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ABSTRACT 

In this data explosion epoch, data-driven structural health monitoring (SHM) and rapid damage 
assessment after natural hazards have become of great interest in civil engineering research. This 
report introduces deep-learning (DL) approaches and their application to structural engineering, 
such as post-disaster structural reconnaissance and vision-based SHM. Using DL in vision-based 
SHM is a relatively new research direction in civil engineering. As researchers begin to apply 
these concepts to structural engineering concerns, two critical issues remain to be addressed: (1) 
the lack of a uniform automated detection principle or framework based on domain knowledge; 
and (2) the lack of benchmark datasets with well-labeled large amounts of data. 

To address the first issue, an automated and hierarchical framework has been proposed: 
the PHI-Net or -Net for the PEER Hub Image-Net. This framework consists of eight basic 
benchmark detection tasks based on current domain knowledge and past reconnaissance 
experience. The second area of concern is based on the -Net framework; a large number of 
structural images was collected, preprocessed, and labeled to form an open-source online large-
scale multi-attribute image dataset, namely, the -Net dataset. At the time of this writing, this 
dataset contains 36,413 images with multiple labels. 

This report introduces herein three deep convolutional neuronal networks (CNN): VGG-
16, VGG-19, and ResNet-50. The architecture design and network properties, etc., are described 
and discussed. For benchmarking purposes, a series of computer experiments are conducted. 
Multiple factors are considered in comparison studies under a fair setting of hyper-parameters 
and training approaches, i.e., using affine data augmentation (ADA) and transfer learning (TL). 
All experimental results are reported and discussed, which provide benchmark and reference 
values for future studies by other researchers developing new algorithms. These results reveal the 
great potential of using DL in vision-based SHM. 

Finally, the first image-based challenge in structural engineering was held by the Pacific 
Earthquake Engineering Research (PEER) Center during the Fall of 2018. This challenge, 
designated as the -Net Challenge, served as a pre-event prior to the open sourcing of the -Net 
dataset and attracted worldwide attention and participation from researchers from around the 
globe. 
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1 Introduction 

1.1 MOTIVATION 

During a structure’s lifecycle, it may go through different types of loading stages, from the 
typical daily loads to severe destructive external loads caused by earthquakes, tsunami, 
hurricanes, etc. These external loads will introduce different degrees of structural damage that 
may lead to losses, injuries, and even fatalities. Thus, structural health monitoring (SHM) in the 
form of rapid and automated damage assessment after natural hazards has become an important 
focus in the field of structural engineering. A study of how SHM has evolved demonstrates that 
many of the approaches and damage criteria developed were based on human visual inspection, 
which is usually referred to as vision-based SHM. Until recently, vision-based SHM has been 
limited to visual inspection by engineers with experience on damage patterns to determine the 
level of damage that had occurred. The current focus aims to augment and eventually replace 
visual inspection by engineers by an automated recognition system based on artificial 
intelligence (AI) technology. 

Both AI and machine-learning (ML) technologies have developed rapidly in recent 
decades, especially in the application of deep learning (DL) in computer vision (CV) 
[Goodfellow et al. 2016]. The objective of ML and DL implementation is that as computers 
perform labor-intensive repetitive tasks, they simultaneously “learn” from performing those tasks. 
Both ML and DL fall within the scope of empirical study, where data is the most essential 
component. In vision-based SHM, using images as data media is currently an active research 
direction. Structural images obtained from reconnaissance efforts or daily life are playing an 
increasing role as the success of ML and DL is contingent on the volume of data media available. 
The expectation is that eventually computers will be able to realize autonomous recognition of 
structural damage in daily life—under service conditions—or after an extreme event—say, a 
large earthquake or extreme wind. Many recent studies are addressing issues related to the 
relatively tedious manual efforts to catalog key vision features based on human knowledge with 
respect to damage patterns. This is referred to as “feature engineering,” which facilitates making 
decisions based on such features (see Torok et al. [2013]; Yeum and Dyke [2015]; Yoon et al. 
[2016]; and Feng and Feng [2017]). 

Features extracted based on human knowledge are known as handcrafted features, which 
are used for decision making in these studies and align well with the concept and procedures of 
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ML. Handcrafted features are concise, but they may be limited according to the perspective of 
image recognition. In some cases, useful damage features are abstract and exist in high-
dimensional spaces. Humans are limited in having only a sense of low-dimensional features, e.g., 
locations, colors, or edges. Due to the complexity and diverse representations of image data, 
handcrafted features may not align well with the general cases and usually work for fewer 
limited scenarios. To address these issues, DL is being considered as a solution to address these 
limitations. Unlike traditional ML and feature engineering, the recent boosting of DL approaches 
uses the concept of representation learning with its abundant number of parameters being 
proposed to replace the manual feature engineering. In the past decade, great strides have been 
made by the DL research community, achieving state-of-the-art results in many vision-
recognition tasks compared with traditional approaches [Goodfellow et al. 2016]. Until now, 
vision-based SHM applications have not fully benefited from the data-driven CV technologies, 
even as interest on this topic is ever increasing. Its application to structural engineering has been 
hamstrung mainly due to two factors: (1) the lack of a general automated detection principles or 
frameworks based on domain knowledge; and (2) the lack of benchmark datasets with well-
labeled large amounts of data. 

Generally, past studies were conducted within a very limited scope that treated damage 
detection tasks independently and waived the connections with the procedures of post-disaster 
reconnaissance or field inspection. Instead of borrowing technologies from computer science, 
insight unique to structural engineering should populate the domain knowledge to build a general 
and systematic framework. Detection tasks should be performed in a logical, step-by-step 
manner, analogous to how building design codes are developed. 

The lack of uniform and quantified definition of structural attributes, e.g., structural 
damage patterns, increases the difficulties of labeling data for analysis. Benchmark detection 
tasks should be defined; most of the current DL applications in SHM fall into the scope of 
supervised learning1 where labels and annotations of the data are crucial. In the CV domain, 
there exists several large-scale open-sourced datasets, e.g., ImageNet [Deng et al. 2009], MNIST 
[LeCun et al. 1998], and CIFAR-10 [Krizhevsky 2009], with about 15 million, 70,000, and 
70,000 images, respectively. 

Given that it is costly and time-consuming to obtain relevant labeled data applicable to 
structural engineering, establishing benchmark detection tasks has been another roadblock. 
Labeling structural damage data requires a significant amount of domain-specific professional 
knowledge and experience in structural engineering. Moreover, newly developed algorithms and 
novel applications in CV are usually tested first on benchmark datasets to compare the 
performance enhancement with the benchmark results. Since vision-based SHM is a relatively 
new direction in earthquake engineering research, researchers have been limited to using datasets 
that were collected or accessed individually. The lack of sharable and benchmark datasets for 
                                                 
1 A machine-learning task of learning a function that maps an input to an output based on example input-output pairs. 
It infers a function from labeled training data consisting of a set of training examples. 
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both comparison’s sake and validation of the datasets is yet another impediment to the training of 
DL models. 

To address the above-mentioned two drawbacks, this report describes recent effort to 
build a large-scale open-sourced structural image database: the PEER2 Hub ImageNet (PHI-Net 
or -Net). As of November 2019, this -Net dataset contains 36,413 images with multiple 
attributes for the following baseline recognition tasks: scene-level classification, structural 
component-type identification, crack existence check, and damage-level detection. It is now open 
sourced to the public via https://apps.peer.berkeley.edu/phi-net/. The -Net dataset uses a 
hierarchy-tree framework for automated structural detection tasks based on past experience from 
reconnaissance efforts for post-earthquakes and other hazards. Through a tree-branch 
mechanism, each structural image can be clustered into several sub-categories representing 
detection tasks. This acts as a sort of a filtering operation to decrease the complexity of the 
problem and improve the performance of the automated applications of the algorithms. To the 
best of the authors’ knowledge, until now there is no open-sourced structural image dataset with 
multi-attribute labels and this volume of images in the vision-based SHM area. It is believed that 
this image dataset and its corresponding detection tasks and framework will provide the 
necessary benchmark for future studies of DL in vision-based SHM. 

Inspired by the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)3, also 
known as the ImageNet Challenge [Deng et al. 2009], PEER organized the first image-based 
structural damage recognition competition as a pioneering study in the structural engineering 
area. This competition, referred to as the PEER Hub ImageNet (-Net) Challenge, was held from 
23 August 23 2018 to 25 November 2018 as a pre-event prior to open- ourcing the -Net dataset. 
In the -Net Challenge, PEER provided the beta version of the -Net dataset and encouraged 
participants to develop their own algorithms and models for structural image classification to 
contribute to the establishment of automated vision-based SHM. The state-of-the-art algorithms 
tested in the -Net Challenge are expected to enhance the accuracy and generalization of vision-
based SHM approaches. These approaches, including the effort documented in this report, aim 
towards the construction of a structural image dataset populated with enough images to construct 
robust algorithms and assess with confidence the built environment post-event. 

1.2 RELATED WORK 

Convolutional neural networks (CNN) have been at the heart of recent advances in DL. 
Compared with traditional CV and ML approaches, CNN no longer requires handcrafted low-
level features or feature engineering; millions of parameters inside a typical network are capable 
of learning countless mid- to high-level image representations with input data obtained from a 
pixel matrix (tensor) data. Another unique characteristic of deep CNN is its depth of architecture. 

                                                 
2 Pacific Earthquake Engineering Research Center 
3 http://www.image-net.org/challenges/LSVRC/  
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Many well-designed CNN architectures—such as VGGNet (Visual Geometry Group) [Simonyan 
and Zisserman 2014], GoogleNet [Szegedy et al. 2015], and Deep Residual Net [He et al. 
2016]—have demonstrated great performance improvement with a substantial increase of the 
network depth. That said, issues like degradation and bias-variance tradeoff for very deep 
networks should be given more attention [He et al. 2016]. Although CNN has been used since 
the 1990s to solve handwritten digit recognition tasks [LeCun et al. 1989; 1998], its recent 
application on a much bigger scale wide can be attributed to advances in computing technology, 
such as the high-performance Graphic Processing Unit (GPU). 

In addition, the ImageNet Challenge [Deng et al. 2009] has also played a big role in 
advertising its applicability. The ImageNet Challenge, which has been held for several years, is 
aimed at evaluating algorithms for object detection and image classification. Currently, more 
than 15 million images have been collected from a variety of domains and labeled, with over 
1000+ classes. In the ImageNet Challenge of 2014, VGGNet, the model developed by VGG at 
the University of Oxford [Simonyan and Zisserman, 2014], achieved first place in localization 
tasks and second place in classification tasks; the VGG Model not only performed well for 
ImageNet dataset, but also had good generalization properties applicable to other datasets. In the 
ImageNet Challenge of 2015, Residual Net (ResNet), a new CNN architecture developed by a 
Microsoft research team [He et al. 2016], achieved first place in all main competition tracks, 
indicating great improvement of recognition accuracy compared to previous models and methods 
via its “shortcut connection” design. Boosted by the ImageNet Challenge, a continuously 
increasing number of deep CNN architectures are currently under development to achieve better 
performance. In the above-mentioned studies using images, several basic tasks are commonly 
performed, namely, image classification, object localization, object detection, and semantic 
segmentation4. If extended to vision/image-based SHM, classification for damage states and 
localization for damage patterns can be thought of as straightforward applications. 

There has been an increasing trend of applying CNN technology in post-disaster 
reconnaissance and SHM. Soukup and Huber-Mörk [2014] applied CNN to detect railway 
defects; Yeum et al. [2016] applied VGG-F (F for “fast”) CNN architecture to collapse 
classification based on large-scale images collected from reconnaissance efforts; Cha et al. 
[2017a; 2017b] used a deep CNN to detect concrete cracks without calculating the defect 
features and proposed a region-based algorithm for detecting multiple damage types; Zhang et al. 
[2017] designed a new CNN architecture, namely, CrackNet, for pavement crack detection at the 
pixel level; and Vetrivel et al. [2017] combined deep CNN and 3D point cloud5 technologies to 
detect façade and roof damage of buildings; Xue and Li [2018] proposed a region-based full 
CNN to more efficiently classify and localize tunnel lining defects in geotechnical engineering. 

Most of these studies have focused mainly on the binary problem of whether the structure 
is damaged or not and analyzed the images at the pixel level. In contrast, images collected by 
                                                 
4 An image classification conducted at the pixel level. 
5 A set of data points in space produced by 3D scanners to measure many points on the external surfaces of objects. 
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engineers in more general reconnaissance efforts and SHM problems are usually related to the 
object level or even represent the whole structure; this makes utilizing current CNN technology 
more difficult to use without first conducting elaborate image pre-processing. A few researchers 
have tackled this problem, including Yeum et al. [2016], who started from the object or building 
level, instead of the pixel level, based on a variety of reconnaissance images. Subsequently, they 
studied the collapse classification problem and achieved promising results. But in reconnaissance 
decision making, conducting more complex tasks is essential and requires further study to 
determine, damage types and level of damage. 

Motivated by this need for rapid information and dissemination in post-event scenarios, 
Gao et al. [2018] and Gao and Mosalam [2018] conducted a series of experiments on detecting 
structural component type and damage severity and type at the object level based on a small 
dataset, where transfer learning (TL) and online affine data augmentation (ADA) were applied. 
They demonstrated that using TL and ADA effectively alleviated the negative influence (namely, 
over-fitting) of labeled data deficiency and improved the performance of generalization on only 
2000 images. To apply the advances made by Gao et al. [2018] to a broader range of scenarios, 
assembling a large volume of images for DL training is required. 

As mentioned above, most studies have conducted experiments based on a small-scale or 
low-variety image set. Some cases conducted DL classification based on less than 10,000 images, 
and some studies obtained a large number of images by segmenting one high-resolution image 
into hundreds or thousands of small-size images. These images were homogenous and similar to 
each other in texture, lighting condition, etc., which may lead to a lack of generalization of the 
classifier to newly collected images with much less homogenous characteristics. Moreover, the 
above-mentioned studies reported their detection accuracies from their experiment, but some of 
them used different definitions for damage patterns, and each study used different datasets. This 
causes difficulties in comparing different algorithms and approaches, as it is well known that 
results of DL are sensitive to the source dataset. 

Clearly, what is needed is an automated detection framework with basic/benchmark 
detection tasks. As reported herein, a publicly open-source, relatively large-scale structural 
image dataset with multi-attribute labels was proposed and populated. This dataset will serve as a 
benchmark dataset with well-defined detection tasks. Researchers are encouraged to test newly 
developed algorithms or models using this dataset with corresponding tasks and compare their 
performance with the benchmark results described herein. 

1.3 REPORT ORGANIZATION 

The report contains six chapters and one appendix. Chapter 2 describes the automated and 
hierarchical detection framework proposed, namely, -Net, and the corresponding large-scale 
multi-attribute -Net dataset, where eight basic/benchmark classification tasks are introduced 
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with examples. Accordingly, the development procedure of such a dataset including data 
collection, pre-processing, labeling, and splitting is also introduced. 

Chapter 3 describes three well-known DL models with their architecture designs and 
properties: VGG-16, VGG-19, and ResNet-50. These three models are treated herein as 
benchmark classifiers. 

Chapter 4 describes the benchmark experiments with respect to the eight benchmark 
tasks. Reference values associated with comparisons and discussions of the ADA and TL are 
presented. 

Chapter 5 describes the first image-based challenge in civil and structural engineering 
area, the -Net Challenge, held by PEER in the Fall of 2018. 

Chapter 6 presents a summary of conclusions and future extensions. 

Appendix A includes partial information on structural image collection with respect to 
earthquake events. 
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2 PEER Hub ImageNet (-Net) 

Inspired by the establishment of ImageNet, a Structural ImageNet known as PEER Hub 
ImageNet (PHI-Net or -Net) was constructed. This image repository contains images relevant to 
civil engineering, such as buildings, bridges, substations, railways, etc., that catalogues structures 
in both the damaged and undamaged states. The establishment of -Net dataset can be used for 
recognition and vision-based problems in civil engineering for application in SHM concerns. The 
current stage of the study has kept the scope relatively narrow to address issues within structural 
engineering. The proposed -Net framework presented herein is intended to be used for detection 
and recognition of structural properties only. 

2.1 FRAMEWORK OF -NET 

Analogous to the classification and localization tasks in the ImageNet Challenge, the goal of the 
-Net framework was to construct similar recognition tasks designed for structural damage 
recognition and evaluation. Based on past experience from reconnaissance efforts (Sezen et al. 
[2003]; Li and Mosalam [2013]; Mosalam et al. [2014]; and Koch et al. [2015]), several issues 
affect the safety of structures post-event: the type of damaged component, the severity of damage 
in the component, and the type of damage. Because images collected from reconnaissance efforts 
vary broadly vary, including, different distances from objects, camera angles, and emphasized 
targets, it is useful to cluster these issues into different levels. That is, images taken from a very 
close distance or only containing part of the component belong to the pixel level; major targets in 
images such as single or multiple components belong to the object level; and images containing 
most of the structure belong to the structural level. Moreover, the corresponding evaluation 
criteria will be different for different levels: that is, images in the pixel level are more related to 
the material type and damage status; images on the structural level are more related to the 
structural type and failure status. 

In a preliminary step in using visual data for damage classification, Yeum et al. [2016] 
proposed a detection method with four steps: metadata filtering, scene classification, object 
detection, and damage evaluation. Alternatively, proposed herein is a new processing framework 
with a hierarchy-tree structure shown in Figure 2.1, where images are classified as follows: (1) a 
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raw image is clustered to different scene levels; (2) according to its level, corresponding 
recognition tasks are applied layer by layer following this hierarchy structure; and (3) each node 
is seen as one recognition task or a classifier, and the output of each node is seen as a 
characteristic or feature of the image to help with further analysis and decision making if 
required. 

In the current -Net, we designed the following eight benchmark classification tasks: 

1. three-class classification for scene level;  

2. binary classification for damage state; 

3. binary classification for spalling condition (material loss); 

4. binary classification for material type; 

5. three-class classification for collapse mode; 

6. four-class classification for component type; 

7. four-class classification for damage level and 

8. four-class classification for damage type. 

The proposed framework with a hierarchy-tree structure is depicted in Figure 2.1, where 
grey boxes represent the detection tasks for the corresponding attributes, white boxes within the 
dashed lines are possible labels of the attributes to be chosen in each task, and ellipsis in boxes 
represent other choices or conditions. In the detection procedure, one starts from a root leaf 
where recognition tasks are conducted layer by layer and node by node (grey box) until another 
leaf node. The output label of each node describes a structural attribute. Each structural image 
may have multiple attributes, i.e., one image can be categorized as being at the pixel level, 
concrete, damaged state, etc. In the terminology of CV, this is considered a multi-attribute 
(multi-label) classification problem. Given that this is a pilot study, these attributes are treated 
independently at this stage. More extensions such as the multi-label version of -Net will be 
updated in future studies. 
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Figure 2.1 Framework of -Net. 

2.2 BENCHMARK DETECTION TASKS 

2.2.1 Task 1: Scene Level 

From Figure 2.1, determining the scene-level classification is the initial task; subsequent tasks 
are pursued according to different levels. Because images collected from reconnaissance efforts 
broadly vary in terms of distance, camera angles, emphasized targets, etc., the initial 
establishment of the scene level can help decrease the doubt-of-scale issue in images and reduce 
the complexity of subsequent tasks. Through filtering out the irrelevant data and dividing images 
more granularly into different levels, the classifiers for subsequent tasks can achieve improved 
recognition performance. In the current -Net framework, the benchmark scene-level task is 
defined into three classes: pixel level (P), object level (O), and structural level (S). An image 
taken from a very close distance or only containing part of the component belongs to “P” ; see 
Figure 2.2(a). An image taken from mid-range and involving major targets such as a single 
structural component or multiple components belongs to “O”; see Figure 2.2(b). An image taken 
from a far distance and containing most parts of the structure or identifying its outline belongs to 
“S”; see Figure 2.2(c). 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2.2 Sample images used in scene-level detection: (a) pixel level; (b) object 
level; and (c) structural level. 
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2.2.2 Task 2: Damage State 

In the vision-based SHM, the damage state is one of the most important indices for structural 
health. In this task, the definition is straightforward: any observable damage pattern on the 
structural surface implies the damaged (D) case [shown in Figure 2.3(a)]; otherwise it is 
undamaged (UD) [shown in Figure 2.3(b)]. 

 

 
(a) 

 

 
(b) 

Figure 2.3 Sample images used in damage state detection: (a) damage state; and (b) 
undamaged state. 

2.2.3 Task 3: Spalling Condition (Material Loss) 

Spalling is usually defined as flakes of material that break off from a component or pertains to 
loss of cover of the component’s surface. It often occurs in concrete and masonry structures, 
which may lead to severe consequences due to a reduction in the cross section and acceleration 
of corrosion in reinforcing steel bars. Spalling can be induced by expansion forces produced 
chemically or mechanically. Note: most images of spalling shown herein were collected from 
post-earthquake reconnaissance efforts. In other words, the spalling patterns in the -Net dataset 
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are mainly due to earthquake loading. In this task, the spalling condition is a binary classification 
task with only two classes: spalling (SP) [shown in Figure 2.4(a)] and non-spalling (NSP) 
[shown in Figure 2.4(b)]. 

 

 
(a) 

 

 
(b) 

Figure 2.4 Sample images used in spalling condition (material loss) detection: (a) 
spalling; and (b) non-spalling. 

2.2.4 Task 4: Material Type 

Due to their mechanical properties, structural materials have a significant impact on structural 
response. Thus, identifying the type of material used for the structural component is important. 
The commonly used materials are steel, concrete, masonry, and wood. One of the difficulties in 
this task is that structural components are usually covered with non-structural components, e.g., 
plaster, making it difficult to accurately identify the material type from surface images. Having 
said that, some structures and components are made from exposed steel members such as braces 
and plates, which makes it simply to identify them based on their shape and surface texture. In 
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this task, simplifications were made to limit the classification to two types: steel (ST) [shown in 
Figure 2.5(a)] and other materials (OM) [shown in Figure 2.5(b)]. 

 

 
(a) 

 

 
(b) 

Figure 2.5 Sample images used in material type detection: (a) steel; and (b) other materials. 

2.2.5 Task 5: Collapse Mode 

Due to different photographic distances, camera angles, etc., it is reasonable to evaluate the 
severity of damage based on different scene levels. In the view of structural-level images, which 
contain the global information of the structure, the global performance of the structure, i.e., the 
collapse mode, is of the greatest concern. In terms of structural mechanics, collapse mode herein 
is defined as non-collapse (NC), partial collapse (PC), and global collapse (GC): although the 
NC [shown in Figure 2.6(a] includes undamaged or slightly damaged patterns, the structure 
remains intact; PC [shown in Figure 2.6(b)] corresponds to only part of the structure having 
collapsed while the remaining parts are still intact; and GC [shown in Figure 2.6(c)] represents 
catastrophic damage in the structure or evidence of permanent global excessive deformation. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2.6 Sample images used in collapse mode detection: (a) non-collapse; (b) 
partial collapse; and (c) global collapse. 
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2.2.6 Task 6: Component Type 

In a structural system, different structural components play different roles. Vertical components, 
i.e., columns and shear walls, provide lateral stiffness to resist lateral force induced by 
earthquakes; horizontal components, i.e., beams, diaphragms, and joints, transfer the horizontal 
load to the vertical components. In the seismic design of buildings, engineers have adopted 
concepts like the “strong-column–weak-beam” and “strong-joint–weak-component” to define the 
role they play in providing resistance to ground shaking [Moehle 2014]. Thus, identifying the 
type of structural component is informative for SHM. From the hierarchical relationship 
established in the -Net framework, structural component-type identification is considered as a 
subsequent task at the object level by four classes: Beam [shown in Figure 2.7(a)], Column 
[shown in Figure 2.7(b)], Wall [shown in Figure 2.7(c)], and Others [shown in Figure 2.7(d)]. 
Note: it is challenging to identify from images whether a wall is a shear wall or an infill wall 
even though there are major differences in how they provide lateral stiffness to the system. Thus, 
both types are grouped herein into one category. For components other than beams, columns, or 
walls, they are treated as other structural components, e.g., joints, staircases, braces, or even non-
structural component such as windows, doors, etc. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 2.7 Sample images used in component type detection: (a) beam; (b) column; 
(c) wall; and (d) others. 
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2.2.7 Task 7: Damage Level 

This task refers specifically to damage-level evaluation of pixel and object-level images to 
complement the collapse mode task at the structural level, which is defined by four classes: 
Undamaged (UD), minor damage (MiD), moderate damage (MoD), and heavy damage (HvD); 
UD here is the same as that defined in the Task 2 damage state. As shown in Figure 2.8(a), MiD 
implies that there are only small and narrow cracks or a few spots where very minor spalling 
occurred on the cover of structural components. As the extent of the damage increases, i.e., 
cracks become wider and evidence of more extensive spalling occurs in areas but without failure, 
indicate MoD; see Figure 2.8(b). Shown in Figure 2.8(c), HvD means the damage area is large, 
and the structural component is approaching failure. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2.8 Sample images used in damage level detection; (a) minor damage; (b) 
moderate damage; and (c) heavy damage. 

2.2.8 Task 8: Damage Type 

Damage type is a more complicated and abstract classification task. Not restricted to a specific 
damage representation, e.g., reinforcement bar buckling, concrete spalling, etc., herein damage 
type refers to a complex and abstract semantic vision pattern, defined as flexural (FLEX), shear 
(SHEAR), and combined (COMB). These damage types have direct implications on mechanical 
properties and seismic design. Analogous to the failure types introduced in Moehle [2014], that 
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is, flexural, shear, etc., and based on engineering judgment, label definitions were assigned as 
follows: 

1. If most cracks occur in the horizontal or the vertical directions or at the end of a 
component with respective vertical or horizontal edges, it was considered 
flexural-type damage [shown Figure 2.9(a)]; 

2. If most cracks occur in a diagonal direction, or form an “X” or “V” patterns, it 
was considered shear-type damage [shown Figure 2.9(b)]; and 

3. If the distribution of cracks was irregular or accompanied with heavy spalling, it 
was considered combined-type damage [shown Figure 2.9(c)]. 

According to Moehle [2014], FLEX represents ductile failure; it is a more desired pattern of 
failure compared to SHEAR, which leads to brittle failure. Thus, it is expected that damage types 
defined with concepts from seismic design will be very useful for the decision-making procedure. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2.9 Sample images used in damage-type detection; (a) flexural damage; (b) 
shear damage; and (c) combined damaged. 
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2.3 DATA COLLECTION, PRE-PROCESSING, LABELING, AND SPLITTING 

2.3.1 Data Collection 

Constructing a large-scale image dataset requires a large number of images; ImageNet contains 
over 15 million images. Researchers in structural engineering typically have large numbers of 
photographs taken from reconnaissance efforts or experimental tests, which are good resources 
for DL training. Moreover, there exist online resources in the form of databases and search 
engines that store raw structural images of pre- and post-disaster status. Unfortunately, these 
images are not labeled. In addition to self-taken and donated images, raw images for inclusion in 
the -Net dataset were collected from NISEE library archive6, DESIGN SAFE7, EERI Learning 
from Earthquake (LFE) Archive8, Baidu Image9, and Google Image10. As of June 2018, over 
100,000 structural images with variant qualities were collected; a large number of them were 
photographed after recent earthquakes, e.g., 2017 Mexico City earthquake. More information 
related to the names and dates of earthquakes is listed in Table A.1 in Appendix A. As of this 
writing, multiple worldwide sources contributed to the variety of data in the current -Net 
dataset. 

2.3.2 Data Pre-Processing 

Since collected images vary broadly with differing degrees of quality, image pre-processing was 
conducted prior to labeling according to the following four steps. 

1. Low-resolution images (lower than 448 448 pixels) and noisy images containing 
too many irrelevant objects, e.g., vehicles, people, furniture, etc., were manually 
eliminated; 

2. To further increase the dataset size, especially for pixel and object-level images, 
subparts, e.g., beam, column, wall, etc., were cropped from some high-resolution 
structural images; see Figures 2.10 and 2.11; 

3. To avoid significant distortions to image features due to stretching/rescaling used 
in training, cropping was applied to make the aspect ratio of the images roughly 
less than 2; and 

4. To avoid images that were too low in quality and resolution, cropped images with 
resolutions lower than 224 224 pixels were eliminated. 

                                                 
6 https://nisee.berkeley.edu/elibrary/  
7 https://www.designsafe-ci.org/  
8 https://www.eeri.org/projects/learning-from-earthquakes-lfe/lfe-reconnaissance-archive/  
9 https://image.baidu.com/  
10 https://images.google.com/  
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Figure 2.10 One structural level image includes multiple structural components. The 
solid red boxes indicate columns and dashed blue box indicates the 
beam. 

 

 

Figure 2.11 Subparts cropped from high resolution structural level image. 

 

2.3.3 Data Labeling 

As discussed above, for benchmarking purposes and to reduce task complexity, eight benchmark 
tasks were independently treated. The labeling procedure followed the order from the framework 
shown in Figure 2.1, starting from labeling attribute in scene level and then progressing towards 
the corresponding subsequent tasks. 
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Figure 2.12 Graphic user interface of the developed online labeling tool. 

 

The labeling procedure was crowdsourced via an online labeling tool11, which provided a 
user-friendly graphic user interface for annotation where users just needed to click the button 
corresponding to the correct label; see Figure 2.12. To avoid bias, a majority voting mechanism 
was adopted where multiple people may label one image, but the final label for inclusion in the 
dataset was the one with the majority voting. In addition, a reference voting mechanism was 
introduced, as shown on the right column of Figure 2.12, which represented the percentage of 
votes for each label and provided opinions from others working on the same image. Based on the 
feedback from volunteers, the reference voting mechanism helped them in judging some 
ambiguous images. In some cases, where there were images unrelated to attributes or labels, or 
where the users were unable to make a firm decision regarding the appropriate label, a “skip” 
button was placed at the top of the image to bypass such images. Once the user completed 
labeling one attribute (task), the selected choices were shown on the bottom right corner, at 
which point the user could advance to the next task of the above-mentioned hierarchical 
relationship by clicking “next”. 

                                                 
11 https://apps.peer.berkeley.edu/spo  
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To assist in the labeling process, 20 volunteers with structural engineering backgrounds 
were recruited, in addition to worldwide contributions received from researchers and experts 
with the relevant background knowledge. In order to avoid bias and maintain good quality 
control of the labeling process in the current -Net dataset, each image was labeled with the 
majority voting among at least three people; it was discarded if it had less than three votes. As of 
November 2019, the -Net dataset has 36,413 labeled images. 

2.3.4 Data Splitting 

As a benchmark dataset for training and validating ML/DL models, splitting the raw dataset to 
deterministic training and testsets is required. Because the -Net is a multi-attribute dataset 
where each image contains multiple labels, the training/test split ratio for each task is different 
from one task to another. This not the case in common classification benchmark datasets, e.g., 
MNIST, or CIFAR-10. As an example, in the damage state task, 13,271 images have valid labels 
(UD and D), and the remaining 23,142 images are unlabeled for this task. Simply adopting a 9:1 
training/test ratio across the entire image set may lead to the undesirable situation where all 
images with valid labels are in the training set, but no images with valid labels appear in the 
testset. To address this issue, a new split algorithm was developed where the training/test ratio 
was replaced by a range instead of a fixed number for each attribute. Usually, the range of the 
split ratio training/test is from 4:1 to 9:1. In this report, this split ratio is chosen in the range of 
8:1 to 9:1. 

Figure 2.13 shows the pseudo code of the multi-attribute split algorithm. First, according 
to the number of all images in the dataset (Ntotal = 36,413), a random sample of   Ntotal = 32,407 
indices is selected (without replacement) from 1 to 36,413, which represents training indices 
where the split ratio factor  = 0.89 is assigned for better convergence performance after 
multiple trials; the remaining 4006 indices are for testing. Then, training/test ratios are checked 
for each attribute. If there exist any conflicts—where the ratio is out of range from 8:1 to 9:1—
then the sampled indices are rejected, and the recursive loop is running again until it reaches a 
satisfactory split. As mentioned above, the process reported herein mainly focused on solving 
eight tasks individually. Thus, eight task-oriented sub-datasets for each attribute with training 
and test are further separated; see Tables 2.1 to 2.8. 

Typically for ML and DL studies, it is suggested to keep a similar label distribution 
(percentage of each label with respect to all labels) among the training, test, and full datasets; 
therefore, distributions among these eight tasks were examined; Tables 2.9 to 2.16. All results 
indicated the ratios among these three datasets to be nearly consistent. 
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Figure 2.13 Pseudo code of multi-attribute split algorithm. 

Table 2.1 Number of images in scene level. 

Set Pixel level Object level Structural level Total 

Training 7690 8111 8508 24,309 

Test 965 962 1070 2997 

Total 9073 8655 9578 27,306 

Table 2.2 Number of images in damage state. 

Set Damaged state Undamaged state  Total 

Training 6282 5529 11,811 

Test 745 715 1460 

Total 7027 6244 13,271 
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Table 2.3 Number of images in spalling condition. 

Set Non-spalling Spalling  Total 

Training 4294 2604 6898 

Test 527 310 837 

Total 4821 2914 7735 

Table 2.4 Number of images in material type. 

Set Steel Other materials Total 

Training 1806 6506 8312 

Test 209 770 979 

Total 2015 7276 9291 

Table 2.5 Number of images in collapse mode. 

Set Non-collapse Partial collapse Global collapse Total 

Training 322 379 525 1226 

Test 39 40 67 146 

Total 361 419 592 1372 

Table 2.6 Number of images in component type. 

Set Beam Column Wall Others Total 

Training 511 1618 2268 358 4755 

Test 60 205 265 49 579 

Total 571 1823 2533 407 5334 

Table 2.7 Number of images in damage level. 

Set No Minor Moderate Heavy Total 

Training 1551 869 799 919 4138 

Test 207 93 104 94 498 

Total 1758 962 903 1013 4636 
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Table 2.8 Number of images in damage type. 

Set No Flexural Shear Combined Total 

Training 1598 476 826 1193 4093 

Test 215 46 99 132 492 

Total 1813 522 925 1325 4585 

Table 2.9 Label distribution in training, test, and full dataset in scene level. 

Set Pixel level Object level Structural level 

Training 31.6% 33.4% 35.0% 

Test 32.2% 32.1% 35.7% 

Full 31.7% 33.2% 35.1% 

Table 2.10 Label distribution in training, test, and full dataset in damage state. 

Set Damaged state Undamaged state  

Training 53.2% 46.8% 

Test 51.0% 49.0% 

Full 53.0% 47.0% 

Table 2.11 Label distribution in training, test, and full dataset in spalling condition. 

Set Non-spalling Spalling 

Training 62.2% 37.8% 

Test 63.0% 37.0% 

Full 62.3% 37.7% 

Table 2.12 Label distribution in training, test, and full dataset in material type. 

Set Steel Other materials 

Training 21.7% 78.3% 

Test 21.3% 78.7% 

Full 21.7% 78.3% 
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Table 2.13 Label distribution in training, test, and full dataset in collapse mode. 

Set Non-collapse Partial collapse Global collapse 

Training 26.3% 30.9% 42.8% 

Test 26.7% 27.4% 45.9% 

Full 26.3% 30.5% 43.1% 

Table 2.14 Label distribution in training, test, and full dataset in component type. 

Set Beam Column Wall Others 

Training 10.7% 34.0% 47.7% 7.5% 

Test 10.4% 35.4% 45.8% 8.5% 

Full 10.7% 34.2% 47.5% 7.6% 

Table 2.15 Label distribution in training, test, and full dataset in damage level. 

Set No Minor Moderate Heavy 

Training 37.5% 21.0% 19.3% 22.2% 

Test 41.6% 18.7% 20.9% 18.9% 

Full 37.9% 20.8% 19.5% 21.9% 

Table 2.16 Label distribution in training, test, and full dataset in damage type. 

Set No Flexural Shear Combined 

Training 39.0% 11.6% 20.2% 29.1% 

Test 43.7% 9.3% 20.1% 26.8% 

Full 39.5% 11.4% 20.2% 28.9% 

2.4 DATA SUMMARY 

The -Net dataset is composed of 36,413 effectively labeled images that can be treated either as 
a one multi-attribute (multi-label) dataset or as consisting of eight independent sub-datasets 
corresponding to its attribute/task; label statistics are illustrated in Figure 2.14. 

The above-mentioned eight well-labeled datasets with both training and testsets online12 
are open source, and researchers can download the data according to instructions for non-
commercial usage. All eight dataset files are compressed in the form of zip files and share the 
                                                 
12 https://apps.peer.berkeley.edu/phi-net/ 
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same data storage architecture containing X_train.npy (i.e., training data), y_train.npy (i.e., 
training label), X_test.npy (i.e., test data), and y_test.npy (i.e., test label). All image data are 
converted to NumPy array and can be easily loaded by multiple computer languages, e.g., Python, 
MatLab, etc. 

 

Figure 2.14 Statistics of the labels of the -Net dataset. 

2.5 EXTENSIONS ON DATASET HIERARCHY 

The flowchart of the -Net framework shown in Figure 2.1 indicates the hierarchital 
relationships between tasks, and its dependence on the engineer’s domain knowledge and past 
experience. In a recent study by Gao et al. [2019], a new version of the framework was proposed, 
namely, the hierarchy -Net, which combines several branches for efficiency in computation and 
introduces conditional nodes (diamonds) for tree-branch selections. The grey nodes in Figure 
2.15 represent detection tasks. All eight benchmark tasks are included; therefore, the -Net 
dataset is also suitable for this extended framework. Hierarchy -Net has a clearer order and 
stronger correlation between the root and leaf tasks than the original framework by additional 
emphasis on the two types of diamond nodes (i.e., scene-level and damage-state tasks). The 
remaining nodes are now connected and play the most important roles in the whole framework. 
Thus, it is expected that hierarchy -Net will be beneficial for future studies; however, the order 
and selection of node tasks are not optimal, and more studies to explore and to better utilize the 
hierarchical relationships are encouraged. 
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Figure 2.15 Hierarchy of the extended -Net framework. 
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3 Deep Convolutional Neural Networks 

As mentioned in previous chapters, several famous Deep CNN architectures have been proposed 
and validated effectively, e.g., VGGNet, and ResNet. This chapter introduces both VGGNet and 
ResNet as benchmark DL classifiers. 

3.1 VGGNET 

Inherited from the two well-known architectures of LeNet [LeCun et al. 1998] and AlexNet 
[Krizhevsky et al. 2012], VGGNet uses similar configurations such as multiple convolutional 
(conv) blocks, two fully connected layers (fc-layers) representing image features, and one fc-
layer for classification usage. Compared to previous network architectures, VGG goes much 
deeper with most CNN layers—exemplifying the concept of “very deep network” [Simonyan 
and Zisserman 2014] —that provides a direction for design and efficient usage of CNN. The 
most prominent contribution of the VGG architecture is to prove that by applying a small filter 
size (or kernel size) such as 1×1, or 3×3, and increasing the depth of the network, one can 
effectively improve model performance. The pre-trained VGG Model on ImageNet has very 
good generalization on other datasets and provides an environment for a transfer learning (TL) 
study, where the DL classifier can learn from a source domain to transfer the learning to another 
target domain with less data. 

The input image size used in Simonyan and Zisserman (2014) is fixed at 224×224; pixel 
intensity in an image is reduced by the mean RGB channel as the only preprocessing procedure. 
For the conv layer [Goodfellow et al. 2016], only a small filter size (typically 3×3 or even 1×1) 
is used for the convolution operation. In order to maintain the size of the feature maps (generated 
by convolution), the stride is taken as one with zero padding while performing the convolution. 
Pooling layers can reduce the dimensionality of the representation and create an invariance to 
small shifts and distortions. In order to save computational time and pursue better performance 
of translation invariance, after several rounds of convolution, max pooling layers are added to the 
conv layers. The stride for the max pooling is 2 with a 2×2 window size. Max pooling has some 
positive effects on extracting superior invariant features [Nagi et al. 2011], which might help 
with identifying features like cracks. Usually there are multiple conv layers before the pooling 
layer. This report denotes a conv block as several conv layers ended by a max pooling layer. 
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In the original design [Simonyan and Zisserman 2014] after a series of conv blocks, three 
fc-layers follow, where each of the first two layers has 4096 neurons and the third one has 1000 
neurons matching 1000 classes of the detection targets (also called a Softmax layer). According 
to different sizes of datasets and different qualities of images between the original ImageNet and 
the current -Net dataset, some modifications were made and tested, including the following: (1) 
the shape of the Softmax layer was changed according to the number of classes to be identified 
in the classification tasks, e.g., for binary damage detection, the shape of the Softmax layer was 
(N, 2) where N represents the number of input data; and (2) different neurons and different 
numbers of fc-layers were applied after the conv blocks, which is also known as the adaptation 
layer. 

According to different numbers of conv and fc-layers, VGGNet has several variations, 
e.g., VGG-16, and VGG-19. The detailed configurations including filter size and output shape 
for each layer of the two kinds of VGGNet adapted in the -Net dataset are listed in Tables 3.1 
and 3.2. Here, the only difference between the adapted VGG-16 and VGG-19 is that VGG-19 
added one more conv layer in conv blocks 3, 4, and 5, i.e., it has 3 more layers than VGG-16 
(which explains its name). 

In order to avoid overfitting, dropout [Srivastava et al. 2014] is applied in the adaptation 
layers (fc-layers), with probability of p = 0.5. For simplicity, all the hidden layers were applied 
with the activation function ReLU [Nair and Hinton 2010], which favorably increases the 
nonlinearity of the network. Given that VGGNet is not only a powerful classifier but also 
performs well in localization and object detection tasks [Simonyan and Zisserman 2014], it is 
proposed to learn more about these capabilities of the detection tasks using future versions of -
Net. 
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Table 3.1 Adapted VGG-16 configuration. 

Block Layer (type) Filter size (#) Output shape 

Input Input Image - (N, 3, 224, 224) 

Conv 

Block 

1 

Convolutional 3×3 (64) (N, 64, 224, 224) 

Convolutional 3×3 (64) (N, 64, 224, 224) 

Max Pooling - (N, 64, 112, 112) 

Conv 

Block 

2 

Convolutional 3×3 (128) (N, 128, 112, 112) 

Convolutional 3×3 (128) (N, 128, 112, 112) 

Max Pooling - (N, 128, 56, 56) 

Conv 

Block 

3 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Max Pooling - (N, 256, 28, 28) 

Conv 

Block 

4 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Max Pooling - (N, 512, 14, 14) 

Conv 

Block 

5 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Max Pooling - (N, 512, 7, 7) 

Fully-connected 

Layer 

Flatten - (N, 25,088*) 

Dense - (N, 256) 

Dense - (N, 128) 

Dense - (N, 2/3/4)** 

*Note 1: 512×7×7 = 25,088. 

**Note 2: N denotes the number of data, and 2/3/4 corresponds to different classes to be classified. 
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Table 3.2 Adapted VGG-19 configuration. 

Block Layer (type) Filter size (#) Output shape 

Input Input Image - (N, 3, 224, 224) 

Conv 

Block 

1 

Convolutional 3×3 (64) (N, 64, 224, 224) 

Convolutional 3×3 (64) (N, 64, 224, 224) 

Max Pooling - (N, 64, 112, 112) 

Conv 

Block 

2 

Convolutional 3×3 (128) (N, 128, 112, 112) 

Convolutional 3×3 (128) (N, 128, 112, 112) 

Max Pooling - (N, 128, 56, 56) 

Conv 

Block 

3 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Convolutional 3×3 (256) (N, 256, 56, 56) 

Max Pooling - (N, 256, 28, 28) 

Conv 

Block 

4 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Convolutional 3×3 (512) (N, 512, 28, 28) 

Max Pooling - (N, 512, 14, 14) 

Conv 

Block 

5 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Convolutional 3×3 (512) (N, 512, 14, 14) 

Max Pooling - (N, 512, 7, 7) 

Fully-connected  

Layer 

Flatten - (N, 25,088*) 

Dense - (N, 256) 

Dense - (N, 128) 

Dense - (N, 2/3/4)** 

*Note 1: 512×7×7 = 25,088. 

**Note 2: N denotes the number of data, and 2/3/4 corresponds to different classes to be classified. 
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3.2 RESNET 

A deep network has more trainable parameters compared to a shallow network, and the 
increasing complexity might help solve more complicated problems and improve performance. 
Unfortunately, as demonstrated by He et al. [2016], vanishing/exploding gradients and 
degradation issues will occur with the increasing network depth, which make it difficult to 
effectively train. To address this concern, He et al. [2016] developed a new CNN architecture 
with a shortcut connection named the Residual Network (ResNet). As a reflection of its name, 
the layers are reformatted with reference to the inputs through the shortcut connection, and the 
network learns residual functions instead of unreferenced functions as is the case with traditional 
CNN. These shortcuts act like highways, and the gradients can easily flow back, resulting in 
faster training and support for stacking more layers. Mathematically, assuming H(x) is any 
desired mapping function, the traditional way assumes that convolutional operations fit H(x). In 
contrast, in ResNet these convolutional operations are used to fit the residual function (x), and 
then mapping can be represented as the sum of functions of input and residual terms, i.e., H(x) = 
F(x) + h(x). If the additive term h(x) is the original input, this shortcut connection is considered 
as identity mapping; see Figure 3.1(a). In addition, more complicated mapping was also designed 
for the shortcut connection using a convolutional shortcut; see Figure 3.1(b). He et al. [2016] 
also studied and validated more detailed derivations. The CNN structures shown in Figures 
3.1(a) and (b) are denoted as an identity residual unit and a convolutional residual unit, 
respectively. 

The benchmark experiments implemented ResNet-50, which consists of stacking multiple 
identity and convolutional residual units; Figure 3.2 shows the detailed CNN configuration. The 
first residual unit in one conv block is set as convolutional unit, and the latter units are all 
identity units. Similar to VGGNet, there are multiple variations of ResNet based on depth, e.g., 
ResNet-101 and ResNet-152, or the more advanced design, i.e., ResNeXt. Interested readers can 
find more information in He et al. [2016] and Xie et al. [2017]. 

  
(a) (b) 

Figure 3.1 Two kinds of shortcut connection in ResNet: (a) identity mapping; and (b) 
convolutional shortcut. 
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Figure 3.2 Illustration of ResNet-50 with shortcut connection. 
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4 Benchmark Experiments and Discussions 

With the well-defined detection tasks and corresponding well-established datasets, benchmark 
experiments were conducted; the results described below. The purpose of these experiments was 
to provide a reference performance for some well-known deep CNN models and to establish a 
benchmark for future studies. In addition, the detection abilities of these DL models on the 
current scale of the -Net dataset with different training strategies was explored. 

4.1 BENCHMARK EXPERIMENTS 

One of the primary goals of the benchmark experiments was to compute the accuracy of each 
task. In addition, through conducting multiple comparison experiments, the influence of the 
following was explored: (1) different DL models, i.e., VGGNet and ResNet; (2) affine data 
augmentation (ADA); and (3) transfer learning (TL). Some detection tasks only contained very 
few images and should be considered as small datasets: e.g., the Task 5 collapse mode only 
contains 1372 images total. Thus, part of this research was to apply DL approaches in cases with 
a data deficit where a regular DL training approach may not be effective. 

Through applying affine transformation towards a raw image, e.g., linear translation, 
rotation, zoom in and out, etc., the raw image can be transformed into new one with different 
possible angles, scales, etc. This operation, which aims to increase the amount of data, is shown 
to be efficient in many DL applications [Gao et al. 2018; Gao and Mosalam 2018]. Similarly, the 
advantage of TL is to help improve the prediction function in learning the target task by using 
the knowledge from the source domain [Pan and Yang 2010]. It also helps to mitigate the great 
dependency of ML/DL on the available dataset size and maximizes the use of existing data. Gao 
et al. [2018] and Gao and Mosalam [2018] conducted a series of experiments on detecting 
structural component type, damage severity, and type at the object level based on a small dataset 
with only 2000 images and where ADA and TL were applied. These two methods effectively 
alleviated the negative influence (namely, overfitting) of labeled data deficiency and achieved 
promising detection accuracy. 

To establish a reference performance for some well-known deep CNN models to achieve 
Objective (1), we selected VGG-16, VGG-19, and ResNet-50 models, which were introduced in 
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Chapter 3. For Objectives 2 and 3 regarding ADA and TL, four different cases were compared 
for each model and each task; these cases are listed as follows: 

1. Train model from scratch without ADA, denoted as baseline (BL) 

2. Train model from scratch with ADA (BL-ADA) 

3. Fine-tune the pre-trained model from ImageNet without ADA (TL) 

4. Fine-tune the pre-trained model from ImageNet with ADA (TL-ADA) 

For the comparison, several experimental settings for each task were fixed. The stochastic 
gradient descent (SGD) was applied along with a piecewise decayed learning rate for all cases, 
where the initial learning rate was 0.01; the entire learning schedule is shown in Figure 4.1. The 
learning schedule was adopted from He et al. [2016], which stipulates that the learning rate 
decreases by a scale (usually 10) when test accuracy does not increase,. In constrast to He et al. 
[2016], who made adjustments based on the observation of accuracy history, this study set 
empirically several timing epochs and automatically decreased the learning rate. The intuition 
behind this method is that in the early stage of training, a larger learning rate helps to avoid the 
model becoming trapped in local minima; the model is expected to “explore” somewhat. After 
training for the early epochs, the learning rate decreases such that the smaller learning rate 
stabilizes the model and avoids large oscillation. 

In Cases (3) and (4) using TL, model parameters in conv layers were loaded from 
ImageNet pre-trained models, and parameters in the following adaptation layers (the output was 
consistent with the number of classes for different tasks) were initialized randomly. In cases (2) 
and (4) using ADA, affine transformations were performed from random combinations of six 
cases: (a) horizontal translation within 10% of total width; (b) vertical translation within 10% of 
total height; (c) rotation within 5o; (d) zoom in less than 120% of the original size; (e) zoom out 
less than 80% of the original size; and (f) horizontal flip. 

The batch size was taken as 64, and the total number of training epochs was selected as 
50 where test accuracy was computed and reported at the end of each epoch. All cases were 
performed only once, except for some cases where the training loss did not change in the first 10 
epochs. Future experiments are in the planning stage. The implementation of the benchmark 
experiments was conducted on TensorFlow and Keras platforms, and performed on 
CyberpowerPC with single GPU (CPU: Intel Core i7-8700K@3.7GHz 6 Core, RAM: 32 GB and 
GPU: Nvidia Geforce RTX 2080Ti). For convenience of notation, VGG-16 and VGG-19 are 
denoted as simply VGGNets. 
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Figure 4.1 Learning schedule. 

4.1.1 Task 1: Scene Level 

Results for test accuracy and training history of Task 1 (scene level) are shown in Table 4.1 and 
Figure 4.2, respectively. Task 1 is a three-class classification, where the random guess is 33.33%. 
From Table 4.1, BL achieved promising results (~87%), which is significantly better than a 
random guess. There is not much difference between the different DL models, but ResNet-50 
performed slightly better than the other two, achieving the best test accuracy (93.39%). Because 
of the sharing a similar architecture, the performances of VGG-16 and VGG-19 are also similar. 
The BL-ADA performance was worse than the solely BL’s performance. Similarly the TL-ADA 
performance was worse than the solely TL’s performance. In general, ADA did not contribute 
significantly to improving the results, and the results were even worse when training from 
scratch. In contrast, the TL worked well and clearly improved the performance by 6% for the 
best model. Figures 4.2(b), (d), and (f) present a clear view for the whole training history 
whereby it is obvious that models using TL outperformed those that did not use TL. Moreover, 
training history curves of models using TL are smoother and more stable than those that did not 
use TL, especially for the ResNet-50 model. The results clearly indicate that the TL provides a 
better initialization and more stable training environment than training from scratch. 

Table 4.1 Test accuracy (%) for each case in scene level. 

Model BL BL-ADA TL TL-ADA 

VGG-16 87.29 85.39 91.93 92.49 

VGG-19 87.35 83.98 92.09 92.09 

ResNet-50 87.69 88.02 93.39 92.99 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.2 Training history of DL models for 50 epochs in scene level comparing the 
four cases: (a) loss history of VGG-16; (b) accuracy history of VGG-16; (c) 
loss history of VGG-19; (d) accuracy history of VGG-19; (e) loss history of 
ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.2 Task 2: Damage State 

Results for test accuracy and training history of Task 2 (damage state) are shown in Table 4.2 
and Figure 4.3, respectively. Task 2 is a binary classification where the random guess is 50%. As 
another basic and common detection task, the best model achieved 88.94%, which is 
approximately close to human performance. The best result was achieved by ResNet-50 using 
both TL and ADA. Note that in this experiment under the TL setting, ADA improved the 
performance slightly, in constrast to that observed in Task 1. A more interesting observation here 
is that compared to ResNet-50, VGGNets training from scratch did not produce stable and 
acceptable results (~63% and 61%). Test accuracy was just barely higher than a random guess: 
such results are not acceptable for sensitive damage detection. Thus, in Task 2, training from 
scratch only is far from acceptable. In contrast, the best performances of each model that adopted 
ADA and TL are close, with ResNet-50 using TL-ADA slightly better. Such observations 
indicate that all models have good potential if trained using appropriate strategies. 

Figure 4.3 provides more information for the effectiveness of TL, which cannot be 
reflected in Table 4.2. All three models indicate similar trends in training: that the accuracy of 
training the models from scratch remains trapped at an early stage even with a large learning 
rate; however, the training accuracy increases slightly along with the decrease of the learning 
rate, and the whole history curve becomes flat. In contrast, the accuracy of models using TL has 
a good initial value and keeps increasing, and converges when the learning rate decreases, which 
helps stabilize the performance. 

Table 4.2 Test accuracy (%) for each case in damage state. 

Model BL BL-ADA TL TL-ADA 

VGG-16 63.97 60.72 87.29 87.60 

VGG-19 62.67 60.72 87.29 87.36 

ResNet-50 76.71 75.27 87.26 88.94 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.3 Training history of DL models for 50 epochs in damage state comparing 
the four cases: (a) loss history of VGG-16; (b) accuracy history of VGG-
16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) loss 
history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.3 Task 3: Spalling Condition 

Results for test accuracy and training history of Task 3 (spalling condition) are shown in Table 
4.3 and Figure 4.4, respectively. Even though this task is also a binary classification like Task 2, 
its smaller amount of data (for a total 7735, which is only 75% of that in Task 2) increases the 
difficulty somewhat. This explains the performance deterioration in the accuracy, where the best 
accuracy is 82.97% as obtained by ResNet-50 using both TL and ADA. In the view of CV, the 
vision patterns of spalling are complex and irregular, which makes it difficult to identify, 
especially within the damaged component surface. Similar conclusions were obtained for Task 2, 
but the issues were more severe during the training of the model without using TL. As shown in 
Figures 4.4(a) to (d), loss and accuracy for training and testing of VGGNets became trapped. The 
models did not learn and, therefore, could not update anything. Unlike VGGNets, ResNet-50 
without TL is still trainable; however, even after minor improvement, the model quickly 
converged to bad local minima. Similar to observations seen in Task 2, using TL improved the 
model performance significantly; for ADA the improvement was not obvious. 

Table 4.3 Test accuracy (%) for each case in spalling condition. 

Model BL BL-ADA TL TL-ADA 

VGG-16 62.96 62.96 81.60 81.48 

VGG-19 62.96 62.96 81.18 81.78 

ResNet-50 75.69 77.12 81.72 82.97 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.4 Training history of DL models for 50 epochs in spalling condition 
comparing the four cases: (a) loss history of VGG-16; (b) accuracy history 
of VGG-16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) 
loss history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.4 Task 4: Material Type 

Results for test accuracy and training history of Task 4 (material type) are shown in Table 4.4 
and Figure 4.5, respectively. Unlike Tasks 2 and 3, the models have an easier time identifying 
material type. The scope for material type observed from the surface is narrow, being defined 
into only two categories: steel and others. Because there are sharp differences between these two 
vision patterns, i.e., texture, color, shape, etc., such distinct categories explain the high accuracy 
obtained for all cases, where the best result is achieved by ResNet-50 using both TL and ADA. 
In this case, ADA still does not contribute with any degree of significance toward improving the 
performance. The results are even worse when training from scratch, which is similar to those 
results observed in Task 1. Another observation similar to Task 1 is that BL achieved high 
accuracy, whereas the TL only achieved limited improvement: ~3%. In general, the best 
performance at 98.52% is close to or even better than human judgment under some conditions. In 
the early training stages of ResNet, the models trained from scratch oscillated significantly no 
matter whether ADA was adopted or not. This is also similar to that observed in Task 1. Overall, 
the DL approach was considered effective in identifying between steel and non-steel materials. It 
is expected to extend this benchmark by including finer classification categories, i.e., masonry, 
wood, concrete, etc. 

Table 4.4 Test accuracy (%) for each case in material type. 

Model BL BL-ADA TL TL-ADA 

VGG-16 93.92 90.76 97.04 96.99 

VGG-19 94.43 90.30 96.53 96.88 

ResNet-50 95.05 93.11 98.31 98.52 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.5 Training history of DL models for 50 epochs in material type comparing 
the four cases: (a) loss history of VGG-16; (b) accuracy history of VGG-
16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) loss 
history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.5 Task 5: Collapse Mode 

Results for test accuracy and training history of Task 5 (collapse mode) are shown in Table 4.5 
and Figure 4.6, respectively. Task 5 is a three-class classification, where the random guess is 
33.33%. As mentioned above, this task is considered difficult due to very limited data (a total of 
1372), which is defined as an application of low-data regime. Thus, it was expected to obtain 
fewer promising results in terms of its baseline performance. Similar to issues noted in Task 2 
(spalling condition), VGGNets were untrainable when training from scratch, and parameters did 
not change during the entire training history. The results for ResNet-50 were slightly better, but 
the final accuracy was still not acceptable. For models training from scratch, ADA did not did 
not perform satisfactorily. In contrast, using TL improved the model’s performance significantly. 
As shown in Table 4.5, for the best model of VGG-16, VGG-19, and ResNet-50, accuracies 
increased by ~30%, 25%, and 13%, respectively, where ADA contributed to the performance for 
VGG-19 but did not improve the performance of the other two models. Similar to previous tasks, 
ResNet-50 using TL obtained the best test accuracy: 78.08%. 

Table 4.5 Test accuracy (%) for each case in collapse mode. 

Model BL BL-ADA TL TL-ADA 

VGG-16 45.89 45.89 75.34 71.92 

VGG-19 45.89 45.89 70.55 72.60 

ResNet-50 65.07 61.64 78.08 74.66 
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(c) (d) 

  
(e) (f) 

Figure 4.6 Training history of DL models for 50 epochs in collapse mode comparing 
the four cases: (a) loss history of VGG-16; (b) accuracy history of VGG-
16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) loss 
history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.6 Task 6: Component Type 

Results for test accuracy and training history of Task 6 (component type) are shown in Table 4.6 
and Figure 4.7, respectively. Task 6 is a four-class classification, where the random guess is only 
25%. The number of categories compared to previous tasks was expanded to four, which 
increased the difficulty for classification. Moreover, according to the hierarchy of the -Net 
dataset shown in Figure 2.15, the component type is a leaf task of Task 1 scene level; therefore, 
only images belonging to object level will flow through this task. This leads to a smaller image 
collection (a total of 5334) for Task 6 compared to Task 1 scene level (a total of 27,306) or Task 
2 damage state (a total of 13,271). These two issues underscore the major difficulty facing 
component-type identification. 

In general, the BL models obtained mediocre results but were better than the results 
obtained in Task 5 (collapse mode); once again, ADA did not perform satisfactorily. Similar to 
that observed in previous tasks, also TL performed, it did not provide significant improvement. 
One interesting and valuable observation is that VGG-19 achieved the best accuracy (77.03%) as 
opposed to ResNet-50. Such observations indicate the necessity of taking DL models as hyper-
parameters where different models may be suitable for different application scenarios. 

Table 4.6 Test accuracy (%) for each case in component type. 

Model BL BL-ADA TL TL-ADA 

VGG-16 64.77 64.77 75.13 76.86 

VGG-19 65.11 65.11 77.03 76.86 

ResNet-50 69.78 68.22 75.82 76.34 
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(c) (d) 

  
(e) (f) 

Figure 4.7 Training history of DL models for 50 epochs in component type 
comparing the four cases: (a) loss history of VGG-16; (b) accuracy history 
of VGG-16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) 
loss history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.7 Task 7: Damage Level 

The results for test accuracy and training history of Task 7 (damage level) are shown in Table 4.7 
and Figure 4.8, respectively. Task 7 is a four-class classification. Compared to Task 6 (the 
component-type task), it is more abstract and has semantic meaning, which significantly 
increases the difficulty. Here, the so-called abstract and semantic meaning mean that the 
categories cannot be easily identified by low-level vision features such as edge, color, etc., as is 
the case in component-type identification. Classification needs to be elevated to high-
dimensional spaces to identify some key features linked to various damage patterns semantically. 
For example, the orientation and boundary of the component can lead to the specific component 
type. As pointed out in Section 2.2.7, definition of the damage level relates more to the severity 
and development of damage recognized by humans, which is often subjective and not easily 
quantifiable. Thus, it requires the DL model to find features and patterns in abstract and high-
dimensional spaces related to semantic meaning of “minor,” “moderate,” or “heavy,” which is 
more difficult compared to previous tasks. As is the case in Task 6, the total amount of images 
available is only 4636, which is not considered adequate. 

From Table 4.7, the performances of BL are consistent with the concern that VGGNets 
are untrainable no matter whether ADA is adopted or not. Test accuracies were unacceptable—
only ~41%. The observation in baselines was similar to that found in Task 6, but there were 
some differences; the ResNet-50 trained from scratch was capable of obtaining a much better BL 
performance compared to VGGNets, and using ADA further improved the performance by ~4%. 
Due to the relatively poor performance in BL, models with TL were considered significantly 
improved from those trained from scratch, with improvements of ~30%, 23%, and 18% for 
VGG-16, VGG-19, and ResNet-50, respectively. ResNet-50 still performed the best with 74.5% 
test accuracy, which is acceptable for this task using the current dataset. 

Table 4.7 Test accuracy (%) for each case in damage level. 

Model BL BL-ADA TL TL-ADA 

VGG-16 41.57 41.57 69.88 72.69 

VGG-19 41.57 41.57 70.68 64.66 

ResNet-50 54.62 58.43 74.50 72.69 
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(c) (d) 

  
(e) (f) 

Figure 4.8 Training history of DL models for 50 epochs in damage level comparing 
the four cases: (a) loss history of VGG-16; (b) accuracy history of VGG-
16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) loss 
history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.1.8 Task 8: Damage Type 

Results for test accuracy and training history of Task 8 (damage type) are shown in Table 4.8 and 
Figure 4.9, respectively. As with Task 7, Task 8 is also thought of as abstract with various vision 
patterns corresponding to specific types mentioned in Section 2.2.8. From the perspective of the 
relative lack of data, a total of 4585 images is not considered representative enough for training 
purposes. Similar issues occurred in BL models for Task 7, i.e., VGGNets proved to be 
untrainable, and ResNet-50 achieved relatively low accuracy. In contrast, using TL achieved 
significant improvement in this task, and the best accuracies of VGG-16, VGG-19, and ResNet-
50 increased by ~27%, 29%, and 15%, respectively. Among the above three models, VGG-19 
performed the best (as was also found for Task 6). Note: the performance of the best ResNet-50 
model was even worse than the performance for the VGG-16 model. This underscores the 
importance of selecting the appropriate model for future applications instead of relying on only 
one single model. 

Table 4.8 Test accuracy (%) for each case in damage type. 

Model BL BL-ADA TL TL-ADA 

VGG-16 43.70 43.70 70.73 70.53 

VGG-19 43.70 43.70 71.14 72.36 

ResNet-50 54.27 56.10 68.90 68.09 
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Figure 4.9 Training history of DL models for 50 epochs in damage type comparing 
the four cases: (a) loss history of VGG-16; (b) accuracy history of VGG-
16; (c) loss history of VGG-19; (d) accuracy history of VGG-19; (e) loss 
history of ResNet-50; and (f) accuracy history of ResNet-50. 
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4.2 RESULTS SUMMARY 

Sections 4.1.1 to 4.1.8 presented the reference results including history plots for all cases in the 
identified eight tasks; Table 4.9 lists the best reference values. Since the ultimate goal of this 
study is to adopt DL for automated detection, accuracy should be within a reasonable range. For 
the easier tasks (Tasks 1 to 4), the test accuracies appear very promising, especially for 
classification between steel and non-steel materials. For the harder tasks (Tasks 5 to 8), although 
the best results are still reasonable and acceptable, they are expected to be improved with more 
sophisticated DL models, training approaches, and tuned hyper-parameters. 

In a comparison of the DL models, ResNet-50 appeared to be more generalized because it 
achieved the highest test accuracy in most cases (except in Tasks 6 and 8). Thus, to achieve the 
state-of-the-art performance, it is suggested to perform model selection among multiple DL 
models. From the perspective of the training approach, TL worked well in all eight tasks, with 
significant improvement in many cases, and could be seen as the necessary training strategy for 
the current scale of the dataset. ImageNet pre-trained models already have some sense of features 
of basic and natural objects from the source domain. Thus, transferring source-domain 
knowledge to the target domain of structural images may provide a better understanding for the 
deep CNN models towards some general structural vision patterns, e.g., object boundary, 
material texture, etc. Moreover, fine-tuning from ImageNet pre-trained models will obtain better 
parameter initialization than directly training models from scratch where parameters are 
initialized randomly. These findings were more evident in the harder tasks with limited amount 
of data or abstract semantic meanings: e.g., TL achieved 10–30% enhancements over the BL 
case. Compared to TL, ADA did not significantly improve the accuracy of the test and in some 
cases performed poorly compared to other approaches. This can be attributed to two major 
issues: (1) randomness and uncertainty due to only having one run for each case; and (2) 
different ADA settings, e.g., range of rotation angle, translation, etc., which may lead to different 
performance. 

More information about a model’s performance can be extracted from the history plots. 
Thus, the best results for VGG-16, VGG-19, and ResNet-50 were plotted in one figure for each 
task; see Figures 4.10(a) to (h). In all benchmark tasks for all models, training accuracies were 
high and close to 100%; however, gaps between training and test accuracies are evident where 
the latter varied from one task to another. This is an indicator of overfitting and fully training, 
i.e., the models contained enough parameters and complexity to learn the task well. In ML/DL, 
usually applying regularizations, i.e., dropout (applied herein but the dropout rate can be 
adjusted), batch normalization [Ioffe and Szegedy 2015], etc., may help to alleviate overfitting. 
This issue is worthy for future studies. From the perspective of training stability, DL models are 
less stable in the early training stages when the learning rate is large. During this period, the 
parameters are explored and updated more with gradient descent, and the history curves are more 
oscillating. With a scheduled decayed learning rate—especially after 20 epochs—the training 
curves become flat and smooth, indicating that the model performance is now stable.
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Table 4.9 Summary of best reference performance in each task. 

Task 
Best test 

accuracy (%) 
Model Training approach Over BL (%) 

Over BL-ADA 
(%) 

Over TL (%) 
Over TL-
ADA (%) 

Scene level 93.4 ResNet-50 TL +5.7 +5.4 - +0.4 

Damage state 88.9 ResNet-50 TL-ADA +12.2 +13.7 +1.7 - 

Spalling cnditions 83.0 ResNet-50 TL-ADA +7.3 +5.9 +1.8 - 

Material type 98.5 ResNet-50 TL-ADA +3.5 +5.4 +0.2 - 

Collapse mode 78.1 ResNet-50 TL +13.0 +16.3 - +3.4 

Component type 77.0 VGG-19 TL +11.9 +11.9 - +0.2 

Damage level 74.5 ResNet-50 TL +19.9 +16.1 - +1.8 

Damage type 72.4 VGG-19 TL-ADA +28.7 +28.7 +1.2 - 
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(g) (h) 

Figure 4.10 Accuracy history of best models for 50 epochs in all tasks: (a) scene 
level; (b) damage state; (c) spalling condition; (d) material type; (f) 
component types; (g) damage level; and (h) damage type. 
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Computational efficiency is another important measurement in DL applications. Tables 
4.10 to 4.17 list average computational times per training epoch for each model under different 
training approaches, thus providing a reference for future studies. Without ADA, ResNet-50 
costs the least computational time, VGG-16 costs the second least, and VGG-19 is the most 
expensive as it contains more parameters than the other two; there are roughly 21 million, 26 
million, and 25 million parameters in VGG-16, VGG-19, and ResNet-50, respectively. Even 
though ResNet-50 is deeper than VGGNets, it uses a smaller size of filter (1 1 rather than the 
3 3 applied in VGG(Nets), and shortcut connections that make gradient flow faster accelerate 
the training speed. With ADA, all models have increasing time costs and similar training time 
per epoch due to the extra cost of performing affine transformations on raw images. As for TL, it 
does not affect the average training time, because it neither introduces new parameters nor 
performs image-processing operations (per ADA). Thus, using TL proved to be a more efficient 
and economical method in the experiments reported herein. 

In summary, the reference results and history plots for all cases and tasks were 
determined, and then compared with the performances of the best DL models, the influences of 
ADA and TL were analyzed, and the computational time cost for each task was assessed. For 
benchmarking purposes, a comparison with the same settings was conducted for all tasks. Note: 
although the results shown herein are not the state-of-the-art, they provide a reference for future 
DL applications. In order to obtain better results, tuning hyper-parameters (e.g., learning rate, 
dropout rate, and the number of neurons in the fc-layers) and developing new models and 
training approaches are proposed for future studies. It is recommended to make full use of the -
Net dataset, using conclusions from this report to enlarge the dataset, quantify finer categories, 
using images for new vision tasks, etc. 

Table 4.9 Average computational time per training epoch in scene level (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 145 178 146 187 

VGG-19 169 185 169 188 

ResNet-50 131 183 123 190 

Table 4.10 Average computational time per training epoch in damage state (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 71 79 71 81 

VGG-19 82 83 82 83 

ResNet-50 64 83 63 83 
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Table 4.11 Average computational time per training epoch in spalling condition (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 42 46 42 46 

VGG-19 48 49 48 49 

ResNet-50 37 47 37 47 

Table 4.12 Average computational time per training epoch in material type (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 52 67 52 67 

VGG-19 59 69 59 69 

ResNet-50 46 68 46 68 

Table 4.13 Average computational time per training epoch in collapse mode (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 8 8 8 8 

VGG-19 9 9 9 9 

ResNet-50 7 8 7 8 

Table 4.14 Average computational time per training epoch in component type (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 28 30 28 30 

VGG-19 33 33 33 33 

ResNet-50 26 30 26 31 

Table 4.15 Average computational time per training epoch in damage level (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 25 26 25 26 

VGG-19 29 29 29 29 

ResNet-50 22 27 22 27 
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Table 4.16 Average computational time per training epoch in damage type (seconds). 

Model BL BL-ADA TL TL-ADA 

VGG-16 25 25 25 25 

VGG-19 28 29 28 29 

ResNet-50 22 27 22 27 
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5 -Net Challenge 2018 

Chapters 1 to 4 described the background, definitions, development procedure, deep-learning 
(DL) methods, and benchmark results of the -Net Challenge. Before finalizing and open 
sourcing the benchmark datasets and results, during the Fall 2018, PEER released a partial 
dataset of the -Net dataset and held a worldwide challenge to call for interested researchers to 
participate. The results of the challenge provided a preliminary reference for the establishment of 
the benchmark dataset. The challenge also served to alert the engineering community and 
encourage researchers in civil engineering to interact with other disciplines towards 
transdisciplinary research13 activities, and to learn and apply the state-of-the-art approaches in 
computer vision (CV) for application to civil engineering. More details of the -Net Challenge 
are introduced in the following sections. 

5.1 MOTIVATION OF THE CHALLENGE 

Inspired by several famous CV competitions in the computer science area, such as the ILSVRC14, 
PASCAL VOC15, and COCO16 challenges, during the Fall of 2018 PEER organized the first 
image-based structural damage identification competition: the PEER Hub ImageNet (-Net) 
Challenge. Figure 5.1 shows the advertising flyer for the challenge. 

In this competition, PEER provided eight image datasets that corresponded to the tasks 
introduced in Section 2.2. Each team received training and test sets for these tasks. Note: since 
the -Net Challenge acted as a pre-event for the open sourcing of the -Net dataset, the datasets 
released in the challenge were different from the finalized benchmark datasets summarized in 
Section 2.4. Based on these well-labeled images, each team was expected to develop and use 
algorithms to train their recognition models and then predict labels for the unlabeled test datasets. 
The labels predicted for test datasets would then be compared against ground truth. In machine 

                                                 
13 Transdisciplinary research are research efforts conducted by investigators from different disciplines working 
jointly to create new conceptual, theoretical, methodological, and translational innovations that integrate and move 
beyond discipline-specific approaches to address a common problem. 
14 http://image-net.org/challenges/LSVRC/  
15 http://host.robots.ox.ac.uk/pascal/VOC/  
16 http://cocodataset.org/#home  
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learning (ML), ground truth is factual data that have been observed, labeled, or measured, and 
can be analyzed objectively. Teams with the highest accuracy would be declared the winners of 
the competition. The challenge started on 23 August 2019, at 00:00 am UTC and was closed on 
25 November 2019 at 11:59 pm UTC. For more details about the -Net Challenge refer to the 
website: https://apps.peer.berkeley.edu/phichallenge/. 

The -Net dataset and challenge effort is part of PEER’s strategic plan to equip the 
earthquake engineering community with the tools of the digital revolution era, including ML, 
DL, AI, high-performance computing (HPC), and emerging technology. The main objective of 
the challenge was to engage fully the earthquake engineering community (or more broadly the 
natural hazards communities) in all stages of the competition, including preparation for the 
computation, execution of the computation, and processing of results. In the competition 
preparation stage, members of the community contributed significantly by uploading images that 
could be used in the competition and by labeling these images through the developed tool 
mentioned in Section 2.3.3. PEER welcomes contributions of newly labeled images to further 
expand the current -Net dataset. 

In summary, the goal of the -Net Challenge was to evaluate algorithms for structural 
image classification using large-scale datasets based on service conditions, past reconnaissance 
efforts, and laboratory experiments for condition assessments following extreme events. The 
state-of-the-art algorithms to be tested in the -Net Challenge are expected to enhance the 
accuracy and the generalization of vision-based approaches for SHM, and contribute to the 
construction of a large structural image dataset used to solve societal-scale problems of SHM and 
perform assessments of the built environment. 
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Figure 5.1 Flyer for the -Net Challenge of Fall 2018. 

 

 + 
 

 

 

PEER Hub ImageNet (PHI) Challenge 
 
PEER has developed the first structural engineering dataset that incorporates machine-learning models of 
detecting and categorizing damage in images. The PEER Hub ImageNet (PHI) dataset tool will enhance 
the field and application of vision-based structural health monitoring for researchers and practitioners in 
natural hazards engineering.  
 

CALL FOR PARTICIPATION 
 Enter the PHI Challenge contest! 

Registration is now open at 
http://apps.peer.berkeley.edu/phichallenge/regi
stration/ 

 

PHI CHALLENGE CONTEST 
PEER is organizing the first image-based 
structural damage recognition competition to 
enhance the field of vision-based structural health 
monitoring. The contest will open July 15 and 
close November 25, 2018. 
 
 Train your algorithm and model. 
A dataset of labeled and annotated images will be 
provided so that contestants can train their 
machine-learning algorithms and models. 
 
 Test and submit results.  
A dataset of unlabeled images will be provided 
so that predications of labels and annotations can 
be generated. A few classifications of 
identification are the following: Component type, 
Damage check, Damage level, Damage type, and 
Material type. The contest submittal should 
include the labeled dataset as well as a brief 
report that summarizes assumptions, 
methodology, tools, and detailed computations. 
 
 Apply and register to be eligible.  
Researchers, practitioners, and students in the 
fields of structural and civil engineering, 
computer science, data science, and other related 
fields are encouraged to participate. 
 

The registration period for individuals and 
teams will open July 15, 2018. Two contestant 
pools are as follows: (1) Computer Science / Data 
Science (CS/DATA) and (2) non-CS/DATA. 
Notification of eligibility in either of these two 
contestant pools will be issued upon receipt of 
application. 
 
 Winners 
Winners in each category for single detection 
tasks as well as for overall performance will be 
announced in December 2018. 
 

WHO BENEFITS? 
Algorithms developed in the PHI Challenge can 
be used to automatically detect damage from 
images taken after earthquakes or other natural 
hazards. Accurate and automated labeling 
encourages crowd-sourced data and allows 
engineers to focus more on the interpretation of 
the image data, which can increase the efficiency 
of a tagging process after a major natural hazard. 

Researchers will have a large, accurately 
labeled structural image dataset that can be used 
as a basis for future studies. Practitioners can test 
their machine-learning and deep-learning 
algorithms and models on the PHI dataset. 

Automated damage detection is an advanced 
tool for determining the extent of damage, and it 
will enhance the ability of the engineering 
community to respond in a timely manner to the 
aftermath of natural hazards, thereby serving the 
population at large. 

 

MORE information 
http://apps.peer.berkeley.edu/phichallenge 
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5.2 PARTICIPATION OF THE -NET CHALLENGE 

5.2.1 Team Setup 

A team consisted of either an individual or a maximum of four team members. The team setting 
rules encouraged communication and collaboration between different disciplines. In the -Net 
Challenge of Fall 2018, PEER received a total of 68 team applications from different countries 
and regions from around the world. The geographic distribution of the registered teams is shown 
in Figure 5.2, where over half of the teams were from the United States. As expected, many other 
disciplines besides structural engineering were actively engaged in the challenge, including 
mechanical engineering, transportation engineering, environmental engineering, computer 
science, statistics, etc. The challange considered the background advantage of those participants 
from computer science and data science in ML/DL, and two different pools were created to 
address this issue: computer science/data science (CS/DATA) and engineering (Non-CS/DATA). 
Each team was assigned to the pool corresponding to the team members’ educational fields as 
declared in the team application. If at least one team member was majoring or had a major in 
computer science/data science, that team was assigned to the pool of CS/DATA and vice versa. 

 

Figure 5.2 Registered team distribution of the -Net Challenge of Fall 2018. 

5.2.2 Access to the Challenge 

The -Net Challenge followed the current trend of deploying data science competitions on 
Kaggle17, which is an online community of data scientists and machine learners. Kaggle provides 
                                                 
17 https://www.kaggle.com/  

United States (35)Taiwan, China (5)

China (11)

India (4)

New Zealand (3)

Singapore (1)

Lebanon (1)

Canada (1)

South African (1)

France (1)

Colombia (1)

Chile (1)
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a flexible platform to host online challenges where the host can release the dataset and launch the 
challenge in one of multiple ways, including: public challenges, invited challenges, or private 
challenges. In the -Net Challenge of Fall 2018, eight challenge webpages were established via 
Kaggle as invited challenges, and only the teams who applied could receive the links to access 
the data and later submit their results; see Figure 5.3. The Kaggle webpages for the eight 
benchmark tasks mentioned above are as follows: 

 Task 1 (Scene level): https://www.kaggle.com/c/phi2018task1  

 Task 2 (Damage state): https://www.kaggle.com/c/phi2018task2  

 Task 3 (Spalling condition): https://www.kaggle.com/c/phi2018task3 

 Task 4 (Material type): https://www.kaggle.com/c/phi2018task4 

 Task 5 (Collapse check): https://www.kaggle.com/c/phi2018task5 

 Task 6 (Component type): https://www.kaggle.com/c/phi2018task6 

 Task 7 (Damage level): https://www.kaggle.com/c/phi2018task7 

 Task 8 (Damage type): https://www.kaggle.com/c/phi2018task8 

To ensure good participation and submission of results, Task 1 (Scene level) and Task 2 
(Damage state) were mandatory in the Call for Participation. Only after the participants 
submitted the results for Tasks 1 and 2 at least once did they have access to the remaining tasks. 
These first two tasks were judged as the most basic detection tasks in vision-based SHM 
according to the -Net framework; see Figure 2.1. After obtaining full access to all the tasks, the 
participating teams could choose and perform some or all of the tasks that were of interest to 
them. The winners from each of the two pools of participants were determined via individual 
performance in a single task and in overall performance of all tasks. 
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Figure 5.3 Homepage of Task 1 scene-level classification of the -Net Challenge of Fall 2018. 

5.2.3 Data Download 

Participants were able to download the data in the Data tab from each task’s webpage. There 
were four types of files in each task: X_train.npy, y_train.npy, X_test.npy, and 
sample_submission.csv. 

 X_train.npy was the training data, whose shape was as follows: (Number of training 
data, 224, 224, 3). 

 y_train.npy was the training label, whose value field was integer: {0, 1} for binary 
classification, {0, 1, 2} for three-class classification, and {0, 1, 2, 3} for four-class 
classification. Refer to the Kaggle page for the meaning of each value for each task. 

 X_test.npy was the test data, whose shape was as follows: (Number of test data, 224, 
224, 3). 

 sample_submission.csv was the template for submission. The first column contained 
the data index, and the second column contained the prediction results. For each 
detection task, contestants needed to replace the second column with their own 
prediction results. 
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5.2.4 Results Submission and Leaderboard 

As mentioned above, Kaggle provides a great platform for hosting online challenges; it 
automatically collect the results submitted by each team and shows the ranking with scores. 
Teams submitted their predictions through the Submit Prediction tab and viewed their rankings 
on the Leaderboard page. In order to avoid excessive submissions, the submission of an 
individual was considered a “team” submission, and the number of submissions per team was 
limited to a maximum of four submissions per day. 

There were two leaderboards: a public leaderboard and a private leaderboard. The public 
leaderboard was calculated with approximately 50% of the test data; the private leaderboard was 
calculated with all test data and reflected the final score. Participants only had access to the 
public leaderboard. Screenshots of both leaderboards for Task 1 are shown in Figure 5.4. A 
comparison of the left image to the right one shows that the true scores and rankings slightly 
changed, e.g., No. 1 in the public board became No. 3 in the final ranking, and No. 5 in the 
public board became No. 1 in the final ranking. Giving participants access to only the public 
leaderboard increased the interest and motivated the teams to compete with one another. Note: 
the top-ranked team in the public leaderboard may not have been the “real” winner of the task; 
blindly pursuing the best performance on the public leaderboard may have led to overfitting 
issues. 

  
(a) (b) 

Figure 5.4 Rank of score in leaderboard: (a) public leaderboard; and (b) private leaderboard. 
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5.3 STATISTICS OF THE CHALLENGE RESULTS 

Sixty-eight teams applied, and thirty-four teams submitted at least one entry, for a 50% final 
submission rate. Considering the resource-consuming process of conducting big-data analysis 
and given the short time period between the announcement of the challenge and the submission 
deadline, this is an amazing level of participation. Each team was required to submit the results 
via the Kaggle pages (e.g., https://www.kaggle.com/c/phi2018task1); the statistics of team 
submissions for each detection task are shown in Figure 5.5. Completing Tasks 1 and 2 were 
mandatory for access to the remaining six tasks and received the most submissions, where almost 
half of the teams submitted their first several predictions. Optional Tasks 3 to 8 still received 
nearly 20 team submissions each. 

The final results for the individual tasks—evaluated by percentage accuracy (the number 
of correct predictions in test dataset/number of all data in the test dataset) and obtained from the 
private leaderboard—are listed in Table 5.1. The distributions of all results are presented in 
Figures 5.6(a) to (h). As mentioned above, note that the data used in the -Net Challenge were 
culled from the beta version. Thus, the final results of the challenge are only for reference 
purposes and cannot be used for calibration or considered as benchmark results. 

 

 

Figure 5.5 Team submissions for each task of the -Net Challenge of Fall 2018. 
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Table 5.1 Final results of all tasks from the -Net Challenge of Fall 2018. 

Task Highest (%) Lowest (%) Mean  Standard deviation  

1 95.09 31.82 89.25 5.57 

2 91.08 47.16 79.28 8.31 

3 82.77 71.84 79.04 2.45 

4 99.82 94.84 98.16 1.34 

5 70.77 46.15 62.91 5.28 

6 76.29 64.44 71.61 3.30 

7 79.94 55.01 66.23 5.28 

8 76.90 36.78 64.89 8.56 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 5.6 Team submissions for each task of the -Net Challenge of Fall 2018: (a) 
Task 1: scene level; (b) Task 2: damage state; (c) Task 3: spalling 
condition; (d) Task 4: material type; (e) Task 5: collapse mode; (f) Task 6: 
component type; (g) Task 7: damage level; and (h) Task 8: damage type. 
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5.4 SCORING OF OVERALL PERFORMANCE OF THE CHALLENGE 

For overall performance evaluation, a special metric, Equation (5.1), considered the natural 
difficulty of tasks with both prior knowledge and the team’s performance. 

1Score = ii
Weight Test Accuracy  (5.1) 

(100 )/ (100 ) / (100 )/ (100 ) /
/i i i i i i i ii i i i

i i ii
Weight e e e e

                       (5.2) 

This metric computed the weighted average of the score (accuracy) from each task where the 
weights, Equation (5.2), were based on the distribution of each team performance reflected by 
the distribution parameters ( and ), and the prior expected task difficulty factor . The  and  
for each task were fitted through the final challenge results data—see Figure 5.6—and the  was 
determined by the technical committee members with domain knowledge. Note: in the final 
submissions of Tasks 1 and 2, there were several invalid results, e.g., results close to 31.82% 
(Task 1) and 47.16% (Task 2), which were due to one team simply predicting all test data as one 
category; this resulted in a close-to-random guess for a relatively balanced dataset for three-class 
and binary classification problems, respectively. Thus, while using distribution parameters to 
compute the weights, some invalid submissions in Tasks 1 and 2 were ruled out. 

Intuitively, with a higher average accuracy and a smaller standard deviation, the task 
became easier. Thus, 100  i represented the difficulty of the task (the larger the value, the 
harder the task), and the magnitude of  was also positively related to the difficulty level. 

Normalizing these two terms and taking their exponential, i.e., 
(100 )/ (100 )i iie

    and 
/i iie

  , may 
result in values slightly greater than 1, which are thought of as amplification factors. Multiplying 
them together along with the difficulty factor  and further normalizing leads to the final weights 
for each task, which sum up to 1. Therefore, in some sense the final score computed by Equation 
(5.1) represented an average accuracy for all tasks. In summary, according to Equations (5.1) and 
(5.2), weights for overall performance were computed and reported; see Table 5.2. 
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Table 5.2 Combination weight considering task difficulty and distribution 
parameters of the -Net Challenge of Fall 2018. 

Task   i Weights 

1 89.25 5.57 50 0.130103498 

2 79.28 8.31 30 0.088120542 

3 79.04 2.45 30 0.076233949 

4 98.16 1.34 30 0.067004295 

518 62.91 5.28 5 0.014852228 

6 71.61 3.30 50 0.134993156 

7 66.23 5.28 80 0.233489716 

8 64.89 8.56 80 0.255202616 

5.5 WINNERS OF THE CHALLENGE 

Based on a comparison of the submitted predictions and ground truth, winners were identified by 
the contest judges in two categories: Computer Science/Data Science (CS/DATA) and 
Engineering (Non-CS/DATA). The top-three overall performance in all tasks, top-one 
performance in a single task, and best technical report were awarded for both categories. 
According to the weights computed in Section 5.4, the top-three winners in overall performance 
were evaluated and are listed in Table 5.3. For more details about winners, refer to the challenge 
website. 

Table 5.3 Top-3 overall performance of the -Net Challenge of Fall 2018. 

Place 
CS/DATA Non-CS/DATA 

Team name Score Team name Score 

1 Kar98K 82.57 Stanford EIG 77.93 

2 digitalspecialists 82.56 SIL-CE 77.29 

3 OSU PCVLab 75.82 FourByFour-UCLA 76.97 

 
  

                                                 
18 Due to two issues in Task 5 where (1) there were several duplicated and mislabeled images, i.e., two identical 
images with different labels; and (2) data leakage, i.e., several identical images occur in both training and test sets, 
the  in Task 5 was taken as a low value of 5. 
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6 Summary and Conclusions 

This report investigated applying deep-learning (DL) approaches to address on-going issues in 
civil engineering, such as post-disaster structural reconnaissance and structural health monitoring 
(SHM). Many factors impede the development of such DL applications in vision-based SHM, 
but the two most serious concerns are as follows: (1) there are no general automated detection 
principles or frameworks based on domain knowledge; and (2) the lack of a benchmark dataset 
with well-labeled large amounts of data. In order to address these concerns, an automated and 
hierarchical framework was proposed named the PEER Hub ImageNet (-Net ) -Net consists of 
eight basic benchmark detection tasks based on the current domain knowledge and past 
reconnaissance experiences. These tasks are as follows: (1) scene level; (2) damage state; (3) 
spalling condition (material loss); (4) material type; (5) collapse mode; (6) component type; (7) 
damage level; and (8) damage type. To populate this framework, a large number of structural 
images were collected, preprocessed, labeled, and formed into an online open-source, large-
scale, and multi-attribute image dataset, named -Net. As of November 2019, -Net contains 
36,413 images with labels corresponding to the above eight attributes. Introduced herein were 
three deep convolutional neural network (CNN) models that provided a basic introduction to the 
concept of DL: VGG-16, VGG-19, and ResNet-50. With the well-defined tasks and well-built 
datasets, benchmark experiments were conducted whereby multiple influences and affine data 
augmentation (ADA) and transfer learning (TL) were considered in comparison studies under 
equivalent settings of hyper-parameters. All experimental results are reported and discussed 
herein, thus providing reference values for future studies. As a pre-event prior to open-sourcing 
the -Net dataset, in the Fall of 2018 PEER held the -Net Challenge, which is the first image-
based challenge in civil engineering with emphasis on structural engineering. The rules, 
statistics, and winners of the challenge were also presented. 

In summary, this report highlights the potential of using DL in vision-based SHM and 
automated damage recognition. Future plans include extending the-Net dataset as follows: (1) 
the addition more fine-grained categories; (2) the investigation of additional DL models with 
hyper-parameter tuning; and (3) application of more complex training approaches. In addition, it 
is planned to make full use of these images in the -Net dataset by relabeling and exploring more 
computer-vision problems other than just classification, e.g., object detection, localization, 
semantic segmentation, etc. 
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Appendix A Data Collection Information 

In this appendix, we present part of the information in the structural images collection of the -
Net dataset with respect to earthquake events as listed in Table A.1. 

Table A.1 Data collection information. 

Date (Y-M-D) Earthquake 
# collected raw 

images 

2017-09-19 Mexico city, Mexico 2,689 

2016-11-13 Kaikoura, New Zealand 453 

2016-09-09 Pawnee and Cushing, Oklahoma 1,609 

2016-08-24 Central Italy, Italy 46 

2016-02-05 Southern Taiwan, Taiwan 4,788 

2016-04-15 Kumamoto, Japan 13 

2015-04-25 Gorkha, Nepal 6,858 

2010-01-12 Haiti 35 

2014-08-24 South Napa, USA 3,218 

2016-04-16 Musine, Ecuador 5,299 

2004-09-28 Parkfield, USA 6 

2016-09-03 Oklahoma, USA 1,502 

2010-02-07 Chile 118 

2011-03-11 Tohoku, Japan 201 

2011-08-23 Virginia 67 

2010-09-04 Canterbury, New Zealand 28 

2015-05-20 Emilia, Italy 60 
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