00 19 401  5.50 36 492 

22 Darfield 7.00 44 638  6.20 85 638 

23 Darfield 7.00 31 255  6.20 67 561 

24 Darfield 7.00 52 551  6.20 62 484 

25 Chi-Chi 7.62 33 348  6.20 36 379 

26 Chi-Chi 7.62 19 492  6.20 23 543 

27 Chi-Chi 7.62 39 573  6.20 41 492 

28 Chi-Chi 7.62 83 250  6.20 91 541 

29 Chi-Chi 7.62 53 789  6.20 60 573 

30 Chi-Chi 7.62 47 453  6.20 51 278 

31 Chi-Chi 7.62 48 438  6.20 53 573 

32 Chi-Chi 7.62 50 614  6.20 92 411 

33 Chi-Chi 7.62 60 484  6.20 77 573 

34 Chi-Chi 7.62 82 496  6.20 97 489 
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Figure 2.2 Individual and median response spectra for the mainshock ground motions. 

 

Figure 2.3 Individual and median response spectra of aftershock ground motions. 

The intensity measure (IM) used to represent and scale the ground motions is their 5%-
damped spectral acceleration at a period of 1 sec. Numerous prior studies have been dedicated to 
proposing ground-motion selection guidelines for use in nonlinear dynamic analysis, e.g., Kalkan 
and Chopra [2010] and ATC [2017]. These guidelines have mostly been focused on the selection 
criteria that would result in a less-disperse and unbiased estimate of the seismic performance of 
the structure being examined while minimizing the computational effort associated with the 
nonlinear dynamic analysis. While there are conflicting recommendations in terms of the impact 
of (M), (R), and Vs30 of ground motions without forward-directivity effects on the outcomes of 
nonlinear dynamic analysis [Bommer and Acevedo 2004; Shome et al. 1998], the spectral shape 
parameter () of a ground motion is often recognized as the parameter that has the most 
significant effect on structural performance [Baker and Cornell 2006; Haselton et al. 2009]. Prior 
studies of earthquakes that occur in California have suggested that ground motions with long 
return periods usually have a peaked spectral shape, with a positive  value that ranges between 1 
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and 2 [Haselton et al. 2009]. If the ground motion set used in RHA is selected without properly 
accounting for this peaked spectral shape, the seismic performance of the examined structure 
could be significantly underestimated. 

To ensure that the spectral shape of the ground motions used in the RHAs reflect the site 
of interest, the 34 record pairs were selected such that their  values would match the  value of 
the location of the bridges obtained from seismic hazard deaggregation [Bazzurro and Cornell 
1999]. 

2.3 PROBABILISTIC SEISMIC HAZARD ANALYSIS 

To develop mainshock hazard curves, conventional PSHA [Kramer et al. 1996] is performed 
while the aftershock hazard curves are generated using the approach suggested by Yeo and 
Cornell [2009]. Probabilistic seismic hazard analysis and aftershock PSHA (APSHA) are 
performed using source and magnitude models that are simpler than the USGS models but still 
account for all the sources that contribute to the seismic hazard at the site of interest. Seismic 
hazard analyses were performed for a high seismicity site in Southern California (33.996, -
118.162). The parameters that define the spatial distribution of the earthquake magnitudes and 
the time-dependent aftershock rate are adopted from the California model suggested by 
Reasenberg and Jones [1989]. The Boore and Atkinson [2008] ground-motion prediction 
equation (GMPE) was used to obtain the statistical distribution of the IM conditioned on the 
magnitude and distance. 

Following the work of Ramanathan [2012], the spectral acceleration at a period of one 
second, Sa1.0s, is adopted as the IM. The magnitude of the largest aftershock is assumed to be 
equal to that of the largest mainshock. The minimum magnitude is taken as 5 as events with 
smaller magnitudes are not likely to induce notable damage in bridge structures. The relationship 
that forms the basis of conventional (mainshock) PSHA is shown in Equation (2.1).  is the rate 

of occurrence of seismic events with magnitudes larger than 5.0 for source i and 
 is an indicator function whose value is 1.0 if  and 0.0 otherwise. 

When performing APSHA,  is replaced with  for each time interval k from Equation (3.4). 

  (2.1) 

The mainshock hazard curve shown in Figure 2.4 is developed for all faults contributing 
to the total seismic hazard at the site, whereas the aftershock hazard curve is only for the single 
fault that is the primary source of mainshock hazard at the assumed location. The APSHA hazard 
curve is limited to a single fault because the concurrent occurrence of multiple mainshocks that 
would trigger aftershocks on different faults is unlikely. The APSHA hazard curve is developed 
for a time window of one year starting immediately after the occurrence of the mainshock. A 

iv
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quick comparison between the PSHA and APSHA hazard curves in Figure 2.4 reveals 
substantially higher aftershock hazard compared to the mainshock hazard. 

 

 

Figure 2.4 Mainshock and aftershock (for 1 year after the occurrence of the 
mainshock) seismic hazard curves for T = 1.0 sec. 
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3 Markov-Based Risk Assessment Framework 

The current version of the performance-based earthquake engineering (PBEE) framework 
assumes that the state of a structure prior to the occurrence of a seismic event is known (usually 
the structure is assumed to be in the intact state), and the structure will always return to its intact 
state before the next earthquake occurs. When performing seismic risk analysis under major 
mainshock events, this is a reasonable assumption as the time interval between major mainshock 
events is usually long enough to allow for affected structures to be restored to their intact state. 

In the post-mainshock environment, structures that have sustained some level of 
structural damage are usually not repaired during the short time period immediately following 
the mainshock when the rate of occurrence of aftershocks is highest. This, coupled with the 
accumulation of structural damage under multiple post-mainshock events, adds to the uncertainty 
in determining the state of a structure before being subjected to each subsequent aftershock. As 
such, evaluating the seismic performance of structures subjected to sequential seismic events 
requires explicit consideration of the uncertainty in the state of the structure after being subjected 
to any of the events in a cluster comprising a mainshock and subsequent aftershocks. 

The probability of a bridge transitioning from one damage state to the next can be 
evaluated using a Markov process [Yeo and Cornell 2009]. A key assumption in the Markov 
process is that the state of the bridge under event i in the sequence is dependent only on its state 
under the event 1i  , and is independent of its states under the events that precede event 1i  . 
The uncertainty in the state of the bridge is considered through the Markov transition matrix 
[Equation (3.1)], whose elements represent the probability of transitioning between the r pre-
defined limit states. 

  (3.1) 

Pij in Equation (3.1) is the probability that the bridge transitions from damage state i (in 
response to the previous event) to damage state j when subjected to a new event. The Markov 
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transition matrix () has an upper triangular form since no repair measures are assumed to have 
taken place to restore the bridge to a less severe damage state. Diagonal elements in Equation 
(3.1) represent a “no-limit-state-transition” when the bridge is subjected to a seismic event. 

To calculate the  terms of the transition matrix  in Equation (3.1) during a time 

window  where is measured from the occurrence of the causative mainshock, the time 

window can be broken into small intervals such that the probability of occurrence of more than 
one aftershock during each interval is negligible. With this assumption, the  terms for a single 

seismic source in each interval  of the time window  can be calculated: 

 (3.2) 

where ( 1)ASP N   is the probability of occurrence for a single aftershock during each time 

interval , and  is the probability that 

the bridge would experience damage state j under the current seismic event given that it has 
already sustained damage state i when subjected to the preceding seismic event.  is the 

source-specific probability density function of the intensity measure (IM) that links the response 
of the bridge to the seismic hazard at its location and can be obtained through PSHA. 

It is usually assumed that the occurrence of seismic events can be characterized with a 
Poisson distribution. As such,  in Equation (3.2) can be calculated using Equation 

(3.3), where the mean rate of aftershocks during the time interval   can be 

obtained using Equation (3.4). More specifically, Equation (3.4) is used to calculate the mean 
number of aftershocks on a seismic source with minimum and maximum magnitudes of M0 and 
Mm, and is obtained by combining the modified Omori’s law for the daily rate of aftershocks and 
Gutenberg-Richter’s relationship for the magnitude distribution [Reasenberg and Jones 1989; 
Yeo and Cornell 2009]; Mm is usually taken as the mainshock’s magnitude. a and b are constants 
that characterize the magnitude distribution and c and  are constants that define the temporal 
decay in the number of aftershocks. 

  (3.3) 

  (3.4) 

The decline in aftershock seismic hazard with the elapsed time since the occurrence of 
the mainshock [Utsu et al. 1995] means that the Markov transition matrix of Equation (3.1) will 
be non-stationary, with elements that can be calculated through Equation (3.5). 
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  (3.5) 

At time step k after the occurrence of the mainshock, the cumulative probability that the 
structure is in damage state j—given that it has undergone damage state i under the mainshock—
is equal to the element on row i and column j of matrix Pk in Equation (3.6). 

  (3.6) 

Equations (3.1) through (3.6) provide a probabilistic framework to assess the seismic 
performance of bridges in the post- mainshock environment. The framework can be easily 
extended to perform seismic risk assessment due to sequential events in the pre-mainshock 
environment following the same logic and steps mentioned earlier in this section. 

Unlike the post-mainshock risk evaluation, the pre-mainshock environment considers the 
uncertainty in the occurrence of the mainshock and associated damage to the structure. This 
uncertainty can be incorporated into the Markov process by multiplying the aftershock limit state 
transition matrix in Equation (3.6) by a vector of values as shown in Equation (3.7). The 

vector of  values represents the mean annual rate of the structure experiencing damage state 

 under the mainshock ground motions. The summation in Equation (3.7) accounts for 

all the seismic sources (Ns) that contribute to the seismic hazard at the site of interest. 

  (3.7) 

Each element of the  vector obtained from Equation (3.7) can be used as the input for a 

Poisson (or exponential) distribution to calculate the limit state exceedance probabilities over any 
desired time window. 

As shown in Equation (3.8), the  terms can be obtained by subjecting the bridge to 

mainshock ground motions to induce the desired target level damage 

)], where  is the mean annual frequency of 

exceedance of the IM and can be obtained through mainshock seismic hazard analysis. 

  (3.8) 
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4 Bridge Nonlinear Structural Modeling and 
Limit State Definitions 

4.1 INTRODUCTION 

The aftershock risk assessment framework presented in Chapter 2 is implemented on a set of 
two-span single-column bent bridges with seat abutments. Two-span box-girder bridges make up 
a significant portion of California bridge inventory [Mangalathu 2017], and three bridges from 
different design eras (Era 11, Era 22 and Era 33) were considered. 

4.2 NUMERICAL MODELING 

The following section presents the modeling considerations for various bridge components, 
which can generally be categorized based on whether they are located in the superstructure or 
substructure. The superstructure (bridge deck) typically remains elastic during an earthquake and 
is therefore modeled using elastic beam–column elements; see Figure 4.1. 

4.2.1 Substructure 

4.2.1.1 Bents 

The bents are modeled using a combination of displacement-based beam–column elements and 
rigid links to facilitate moment and force transfer between the members of the bent. The finite-
element discretization of a single column bent is shown in Figure 4.2. 

4.2.1.2 Columns 

Columns are one of the most seismically vulnerable components in a bridge. In fact, most of the 
past earthquake-induced bridge failures have been attributed to column damage. Displacement-
based beam–column elements with fiber-defined cross sections were used to model the columns; 
see Figure 4.2. Fiber cross sections have the distinct advantage of incorporating unique material 
properties for different locations across a member’s cross section. For instance, confined 
concrete is used to represent the concrete behavior in the core section of the column, while 
unconfined concrete is used to represent the unconfined cover concrete. The Chang and Mander 
[1994] model is used to define the monotonic stress–strain curves of confined and unconfined 
concrete. 
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Figure 4.1 Numerical modeling of various bridge components. 

4.2.1.3 Abutments 

Abutments can be classified into two basic types: diaphragm abutments and seat abutments 
[Ramanathan 2012]. Diaphragm abutments are cast as being monolithic with the superstructure. 
As they engage the backfill soil during seismic action, they provide a good source of energy 
dissipation and reduce the likelihood of span unseating. Seat abutments provide a bearing 
support to the superstructure, which is restrained longitudinally by the abutment backwall and 
transversely by the piles and the shear key. When the deck is in contact with the abutment 
backwall in the longitudinal direction, the bridge’s stiffness and resistance to seismic action 
increases. As the superstructure moves away from the abutment, the primary resistance comes 
from the bearing pads, making it susceptible to unseating. The backwall of the seat abutment is 
typically designed to fail under impact and passive response before damaging forces are 
transmitted to the lower portion of the abutment. 

Abutment response to seismic loading is dependent on pressure from the earthquake and 
the structure. The pressure of soil on the abutment is due to the longitudinal response of the 
bridge deck and includes passive and active resistance. Passive resistance is provided by the 
fraction between the backfill soil and pile surface (depending on the abutment footing type). It 
develops when the abutment moves toward the backfill soil. These frictional forces contribute to 
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coefficient of friction. The force-deformation response of the elastomeric bearing is shown in 
Figure 4.1. 

4.2.1.6 Shear Keys 

Shear keys help restrain the relative transverse movement between the deck and the bridge 
abutments. Earthquake-induced shear key can result from one of four mechanisms: shear friction, 
flexure, shear, and bearing [Megally et al. 2002]. The shear-key designs are categorized as 
isolated (emerging designs) or non-isolated (conventional designs) [Mangalathu 2017]. Since the 
isolated shear key is a new type of design and does not exist in the current inventory, this study 
will only focus on the non-isolated shear keys. The nonlinear model of the shear key is depicted 
in Figure 4.3. Fcap denotes the capacity of the shear key, which is computed as the product of the 
dead-load reaction and the acceleration [Caltrans 2012]. Megally et al. [2002] conducted a series 
of experiments on shear keys and found that Δmax – Δgap equal to 3.5 in. is the deformation at 
which the capacity of the shear key essentially degrades to zero. 

 

Figure 4.3 Shear key model. 

4.2.1.7 Pounding 

Seismic pounding refers to impact between bridge decks, between the deck and the abutment, or 
between the adjacent decks in a multi-frame bridge in the longitudinal direction. Impact occurs 
when the relative displacement between adjacent decks or the deck and the abutment exceeds the 
gap separating them. Significant pounding damage was observed at the I-5/SR-14 interchange 
during the 1994 Northridge, California, earthquake [Muthukumar and DesRoches 2006]. The 
contact element developed by Muthukumar and DesRoches [2006] was used to model the 
pounding between the superstructure and abutments. This material model explicitly accounts for 
the loss of hysteretic energy; see Figure 4.4. The maximum deformation, m, is assumed to be 
1.0 in. The yield deformation, 1, is assumed to be 0.10m. The stiffnesses, k1 and k2, are 
recommended to be 1022.3 kip/in./ft and 351.755 kip/in./ft, respectively. 
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Figure 4.4 Analytical model of pounding between the deck and abutment back wall. 

4.2.1.8 Foundation 

The foundation transmits service and ultimate loads from the structure to the underlying soil. 
Foundations can be classified as either shallow or deep. As the name implies, for shallow 
foundations, the loads from the structure are transferred to the underlying soil at shallow depths. 
Deep foundations (piles) are used when soil conditions are not favourable to shallow 
foundations. The type of bridge foundation is determined based on various factors, e.g., the 
condition of the soil, overhead clearance, existing utilities, and proximity to existing facilities 
such as buildings and railroads [Mangalathu 2017]. For the bridges considered in the current 
study, foundations are modeled using elastic translational and rotational springs placed at the 
base of the column. 

The numerical models for the various components are integrated to produce a global 
analytical model of the bridge. Displacement-based beam–column elements are used to model 
the columns. Translational and rotational springs are added to the base of the column to simulate 
the behavior of the footing. Zero-length elements capturing the response of the abutment backfill 
soil under bi-directional loading (abutment piles or frictional surface) are connected in parallel 
and to the transverse deck elements in the case of diaphragm abutments. Bearing-pad elements 
and pounding elements are also modeled with zero-length springs and are connected in parallel 
to the abutment springs in the case of seat abutments. 

4.3 CASE STUDY BRIDGE CONFIGURATIONS 

Figure 4.5 shows the details of the selected bridge and the associated geometric properties. The 
bridge has a deck width of 9.9 m with a span length of 30.5 m, and is supported by seat 
abutments with cast-in drilled concrete piles (with stiffness per deck width of 116 KN/m). The 
abutments are 7.5 m high , and elastomeric bearings are used to support the superstructure. 
Following the work of Mangalathu [2017], the coefficient of friction and stiffness of the bearing 
per deck are estimated as 0.30 and 1060 N/mm/m, respectively. The diameter of the column is 
1524 mm with a longitudinal reinforcement ratio of 0.02 (36 No. 11 bars). The transverse 
reinforcement in the Era 11 bridge includes No.5 bars with a pitch of 300 mm. In Era 22 and Era 
33, the spacing of the transverse reinforcement is 90 mm and 75 mm, respectively. 

The concrete compressive strength in the superstructure and column is 33.0 MPa, and the 
yield strength of the reinforcement is 465 MPa. The mass density of the concrete and damping 
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Table 4.1 Limit state descriptions for bridge columns [Mangalathu 2017]. 

Limit 
state  

Column state 
Column 

damage 

Column 

repair 

Column curvature ductility 

Median value 
Dispersion () 

Era 11 Era 22 Era 33 

Slight None or aesthetic 
EQ-related 

minor 
cracking 

Seal and 
paint 

0.8 1.0 1.0 0.35 

Moderate 
Minor repairs 

needed 

Minor 
spalling of 

cover 
concrete 

Epoxy 
inject, 
minor 

removal/pat
ch 

2.0 5.0 5.0 0.35 

Extensive 
Major repairs 
needed, but 

function intact 

Exposed 
core, 

confinement 
yield 

Major 
removal/pat

ch. Add 
jacket. 

5.0 8.0 11.0 0.35 

Complete 
Irreparable 

damage, function 
compromised 

Bar bucking, 
large drift, 

core 
crushing 

Remove/Re
place 

column (or 
bridge) 

8.0 11.0 17.0 0.35 
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5 Demonstration of the Proposed Framework 

5.1 MAINSHOCK AND AFTERSHOCK FRAGILITY CURVES 

Incremental dynamic analyses are performed on the bridge structural models, and the response 
demands are used to develop fragility curves. The demand at each IM is convolved with the 
capacity estimates to compute the probability of limit state exceedance at that IM. The fragility 
curve parameters (median and log-standard-deviation) are then obtained by applying the 
maximum likelihood method [Baker 2015]. The aftershock fragility curves are generated by 
performing sequential nonlinear RHAs, where the bridge models are subjected to the mainshock-
then-aftershock ground motions. Within this sequence, the mainshock ground motions are scaled 
to target specific damage levels: Slight, Moderate, and Extensive as described in Table 5.1. 

Figure 5.1 shows how the probability of exceedance for the Complete limit state is 
affected by mainshock damage. More specifically, Figure 5.1(a), 5.1(b), and 5.1(c) compare the 
aftershock fragility for the Complete limit state under Slight, Moderate, and Extensive 
mainshock damage, respectively. As shown in Figure 5.1(a), if Slight damage occurs under the 
mainshock, the effect on aftershock vulnerability for the Complete limit state is negligible for the 
Era 33 and Era 22 bridges. In contrast, if Era 11 bridge incurs Slight damage following the 
mainshock, the median spectral capacity for the Complete limit state is reduced by about 7% 
compared to when the bridge is intact following the mainshock. If the damage caused by the 
mainshock is Moderate or Extensive, the increase in vulnerability is measurable for all three 
Eras. For the Moderate damage state, (Figure 5.1b), the median spectral intensity corresponding 
to Complete damage is reduced by 17%, 9% and 5% compared to the Intact state (the bridge 
remains undamaged when subjected to mainshock), for Eras 11, 22, and 33, respectively. For 
Extensive mainshock damage, the reduction relative to the Intact state is 23%, 11%, and 7% for 
Eras 11, 22, and 33, respectively. 

Table 5.1 shows the median and dispersion values for the aftershock fragility curves 
corresponding to the four damage states when the bridge is in the Intact, Slight, Moderate, or 
Extensive damage states immediately following the mainshock. 
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Table 5.1 Median () and Dispersion () for mainshock and aftershock limit state fragility functions. 

Design 
eras 

Damage 

states 

Main shock 
fragility 

parameters 

Aftershock fragility 
parameters (no 
damage under 

mainshock) 

Aftershock fragility 
parameters (slight 

damage under 
mainshock) 

Aftershock fragility 
parameters 

(moderate damage 
under mainshock) 

Aftershock fragility 
parameters 

(extensive damage 
under mainshock) 

          

Era 11 

Slight 0.093 0.588 0.095 0.510 NA NA NA NA NA NA 

Moderate 0.238 0.513 0.241 0.504 0.208 0.503 NA NA NA NA 

Extensive 0.609 0.422 0.617 0.431 0.554 0.446 0.522 0.446 NA NA 

Complete 0.870 0.343 0.873 0.347 0.807 0.390 0.727 0.388 0.674 0.334 

Era 22 

Slight 0.117 0.479 0.117 0.479 NA NA NA NA NA NA 

Moderate 0.562 0.384 0.562 0.384 0.540 0.450 NA NA NA NA 

Extensive 0.804 0.355 0.804 0.355 0.788 0.393 0.772 0.350 NA NA 

Complete 1.004 0.335 1.004 0.335 0.983 0.364 0.914 0.323 0.890 0.358 

Era 33 

Slight 0.118 0.469 0.118 0.469 NA NA NA NA NA NA 

Moderate 0.562 0.383 0.562 0.383 0.544 0.418 NA NA NA NA 

Extensive 1.003 0.334 1.003 0.334 0.994 0.320 0.984 0.321 NA NA 

Complete 1.338 0.308 1.338 0.308 1.323 0.310 1.272 0.2994 1.247 0.377 
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Figure 5.1 Comparing mainshock and aftershock fragility curves corresponding to 
the (a) Slight, (b) Moderate and (c) Extensive damage states under 
mainshock. 

5.2 Assessing Bridge Aftershock Seismic Risk in the Pre- and Post-Mainshock 
Environments 

This section implements the framework presented in Chapter 3 to assess the seismic risk of the 
three bridges in the pre- and post-mainshock environment. For the latter, aftershock risk is 
assessed assuming that the mainshock has occurred, and the damaged state of the bridge is 
known. A period of 30 days following the mainshock is considered; the likelihood that repairs 
would occur during this time is not considered. A time increment of 0.001 day is used for the 
Markov chain analysis since the occurrence of more than one aftershock within such a small 
duration is highly unlikely. Similar to the underlying assumption used to develop the aftershock 
hazard curve (Chapter 2), the limit transition probabilities are obtained using Equation (3.5), 
assuming that the first event in the sequence occurred on the fault that has the highest 
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contribution to the mainshock seismic hazard; in this case it is the Los Angeles section of the 
Puente Hills fault.  

Figure 5.2 shows the time-dependent aftershock limit state occurrence probabilities 
obtained when a post-mainshock assessment is performed on the Era 11 bridge. Figures, 5.2(a), 
5.2(b), and 5.2(c) are plotted for a different conditioning damage state, i.e., Intact, Slight, and 
Moderate, respectively. Overall, the limit-state occurrence probabilities decrease—for the 
conditioning state—and increase sharply —for states more severe than the conditioning state—
immediately following the mainshock and converge to a constant value after a few days. The 
initial rise (or fall) is attributed to a high rate of occurrence of aftershock events in the early days 
following the mainshock. This observation is explained by the exponential decline in the rate of 
aftershock events during the days following the mainshock. 

Figure 5.2(a) shows that when the Era 11 bridge is in the Intact state following the 
mainshock, the probability that it remains there drops off (from a value of 1.0) to about 0.5 
within days following the event. The probability of Slight or Moderate damage occurring within 
the same duration is approximately 0.45 (50% of which is attributed to each of the two states), 
and the probability of more severe damage is negligible. As the severity of the conditioning 
states increases [e.g., Slight and Moderate as shown in Figure 5.2(b) and Figure 5.2(c), 
respectively], the likelihood of transitioning to a worst limit state increases. For example, 
compared to the Intact conditioning state, the likelihood of experiencing the Complete limit state 
within 30 days of the mainshock increases by 60%, 27%, and 16% in the Era 11, Era 22, and Era 
33 bridges when they sustain Moderate damage immediately following the mainshock. The 
conditional limit-state occurrence probabilities 30 days following the mainshock for all three 
bridges are summarized in Tables 5.2 to 5.4. 

Table 5.2 Conditional limit-state occurrence probabilities for the Era 11 bridge 30 
days after the mainshock. 

Aftershock 

Mainshock 
Intact Slight Moderate Extensive Complete 

Intact 8.E-01 2.E-01 2.E-02 3.E-04 2.E-05 

Slight  1.E+00 3.E-02 5.E-04 5.E-05 

Moderate   1.E+00 6.E-04 8.E-05 

Extensive    1.E+00 7.E-05 

Complete     1.E+00 
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Table 5.3 Conditional limit-state occurrence probabilities for the Era 22 bridge 30 
days after the mainshock. 

Aftershock 

Mainshock 
Intact Slight Moderate Extensive Complete 

Intact 9.E‐01 1.E‐01 3.E‐04 3.E‐05 6.92E‐06 

Slight  1.E+00 6.E‐04 4.E‐05 1.09E‐05 

Moderate   1.E+00 3.E‐05 1.04E‐05 

Extensive    1.E+00 1.84E‐05 

Complete     1.E+00 

 

Table 5.4 Conditional limit-state occurrence probabilities for the Era 33 bridge 30 
days after the mainshock. 

Aftershock 

Mainshock 
Intact Slight Moderate Extensive Complete 

Intact 9.E-01 1.E-01 3.E-04 6.E-06 7.E-07 

Slight  1.E+00 5.E-04 5.E-06 8.E-07 

Moderate   1.E+00 5.E-06 9.E-07 

Extensive    1.E+00 3.E-06 

Complete     1.E+00 

 

Next, the seismic risk assessment is carried out in the pre-mainshock environment (i.e., 
the mainshock–aftershock assessment) using the framework presented in Chapter 3. This type of 
evaluation accounts for the uncertainty in the occurrence of both mainshocks and aftershocks. 
Considering a 50-year service life and the aftershock hazard assumed insignificant beyond 30 
days after the mainshock, the damage state probability at each time step during the life span of 
the structure is obtained using an exponential distribution with input rates calculated using 
Equation (3.7). An underlying assumption in using the exponential distribution to calculate 
service-life seismic risk is that the bridge is repaired between clusters of mainshock–aftershock 
events. The low mean annual frequency of exceedance of the limit states (LS) summarized in 
Table 5.5 validates this assumption. More specifically, a low LS would allow repairs to be 
completed, and the bridge returned to the Intact state before potential triggering of a limit-state 
transition in response to the next cluster of events occurs. 

 



30 

 

Figure 5.2 Conditional time-dependent limit-state occurrence probabilities in the 
post-mainshock environment for the Era 11 bridge in the (a) Intact; (b) 
Slight; and (c) moderate damage states immediately following the 
mainshock. 

Figure 5.3 compares the time-dependent occurrence probabilities for the Slight and 
Complete limit states for the mainshock-only and mainshock–aftershock assessments. For the 
former, the effect of aftershocks is not included in the risk analysis. Table 5.6 summarizes the 
limit state occurrence probabilities at the end of the assumed 50-year service life. The results in 
Figure 5.3 and Table 5.6 suggest that neglecting the effect of aftershocks leads to a significant 
underestimation of the service damage for all three bridges. Additionally, the differences 
between the mainshock-only and mainshock–aftershock assessment results increases with the 
severity of the limit state and is more significant for the Era 11 bridge, where the 50-year Slight 
damage probability increases by 25% when aftershocks are considered. For Extensive damage, 
the 50-year occurrence probability increases by factors of 3.0, 2.5, and 2.0 for the Era 11, Era 22, 
and Era 33 bridges, respectively. 
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Figure 5.3 Comparing the time-dependent mainshock-only and mainshock–
aftershock occurrence probabilities for the (a) Slight and (b) Complete 
limit states for all three bridges. 

Table 5.5 Mean annual frequency of limit-state exceedance in the pre-mainshock 
environment. 

Bridge type 
 

Slight Moderate Extensive Complete 

Era 11 53.9 11.9 0.6 0.1 

Era 22 44.1 0.6 0.1 0.1 

Era 33 43.0 0.6 0.0 0.0 

 

Table 5.6 Limit state occurrence probabilities at the end of the assumed 50-year service life. 

Scenario Bridge 
Limit state occurrence probability 

Slight Moderate Extensive Complete 

Mainshock-only 

Era 11 0.744 0.191 0.009 0.002 

Era 22 0.606 0.010 0.002 0.001 

Era 33 0.595 0.012 0.001 0.000 

Mainshock-aftershock 

Era 11 0.932 0.447 0.027 0.007 

Era 22 0.890 0.028 0.005 0.003 

Era 33 0.883 0.031 0.002 0.001 

 
  

 310LS 
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6 Summary and Conclusions 

The need for functional bridges increases after a major seismic event because of the role they 
play in supporting the mobility of first responders. As such, the decision of whether to close a 
bridge temporarily or permanently after it has been damaged in response to a seismic event is 
critical. Although this decision is usually influenced by a myriad of factors, ideally the time-
dependent risk of further damage caused by aftershocks should be considered. 

This study presents a seismic risk assessment for three bridges designed during different 
eras subjected to the mainshock-only (aftershocks are not considered), aftershock (i.e., 
conditioned on the known state of the bridge following the mainshock) and mainshock–
aftershock (i.e., uncertainty in both the mainshock and aftershock is considered) hazard. The 
time-dependent nature of aftershock seismic hazard and the uncertainty in the state of the 
structures in the post-mainshock environment is considered through the use of a Markov-chain 
framework. 

The assessment is performed for three typical California bridges that were built during 
different design/construction eras: constructed before 1971 (Era 11), constructed between 1971 
through 1990 (Era 22), and constructed after 1990 (Era 33). Nonlinear structural models were 
developed for the three bridges. Based on an assumed location in Southern California, 34 pairs of 
mainshock and aftershock ground motions were selected for sequential nonlinear RHAs. Seismic 
vulnerability in the mainshock and aftershock environments was represented using four limit 
states, denoted as Slight, Moderate, Extensive, and Complete based on the bridge column 
damage and repair state. Fragility curves were generated initially considering the Intact state and 
varying level of mainshock damage (as defined by the aforementioned limit states). 

For all three design eras, the results from the vulnerability assessment revealed Slight 
damage under the mainshock had minimum impact on the aftershock performance. For the Era 
11 bridge, the effect on aftershock fragility was considerable under more severe forms of 
mainshock damage (e.g., when the bridge is in the Moderate and Extensive states following the 
mainshock). The Markov chain-modeling approach was used to perform seismic risk 
assessments in the pre- and post-mainshock environments. The non-conditioning limit state 
probabilities for the Era 11 bridge increased sharply within the first few days of the mainshock 
and plateaued soon after. This observation reflects the high rate of aftershock hazard drop-off 



34 

following the mainshock. For the same type of assessment, compared to when the bridge is 
intact, the probability of Complete damage within 30 days following the mainshock increased by 
60%, 27%, and 16% when the Era 11, Era 22, and Era 33 bridges, respectively, are subjected to 
Moderate mainshock damage. 

As noted earlier, the mainshock–aftershock risk assessment considered the uncertainty in 
the occurrence of both mainshock and aftershocks. Based on an assumed 50-year in-service 
period and a comparison between the results from the mainshock-only and mainshock–
aftershock assessments, the lifetime risk of damage was found to be significantly underestimated 
if aftershock hazard is ignored. This is especially true for the more severe damage states and 
older bridges. For instance, the probability of extensive damage within a 50-year period 
increased by a factor of 3.0 for the Era 11 bridge and 2.0 for the Era 33 bridge. For the Era 11 
bridge, accounting for aftershock hazard only increased the 50-year probability of Slight damage 
by 25%. 

Note that the results presented in the current study are for a single bridge configuration 
(e.g., single column bent and seat abutments) and a hypothetical site. Future studies should 
consider other bridge configurations (e.g., multi-column bents) and design attributes. 
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