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ABSTRACT

Building upon recent advances in OpenSees, the goals of this project are to expand the
framework’s Python scripting capabilities and to further develop its fluid–structure inter-
action (FSI) simulation capabilities, which are based on the particle finite-element method
(PFEM). At its inception, the FSI modules in OpenSees were based on Python scripting. To
accomplish FSI simulations in OpenSees, Python commands have been added for a lim-
ited number of pre-existing element and material commands, e.g., linear-elastic triangle
elements and beam–column elements with Concrete01/Steel01 fiber sections. Incorpora-
tion of hundreds of constitutive models and element formulations under the Python um-
brella for FSI and general OpenSees use remain to be done. Although the original scripting
language, Tcl, in OpenSees is string based, powerful, and easy to learn, it is not suitable
for mathematical computations. Recent trends in scripting languages for engineering ap-
plications have embraced more general, scientific languages such as Python, which has
evolved to a large community with numerous libraries for numerical computing, data anal-
ysis, scientific visualization, and web development. These libraries can be utilized with the
FSI simulation for tsunami analysis. Extending OpenSees to Python will help OpenSees
keep pace with new scripting developments from the scientific computing community and
make the framework more accessible to graduate students, who likely have learned Python
as undergraduates.
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1 Introduction

Recent hazards due to tsunami, storm surge, and hurricanes have caused significant dam-
ages to coastal infrastructure and bridges, such as 2005 Hurricane Katrina (Padgett et al.
2008) and 2011 Tohoku earthquake and tsunami (Suppasri et al. 2014). Indeed, the entire
West Coast of the U.S. is vulnerable to distant tsunami and a potential strong earthquake
associated with the Cascadia Subduction Zone, which would be followed by large tsunami
impact. Many researchers have requested information on the fluid–structure interaction
(FSI) simulation capabilities of OpenSees. In an effort to support the Pacific Earthquake
Engineering Research Center’s (PEER) program in performance-based tsunami engineer-
ing (PBTE), the existing performance-based earthquake engineering (PBEE) methodology
has been extended to FSI using the OpenSees platform to enhance its modeling ability,
computing accuracy, and efficiency.

As the primary simulation tool for PEER, OpenSees’ focus has been primarily in in
earthquake engineering and nonlinear structural analysis. Building upon existing func-
tions in OpenSees, the first objective of this project was to further develop the FSI module
to incorporate tsunami hazards into the analysis and assessment of buildings and bridges,
as well as for sequential earthquake and tsunami hazards. The FSI simulation capabil-
ities of OpenSees are based on the particle finite-element method (PFEM), which is a
Lagrangian-based approach that conforms to pre-existing structural formulations available
in OpenSees. By using the PFEM, the FSI analysis can be easily added in any existing
OpenSees scripts without modifying the structural models. This is especially useful for
researchers who have developed their structural models in OpenSees and want to test their
models with tsunami loading.

In addition to the development of FSI modules, the second objective of this project was
to expand the Python scripting capabilities of OpenSees, and make the framework more
accessible to new generations of users. From their inception, the FSI modules in OpenSees
have been based on Python scripting. To accomplish FSI simulations in OpenSees, Python
commands have been added for a limited number of the pre-existing element and ma-
terial commands, e.g., linear-elastic triangle elements and beam–column elements with
Concrete01/Steel01 fiber sections; that said, hundreds of constitutive models and element
formulations remain to be incorporated under the Python umbrella. Although the original
scripting language, Tcl, in OpenSees is string based, powerful, and easy to learn, it is not
suitable for mathematical computations. Recent trends in scripting languages for engineer-
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ing applications have embraced more general, scientific languages such as Python, which
has evolved to a large community with numerous libraries for numerical computing, data
analysis, scientific visualization, and web development. Extending OpenSees to Python
will ensure that OpenSees keeps pace with new scripting developments as they are added
by the scientific computing community.

The report will be organized in three main chapters. Chapter 1 introduces the back-
ground theories and algorithms, and the governing equations for the FSI analysis. The im-
plementation of the FSI module in OpenSees and its relationship with exiting framework
will be introduced in the Chapter 2. Chapter 3 focuses on the multi-interpreter interface in
OpenSees, from which the Python interpreter is implemented.
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2 Fluid-Structure Interaction

The FSI simulation in OpenSees was developed using the particle finite-element method 
(PFEM). Because the Lagrangian description has been widely used in structural analysis, 
the Lagrangian-based PFEM can be naturally coupled with existing structural formulations 
in OpenSees, leading to a monolithic system for the equations that govern FSI (Oñate et al. 
2004; Cremonesi et al. 2010). The monolithic approach solves the combined fluid and 
structural domains simultaneously, and ensures equilibrium and compatibility across the 
FSI interface between the domains.

The advantage of using the PFEM is that it overcomes the complexity of coupling 
fluid and structure methods separately via staggered schemes (Oñate et al. 2011). The 
PFEM is also less sensitive to the exact location of the fluid–structure boundary, which can 
be a drawback to domain decomposition methods. These two factors, the easy coupling 
ability and arbitrary location of the FSI boundary, are especially important for the buildings 
and bridges that comprise coastal infrastructure. In earthquake engineering, which was 
initially the driving force in developing OpenSees, structures are usually represented as 
frame elements that can move arbitrarily in response to ground motion. There are also 
hundreds of other types of elements in OpenSees, and researchers are continually adding 
new elements. The strength of using the PFEM is that it allows FSI to be embedded in the 
OpenSees framework without modifying the elements.

Another advantage of using the PFEM is the accurate approximation of the wave load-
ing and the interaction between fluid and structures. During a tsunami event, the interaction 
between tsunami waves and structures can be very complicated. The wave loading can-
not be easily determined with initial wave speed and height, but largely depends on the 
structural dimensions and response. Particles are used to track the movements of the fluid, 
including large fluid bodies, breaking waves, and diverged currents around the structures. 
A structure may experience impact from different directions and sometime even from op-
posite directions of the tsunami waves.

Considering that the users of OpenSees are mainly composed of structural and geotech-
nical engineers, the FSI module in OpenSees was designed so that the user can minimize 
the effort required in running an FSI analysis by easily incorporating the module in their 
current structural models. The users should be able to add few lines in their existing scripts 
to include the fluid model and to set FSI analysis options without worrying the meshing, 
computation, and the interaction algorithms. This chapter introduces the underlying gov-
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erning equations and finite-element discretization of the PFEM, the monolithic system of 
equations and fractional step solver of the FSI, and the mesh updating algorithms for the 
fluid and structure analysis.

2.1 Governing Equations

Conservation of linear momentum is enforced in both the fluid and structural domains, and 
can be written in the updated Lagrangian formulation as

ρv̇i =
∂σij

∂xj

+ ρbi (2.1)

where ρ is the material density, vi, xi, and bi are the velocity, coordinates, and body ac-
celeration vectors, respectively, and σij is the Cauchy stress tensor. Neumann boundary
conditions prescribe normal stresses on the surface, Γt,

σijnj = ti (2.2)

where ti is the surface traction, andnj is the unit vector normal to the boundary surface. The
velocity and displacement are dependent variables of coordinates, and Dirichlet boundary
conditions are imposed on displacements on the surface, Γv.

ui = up
i (2.3)

where up
i is the prescribed displacements. The intersection between Γt and Γv is the empty

set, and their union is the entire boundary of the computational domain. As the simulation
proceeds, the relationship between coordinates and displacements is

xi = x0
i + ui (2.4)

where x0
i is the initial coordinates. The stress–strain relationship for the structural domain

is assumed to be a general nonlinear function of displacement and velocity

σij = σij(ui, vi) (2.5)

With this general form, it is straightforward to incorporate hysteresis and viscosity
materials in OpenSees (Simo and Hughes 1998). For Newtonian fluids, the Cauchy stress
is decomposed into spherical and deviatoric portions.

σij = sij − pδij (2.6)

where δij is the Kronecker delta, and p = σii/3 is the average stress (pressure), which is
positive for compression. The deviatoric stress sij is defined in terms of the strain rate by

sij = 2µ

(
εij −

1

3
εvδij

)
(2.7)
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where µ is the viscosity, and εij is the strain rate tensor,

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.8)

Conservation of mass in the structural domain can be written as

ρJ = ρ0 (2.9)

where ρ0 is the density in the undeformed configuration, and J is the determinant of the 
deformation tensor as defined in Mase et al. (2009). Conservation of mass can be 
expressed as the divergence of the velocity field equal to the time rate of change in 
pressure,

εv = εii =
∂vi
∂xi

= −1

κ
ṗ (2.10)

where κ is the bulk modulus. For incompressible flow, κ = ∞, Equation (2.10) becomes

εv = εii =
∂vi
∂xi

= 0 (2.11)

Nonlinear structural response is defined by the governing equations of linear momen-
tum Equation (2.1), a general constitutive Equation (2.5), and mass conservation Equa-
tion (2.9). Likewise, the equations of linear momentum Equation (2.1), constitution Equa-
tion (2.7), and mass Equation (2.10) define the Newtonian fluid response.

2.2 Finite-Element Discretization

2.2.1 Structural equations

One of the challenges for the FSI computation in OpenSees is to make the FSI work with
all elements in the framework. With this in mind, no specific structural elements should be
assumed to discretize the structural governing equations in Equations (2.1), (2.5), and (2.9).
By assuming a general structural element and applying the standard Galerkin formulation
of the weighted residual method (Zienkiewicz et al. 2005), the discretized structural equa-
tions can be written as

Msv̇s +Ksvs + Fint
s = Fs (2.12)

where vs is the structural velocities, and Ms, Ks, and Fint
s and Fs are the structural mass

matrix, damping matrix, and internal and external force vectors, respectively. The internal
force vector is a general nonlinear function of displacements and velocities that accounts
formaterial and geometric nonlinearity for any type of element in OpenSees, such as beam–
column configurations, shells, and plates.
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2.2.2 Fluid equations

The same finite-element procedure can be applied to the equations governing fluids in
Equations (2.1), (2.7), and (2.10). The MINI element (Arnold et al. 1984) is used for a
mixed formulation of velocity and pressure to discretize the fluid domain. As a stable
linear element, the MINI element overcomes the Inf-Sup condition for fully or nearly in-
compressible fluids (Gresho 1998) shown in Figure 2.1

p1 p2

p3

(a) Pressure nodes

v1 v2

v3

v4

(b) Velocity nodes

Figure 2.1: The MINI element.

The bubble node in Figure 2.1(b) enhances the velocity field with a cubic term and
adds stability for the pressure interpolation. The discretized fluid equations can be written
as

Mf v̇f +Kfvf + Fint
f = Ff (2.13)

Mpṗ+GT
f vf = 0 (2.14)

where vf and p are the fluid velocities and pressures, and Mf , Kf , and Fint
f and Ff are

the fluid mass matrix, viscous matrix, and internal and external force vectors, respectively.
The fluid internal force vector corresponds to the pressure gradients.

Fint
f = −Gfp (2.15)

whereGf is the gradient operator, and the pressure mass matrixMp is valid only for quasi-
incompressible flow, whose bulk modulus, κ, is finite.

2.2.3 Monolithic system

As a monolithic system that governs FSI, the compatibility along the interface of FSI is
satisfied through the nodes connected to both the fluid and structural domains. These nodes
are identified as interface nodes, whose contributions appear in both fluid and structural
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equations. For the structural equation, the interface equations are extracted from Equa-
tion (2.12) and assigned additional i and s subscripts

Mssv̇s +Msiv̇i +Kssvs +Ksivi + Fint
s = Fs (2.16)

Misv̇s +Ms
iiv̇i +Kisvs +Ks

iivi + Fint
i = Fs

i (2.17)

where v̇i and vi are the acceleration and velocity vectors of the interface nodes, respectively.
Similarly, the interface equations are extracted from Equations (2.13) and (2.14) for the
fluid domain and given additional i and j subscripts

Mff v̇f +Kffvf −Gfp = Ff (2.18)
Mf

iiv̇i +Kf
iivi −Gip = Ff

i (2.19)
Mpṗ+GT

f vf +GT
i vi = 0 (2.20)

where the off-diagonal terms in the mass and viscous matrices,Mfi, Mif , Kfi, Kif , have
disappeared due to diagonalization of the mass matrix and formulation of the MINI ele-
ment. The interface equations in Equations (2.17) and (2.19) are combined to satisfy equi-
librium on the FSI interface. The combined monolithic system for the FSI can be written
as

Mssv̇s +Msiv̇i +Kssvs +Ksivi + Fint
s = Fs (2.21)

Misv̇s +Kisvs +Miiv̇i +Kiivi + Fint
i −Gip = Fi (2.22)

Mff v̇f +Kffvf −Gfp = Ff (2.23)
Mpṗ+GT

f vf +GT
i vi = 0 (2.24)

whereMii, Kii, and Fi are the combined matrices and vector at the interface

Mii = Ms
ii +Mf

ii (2.25)
Kii = Ks

ii +Kf
ii (2.26)

Fi = Fs
i + Ff

i (2.27)

The combined system in Equations (2.21), (2.22), (2.23), and (2.24) should be fur-
ther discretized in the time domain and solved using a nonlinear algorithm, which will be
introduced in the following sections.

2.3 Time-Domain Discretization

A Backward Euler time integration is employed for the time-domain discretization. The
displacement and acceleration are expressed in terms of the velocity at the current time
step, and the displacement and velocity at the previous time step,

7



un+1 = un +∆tvn+1 (2.28)

v̇n+1 =
vn+1 − vn

∆t
(2.29)

The linearization of Equations (2.28) and (2.29) gives the updated formula when the
velocity increment is computed:

uj+1
n+1 = uj

n+1 +∆t∆vn+1 (2.30)
vj+1
n+1 = vjn+1 +∆vn+1 (2.31)

v̇j+1
n+1 = v̇jn+1 +

1

∆t
∆vn+1 (2.32)

where n is the time step number, and j is the iteration number. The time integration of
pressures can be written in a similar form:

ṗn+1 =
pn+1 − pn

∆t
(2.33)

pj+1
n+1 = pj

n+1 +∆pn+1 (2.34)

ṗj+1
n+1 = ṗj

n+1 +
1

∆t
∆pn+1 (2.35)

Although using a different time integration is possible, the Backward Euler time inte-
gration is stable and keeps the original structure in the combined system.

2.4 Nonlinear Solution Algorithm

The combined system in Equations (2.21), (2.22), (2.23), and (2.24) is composed of non-
linear equations because of the general nonlinear material for structures and geometric 
nonlinearity for the fluid and structure. Solution of the nonlinear equations is obtained 
using the Newton–Raphson algorithm, which writes equations in the residual form:

rs = Fs −
(
Mssv̇s +Kssvs +Msiv̇i +Ksivi + Fint

s

)
(2.36)

ri = Fi −
(
Misv̇s +Kisvs +Miiv̇i +Kiivi + Fint

i −Gip
)

(2.37)
rf = Ff − (Mff v̇f +Kffvf −Gfp) (2.38)
rp = −

(
Mpṗ+GT

f vf +GT
i vi
)

(2.39)
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Following the procedure of the Newton–Raphson algorithm, the derivative of the resid-
ual is obtained with respect to the velocity and pressure unknowns, at which point the
velocity and pressure increments can be computed as follows:

KT


∆vs
∆vi
∆vf
∆p

 =


rs
ri
rf
rp

 (2.40)

where KT is the combined tangent stiffness matrix for the structural interface and fluid
velocities and pressures.

KT = −

(
∂
[
rs ri rf rp

]
∂
[
vs vi vf p

])−1

=


KTss KTsi 0 0
KTis KTii 0 −Gi

0 0 KTff −Gf

0 GT
i GT

f KTpp

 (2.41)

The matrices KTss and KTsi are tangents of the structural residual to the structural and
interface velocities:

KTss = −∂rs
∂vs

=
1

∆t
Mss +Kss +∆t

∂Fint
s

∂vs
(2.42)

KTsi = −∂rs
∂vi

=
1

∆t
Msi +Ksi +∆t

∂Fint
s

∂vi
(2.43)

Likewise, the matricesKTis andKTii are tangents of the interface residual to the struc-
tural and interface velocities:

KTis = − ∂ri
∂vs

=
1

∆t
Mis +Kis +∆t

∂Fint
i

∂vs
(2.44)

KTii = −∂ri
∂vi

=
1

∆t
Mii +Kii +∆t

∂Fint
i

∂vi
(2.45)

The matrix KTff , which is the tangent of the fluid residual to the fluid velocity, is not
connected to structural and interface tangents:

KTff = −∂rf
∂vf

=
1

∆t
Mff +Kff (2.46)
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The combined system, shown in Equation (2.41), connects the structural and fluid do-
mains through the interface pressure gradients matrixGi, which represents the wave load-
ing applied on the structures. The matrixKTpp is the tangent of the pressure residual to the
fluid pressures, which accounts for compressibility and stability of the fluid formulation.

KTpp = −∂rp
∂vp

=
1

∆t
Mp (2.47)

In each iteration of the nonlinear solution procedure, the velocity and pressure incre-
ments are computed by Equation (2.40), and the displacements, velocities, accelerations, 
and pressures are updated, as shown in Equation (2.30)–Equation (2.35). The conver-
gence is tested by checking the increment and residual vectors in Equation (2.40). If they 
are smaller than preset tolerances, the combined system in Equations (2.36), (2.37), (2.38), 
and (2.39) is considered to be satisfied, and the solutions are obtained for the current time 
step.

2.5 Various Solvers for FSI in OpenSees

The monolithic matrix in Equation (2.41) is ill-conditioned due to the coupling of the ve-
locity and pressure fields, making it difficult to obtain a stable numerical solution for the
incremental velocities and pressures. There are two solvers available in OpenSees to solve
Equation (2.40) efficiently, with a stable solution depending on assumptions of the fluid.
Each of them will be introduced in the following sections.

2.5.1 Incompressible fractional step solver

The fractional step method (FSM) is widely used in the PFEM (Oñate et al. 2004; Aubry
et al. 2006; Idelsohn and Oñate 2010; Idelsohn et al. 2009) to solve Equation (2.40). Be-
cause the FSM segregates the velocities and pressures into smaller systems of equations,
it is well-conditioned to overcome the difficulties in solving the combined system. By as-
suming incompressible and near-inviscid fluid in Equation (2.46), the viscous matrix Kff

can be ignored, and the mass matrixMff can be lumped. At which point, the tangent ma-
trix KTff becomes diagonal and trivial to invert; the solution of fluid velocity increments
are now available from Equation (2.40)

∆vf = ∆v∗f +K−1
TffGf∆p (2.48)

where ∆v∗f = K−1
Tffrf is the predictor velocity increments for the fluid. By substituting

Equation (2.48) into Equation (2.40), the combined system can be solved in three steps:

1. Compute predictor velocity increments for the structure (∆v∗s), interface (∆v∗i ), and
fluid (∆v∗f ). The predictor of fluid velocity increment (∆v∗f ) is trivial to solve, as

10



seen in Equation (2.48). An efficient computation for structural and interface 
pre-dictor velocity increments has been shown in Zhu and Scott (2014);

2. Solve for pressure increments (∆p) from the predicted velocity increments; and

3. Correct the velocity increments for the structural (∆vs), interface (∆vi), and fluid
(∆vf ) using the pressure increments (∆p) using Equation (2.48) found in Step 2.

Further information on the mathematical formulations for the three steps of the FSM 
can be found in Zhu and Scott (2014). The advantage of using the incompressible FSM 
solver is as follows: (1) it can incorporate the flexibility of the structure by including the 
added-mass effects; and (2) it maintains the incompressibility without mass loss. These 
two factors are important for tsunami simulations using OpenSees, which usually contain 
flexible bridge and building structures. The assumption of incompressible fluid is also 
adequate for real analyses of tsunami waves.

2.5.2 Unified fractional step solver

For incompressible and near-inviscid fluid, the inversion of the matrix KTff is trivial, and
the matrixMp vanishes, making the second step in the FSM easier to perform. For general
fluid, such as oil and air, the inversion is too expensive, and the compressibility of fluid
must be considered. To this end, a unified fractional step solver is proposed to provide an
alternative means of solving Equation (2.40).

The unified solver assumes a quasi-incompressible fluid formulation, which maintains
the non-zero matrixMp and a general matrix KTff . Instead of computing predictor veloc-
ities in the regular FSM, the unified solver calculates predictor pressure by the inversion
of the matrix KTpp. Since the matrix KTpp is provided by the pressure mass matrix Mp–
which can be lumped whether the structure is linear or nonlinear, or the fluid is viscous or
inviscid–the solution of pressure increments can be obtained from Equation (2.40)

∆p = ∆p∗ −K−1
TppG

T
i ∆vi −K−1

TppG
T
f ∆vf (2.49)

where∆p∗ = K−1
Tpprp is the predictor pressure increment. By substituting Equation (2.49)

into Equation (2.40), the combined system can be solved by reversing the three steps:

1. Compute predictor pressure increments (∆p∗) with Equation (2.49);

2. Solve for velocity increments (∆vs, ∆vi, ∆vf ) from the predicted pressure incre-
ments Zhu and Scott (2017); and

3. Correct the pressure increments (∆p) using the velocity increments (∆vs, ∆vi, 
∆vf ) found in Step 2 by Equation (2.49).
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Further information about the unified solution can be found in Zhu and Scott (2017). 
Although the unified FSM can solve more general FSI problems than the incompressible 
FSM and considers the compressibility of fluid, it has a larger system of equations and 
requires more computational effort. An additional advantage of the unified solver is its 
application for performing a sensitivity analysis, which will be introduced in the next sec-
tion.

2.6 Domain Meshing for FSI

One of the challenges in using a Lagrangian-based FSI is the mesh updating for the fluid
domain. In a Lagrangian description, the nodes and particles are moving with the flow.
The fluid elements will become distorted and slow down the convergence. To maintain
decent mesh quality, the PFEM remeshes the entire domain using efficient algorithms,
such as the Delaunay Triangulation (Calvo et al. 2003). Although meshing is traditionally
considered computationally expensive, the PFEM has simplified the meshing and sped up
its operation. The meshing does not start from the geometry of the domain as is done
with traditional mesh algorithms; it is dependent on the positions of moving particles only.
There are two meshing methods available for use with the PFEM: the moving and the
background mesh method, both of which are introduced next.

2.6.1 Moving mesh method

A moving mesh method considers the finite-element nodes equivalent as particles, which
are used to transport fluid properties along the flow. These finite-element nodes are both
mesh nodes and transporting particles. When moving through the domain, the locations
of the finite-element nodes are arbitrary. A Delaunay Triangulation (DT) is needed to
construct the mesh, based only on the nodal positions in the previous time step. Since the
computing effort of a DT has been proven to be minimal (Watson 1981), it is possible to
remesh in every time step. The procedure of the moving mesh method is demonstrated in
the figures below.

As shown in Figure 2.2, interface particles are part of the structure, which interact with
fluid particles. Given the particles, the DT can be constructed to connect all particles in
the domain.

As seen in Figure 2.3, the entire domain is triangulated. Even those regions that are
not part of the structural or fluid domain are included; thus, small and distorted triangles
can be found in some areas. An extra step has been taken herein to identify the boundary
of the domain and remove unnecessary triangles. This algorithm is called the Alpha Shape
Method (Edelsbrunner and Mücke 1994), which decides if a triangle is valid or not based
on its size and shape. The final mesh is shown in Figure 2.4
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Structural Particle Interface Particle Fluid Particle

Figure 2.2: A cloud of FSI particles.

Structural Particle Interface Particle Fluid Particle

Figure 2.3: Delaunay Triangulation of the cloud of FSI particles.
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Structural Particle Interface Particle Fluid Particle

Figure 2.4: Moving mesh of the cloud of FSI particles.

The advantage of the moving mesh is twofold: it is efficient in terms of mesh updating,
and it is flexible for any geometry of the structure and boundary conditions; however, as
shown in Figure 2.4, small elements are formed since it is inevitable that fluid particles
move close to each other. In a Lagrangian formulation, the smallest element controls the
size of the time steps. As a result, a strict limit should be placed on the time step sizes in
order to obtain a converged solution. This limitation can be overcome by the following
background mesh method.

2.6.2 Background mesh method

The background mesh method separates the functions of the finite-element nodes and mov-
ing particles so that finite-element nodes do not have to move with the flow and can be 
fixed in the background. The fixed mesh circumvents the problem of small and distorted 
elements in the moving mesh, but needs more particles to transport the fluid properties.

A background mesh method with a fixed finite-element mesh has been used by Becker 
et al. (2015) for rapid generation of mesh in fluid–structure interaction (FSI) analysis. 
Since triangular structural and fluid elements are used together in the fixed mesh, the 
structural and fluid domains are uniformly meshed; therefore, no local remeshing is 
needed around structures. If a general structure, such as coastal infrastructure, cannot 
always be modeled with a fixed mesh, then the local mesh around the structure should 
be reconstructed to connect the structure to the fixed mesh. The modified background 
mesh mixes the fixed and moving mesh, benefiting from the use of both methods.

As shown in Figure 2.5, a cloud of fluid particles are placed on the background. Based 
on the locations of the fluid particles, a fixed background mesh is created with fluid ele-
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Fluid Particle

Figure 2.5: A cloud of fluid particles.

Fluid Particle Fluid Nodes Fluid Elements

Figure 2.6: The fixed fluid mesh based on the fluid particles.
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ments and nodes.

As shown in Figure 2.6, the fluid particles and nodes are separated in the fixed mesh.
The fluid nodes are always fixed on the grids in the background, and the fluid elements are
of good quality.

Fluid Particle Fluid Nodes Fluid Elements

Bridge Nodes Bridge Elements

Figure 2.7: The fixed-fluid mesh with structure.

Fluid Particle Fluid Nodes Fluid Elements

Bridge Nodes Bridge Elements

Figure 2.8: The Delaunay Triangulation between fixed-fluid mesh and structure.

As shown in Figure 2.7, a bridge structure in placed on the fixed mesh. Since part of 
the structural mesh overlaps with the fixed mesh, the local fixed mesh around the structure 
has to be removed and remeshed. Then a DT can be performed in the local area; note that 
some triangles are obviously not part of the mesh; see Figure 2.8. Instead of using the 
Alpha Shape Method, an easy and straightforward way to identify unnecessary triangles is 
to find and remove the empty triangles that have no particle. The final background mesh 
is shown in Figure 2.9.

All the background information, governing equations, solution algorithms, numerical 
solvers, and mesh updating methods have been introduced in this chapter. In the next
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Fluid Particle Fluid Nodes Fluid Elements

Bridge Nodes Bridge Elements

Figure 2.9: The background mesh with fixed fluid mesh and structure.

chapter, examples implementing the FSI in OpenSees will be introduced.
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3 Implementation of FSI in OpenSees

The software design of OpenSees favors object composition as the mechanism that en-
ables flexbility and extensibility of the framework. At the highest level of the OpenSees 
framework, the class Domain contains components (nodes, elements, loads, constraints, 
etc.) that are created and added to the domain through an input script. The state of each 
domain component is computed by the class Analysis, which is composed of an equa-
tion solver, solution algorithm, time integrator, constraint handler, and element and nodal 
assembly objects. Complete details of the design of OpenSees for nonlinear finite-element 
analysis are given in McKenna et al. (2010). Only the details of how the FSI implementa-
tion has been successfully achieved in OpenSees are introduced herein.

Since it was primarily designed to solve structural dynamics problems, there are two 
major challenges to the implementation of the FSI in OpenSees. The first challenge arises 
from the mesh updating at every time step. Since meshing is usually done at the script level 
in OpenSees, a built-in meshing function needs to be implemented for the mesh updating 
in the FSI. The second challenge involves solving the linear system of equations via the 
FSM solvers, which requires multiple equation solutions using the submatrices. Although 
OpenSees contains a flexible set of equation solvers, there is an implicit assumption that 
only one equation solution takes place during each iteration within a time step.

3.1 Domain Meshing

As shown in Figure 3.1, the class Domain stores model components, such as Node,
Element, and PressureConstraint. To create finite-element nodes and elements, the
class Mesh is introduced to the OpenSees framework, which is further inherited by the
class TriMesh to generate fluid nodes and elements.

In the fluid analysis, each instance of the class PFEMElement2DBubble and the
class PFEMElement2DCompressible are responsible for computing and returning its
mass, stiffness, and damping matrices and resisting force vector for the incompressible
and the quasi-incompressible flows.

The implementation of the class Mesh is shown in Figure 3.2. Four sub-classes were
created for four different shapes of the elements. The class LineMesh is for line ele-
ments, such as beams and columns. Triangular and quadrilateral elements are meshed by
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Figure 3.1: Class diagram of the FSI implementation in OpenSees framework.

<<interface>>
Element

ElasticBeam

ForceBeamColumn

DispBeamColumn

Tri31

PFEMElement2DBubble

PFEMElement2DCompressible

ShellMITC4

FourNodeQuad PFEMElement3DBubble

FourNodeTetrahedron

<<interface>>
Mesh

LineMesh TriMesh Background

Mesh

QuadMesh TetMesh

m
esh

m
esh mesh m

esh

m
esh

Figure 3.2: class Mesh in OpenSees framework.
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the class TriMesh and class QuadMesh, including both fluid and solid elements. The
class TetMesh is a three-dimensional (3D) tetrahedral elements mesher. For other el-
ement shapes, the corresponding mesher can be easily added as a subclass of Mesh. The
class TriMesh implements the moving mesh method introduced in Section 2.6.1. The
background mesh method was implemented in a standalone class BackgroundMesh,
which performed the same task to create a triangular mesh as the TriMesh.

<<interface>>
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<<interface>>
SystemOfEqn

<<interface>>
Analysis

<<interface>>
LinearSolver

<<interface>>
LinearSOE

PFEMElement2DBubble

PFEMElement2DCompressible

PFEMIntegrator
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+ setSize()

+ solve()

PFEMLinSOE

- setDofIDs()

- setMatIDs()

+ setSize()

+ addA()

+ addB()

PFEMCompressibleSolver

+ setSize()

+ solve()
PFEMCompressibleLinSOE

- setMatIDs()

+ addA()

Pressure Constraint

+ getPressureNode()

+ connect(eleId, fluid)

+ disnonnect()

+ isFluid()

+ isInterface()

+ isStructure()

+ isIsolated()

1

1

1

1

check

check

create

create

newStep

Figure 3.3: FSM solvers in OpenSees framework.

When fluid elements are added to the domain, the PressureConstraint objects are
created to identify each node as belonging to the fluid and structural domains, the interface
between these domains, or as separate from any domain. Two groups of element tags (one
for fluid and one for structure) are stored in a PressureConstraint object and set via the
connect/disconnect pair of methods; see Figure 3.3. Methods such as isStructure re-
turn the node type based on its connections and allows elements to determine their state ac-
cordingly. Another important task of the PressureConstraint object is to store a pointer
able to identify a Node object internally to keep track of the unknown factors of the pressure.
This is in addition to external node objects that keep track of the displacement, velocity,
and acceleration of all fluid and structural nodes. The pointer to the pressure node can
be returned through the getPressureNode method, so that fluid elements can obtain the
nodal state and then return their contributions to the governing equations.
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3.2 FSM Solvers

With a fluid mesh in place, the class PFEMIntegrator is able to implement the implicit
Euler time integration method using particle velocity as the primary unknown along with
the pressure; see Figure 3.1. At each time step, the integrator calls PressureConstraint
objects to update the state of each isolated particle and to assemble the governing equations
for particles that are connected to a mesh of fluid elements. The class PFEMAnalysis
sets the maximum and minimum time steps for the simulation, and may reduce the time
step if convergence is not achieved.

The class PressureConstraint serves as a bridge between the analysis and model
classes of OpenSees in order to link the finite-element model to the predictor–corrector
approach of the FSM. In terms of the analysis, new implementations of the LinearSOE
and LinearSolver interfaces shown Figure 3.3 are required in order to carry out the
FSM and partition the matrices in Equation (2.41), which are based on the model in-
formation from PressureConstraint objects. To this end, the setDofIDs method of
the class PFEMLinSOE, which inherits the LinearSOE interface, obtains the node types
from the PressureConstraint objects, and sets the matrix partitions and assigns equa-
tion numbers. The setMatIDs method is then called in order to initialize the partitioned
matrices and residual vector of Equation (2.40) for assembly via implementation of the
addA and addB methods. Using the partitioned matrices stored in the PFEMLinSOE ob-
ject, the class PFEMSolver, which implements the LinearSolver interface, carries out
the incompressible FSM and returns the solution for incremental velocities and pressures.
The unified FSM solver is implemented in the class PFEMCompressibleLinSOE and
the class PFEMCompressibleSolver.

3.3 Examples

The following section presents examples to verify, validate, and demonstrate FSI’s imple-
mentation in OpenSees.

3.3.1 Moving mesh model of a dam break as an elastic obstacle

This example verifies that the FSI implementation that has incorporated a moving and 
background mesh, and compares it to results obtained using different FSI numerical 
meth-ods. The moving mesh model is of a dam break on an elastic obstacle fixed to be 
bottom of a tank; see Figure 3.4. The characteristic length, L , is equal to 0.146 m, and the 
elastic obstacle is b = 0.012 m side and 20b/3 = 0.08 m high. The elastic obstacle is 
modeled as a co-rotational mesh of beam elements having a density of ρs = 2500 kg/m3, 
an elastic modulus of E = 10 6 Pa, and a Poisson ratio of γ = 0 . The fluid density is ρf = 
1000 kg/m3, and its viscosity is µ = 0.001 kg/ms.
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Figure 3.4: Elastic obstacle with moving mesh.

Although experimental data are not available, this example has been studied by several
researchers (Ryzhakov et al. 2010; Idelsohn et al. 2008; Rafiee and Thiagarajan 2009; Wal-
horn et al. 2005), and provides a good point of comparison for the FSI implementation with
previous simulation results. Snapshots of the dam-break simulation using the incompress-
ible FSMwith movingmesh are shown in Figure 3.5. To highlight the final displaced shape
of the elastic obstacle, the fluid mesh was not included in the final snapshot of Figure 3.5.

Time = 0.1 sec Time = 0.2 sec Time = 0.3 sec

Time = 0.4 sec Time = 0.5 sec Time = 2.0 sec

Figure 3.5: Snapshots of a dam break as an elastic obstacle with moving mesh.

The same example is also run with the background mesh method using the incompress-
ible FSM. The snapshots of the background mesh simulation at the same time instances 
are shown in Figure 3.6. To elucidate the point, the background mesh has been hidden, 
and only fluid particles and structural mesh are presented. The walls are also not shown 
in Figure 3.6 since the wall nodes are part of the hidden background mesh. By comparing 
the Figure 3.5 and Figure 3.6, the displaced shape of the elastic obstacle and the progress 
of the water movement matches qualitatively.
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Time = 0.1 sec Time = 0.2 sec Time = 0.3 sec

Time = 0.4 sec Time = 0.5 sec Time = 2.0 sec

Figure 3.6: Snapshots of a dam break as an elastic obstacle with background mesh.
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Figure 3.7: Comparison of the displacements of the free end of the elastic obstacle with
different numerical approaches.
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Comparisons of the time history of horizontal tip displacement of the obstacle by sim-
ulations by the aforementioned researchers are shown in Figure 3.7 along with the 
numerical method used by each researcher. The results of the moving mesh agree 
well with two previous PFEM formulations presented by Ryzhakov et al. (2010; and 
Idelsohn et al. (2008), as shown in Figure 3.7(a) and (c), and the background mesh 
results are closer using the SPH and space-time PFEM (Rafiee and Thiagarajan 2009; 
Walhorn et al. 2005); see Figure 3.7(b) and (d).

3.3.2 Dam break presented as a nonlinear material obstacle

One of the advantages of implementing the FSI in OpenSees is that it utilizes the libraries 
of nonlinear materials available in the framework. To demonstrate the ability of the FSI 
implementation to simulate the interaction between a fluid and a structure responding in 
the nonlinear material range, the same model is used with the obstacle composed of a 
co-rotational mesh of displacement-based elements. Two Gauss points are used in each 
element where cross sections are discretized by ten fibers, each with the uniaxial bilinear 
steel stress–strain response shown in Figure 3.8(a).
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Figure 3.8: Nonlinear material for obstacle in dam-break problem and comparison of free-
end displacements with elastic material.

The stress strain behavior is characterized by parameters of yield strength Fy = 5e4
Pa, an initial elastic tangent E0 = 106 Pa, and a strain hardening ratio b = 0.02. As a
way of demonstrating the effects of nonlinear material response for the obstacle, the initial
elastic tangent is the same as that shown in the previous example. The comparison of
tip deflections for elastic and nonlinear materials using moving and background mesh are
shown in Figure 3.8(b). The nonlinear material has residual displacements at the steady
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state, indicating damage to the obstacle.

3.3.3 A 2D sloshing example with unified FSM

The incompressible FSM works well for inviscid and near-inviscid flows. For large vis-
cosity fluid, the unified FSM must be used. In this example, the unified FSM is compared 
with the incompressible FSM for fluids of different viscosities [adapted from Oñate et al. 
(2014) with modifications of the tank dimensions and tank walls].

0 1 2

0

1

2

x (m)

y
(m

)

Water

Beam

Figure 3.9: Model of 2D water sloshing analysis in a rectangular tank.

As shown in Figure 3.9, the width and height of the tank are 2 m and 2.4 m, respectively. 
The initial water levels are set to 1.4 m and 0.6 m. The bulk modulus of the fluid is κ = 
2.15 × 109 Pa, and the fluid density is ρ = 103 kg/m3. The out-of-plane thickness of the 
fluid elements is assumed to be 0.1 m.

The walls of the tank are made up of flexible beam–column finite elements with ma-
terial and geometric nonlinearity. The walls are discretized in to a co-rotational mesh of 
beam elements with a cross section of 0.5 m by 0.5 m discretized by fibers, each with the 
uniaxial bilinear stress–strain relationship in Figure 3.8(a). The stress–strain behavior is 
characterized by the initial elastic stiffness E0 = 106 Pa, yield strength Fy = 4 × 103 Pa, 
and strain hardening ratio b = 0.02. The density of the structure is set to ρs = 100 kg/m3. 
The walls are fixed against deflection and rotation at both bottom corners of the tank.

The unified FSM and incompressible FSM are run using viscosity µ = 10−3 Pa-s and 
time step ∆t = 10−3 sec; snapshots of the simulation are shown in Figure 3.10. Flexural 
yielding initiates at the left end of the bottom beam, followed by yielding at the right end 
and middle of the beam. Note the subsequent large nonlinear deformation of the beam in 
Figure 3.10 after t = 0.2 sec. Since the viscosity is small, neither divergence nor slow 
convergence is found in all time steps for both methods. The tip deflections of the left and 
right columns and the middle deflection of the bottom beam using both methods match; see
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Figure 3.10: Snapshots of water sloshing in a flexible tank using the unified FSM and the 
incompressible FSM with viscosity µ = 10−3 Pa-s and ∆t = 10−3 sec.
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Figure 3.11: Tip deflection of left and right columns and middle deflection of the bottom
beam using the unified FSM and the incompressible FSM with viscosity µ = 10−3 Pa-s
and ∆t = 10−3 sec.
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Figure 3.11. The columns undergo damped vibration after about 1.0 sec into the simulation,
while the beam quickly reaches a static solution at about 0.5 sec due to the weight of the
fluid supporting it. This case establishes that neither the unified nor incompressible FSM
show convergence difficulties in simulating FSI with fluids of low viscosity.
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Figure 3.12: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 10−3 Pa-s and time step ∆t = 10−3 sec.

Table 3.1: Iterations to achieve convergence for different viscosity with ∆t = 10−3 sec.

Viscosity, µ (Pa-s) Unified FSM Incompressible FSM
0.001 4 4
1.0 4 5
50.0 4 68
103 4 does not converge
104 4 does not converge

To compare the efficiency of the unified versus the incompressible FSMs, the number 
of iterations required for convergence is shown using various values of viscosity. The 
convergence criterion is set in increments of velocity and pressure to be |δv| ≤ 10−6 m/sec 
and |δp| ≤ 10−6 Pa. In the following comparison, a single time step ∆t = 10−3 sec is run 
for five values of viscosity, and the convergence rates for both methods are compared. As 
shown in Figure 3.12–Figure 3.16, the fluid viscosity is increased over the range µ = 10−3 

Pa-s (Re = 106), 1.0 Pa-s (Re = 1400), 50.0 Pa-s (Re = 28), 103 Pa-s (Re = 0.7), and 104 

Pa-s (Re = 0.042). The number of iterations for the incompressible method increases from 
4 to 68 for the first three values of viscosity, and failed to converge for the two largest
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Figure 3.13: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 1.0 Pa-s and time step ∆t = 10−3 sec.
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Figure 3.14: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 50 Pa-s and time step ∆t = 10−3 sec.
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Figure 3.15: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 103 Pa-s and time step ∆t = 10−3 sec.
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Figure 3.16: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 104 Pa-s and time step ∆t = 10−3 sec.
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values of viscosity. On the other hand, the unified method converges in four iterations
for all values of viscosity. Comparisons of the number of iterations required for different
values of viscosity are summarized in Table 3.1. As the viscosity increases, so does the
number of iterations for the incompressible FSM. In contrast, the number of iterations of
the unified FSM is basically constant and independent of viscosity.
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Figure 3.17: Convergence of velocity and pressure using unified FSM and incompressible
with viscosity µ = 103 Pa-s and time step ∆t = 5× 10−5 sec.

Table 3.2: Number of iterations required to achieve convergence for different viscosity 
with ∆t = 5 × 10−5 sec.

Viscosity, µ (Pa-s) Unified FSM Incompressible FSM
10−3 3 3
100 3 4

0.5× 102 3 7
103 3 70
104 3 does not converge

A decreased time-step size improves the convergence of velocity and pressure. When
the viscosity is fixed at µ = 103 Pa-s but the time step ∆t decreases from 10−3 sec to
5 × 10−5 sec, the incompressible method is able to converge in 70 iterations; see Fig-
ure 3.17. The improved convergence rate for a decreasing time step is also observed when
the viscosity is fixed at a very high value µ = 104 Pa-s. The time steps∆t = 10−3 sec (Fig-
ure 3.16) and∆t = 5× 10−5 sec (Figure 3.18) fail, and only the time step∆t = 4× 10−6

sec (Figure 3.19) reaches convergence in 56 iterations for the incompressible method. Al-
though a decreasing time step helps with convergence, it increases the simulation cost
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Figure 3.18: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 104 Pa-s and time step ∆t = 5× 10−5 sec.
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Figure 3.19: Convergence of velocity and pressure using unified FSM and incompressible
FSM with viscosity µ = 104 Pa-s and time step ∆t = 4× 10−6 sec.
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Table 3.3: Number of iterations required to achieve convergence for different viscosity 
with ∆t = 4 × 10−6 sec.

Viscosity, µ (Pa-s) Unified FSM Incompressible FSM
10−3 2 2
100 2 3

0.5× 102 2 4
103 2 7
104 2 56

significantly for the incompressible method, whereas convergence is achieved in the same 
small number of iterations using the unified method, demonstrating its capability of 
efficient simulation of a highly viscous flow. Comparisons of the number of iterations for 
different values of viscosity and time steps computed by the two methods are also 
summarized in Tables 3.2 and 3.3 to show the dependence of the incompressible method 
on fluid viscosity and time step size, versus the independence of the unified method on 
these factors.
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4 Python Scripting in OpenSees

To allow users to take advantage of programming constructs such as conditionals, itera-
tions, and procedures, OpenSees extends the interpreter of Tcl with commands for model 
building and analysis. Although Tcl is very flexible and has many strengths in string pro-
cessing, it is not well-suited to scientific computing applications. Tcl’s use of strings as the 
only native data type and the resulting cumbersome syntax for mathematical expressions 
create a steep learning curve for users of OpenSees, many of whom learned MATLAB or 
Python as undergraduate engineering students.

Python is general-purpose programming language that contains a large ecosystem of 
libraries; it has been adopted by the scientific community as a “glue” language for many 
applications. With its extension to Python, users of OpenSees may now gain access to 
the plotting library Matplotlib, numerical libraries Numpy, and Scipy, interactive server 
Jupyter, 3D visualization library Mayavi, statistics library pandas, and web develop-
ment library Flask, among others. In addition, OpenSees can now use the Visualization 
Toolkit (VTK), an open-source, permissively licensed, cross-platform toolkit for scien-
tific data processing, visualization, and data analysis, as one of its post-processing tools. 
Therefore, the OpenSeesPy is created as an implementation of the Python interpreter for 
use with OpenSees. The underlying framework is general and can easily accommodate 
other scripting languages such as Ruby, Julia, and R.

4.1 Implementation of Python Interpreter

As shown in Figure 3.1, the model components in the domain and analysis options are set
by user scripts. For the Tcl interpreter, the user scripts will invoke Tcl commands to create
the finite-element model. For example, a Tcl node commandwill create a Node object from
user input in the Tcl API (Welch 2000), such as Tcl_GetDouble. Likewise, to implement
the Python interpreter, internal OpenSees objects must link to Python commands. Since
much of the code for reading input, creating finite-element domain objects, performing
analyses, and recording results are duplicated among interpreters, the implementation of
Python utilizes a core, interpreter-independent OpenSees API that populates the domain
and performs analyses, as shown in Figure 4.1.

The core APIs are separated from any interpreters and collected in a class to populate
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Figure 4.1: Class diagram of multi-interpreter interface.
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domain components and to execute analysis. The interaction of core APIs with specific 
interpreters is done through the IO APIs. There are eight basic input/output functions for 
obtaining integer, floating point, and string inputs. Each scripting language will define 
its own interpreter class that implements the DL_Interpreter interface, for the eight IO 
APIs. If an IO operation is required, a core API will call the OpenSees IO APIs, e.g., 
OPS_GetIntInput, which are also interpreter-independent and will make polymorphic 
calls to the eight basic IO functions through the DL_Interpreter interface. With this 
design, the core OpenSees APIs are completely separated from the interpreter, and the 
effort to add a new interpreter is minimized.

int PythonInterpreter::getDouble(double *data,int numArgs) {
int curr = wrapper.getCurrentArg();
if (wrapper.getNumberArgs()-curr < numArgs) return -1;
for (int i=0; i<numArgs; i++) {

if (!PyFloat_Check(o)) return -1;
PyObject *o = PyTuple_GetItem(wrapper.getCurrentArgv(),curr);
wrapper.incrCurrentArg();
data[i] = PyFloat_AS_DOUBLE(o);

}
return 0;

}

Figure 4.2: The implementation of getDouble in Python interpreter.

int TclInterpreter::getDouble(double *data, int numArgs) {
int curr = wrapper.getCurrentArg();
const char* argv = wrapper.getCurrentArgv();
if (wrapper.getNumberArgs()-curr < numArgs) return -1;
for (int i=0; i<numArgs; i++) {

if (Tcl_GetDouble(interp,argv[curr],&data[i]) != TCL_OK) {
wrapper.incrCurrentArg();
return -1;

} else wrapper.incrCurrentArg();
}
return 0;

}

Figure 4.3: The implementation of getDouble in Tcl interpreter.

As an example of IO API, the implementation of the virtual function getDouble is
inherited by Python and Tcl interpreters shown in Figures 4.2 and 4.3. As can be seen,
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int OPS_Node()
{

Domain* theDomain = OPS_GetDomain();
int ndm = OPS_GetNDM();
int ndf = OPS_GetNDF();

// get tag
int tag = 0;
int numData = 1;
if(OPS_GetIntInput(&numData, &tag) < 0) {

opserr<<"WARNING tag is not integer\n";
return -1;

}

// get crds
Vector crds(ndm);
if(OPS_GetDoubleInput(&ndm, &crds(0)) < 0) {

opserr<<"WARNING noda coord are not double\n";
return -1;

}

// create node
Node* theNode = 0;
if(ndm == 1) {

theNode = new Node(tag,ndf,crds(0));
} else if(ndm == 2) {

theNode = new Node(tag,ndf,crds(0),crds(1));
} else {

theNode = new Node(tag,ndf,crds(0),crds(1),crds(2));
}

// add node to domain
if(theDomain->addNode(theNode) == false) {

opserr<<"WARNING: failed to add node to domain\n";
delete theNode;
return -1;

}

return 0;
}

Figure 4.4: The implementation of the core API OPS_Node.
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the Python interpreter assigns a double number through the PyFloat_AS_DOUBLE function
and the tcl interpreter through the Tcl_GetDouble function. The polymorphic feature of
C++ will find the correct implementation depending on the calling interpreter.

To demonstrate the implementation of core APIs, the definition of the API OPS_Node
is shown in Figure 4.4. The OPS_Node API calls the IO APIs to obtain the input parame-
ters of nodal tag and coordinates without knowing the calling interpreter. A Node object
is then created and added to the domain. The API returns to zero when marking a suc-
cessful operation but will return negative values if something is wrong with the inputs and
operations.

4.2 Illustrative Examples

4.2.1 Nonlinear truss example

For new users and users who are familiar with Tcl, this example shows the simplicity of
Python scripting and its similarity to its Tcl counterpart.

72 in 96 in

48 in

144 in

1 2 3

4

1 2 3

160 kip

Figure 4.5: Truss model for the Python interpreter.

In the truss model shown in Figure 4.5, nodes are numbered from one through four and
elements one through three. Snippets of Python code to create the truss model are shown
in Figure 4.6. For OpenSees Tcl users, the Python functions, such as wipe, model, node,
fix, etc., are identical to Tcl commands with Python syntax; however, the concise syntax
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from opensees import *

wipe() # remove existing model
model('basic', '-ndm', 2, '-ndf', 2) # create model

x = [0.0, 72.0, 168.0, 48.0]
y = [0.0, 0.0, 0.0, 144.0]
for i in range(4):
node(i+1, x[i], y[i]) # create nodes
if i<3:

fix(i+1, 1, 1) # boundary conditions

A = 4.0; E = 29000.0; # create material
alpha = 0.05; sigmaY = 36.0
uniaxialMaterial('Hardening', 1, E, sigmaY, 0.0, alpha/(1-alpha)*E)

for i in range(3):
element('Truss',i+1,i+1,4,A,1) # create truss elements

timeSeries('Linear', 1) # create TimeSeries
pattern('Plain', 1, 1) # create a plain load pattern
load(4, 160.0, 0.0) # Create the nodal load

Nsteps = 1000
system("ProfileSPD") # set analysis options
numberer("RCM")
constraints("Plain")
integrator("LoadControl", 1.0/Nsteps)
algorithm("Newton")
test('NormUnbalance', 1e-8, 10)
analysis("Static")

for i in range(Nsteps):
analyze(1) # perform the analysis

Figure 4.6: Python scripts for nonlinear material truss analysis.
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of Python for loop, math expressions and variable assignments make the code much easier 
to read and understand than Tcl.

Here, all functions in the OpenSees module are imported to Python. A better practice 
is to import OpenSees with a short name as import opensees as ops. Then the calls to 
OpenSees functions require a dot scoping operator in the module, as shown in Figure 4.7.

import opensees as ops
ops.wipe()
ops.model('basic', '-ndm', 2, '-ndf', 2)

Figure 4.7: Python scripts for importing OpenSeesPy module.

With the Python libraries NumPy and Matplotlib, the analysis results can be plotted
directly from the Python scripts (Figure 4.8).

import numpy as np
import matplotlib.pyplot as plt

data = np.zeros((Nsteps+1,2)) # data array
for j in range(Nsteps):

analyze(1)
data[j+1,0] = nodeDisp(4,1) # save disp
data[j+1,1] = getLoadFactor(1)*160 # save load factor

plt.plot(data[:,0], data[:,1]) # plotting
plt.xlabel('Horizontal Displacement')
plt.ylabel('Horizontal Load')
plt.show()

Figure 4.8: Python scripts for plotting.

The variable data in Figure 4.8 is a NumPy array, which stores the nodal displacement
and load factor. The plotting is shown in the Figure 4.9.

4.2.2 Dam break problem as a nonlinear material obstacle example

The numerical example shown in Section 3.3.2 is used here to illustrate the scripting of the
fluid–structure interaction simulation. The FSI commands can be added to any existing
scripts for structural analysis. To add the fluid model, if the background mesh method is
used, a group of particles are added as in Figure 4.10.
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Figure 4.9: Python plotting for the nonlinear truss example.

These particles represent the water column in Figure 3.4. Then, a structural model for 
a nonlinear material obstacle is created in Figure 4.11. No elements are explicitly created 
in this code since the dispBeamColumn elements are internally constructed in the mesh 
command.

eleArgs = ['PFEMElementBubble', rho, mu, b1, b2, thk, kappa]
partArgs = ['quad', 0.0, 0.0, L, 0.0, L, H, 0.0, H, nx, ny]
parttag = 1
mesh('part', parttag, *partArgs, *eleArgs, '-vel', 0.0, 0.0)

Figure 4.10: Python code for adding fluid particles for the background mesh method.

After the structural model is created, the background mesh is defined with one line of 
code in Figure 4.12, where lower and upper defines the range of the background mesh, 
and wNodes and sNodes notifies the background mesh wall nodes and structural nodes. 
The codes in Figures 4.10 and 4.12 show typical FSI commands, and how simple it is to
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node(1, 0.0, 0.0); node(2, 4*L, 0.0) # structural and wall nodes
node(3, 0.0, H); node(4, 4*L, H)
node(5, 2*L, 0.0); node(6, 2*L, Hb)

mesh('line', linetag, 5, 3,1,5,2,4, id, ndf, h) # mesh of walls

fixedNodes = getNodeTags('-mesh', linetag) # fix walls
for nd in fixedNodes:

fix(nd,1,1,1)

geomTransf('Corotational', transfTag) # transformation

# mesh of the obstacle
uniaxialMaterial('Steel01',matTag,Fy,E0,hardening)
section('Fiber',secTag)
patch('rect', matTag, numfiber, numfiber, 0.0, 0.0, thk, thk)
beamIntegration( 'Legendre', inteTag, secTag, numpts)
eleArgs = ['dispBeamColumn',transfTag,inteTag]
mesh('line', coltag, 2, 5,6, id, ndf, 0.5*h, *eleArgs)

Figure 4.11: Python code for a nonlinear material obstacle.

mesh('bg', h, *lower, *upper, '-structure',len(wNodes),*wNodes,
'-structure',len(sNodes),*sNodes)

Figure 4.12: Python script for defining the background mesh.

include the FSI in existing structural models. Finally, the analysis for the FSI simulation 
is straightforward and is performed as that for regular structural analysis (Figure 4.13).

The FSI analysis implements its own test, integrator, system, and analysis ob-
jects. The analyze command now accepts no parameters, which performs an analysis with 
time step dtmax. If the current time step fails, the analyze command will reduce the step 
size and run the analysis again until a successful analysis is performed or the minimum 
time step size is achieved. The results of the FSI analysis are shown in Figure 3.8.
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constraints('Plain') # create constraint object
numberer('Plain') # create numberer object
test('PFEM', 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 100, 3, 1, 2)
algorithm('Newton') # create algorithm object
integrator('PFEM')# create integrator object
system('PFEM') # create SOE object
analysis('PFEM', dtmax, dtmin, b2) # create analysis object

while getTime() < totaltime:
if analyze() < 0:

break
remesh()

Figure 4.13: Python code for running FSI analysis.

4.3 Python Commands Manual

The latest manual has been published online at https://openseespydoc.readthedocs. 
io/en/latest/. The manual includes all existing commands, installation information, 
and additional examples. New versions of OpenSeesPy will be updated on this web page, 
as well as providing new commands and examples.

4.4 Python and Tcl Tests

To validate the OpenSeesPy implementation, many models were tested against analytic 
and numerical results from OpenSees Tcl and other software. A benchmark is shown here 
for seventeen models, from which the exact same results are generated for both Python 
and Tcl. Both scripts are timed and shown in Table 4.1 where the Python implementation

Table 4.1: Timing of Python and Tcl scripts for same models.

OpenSeesPy OpenSeesTcl Speedup of Python
Time 131.8 sec 207.5 sec 1.57

is 1.57 times faster than the Tcl version for the same models and analyses. The Python and
Tcl scripts for testing are shown in Figures 4.14 and 4.15, respectively. Both Python and
Tcl scripts generated the same results and have been verified by exact numerical solutions.
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# Python script to run all the verification scripts

import os
import sys
from opensees import *

exec(open('Truss.py','r').read())
exec(open('MomentCurvature.py','r').read())
exec(open('RCFramePushover.py','r').read())
exec(open('ElasticFrame.py','r').read())
exec(open('DynAnal_BeamWithQuadElements.py','r').read())
exec(open('Ex1a.Canti2D.EQ.modif.py','r').read())
exec(open('EigenAnal_twoStoreyShearFrame7.py','r').read())
exec(open('EigenAnal_twoStoreyFrame1.py','r').read())
exec(open('sdofTransient.py','r').read())
exec(open('PlanarTruss.py','r').read())
exec(open('PlanarTruss.Extra.py','r').read())
exec(open('PortalFrame2d.py','r').read())
exec(open('EigenFrame.py','r').read())
exec(open('EigenFrame.Extra.py','r').read())
exec(open('AISC25.py','r').read())
exec(open('PlanarShearWall.py','r').read())
exec(open('PinchedCylinder.py','r').read())

print("========================================================")
print("Done with testing examples.")
print("========================================================")

Figure 4.14: Python code for testing.
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# script to run all the verification scripts

source Truss.tcl
source MomentCurvature.tcl
source RCFramePushover.tcl
source ElasticFrame.tcl
source DynAnal_BeamWithQuadElements.tcl
source Ex1a.Canti2D.EQ.modif.tcl
source EigenAnal_twoStoreyShearFrame7.tcl
source EigenAnal_twoStoreyFrame1.tcl
source sdofTransient.tcl
source PlanarTruss.tcl
source PlanarTruss.Extra.tcl
source PortalFrame2d.tcl
source EigenFrame.tcl
source EigenFrame.Extra.tcl
source AISC25.tcl
source PlanarShearWall.tcl
source PinchedCylinder.tcl

puts "==========================================================="
puts "Done with testing examples."
puts "==========================================================="

Figure 4.15: Tcl code for testing.
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As shown in Table 4.2, an undamped system harmonic excitation is tested for 1000
time steps by computing the solution and checking the results against exact solution with
Chopra (2007) (Section 3.1). The results shown are for the last step at 11.255 sec.

Table 4.2: Verification of elastic SDOF systems of Python and Tcl with Chopra (2007)
(Section 3.1).

OpenSeesPy OpenSeesTcl Exact
0.9574599250636698 0.95746 0.9574597093660693

The comparison of earthquake responses for various periods and damping ratios be-
tween Python, Tcl, and the exact solutions are shown in Table 4.3.

Table 4.3: Verification of elastic SDOF systems of Python and Tcl with Chopra (2007)
(Section 6.4).

Period dampRatio OpenSeesPy OpenSeesTcl Exact
0.50 0.02 2.69 2.69 2.67
1.00 0.02 5.96 5.96 5.97
2.00 0.02 7.48 7.48 7.47
2.00 0.00 9.92 9.92 9.91
2.00 0.02 7.48 7.48 7.47
2.00 0.05 5.38 5.38 5.37

The results of period and displacement from the static pushover analysis are shown
in Tables 4.4 and 4.5, respectively, for a 2D elastic frame compared with SAP2000 and
SeismoStruct.

Table 4.4: Verification of period for 2D Elastic Frame with SAP2000 and SeismoStruc.

Period OpenSeesPy OpenSeesTcl SAP2000 SeismoStruct
1 1.27321 1.27321 1.2732 1.2732
2 0.43128 0.43128 0.4313 0.4313
3 0.24204 0.24204 0.2420 0.2420
4 0.16018 0.16018 0.1602 0.1602
5 0.11899 0.11899 0.1190 0.1190
6 0.09506 0.09506 0.0951 0.0951
7 0.07951 0.07951 0.0795 0.0795
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Table 4.5: Verification of displacement for 2D Elastic Frame with SAP2000 and Seis-
moStruc.

Displacement OpenSeesPy OpenSeesTcl SAP2000 SeismoStruct
Top 1.451 1.451 1.45 1.45

Axial Force Bottom Left 69.987 69.987 69.99 70.01
Moment Bottom Left 2324.677 2324.677 2324.68 2324.71

The benchmark problem (Tables 4.6 and 4.7) is from the AISC Design Guide 25 (Kaehler 
et al. 2011) for frame design using web-tapered members. This is a nonlinear problem with 
single curvature. The comparison of tip displacements for different curvatures are shown 
in Table 4.6 against the exact solutions, and the base moments are compared in Table 4.7.

Table 4.6: Prismatic beam benchmark problems with Kaehler et al. (2011) (tip displace-
ments).

numEle alpha Exact OpenSeesPy OpenSeesTcl %Error
1 0.00 0.3957 0.3957 0.3957 -0.0
1 0.10 0.4391 0.4391 0.4391 -0.0
1 0.20 0.4933 0.4933 0.4933 -0.0
1 0.30 0.5630 0.5630 0.5630 -0.0
1 0.40 0.6560 0.6560 0.6560 -0.0
1 0.50 0.7860 0.7860 0.7860 -0.0
1 0.60 0.9811 0.9811 0.9811 -0.0
1 0.67 1.1879 1.1879 1.1879 -0.0
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Table 4.7: Prismatic beam benchmark problems with Kaehler et al. (2011) (base moments).

numEle alpha Exact OpenSeesPy OpenSeesTcl %Error
1 0.00 1960.00 1960.00 1960.00 0.0
1 0.10 2138.88 2138.88 2138.88 -0.0
1 0.20 2361.94 2361.94 2361.94 -0.0
1 0.30 2648.09 2648.09 2648.09 -0.0
1 0.40 3028.86 3028.86 3028.86 -0.0
1 0.50 3560.98 3560.98 3560.98 -0.0
1 0.60 4357.95 4357.95 4357.95 -0.0
1 0.67 5202.31 5202.31 5202.31 -0.0

The eigenvalue analysis for a large structure is compared with Bathe and Wilson (1972), 
SAP2000, and SeismoStruct in Table 4.8.

Table 4.8: Verification of eigenvalues of elastic frame with Bathe and Wilson (1972), 
SAP2000, and SeismoStruct.

OpenSeesPy OpenSeesTcl Bathe and Wilson (1972) SAP2000 SeismoStruct
0.58954 0.5895 0.5895 0.5895 0.590
5.52696 5.5270 5.5270 5.5270 5.527
16.58787 16.5878 16.5879 16.5879 16.588
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The analysis of a shear wall was compared with ETABS and SAP2000 in Table 4.9.
A patch test was also done with different elements in OpenSees and compared with exact
solutions for displacements under applied load Table 4.10.

Table 4.9: Verification of linear elastic planar shear wall with ETABS and SAP2000.

Stories Height Length OpenSeesPy OpenSeesTcl ETABS SAP2000 Diff.
6 720 120 2.3926 2.3926 2.4287 2.4293 0.0006
6 720 360 0.0985 0.0985 0.1031 0.1032 0.0001
6 720 720 0.0172 0.0172 0.0186 0.0187 0.0001
3 360 120 0.3068 0.3068 0.3205 0.3212 0.0007
3 360 360 0.0169 0.0169 0.0187 0.0187 0.0000
3 360 720 0.0046 0.0046 0.0052 0.0052 0.0000
1 120 120 0.0144 0.0144 0.0185 0.0187 0.0002
1 120 360 0.0024 0.0024 0.0029 0.0029 0.0000
1 120 720 0.0011 0.0011 0.0013 0.0013 0.0000

Table 4.10: Verification of shell elements with exact solutions.

Element Type mesh OpenSeesPy OpenSeesTcl Exact %Error
ShellMITC4 4 x 4 -6.38579e-06 -6.38579e-06 -1.82489e-05 65.01
ShellMITC4 16 x 16 -1.68814e-05 -1.68814e-05 -1.82489e-05 7.49
ShellMITC4 32 x 32 -1.80250e-05 -1.80250e-05 -1.82489e-05 1.23
ShellDKGQ 4 x 4 -1.16624e-05 -1.16624e-05 -1.82489e-05 36.09
ShellDKGQ 16 x 16 -1.85314e-05 -1.85314e-05 -1.82489e-05 1.55
ShellDKGQ 32 x 32 -1.84395e-05 -1.84395e-05 -1.82489e-05 1.04

ShellNLDKGQ 4 x 4 -1.16624e-05 -1.16624e-05 -1.82489e-05 36.09
ShellNLDKGQ 16 x 16 -1.85314e-05 -1.85314e-05 -1.82489e-05 1.55
ShellNLDKGQ 32 x 32 -1.84395e-05 -1.84395e-05 -1.82489e-05 1.04

Additional results from Python and Tcl are shown in Figures 4.16 and 4.17, where the 
static, dynamic, and eigenvalue analyses are tested. By comparing the screen shots, the 
same results are obtained using both Python and Tcl.
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Figure 4.16: Part of benchmark results from Python.
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Figure 4.17: Part of benchmark results from Tcl.
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5 CONCLUSIONS

5.1 Summary and Conclusions

OpenSees finite-element software has been used in simulations of structures and soils to
support various PEER research programs and performance-based earthquake engineer-
ing methodology; it has been applied to structural engineering, geotechnical engineer-
ing, earthquake engineering, and fire engineering. As PEER expands its tsunami research
program, the ability to simulate tsunami and fluid–structure interaction (FSI), using the
OpenSees framework is critical. This report has documented the development of a FSI
module in OpenSees designed to support all existing and future structural elements and
materials. The users do not need knowledge of computational fluid dynamics to run the
FSI analysis. The fluid module can be easily added to existing scripts, and the underly-
ing algorithm solutions, mesh updating, and time integration will be performed internally
without interference from the user.

The open-source framework of the Python interpreter will keep OpenSees relevant to a
large user base, with a structure that will easily support advances in scripting languages and
nonlinear finite-element analysis. Since its publication in February 2018, the OpenSeesPy
website has attracted more than ten thousand international visitors, from 289 locations in
the U.S. and 1212 locations in 89 other countries. This shows the trend of using Python
as the primary language for researchers in the OpenSees community. With the new ca-
pabilities of the FSI and Python, OpenSees can provide stronger support to both PEER
researchers and international researchers as well.

5.2 Future Work

The FSI can be further improved by comparing it with additional experimental results of
various incoming waves and their impact on different types of structures, and the results of
such simulations used to develop design guidelines. Although the FSI module has used the
PFEM primarily for coupling the structural and fluid domains, the PFEM can also be used
for other problems, such as debris andmoving objects interacting with structures, structural
cracking, and corrosion. The OpenSeesPy has included response analysis, and in the fu-
ture, the reliability analysis and parallel computing can be added in the Python interpreter.
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Online documentation will be added with more examples and updated commands.
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