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ABSTRACT 

The motivation for this project developed from testing of a full scale building isolated with triple 
friction pendulum bearings on the E-defense shake table in Japan. The test demonstrated 
experimentally that the vertical component of ground motion can amplify both the base shear and 
the story acceleration in the isolated building. Vertical shaking introduced high-frequency 
variation in the axial force of the bearings, and, consequently, a high-frequency component in the 
bearing lateral force, which excited higher structural modes in the building. Since vertical 
bridges are flexible in the vertical direction because of long spans, similar effects may be 
observed in bridges.  

The objectives of this study are to develop a physical understanding of the amplification 
of responses and develop a simplified method to predict amplification of base shear in three-
dimensional (3D) shaking relative to two-dimensional (2D) shaking, for bridges isolated with 
spherical sliding bearings. A series of ground motions with a wide range of vertical shaking 
intensity were applied to 3D models of bridges isolated with triple pendulum bearings (TPBs), 
both excluding the vertical component (2D motion) and including the vertical component (3D 
motion). This enabled the comparison of the bridge response under 2D and 3D shaking such that 
the direct effect of vertical shaking could be investigated. The selected ground motions were fit 
to target spectra in the horizontal and vertical directions, and divided into three groups based on 
vertical peak ground acceleration (PGAV). Multi-span concrete box girder bridges were selected 
for this study, as they are a prominent bridge type in California, and are suitable for seismic 
isolation. Models were developed for a 3-span, 45-ft wide, multi-column Base Model bridge; 
various superstructure and isolation-system parameter variations were implemented to evaluate 
the effect of these variations on the amplification of base shear. Response histories were 
compared for a representative motion from each ground-motion group under 2D and 3D shaking. 
Modal and spectral analyses were conducted to understand dynamic properties and behavior of 
the bridge under vertical motion. Based on simplified theory, a method to estimate the 
amplification of base shear due to vertical shaking was developed. The accuracy of the 
simplified method was assessed through a base shear normalized error metric, and different 
amplification factors were considered.  

Response history analysis showed significant amplification of base shear under 3D 
motion implying that exclusion of vertical component could lead to under estimation of demand 
shear forces on bridge piers. Deck acceleration spectral response at different locations revealed 
that a transverse-vertical modal coupling response was present in the Base Model bridge, which 
led to amplification of deck accelerations in addition to base shear due to excitation of the 
superstructure transverse mode. The simplified method predicted that in addition to the peak 
vertical ground acceleration base shear amplification depended on the isolation-system period 
(radius of curvature) and friction coefficient. The error in the simplified method was 
approximately constant across the range of isolation-system parameters. Variations in the bridge 
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superstructure or substructure modeling parameters had only a minor effect on the base shear 
since the deck acts as a single mass sliding on isolators; therefore, the simplified method can be 
applied to a range of bridge models. The simplified method includes an amplification factor that 
indirectly represents the dynamic amplification of vertical acceleration from the ground to the 
isolation system. An amplification factor of 1.0 was found to be sufficiently conservative to 
estimate the base shear due to 3D shaking. The lack of apparent dynamic amplification could 
mean that the peak vertical acceleration is out-of-phase with the base shear. The simplified 
method is more likely to be unconservative for high-intensity vertical ground motions due to the 
complexities associated with uplift and pounding. Further investigation is recommended to 
determine the threshold shaking intensity limit for the simplified method. 
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dominated by longer period cycles; however, under the 3D motion TAB80, the axial force 
history contains high-frequency variation due to the vertical shaking. This high-frequency 
content was also transferred to the bearing lateral force. As a result, the base-shear history 
contains high-frequency content at peak locations. 

Figure 1.8 compares the recorded base shear for both 2D and 3D shaking under 88% of 
the motion recorded at Rinaldi Receiving Station (RRS) in the 1994 Northridge, California, 
earthquake. This was the only direct comparison with the same motion applied both with and 
without the vertical component of shaking. The intensity of the vertical component was greater 
than 1g [vertical peak ground acceleration (PGA) or PGAV = 1.2g]. This caused a complete 
uplift excursion of the bearings. Although the total axial force dropped to zero, the system 
recovered; see Figure 1.8(c). The high-frequency component of the base shear for 3D shaking 
(with a period around 0.16 sec), which is absent in 2D shaking, was in sync with the total axial 
force variation for 3D shaking; see Figure 1.8. 

The second observed effect was an amplification of horizontal floor accelerations due to 
the expression of higher modes activated by horizontal–vertical coupling. Specifically, the high-
frequency component introduced into the base shear by the vertical motion caused the activation 
of higher structural modes. Figure 1.9 shows floor spectra for the 3D recorded motion from 1995 
Kobe, Japan, earthquake at Takatori Station, generated from both test data and numerical 
simulation using the validated computational model. These spectra provide evidence of a 
response in Mode 8 (the second structural mode) and determined to have a period of 0.17 sec 
based on modal analysis. In the Mode 8 displaced shape, floors 2 and 5 are nearly stationary; see 
Figure 1.9. The floor acceleration response spectra at Floors 1, 3, 4, and 6 show spectral peaks 
around 0.17 sec (the period of Mode 8), whereas Floors 2 and 5 (the nodal locations in Mode 8) 
are not amplified. Thus, Mode 8 was amplified in the presence of vertical shaking because its 
period was closely tuned to the period of vertical shaking. In bridges isolated with spherical 
sliding bearings, a similar amplification of higher mode(s) due to vertical shaking is possible. 

In summary, the effect of vertical motion on structures isolated with spherical sliding 
bearings, especially for isolated bridges, is a relatively unexplored topic, and past research has 
been very limited. The next section documents previous studies on the effect of vertical shaking 
on isolated structures, with an emphasis on those with spherical sliding bearings. 
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ground shaking. Computational simulations performed on a 3D concrete bridge model showed 
that peak isolator forces were underestimated when the vertical component was excluded, but the 
vertical shaking had a negligible effect on the column drift. 

Rabiei and Khoushnoudian [2011] were the first researchers to suggest that increases in 
the base shear of friction pendulum bearings due to vertical excitation may be amplified further 
in the horizontal floor accelerations of a multi-story building. In this study, a four-story shear 
type building isolated with SPBs was subjected to vertical and horizontal components of 
recorded earthquakes. The authors calculated the error in the responses for single-component 
(horizontal only) shaking relative to horizontal plus vertical shaking. The maximum error 
observed (over all ground motions) by neglecting vertical motion was 36% and 50.12% for base 
shear and top floor acceleration, respectively. The authors concluded that for a low-period 
superstructure, the top floor acceleration was significantly affected by vertical acceleration and 
neglecting vertical shaking may lead to underestimation of the base shear. 

Politopoulus and Moussallam [2012] performed a 3D analysis of a nuclear plant with 
low-damping bearings. They compared the horizontal floor spectra under two horizontal 
components and all three components of ground motion, and observed that non-isolated higher 
modes were amplified due to coupling between vertical excitation and horizontal response. This 
behavior was explained conceptually by a simple two-degree-of-freedom model. 

As discussed above, a number of numerical studies have suggested that vertical shaking 
may lead to significant amplification of the horizontal responses in base-isolated structures, 
particularly those with spherical sliding bearings, as reported by the experimental results of the 
E-Defense tests. In contrast, experimental research has not, in general, corroborated these 
analytical claims. For example, vertical excitation had little influence on the horizontal force or 
displacement of the isolation system in a test of a single-story structure with SPBs [Zayas et al. 
1987]. Mosqueda et al. [2004] performed displacement-controlled tests on a rigid block 
supported by four SPBs under 2D and 3D motions. The test apparatus consisted of four bearings 
supporting a 1.82 m  2.59 m rigid frame loaded with concrete and lead weighing 290 kN. Six 
different orbits were used for displacement-controlled test. The authors concluded that the 
inclusion of vertical shaking had only a small effect on the lateral force of the SPBs. The 
horizontal displacements of the rigid block were the same in both cases. 

Iemura et al. [2005] conducted shake table tests on two scaled models of highway bridges 
seismically isolated with a combined rubber and flat sliding bearing system to investigate the 
effect of axial force variation due to overturning and vertical acceleration. This hybrid system of 
rubber and sliding bearings was referred to as a “resilient” sliding isolation system because it 
provided a restoring force. The tested models included a reduced-scale portion of a bridge deck 
that could not capture the vertical vibration characteristics of a full-scale deck. The test results 
suggested that normal force variation on bearings would be much higher due to overturning than 
due to vertical acceleration. Furthermore, vertical acceleration had only a minor effect on force-
deformation hysteresis loops in these tests. 
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Fenz and Constantinou [2008] formulated and validated a general model for multi-
spherical sliding bearings that can be used for response history analysis (RHA). The model 
specialized for TPBs was validated with experimental results of a quarter-scale six-story 
seismically isolated steel structure. The authors concluded that the effect of vertical shaking on 
peak displacement, peak base shear, and peak superstructure response was minor; however, 
results presented in the report show that base shear was amplified up to 25% and horizontal floor 
acceleration was amplified by up to a factor of two in some cases. The peak vertical table 
acceleration was moderate, ranging from 0.1 to 0.45g. 

In addition, Morgan and Mahin [2011] performed analytical and experimental 
investigations on multi-stage spherical sliding isolation bearings. Experimental testing included a 
shake table test of a one-quarter-scale three-story seismically isolated steel braced frame on 
multi-spherical sliding bearings. The authors observed no difference in the peak shear force, 
peak displacement demand, or total energy dissipated when vertical acceleration was included; 
the change in the total vertical load on all isolators when vertical acceleration was excluded 
versus included was insignificant, which appears to be due to a significant noise in the vertical 
signal. In summary, most experimental studies have not shown any significant effect of vertical 
motion on horizontal responses. 

Only one study has attempted to conduct a comprehensive statistical evaluation to 
quantify broadly the effects of vertical shaking on the isolation system base shear. Using a model 
of a simple rigid block on an FPB, Cilsalar and Constantinou [2017] evaluated the ratio of 
isolator displacement and base shear with vertical ground motion to that with vertical ground 
motion neglected. The study employed the FEMA P-695 [FEMA 2009a] far-field and near-fault 
ground-motion sets; a statistically significant number of analyses were conducted and 
distributions were generated. System variables included the pendulum period, friction 
coefficient, and amount of viscous damping in the system. The 85th percentile base-shear ratio 
(recommended for design) was found to vary from 1.06 to 1.22 for far-field motions, and from 
1.15 to 1.48 for near-fault motions; ratios were highest in systems without added viscous 
damping. While the study suggested the results could be implemented by codes such as ASCE 7-
16 [ASCE 2017] to approximate the base-shear amplification due to vertical shaking in 
simplified methods, the study did not directly consider the dependence of the base-shear ratio to 
the intensity of vertical shaking. 

1.3 OBJECTIVE AND SCOPE 

As outlined above, although quite a few previous experimental studies reported no significant 
influence of vertical motion on the horizontal response isolated structures, the experimental test 
on a full-scale five-story steel moment frame building isolated with TPBs at E-defense 
demonstrated that vertical shaking can increase the base shear and horizontal acceleration. This 
observation is supported by a number of analytical studies that predict that horizontal responses 
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can be increased by 3D excitation. These effects are anticipated to have direct significance to 
bridges, wherein the amplified horizontal force of the TPBs will lead to increased base-shear 
demand on bridge piers. Furthermore, potential coupling between vertical and horizontal 
vibration modes might occur, which can increase horizontal acceleration and associated spectra 
due to the activation of a higher structural mode. Design methods or simplified methods that can 
account for amplification of seismic responses due to vertical shaking are needed. Bridges are 
conceptually simpler dynamically; therefore, they should be the natural starting point for a 
comprehensive treatment of the subject. 

The primary objectives of this study are as follows: (1) to develop a physical 
understanding of the phenomena by which responses in bridges isolated with spherical sliding 
bearings are amplified due to vertical shaking; and (2) to develop a simplified method to estimate 
the amplification of the base-shear coefficient for this class of bridges.  

This report is organized as follows: Chapter 1 documents the motivation and background 
of this study with a review of relevant literature. For this study, a ground-motion suite was 
selected that has a wide range of horizontal and vertical intensity ground-motion components. 
The detailed procedure for selection and scaling of the ground motions is presented in Chapter 2. 
Chapter 3 identifies the prominent bridge type used in California suitable for seismic isolation; 
describes the geometry, properties and modeling assumptions of a Base Model bridge, and 
identifies parameter variations to be applied to the bridge and the isolation system. Chapter 4 
discusses fundamental dynamic properties of the Base Model bridge, and presents histories of 
various responses under representative ground motions, amplification of responses based on 
vertical PGA, and spectral responses to identify coupling between horizontal and vertical modes. 
Chapter 5 describes the proposed simplified method for estimating base-shear amplification and 
error analysis to validate the method. Chapter 6 validates the method considering various 
isolation-system parameters and bridge-parameter variations. Key conclusions from this study 
are presented in Chapter 7. 
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2 Ground-Motion Selection and Scaling 

Ground motions play a crucial role in modeling and predicting the response of structural 
systems. For most investigations, ground motions are selected and scaled for a target intensity or 
target spectrum in the horizontal direction only, without regard to the vertical component. There 
are very limited studies evaluating the effect of vertical ground motions on bridges. In addition, 
most literature on ground-motion selection focuses on horizontal components of motion only. 

2.1 DESCRIPTION OF A GROUND-MOTION SUITE 

To avoid challenges in selecting and scaling ground-motion triplets, the strategy used herein was 
to select a well-vetted, pre-defined suite of horizontal strong ground-motion records that were fit 
to a target spectrum. For this study, the vertical components of those records were amplitude-
scaled independently to best fit a target vertical spectrum that corresponded to the target 
horizontal spectrum. The selected suite consisted of 11 recorded ground motions corresponding 
to shallow crustal earthquakes in active tectonic regions that incorporate near-fault effects 
[Carlton 2014]. 

The motions were amplitude scaled to match a 5%-damped target acceleration response 
spectrum based on the 2008 NGA ground-motion prediction equations (GMPEs) given by 
Abrahamson and Silva [2008], Boore and Atkinson [2008], Campbell and Bozorgnia [2008], 
Chiou and Youngs [2008], and Idriss [2008]. Parameters used for estimating this spectrum were 
Mw = 6.7 (a moment magnitude of 6.7), FRV = 1 and FNM = 0 (a reverse-type-fault failing 
mechanism), ZTOR = 0 (surface rupture), and δ = 45 (45° fault plane). Figure 2.1 shows the target 
median () and median plus/minus ± one standard deviation ( ± ) spectral acceleration. 

The procedure used to scale the ground motions to best fit the target spectrum was as 
follows [Carlton 2014]: first, motions were rotated to the direction that maximized the spectral 
acceleration at a period T = 1 sec. The code SigmaSpectra [IICGE 2019] was used to select the 
best suite of ground motions from a larger pool of rotated motions. Individual motions were 
amplitude scaled to minimize the sum-square-of-the-error relative to the target spectrum. The 
root-mean-square-error (RMSE) for a suite of scaled motions is defined as: 



14 

   
2

, , , ,
1

1
ln ln

pn
scaled
a avg i a tar i

ip

RMSE S S
n 

     (2.1) 

where np is the number of points (periods) in the response spectra to be targeted; and , ,a tar iS  and 

, ,
scaled
a avg iS  are the target spectral acceleration and the mean spectral acceleration of the suite of 

scaled ground motions for the ith period, respectively. The spectral values are assumed to be log-
normally distributed. Motions were selected such that RMSE for the suite was minimized. 

After the suite of motions was selected, scale factors for individual motions were further 
increased or decreased while keeping the average scaling factors constant so that the suite as a 
whole also matched the target standard deviation. The best scaling factor for each record were 
determined by the Centroid Method as illustrated by Kottke and Rathje [2008]. Table 2.1 below 
lists the ground motions selected by Carlton [2014] and their relevant statistics. The motions can 
also be found in the database created for the PEER transportation research program; see Baker et 
al. [2011]. 

 

 

Figure 2.1 Target response spectrum with and without standard deviation. 
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Table 2.1 Selected ground motions with their abbreviation. 

Motion NGA # Event Year Station MW 
Rrup 
(km) 

Vs30 

(m/sec) 

SFPU 77 San Fernando 1971 
Pacoima Dam (upper 

left abut) 
6.61 1.81 2016 

IIB 285 Irpinia, Italy-01 1980 Bagnoli Irpinio 6.9 8.18 1000 

IIS 292 Irpinia, Italy-01 1980 Sturno 6.9 10.8 1000 

LPG 763 Loma Prieta 1989 Gilroy - Gavilan Coll. 6.9 9.96 729.7 

CAM 825 Cape Mendocino 1992 Cape Mendocino 7.0 6.96 513.7 

LAL 879 Landers 1992 Lucerne 7.2 2.19 1369 

NPD 1050 Northridge-01 1994 
Pacoima Dam 

(downstr) 
6.6 7.01 2016.1 

NPA 1051 Northridge-01 1994 
Pacoima Dam (upper 

left) 
6.6 7.01 2016.1 

KCL 1148 Kocaeli, Turkey 1999 Arcelik 7.5 13.4 523 

CT46 1486 Chi-Chi, Taiwan 1999 TCU046 7.6 16.7 465.6 

CT78 3473 Chi-Chi,Taiwan-06 1999 TCU078 6.3 11.5 443 

2.2 SCALING OF VERTICAL COMPONENTS 

Since vertical motions were not considered in development of the ground-motion suite [Carlton 
2014], a similar procedure was adopted herein to scale the vertical motions. First, the target 
vertical spectral acceleration, Sa,V was developed from the target horizontal spectrum based on 
NEHRP recommended seismic provisions [FEMA 2009(b)]. Figure 2.2 shows a vertical 
response spectrum according to these guidelines. The vertical spectral shape resembles a 
standard code horizontal spectrum [ASCE 2017] but with fixed transition periods at 0.05 sec and 
0.15 sec that determine the start and end of the constant acceleration region. For periods T > 0.15 
sec, Sa,V is calculated as 

 0.75

, 0.8 0.15 /a V V DS VS C S T  (2.2) 

where CV is the vertical coefficient that depends on site class and ranges from 0.7 to 1.5; SDS is 
the design spectral response acceleration parameter at short periods and represents the largest 
horizontal spectral acceleration. When CV takes the value of 1.5, the peak vertical spectral 
acceleration Sa,V = 1.2SDS, i.e., the vertical to horizontal (V/H) ratio = 1.2. 

The NEHRP vertical spectrum is based on a standard design spectrum that has constant 
spectral acceleration over a range of short periods. Because the target horizontal spectrum of 
Carlton [2014] reflects the GMPE and does not have a constant spectral acceleration region, the 
shape of the target vertical spectrum developed here was modified from the NEHRP spectrum. 
Two regions for the target vertical spectrum were defined. In the first region, Sa,V varies linearly 
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from 0.3CVSDS at T = 0 sec to 0.8CVSDS at T = 0.15 sec, which resembles the shape of the 
horizontal spectrum. For T > 0.15 sec, Sa,V is determined by Equation (2.2), which is consistent 
with the NEHRP target spectrum. Assumed coefficients were Cv = 1.5 and SDS = 1.38, which is 
the largest spectral acceleration of the target horizontal spectrum at T = 0.2 sec. Figure 2.3 
illustrates the target vertical spectrum. 

To scale the vertical components to best fit this target spectrum, the following procedure 
was followed. First, a scale factor was identified for each horizontal rotated motion such that it 
best fit the median horizontal target spectrum. This scale factor is hereafter referred to as 
“horizontal best fit factor.” A horizontal adjustment ratio A was calculated by dividing the scale 
factor reported in Carlton [2014] by the horizontal best fit factor. The adjustment ratio represents 
the additional scaling of individual motions to represent the dispersion in the target spectrum. 
Likewise, the vertical components of these motions were also amplitude scaled to best fit the 
vertical target spectrum; this scale factor is referred to as “vertical best fit factor.” Final vertical-
component scale factors were derived by multiplying the vertical best fit factors by A. 
Essentially, the scale factors for vertical motions were adjusted comparable to the horizontal 
motions to match the  ±  target spectrum. This procedure ensures that motions with high-
intensity horizontal components have high-intensity vertical components as well. 

 

  

Figure 2.2 Design vertical response spectrum per FEMA guidelines [FEMA 2009(b)]. 
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Figure 2.3 Vertical target spectrum. 

 

Table 2.2 Ground-motion groups, scaled PGAs, scaling factors, and adjustment factors. 

Group 
# 

Motion 
Scaled PGA Scale Factor 

Adjustment 
factor A' 

PGAV (g) PGAT (g) PGAL (g) Horiz. Vert. Horiz. Vert. 

Group 1 

SFPU 0.817 0.843 0.856 0.69 1.189 1.55 1.19 

CAM 1.10 1.116 0.776 0.75 1.490 0.42 1.49 

NPA 1.683 1.678 1.36 1.06 1.369 0.41 1.37 

Group 2 

LPG 0.62 0.47 0.43 1.31 3.228 1.2 3.23 

LAL 0.614 0.73 0.793 1.01 0.745 0.67 0.75 

NPD 0.597 0.544 0.568 1.31 3.133 1.02 3.13 

CT78 0.694 0.336 0.49 1.26 2.226 1.27 2.26 

IIS 0.543 0.27 0.382 1.19 2.313 1.27 2.31 

Group 3 

IIB 0.38 0.266 0.39 2.05 3.561 2.78 3.56 

KCL 0.272 0.424 0.271 2.02 3.282 3.19 3.28 

CT46 0.262 0.28 0.234 1.97 2.673 3.98 2.67 
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Figure 2.5 Spectral acceleration of scaled vertical ground motion components 

compared to target vertical spectrum. 
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3 Bridge Parameter Selection and Modeling 

3.1 INTRODUCTION 

Bridges are classified into various categories according to design and construction 
methodologies, materials used, and other characteristics such as single vs. multiple spans, 
integral vs. bearing connection of superstructure to substructure, etc. Ramanathan [2012] studied 
the California bridge inventory utilizing the National Bridge Inventory (NBI) database [2010]. 
According to that study, three classes of bridges (multi-span continuous concrete box-girder, 
multi-span continuous slab, and multi-span continuous concrete girder) account for 45% of the 
total bridge inventory. Other bridge classes in California include concrete and steel culverts, 
concrete tunnels, concrete and steel bridges with other structural systems, cast/wrought iron, 
masonry, wood/timber, and aluminum bridges. Table 3.1 shows the major bridge classes with 
their count and the percentage of total inventory. 

The objective of this study is to investigate the effect of vertical motion on isolated 
bridges. With that goal in mind, a variety of bridges archetypes, commonly found in the 
seismically active regions of California, were considered.  Clearly, isolation is not suitable for 
bridge classes listed in Table 3.1. Multi-span continuous concrete box-girder bridges (MSCBG) 
and multi-span continuous steel or concrete girder bridges are the most suitable choice for 
seismic isolation because of the convenience of placing the isolators directly between the 
substructure bent cap and the superstructure girders. With simply supported bridges, different 
displacements can arise in each span, resulting in pounding. Pounding in isolated bridges is 
undesirable because it can induce additional shear forces in isolators. Because single-span 
bridges tend to be limited in length, they are not very flexible in the vertical direction and 
vertical shaking might not affect their response. 

In California, MSCBG is the preferred bridge archetype for use with seismic isolation 
[Kartoum 2018]. In MSCBG bridges, isolation bearings are placed between the deck and the bent 
cap. A column cap provides support for the bearing installation. Bearings are also provided at the 
abutment. Figure 3.1 shows the typical assembly of bearings between the bent cap and the 
superstructure in MSCBG bridges. Only MSCBG bridges are investigated herein because of their 
wide presence and suitability for seismic isolation. Also, the bridge response is not expected to 
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3.2 BRIDGE PARAMETER SELECTION 

This section describes the parameter variations considered explored the influence of vertical 
motion on bridge response. Parameter variations include span length, number of spans, width of 
deck, number of columns per bent, and column height (substructure stiffness). Considering these 
parameter variations, eight different bridges were modeled and analyzed by changing one bridge 
parameter at a time and keeping the other parameters constant. All bridges were assumed to be 
isolated with TPBs. The bridges and their properties are tabulated in Table 3.2. The span length 
of the approach spans are 0.8 times the length of intermediate spans. 

 Bridge 1 is a three-span bridge (120-ft-long spans) with two-column bents. Bridge 1 was 
considered a baseline to evaluate the effect of other parameter variations and is referred 
to as the Base Model bridge. Figure 3.2 details the Base Model bridge with dimensions. 

 Bridge 2 is a four-span bridge and Bridge 3 is a two-span bridge. 

 Bridges 4 and 5 are both three-span bridges but have increased span lengths of 135 ft and 
160 ft, respectively, and increased depth of the deck to 5.4 ft and 6.4 ft, respectively. 

 Bridge 6 has increased deck width (from 45 ft to 90 ft), 10 cells, and four columns per 
bent. 

 Bridge 7 has a reduced deck width of 35 ft, two cells, and is reduced to a single 6-ft-
diameter column bent. 

 Relative to the standard column height (20 ft), Bridge 8 has a reduced column height of 
15 ft.  

Isolation system parameter variations were also applied to the Base Model bridge to 
investigate the influence of friction coefficient and isolation period on bridge response to 
combined horizontal and vertical ground motions. Table 3.3 lists the isolator parameter 
variations considered for Base Model bridge. The symbols µ2 and T2 correspond to friction 
coefficient and pendulum period, respectively, associated with sliding on the outer sliding 
surfaces. The TPB model is described more fully in Section 3.3. Other bridges in Table 3.2 were 
analyzed with the parameters of Iso System No. 6 in Table 3.3. 
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Table 3.2 Parameter variations for multi-span continuous concrete box-girder bridges. 

Sr No. 
Deck 
Width 

(ft) 

No. of 
Cells 

Depth 
(ft) 

Deck 
Thickness 

(in) 

Soffit 
Thickness 

(in.) 

Wall 
Thickness 

(in.) 

Wall C-C 
Spacing 

(ft) 

Span 
Length 

(ft) 

No. of 
Spans 

Column 
Height 

(ft) 

No. 
Column 

Column 
Dia. (ft) 

1 45 3 4.8 8.875 7 12 11.75 120 3 20 2 5 

2 45 3 4.8 8.875 7 12 11.75 120 4 20 2 5 

3 45 3 4.8 8.875 7 12 11.75 120 2 20 2 5 

4 45 3 5.4 8.875 7 12 11.75 135 3 20 2 5 

5 45 3 6.4 8.875 7 12 11.75 160 3 20 2 5 

6 90 10 4.8 8.875 7 12 8.4 120 3 20 4 5 

7 35 2 4.8 8.875 7 12 15 120 3 20 1 6 

8 45 3 4.8 8.875 7 12 11.75 120 3 15 2 5 
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Table 3.4 Section properties of bridge superstructure elements. 

Bridge no. Adeck (in.2) IXX (in.4) IYY (in.4) J (in.4) 

1 (Base model) 9,862.56 4.951 х 106 2.111 х108 1.129 х 107 

2 9,862.56 4.951 х 106 2.111 х108 1.129 х 107 

3 9,862.56 4.951 х 106 2.111 х108 1.129 х 107 

4 10,189.44 6.601 х 106 2.215 х108 1.458 х 107 

5 10,722.24 4.857 х 106 2.316 х108 1.998 х 107 

6 21,712 1.093 х 107 2.041 х109 2.442 х 107 

7 7,765.92 3.998 х 106 1.126 х 108 1.05 х 107 

8 9,862.56 4.951х106 2.111 х108 х 107 

 
 

The superstructure node was assigned at the center-of-gravity of the section. The 
superstructure was divided into 10 elements per span, and translational masses were lumped at 
nodes based on the tributary length Ltrib and cross-sectional area Adeck. The translational nodal 
mass was computed as: 

node trib deckM mL A  (3.1) 

The unit mass of concrete assigned to the material was m = 4.471 lb-sec2/ft4, based on the 
assumed weight of normal concrete w = 143.96 lb/ft3 [Caltrans 2004]. For example, the nodal 
mass for Base Model bridge would be computed using a tributary length Ltrib = 12 ft (one tenth of 
the intermediate span length of 120 ft) and the cross-sectional area Adeck from Table 3.4. 

Rotational mass assignment is also important to capture fundamental mode shapes of the 
bridge in the transverse direction. The rotational mass of the superstructure about the 
longitudinal axis, Mxx, (Figure 3.4) was calculated and assigned using the following formula. 

2
trib deck

12
w

xx

mL A d
M   (3.2) 

where dw = superstructure width (average of top and bottom flange). 
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normalized horizontal force, *
1f , exceeds the friction coefficient µ1. Here, *

1f  is the horizontal 

force that is normalized by the instantaneous acting axial force, not the constant weight of the 
superstructure. Since the axial force changes because of vertical motion, the horizontal force also 
changes accordingly. The inner slider has a small spherical radius, R1, resulting in a relatively 
large normalized stiffness (stiffness normalized by axial force), k1 = 1/(2L1) (Figure 3.8), and the 
maximum displacement is *

2u  = 2L1 (µ2  µ1). The friction coefficient µ1 between these two 

surfaces is low, such that sliding takes place under small earthquake intensity. 

In the second stage of sliding, the normalized horizontal force, *
2f , exceeds the friction 

coefficient, µ2, and the inner slider slides on the upper articulated slider (Interface 3), while, 
simultaneously, the lower articulated slider slides on the bottom concave plate (Interface 1) 
(Figure 3.9). The normalized stiffness of this stage is k2 = 1/(L1 + L2), and the maximum 
displacement is  *

3u  = L1 (µ2 + µ3  2µ1) + L2 (µ3  µ2). 

In the third stage of sliding (Figure 3.9), the lower articulated slider slides on the bottom 
concave plate (Interface 1), and the upper articulated slider slides on the top concave plate 
(Interface 4). The third stage of sliding starts when the normalized horizontal force *

3f  acting on 

the isolators exceeds the friction coefficient µ3. The normalized stiffness of backbone curve of 
the third stage is k3 = 1/ (L2 + L3), and the maximum displacement is *

4u  = *
3u  + (d2/L2 + µ2  µ3) 

(L2 + L3). 

When the normalized horizontal force acting on the isolator exceeds *
4f  = µ2 + d2/L2, the 

fourth stage of sliding is initiated (Figure 3.9). The inner slider slides on the lower articulated 
slider (Interface 2), and the upper articulated slider slides on the top concave plate (Interface 4). 
In this fourth stage of sliding, the normalized stiffness of the backbone curve is k4 = 1/(L1 + L3), 
and the maximum displacement is *

5u = *
4u  + (d3/L3 + µ3 – d2/L2  µ2) (L1 + L3). 

The fifth stage of sliding is activated when the normalized horizontal force on the 
isolators exceeds *

5f = µ3 + d3/L3. Sliding occurs between Interfaces 2 and 3: that is, the inner 

slider slides between the two articulated sliders. The normalized stiffness in this stage is k5 = 
1/(2L1), and the maximum displacement is *

6u  = 2d1 + d2 + d3 + (L1/L3) d3 – (L1/L2) d2. This is the 

last stage of sliding before the bearing reaches its displacement limit; it comes in contact with the 
restraining rings of the articulated sliders and cannot go beyond without incurring damage. At 
the maximum displacement, *

6u , the corresponding normalized horizontal force is *
6f  = µ1 + d1/L1 

+ d3/L3. 
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Figure 3.10 Design backbone curve for base model bridge. 
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4 Analysis of the Base Model Bridge 
Configuration 

This chapter presents results of RHA and bearing force vs. displacement (hysteresis loops), and 
spectral responses of the Base Model bridge for each ground-motion group. Amplification of 
base shear in 3D motion (vertical and horizontal components) vs. ground-motion intensity are 
evaluated. Section 4.1 reports the various mode shapes and periods of the Base Model bridge to 
evaluate the behavior of the bridge under dynamic earthquake forces. Section 4.2 details various 
response histories, such as acceleration, shear force, displacement, and axial force, as well as 
bearing force-displacement for a representative motion selected from each of the three ground-
motion groups. Section 4.3 reports peak shear force and acceleration responses for all selected 
ground motions. Section 4.4 examines in detail the spectral response of the Base Model bridge. 
This section demonstrates the existence of coupled horizontal and vertical modes, which are 
apparent in the deck spectra under combined horizontal and vertical shaking compared to 
horizontal shaking only. 

4.1 EIGENVALUE ANALYSIS 

Knowledge of the dynamic properties of the bridge is critical to evaluating its dynamic response, 
especially when the bridge is subjected to vertical shaking and potential horizontal–vertical 
coupling. An eigenvalue analysis of the Base Model bridge was performed in OpenSees to 
identify the frequencies and mode shapes of the participating modes. Also, a corresponding stick 
model of the bridge was built in SAP2000 [CSI 2017] and modal analysis performed for 
validation. Mode shapes and periods determined from each software were similar. The results 
shown here are from the OpenSees model. For modal analysis, the TPB models were replaced by 
linear springs with an effective stiffness representative of large displacement response. For this 
analysis, the effective period Teff was assumed to be 3 sec. Isolators at bent and abutment 
locations carry different axial forces based on tributary area, and the effective stiffnesses, keff, of 
individual isolators were calculated according to the following equation: 

2

eff iso
eff

2
k m

T

 
  
 

 (4.1) 
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where miso is the mass carried by the isolator. 

The first ten modes shapes and corresponding periods are shown in Figure 4.1. The 
periods and corresponding modal mass participation factors in each direction are tabulated in 
Table 4.1. This information allows interpretation of the modal responses. The first three modes 
are isolation modes, which means the bridge deck moves as a single rigid mass sliding on the 
isolators. These three modes represent movement in the longitudinal, transverse, and torsional 
directions, respectively. Mode 4 is a first vertical mode, and Mode 5 is a second vertical mode. 
Mode 6 is a second transverse mode that activates significant bending of the deck about the 
vertical axis. Mode 7 is a vertical superstructure deformation mode (3C-shape). Vertical Modes 4 
and 5 exhibit deck displacements in different directions and low mass participation; see Table 
4.1. In contrast, the deformations in vertical Mode 7 are in-phase, and the mode has high mass 
participation around 80%; thus it is likely to be expressed in the dynamic response more than the 
other vertical modes. Modes 8 and 10 are rotational modes that rotate the deck in the clockwise 
direction, while Mode 9 is a deck torsional mode that rotates the deck in two different directions 
such that the deck twists. 

Table 4.1 Periods and modal participation factors of base model bridge. 

Mode Period (sec) 
Modal mass participation (%) 

Longitudinal Transverse Vertical 

1  3.03 100 0 0 

2  3.01 0 100 0 

3  2.69 0 0 0 

4 0.35 0  0 0.02 

5 0.25 0 0 0 

6 0.21 0 0 0 

7 0.20 0 0 79.42 

8 0.14 0 0 0 

9 0.12 0 0 0 

10 0.11 0 0 0 

4.2 REPRESENTATIVE RESPONSE HISTORIES AND BEARING HYSTERESIS 
LOOPS 

Next, response history results are presented for the Base Model bridge incorporating the 
nonlinear TPB isolator element. The equations of motion were solved in OpenSees using 
Newmark’s average acceleration integrator and the Newton–Raphson line search algorithm. 
Results are shown for a representative motion from each ground-motion group. The effect of 
vertical motion is defined by the amplification ratio, AR, defined as 
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4.2.1 Group 1 Motions 

The vertical components of Group 1 motions had the greatest effect on bridge response since 
they have high vertical intensity. The SFPU motion (PGAV = 0.817g) (Table 2.2) is selected as a 
representative motion from Group 1. Figure 4.2 shows the deck transverse and longitudinal 
direction acceleration histories at Bent 1. Peak accelerations are indicated by a circle and 
corresponding value for both 3D and 2D motions. The peak transverse direction accelerations 
during 3D and 2D motions are 0.35g and 0.14g, respectively. The peak longitudinal direction 
accelerations during 3D and 2D shaking are 0.21g and 0.11g, respectively. Thus, AR = 2.42 for 
transverse acceleration and 1.9 for longitudinal acceleration; see Equation (4.2). Accelerations 
under the 3D motion in both directions are affected by a high-frequency oscillation; as a result, 
the peak acceleration increases relative to the 2D motion.  

Figure 4.3 represents transverse- and longitudinal-direction shear force histories of a 
column at Bent 1. Again, circles and corresponding values indicate the peak shear force. Shear-
force histories are almost identical to acceleration histories, suggesting that the deck acted as a 
single mass sliding on the isolators. For the transverse base shear, AR = 2.56, and for 
longitudinal base shear, AR = 1.83. Figures 4.2 and 4.3 suggest that high-frequency vertical 
oscillation was transferred to the acceleration and base shear during 3D motion, which increased 
the shear force demand on the bridge piers. 

 

 
Figure 4.2 (a) Transverse acceleration history and (b) longitudinal acceleration 

history at Bent 1 for SFPU motion (PGAV = 0.817g). 
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Figure 4.3 (a) Transverse shear force history and (b) longitudinal shear force 

history at Bent 1 for SFPU motion (PGAV =  0.817g). 

 

Figure 4.4 demonstrates Bent 1 column axial force history, vertical acceleration history, 
and longitudinal shear force history. Since TPB isolators do not have tension capacity, the 
isolator will experience uplift when they reach zero axial force. Uplift of the isolators occurs at 
approximately 3 sec, 3.2 sec, 6 sec, 6.3 sec, 8.5 sec, 9.3 sec, and 9.5 sec; see Figure 4.4(a). The 
uplift and subsequent pounding causes a spike in vertical acceleration, which is evident in Figure 
4.4(b). Figure 4.4(c) illustrates a sudden increase in the shear force correlated to the uplift and 
spiked vertical acceleration. 

Figure 4.5 compares the Bent 1 isolator displacement histories in each direction for 2D 
and 3D shaking due to SFPU ground motion. Unlike horizontal acceleration and base shear, 
vertical shaking has a minimal effect on isolator displacement. Figure 4.6 illustrates the total 
force-displacement hysteresis loops summed over all isolators for SFPU motion. When the 
bridge is subjected to 2D motion, the axial force variation is negligible [Figure 4.4(a)], and the 
isolator force-displacement loop is smooth; however, when the bridge is subjected to 3D motion, 
the axial force variation is high [Figure 4.4(a)], which causes a corresponding variation in the 
horizontal shear force. This results in local oscillation of the isolator force in the force-
displacement loop and an overall increase in the peak base shear. The vertical component 
increases significantly the base shear. Thus omitting the vertical component may lead to 
underestimation of force demands. 
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Figure 4.4 (a) Total axial force history SFPU at Bent 1 column isolator; (b) 

vertical acceleration history at Bent 1; and (c) longitudinal shear 
force history at Bent 1 for SFPU motion (PGAV =  0.817g). 

 
Figure 4.5 (a) Transverse isolator displacement history; and (b) longitudinal 

isolator displacement history at Bent 1 for SFPU motion (PGAV =  
0.817g). 
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Figure 4.6 Total force-displacement summed over all isolators in (a) 

transverse and (b) longitudinal direction for SFPU motion (PGAV =  
0.817g). 

4.2.2 Group 2 Motions 

The LPG motion (PGAV = 0.62g) was selected as a representative Group 2 ground motion. 
Group 2 motions have moderate vertical intensity; therefore, the AR is expected to be lower than 
Group 1 motions. Figure 4.7 presents horizontal acceleration histories in both directions for the 
LPG motion at Bent 1. Based on the observed peak accelerations, AR = 1.41 for the transverse 
acceleration and 1.18 for longitudinal direction acceleration. These amplifications are much less 
than the corresponding AR for Group 1 motion SFPU (2.7 for transverse acceleration and 1.9 for 
longitudinal acceleration). Overall, peak accelerations in the longitudinal and transverse 
directions during 2D motion are lower than exhibited by Group 1 (Figure 4.7 versus Figure 4.2) 
due to comparatively lower horizontal shaking intensities; during the 3D motion, they are lower 
due to comparatively lower PGAV. 

Figure 4.8 plots the shear-force histories in the transverse and longitudinal directions for 
a column at Bent 1 of the bridge. The base-shear AR is 1.43 for the transverse direction and 1.21 
for the longitudinal direction. Here, the AR for base shear is almost the same as the AR for deck 
acceleration. Figure 4.9 shows the axial force history of an isolator at Bent 1; uplift did not occur 
due to this moderate-intensity vertical motion. As a result, spikes in the vertical acceleration 
history (not shown here) are not present, which correlate to lower amplification of the horizontal 
acceleration and base shear in both directions. 
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Figure 4.7 (a) Transverse acceleration history at Bent 1; and (b) longitudinal 

acceleration history at Bent 1 under LPG motion (PGAV = 0.62g). 

 
Figure 4.8 (a) Transverse shear force history at Bent 1 column; and (b) 

longitudinal shear force history LPG motion at Bent 1 column under 
LPG motion (PGAV = 0.62g). 
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Figure 4.10 shows the displacement history of a TPB isolator at Bent 1 during the LPG 
motion. Consistent with earlier findings, the isolator displacement is not affected by the vertical 
component of ground shaking. Figure 4.11 shows the total isolator force-displacement hysteresis 
loops summed over all isolators for the LPG motion. The effect of the axial force variation on the 
isolator shear force for 3D shaking is also evident in this figure, although not as pronounced as in 
Figure 4.6. Specifically, axial force variation in transverse direction is greater, and the hysteresis 
loop in transverse direction shows increased base shear compared to the longitudinal direction. 

 

 

Figure 4.9 Axial force history for LPG (PGAV = 0.62g) motion at Bent 1. 

 
Figure 4.10 (a) Transverse and (b) longitudinal isolator displacement history at 

Bent 1 for LPG motion (PGAV = 0.62g). 
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Figure 4.11 Total force-displacement summed over all isolators in (a) 

transverse and (b) longitudinal direction under LPG motion (PGAV = 
0.62g). 

4.2.3 Group 3 Motions 

This section presents response histories to the IIB motion (PGAV = 0.38g) as a representative 
Group 3 motion. Motions from Group 3 have comparatively low vertical intensity. Figure 4.12 
shows the horizontal acceleration histories for the IIB motion. The AR is 1.16 for the transverse 
direction acceleration and 1.42 for the longitudinal direction acceleration. Figure 4.13 shows the 
base-shear histories in the transverse and longitudinal directions in a column at Bent 1. The 
increase in acceleration for 3D motion is also reflected in base-shear histories; see Figure 4.13. 
The AR for transverse base shear is 1.22 and for longitudinal base shear is 1.42, which is almost 
the same as the AR for acceleration. Figure 4.14 displays the axial force history of a Bent 1 
isolator. Similar to Group 2 (moderate-intensity) motions, no instances of isolator uplift during 
this motion are observed. 

One notable difference in the response to this motion compared to the motions examined 
for Groups 1 and 2 is that the AR for longitudinal direction acceleration and base shear is higher 
than for the transverse direction. An inspection of the axial force history in Figure 4.14 shows 
that the peak axial force variation occurred around 5 sec. Thus, the timing of the strongest 
intensity vertical shaking is out-of-phase with the peak transverse direction acceleration [Figure 
4.12(a)], but in-phase with the peak longitudinal direction acceleration [Figure 4.12(b)]. This 
implies that the AR is influenced by the relative phasing of horizontal and vertical shaking, and 
the peaks produced by horizontal and vertical shaking may not directly sum together. 
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Figure 4.12 (a) Transverse acceleration history and (b) longitudinal acceleration 

history at Bent1 under IIB motion (PGAV = 0.38g). 

 

 
Figure 4.13 (a) Transverse shear force history; and (b) longitudinal shear force 

history at Bent 1 column under IIB motion (PGAV = 0.38g). 
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Figure 4.15 depicts the displacement histories of a Bent 1 isolator due to IIG motion. The 
vertical component has no effect on the displacement demands of the bridge as was observed for 
other motions. Figure 4.16 plots the total force-displacement summed over all isolators. The 
displacement demands are unaffected by vertical shaking, but the base shear in both directions is 
increased by the presence of the vertical ground acceleration. 

 

Figure 4.14 Axial force history at Bent 1 location for IIB motion (PGAV = 0.38g). 

 
Figure 4.15 (a) Transverse displacement history; and (b) longitudinal 

displacement history for at Bent 1 under IIB motion (PGAV = 0.38g). 
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Figure 4.16 Total force-displacement summed over all isolators in (a) 

transverse and (b) longitudinal direction under IIB motion (PGAV = 
0.38g). 

4.3 AMPLIFICATION FACTORS VS. GROUND-MOTION INTENSITY 

This section discusses trends in peak acceleration, peak base shear, and their corresponding AR 
(Equation 4.2) for all selected motions. The differences in AR based on ground-motion intensity–
distinguished by ground-motion group–are identified. Figure 4.17 plots the peak acceleration at 
Bent 1 during 2D shaking (orange dot) and 3D shaking (blue dot) for both transverse and 
longitudinal directions, and lists the value of the corresponding AR. Results are distinguished by 
the ground-motion group as indicated. Comparable results for base shear are presented in Figure 
4.18; note that these values are for total base shear summed over all isolators, and thus some 
values differ slightly from those reported earlier. The AR for peak accelerations and total base 
shear are also tabulated in Table 4.2, which also shows the AR averaged over each ground-
motion group. 

Based on the presented results, the AR for total base shear are almost the same as for 
acceleration. An exception to this trend is in the transverse direction for Group 1 motions, where 
average AR for the base shear is notably higher than for acceleration. For Group 1 motions, the 
average acceleration AR are 2.55 and 1.84, and average base-shear AR are 2.55 and 2.02 in the 
transverse and longitudinal directions, respectively. Group 2 and 3 motions have similar average 
ARs for acceleration and base shear ranging from about 1.15 to 1.3. Clearly, the high vertical 
intensity Group 1 motions produced much higher ARs than the lower intensity Group 2 and 3 
motions. 
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Figure 4.17 (a) Transverse and (b) longitudinal direction peak acceleration and AR. 

 

 

Figure 4.18 (a) Transverse and (b) longitudinal direction peak base shear and AR. 
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Table 4.2 AR for peak deck acceleration and total base shear for all motions. 

Group
# 

Motions 

Peak deck 
acceleration 

Average peak 
deck 

acceleration 

Peak base 
shear 

Average peak 
base shear 

T L T L T L T L 

1 

SFPU 2.42 1.9 

2.55 1.84 

2.68 2 

2.55 2.02 CAM 1.25 1.91 1.39 2.23 

NPA 3.97 1.72 3.59 1.83 

2 

LPG 1.41 1.18 

1.28 1.15 

1.43 1.22 

1.31 1.17 

LAL 1.11 1.02 1.12 1.05 

NPD 1.49 1.13 1.52 1.11 

CT78 1.19 1.39 1.22 1.46 

IIS 1.22 1.03 1.25 1.03 

3 

IIB 1.17 1.41 

1.2 1.28 

1.21 1.47 

1.23 1.31 KCL 1.22 1.27 1.26 1.3 

CT46 1.22 1.17 1.22 1.18 

4.4 SPECTRAL RESPONSE  

Acceleration response spectra of the total (absolute) deck acceleration histories as predicted by 
analysis in both the horizontal and vertical directions have been developed for representative 
motions. Peaks in these spectra are generally associated with the excited structural modes of the 
bridge. The spectral response for accelerations at Bent 1 in the longitudinal, transverse, and 
vertical directions due to the SFPU motion are plotted in Figure 4.19. These response spectra in 
the transverse and longitudinal direction exhibit peaks near 1.5 sec, which indicate the isolation 
mode in each direction. The period of these isolation modes is different from that computed in 
modal analysis, which utilized an effective stiffness that reflected the full displacement capacity 
of isolators; however, for many ground motions, the induced displacement demand is less than 
the capacity, resulting in a higher effective stiffness and lower effective period. For 3D relative 
to 2D shaking, amplification of the spectral acceleration is observed for shorter periods, which is 
likely controlled by the presence of a peak at about 0.2 sec for 3D shaking that is absent for 2D 
shaking. This peak is much stronger in the transverse direction than in the longitudinal direction. 
The vertical spectrum (3D motion only) exhibits grouped peaks from about 0.2 to 0.3 sec and 
several peaks at shorter periods. These short periods are likely associated with higher vertical 
modes, which have not been included in the eigenvalue analysis. 

As noted above, differences in spectral response (especially in the transverse direction) 
are observed for 2D versus 3D shaking. To explore this further, Figure 4.21 plots the transverse 
direction deck spectra at three strategic locations (indicated by black dots): to the left of Bent 1, 
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mid-span, and to the right of Bent 2. These locations to the left and right of the bents correspond 
to nodes in Mode 6 (the second transverse mode in Figure 4.1), which is superimposed over the 
undeformed bridge (Figure 4.20). The significance of these nodal locations is that Mode 6 peaks 
will not be visible in the response spectra at these locations even if this mode contributes 
meaningfully to the response. As seen in Figure 4.20, the spectral response for 2D shaking is the 
same at all locations, and Mode 6 is not expressed (no peak is visible at the modal period of 0.2 
sec). For 3D shaking, Mode 6 is strongly expressed at the mid-span location, with a spectral 
acceleration peak of 0.86g at 0.2 sec. This more than doubles the peak acceleration observed at 
that location compared to the 2D shaking. This peak can be conclusively associated with Mode 6 
since it does not appear at the Mode-6 node locations. 

To understand why the second transverse mode is expressed in 3D shaking and not 2D 
shaking, the vertical spectra at various locations were examined. Figure 4.21 plots the vertical 
deck spectra at five locations: in the middle of each span and at the two bents. One factor 
common among all vertical modes in Figure 4.1 (Modes 4, 5, and 7) is that the modal 
displacement is large at mid-span and minimal at the bent locations. This modal pattern is 
replicated in the deck spectra in Figure 4.21, where spectral peaks are on the order of 15g at mid-
span locations and 2–3g at bent locations. The peak is observed at a period near 0.2 sec and 
believed to correspond to Mode 7. Although Mode 7 does not have the longest period, it is 
dominant among the vertical modes due to its high modal participation factor (Table 4.1) as was 
projected earlier. 

 

 

Figure 4.19 (a) Transverse, (b) longitudinal; and (c) vertical deck spectra at Bent 1. 
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5 Simplified Method to Estimate Base-Shear 
Amplification 

This chapter presents a simplified method to estimate the amplification of base shear in 3D 
shaking relative to 2D shaking. Section 5.1 presents a theoretical basis and proposes equations 
for the estimating the base-shear amplification due to vertical shaking. The theory is applicable 
to any spherical sliding bearing type isolation system. Two theories are proposed and followed 
by examples demonstrating application of those theories. Section 5.2 discusses methods to 
analyze the error in the estimated base shear relative to the observed base shear. Two different 
measures of error are developed: the amplification factor error and the base-shear normalized 
error. Amplified base-shear estimates and computed errors for all motions are presented and 
evaluated. 

5.1 AMPLIFICATION THEORY 

A theory is proposed here to estimate the amplification of base shear due to the vertical motion. 
The horizontal force of a spherical sliding bearing, based on a single pendulum mechanism, was 
given in Equation (1.1). This equation is a reasonable approximation of the resisting force of 
multi-spherical bearings when the response is dominated by the outer pendulum mechanism and 
represents the base shear in a system with many isolators. Thus, Equation (1.1), expressed in 
terms of system base shear, Vb, is repeated here for convenience: 

 
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 (5.1) 
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where W is the weight of the superstructure, effR  is the effective radius of curvature 

(corresponding to the period of the dominant sliding mechanism), µ is the friction coefficient of 
dominant pendulum mechanism, and u is the isolator displacement. Dividing Equation (5.1) by 
the bridge weight, W, rearranging, and taking the peak over time, the following is obtained: 

,2b D o

eff

V u

W R
   (5.2) 

where Vb,2D is the peak base shear when subjected to 2D (horizontal only) acceleration, and uo 
represents the peak bearing displacement. Equation (5.2) can be applied in either the longitudinal 
or transverse direction. 

As mentioned previously, the horizontal base shear in a spherical sliding bearing isolation 
system is dependent on the axial force acting on isolators. When vertical acceleration is 
considered, the system base shear should be determined from the instantaneous normal force, N, 
on the isolators rather than the static weight of the structure: 

( )b
eff

N
V u u N

R
   (5.3) 

The system normal force, N, varies with time according to: 

 t
zN W mu    (5.4) 

where m is the total mass, and t
zu  is the vertical acceleration at the isolators. Accordingly, the 

component of the base shear due to vertical shaking can be estimated as: 

,
t o

b V zo
eff

u
V mu

R


 
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 
  (5.5) 

where Vb,V is the horizontal force due to vertical acceleration only, and t
zou is the peak vertical 

acceleration over time. Thus, an additional component of base shear arises during vertical 
shaking that is dependent on the vertical acceleration. Normalizing Equation (5.5) by the 
superstructure weight leads to: 

, ( )b V t o
zo

eff

V u
u g

W R


 
   

 
  (5.6) 

The value of t
zou  can be estimated from the PGAV. 

VPGAt
zou    (5.7) 

where ν is an amplification factor representing the amplification of the vertical acceleration from 
the ground to the structure. Thus Vb,V/W simplifies to: 
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,
VPGAb V o

eff

V u

W R
 

 
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 
 (5.8) 

The total base-shear coefficient can be estimated as: 

,3 ,2 ,b D b D b VV V V

W W W
 

 (5.9) 

The estimation is exact if the peak horizontal displacement and peak vertical acceleration occur 
at the same time. Otherwise, Equation (5.9) will give a conservative estimate of the amplified 
base shear. 

To apply the theory, different values of the amplification factor ν are considered. 
Assuming ν = 1 is consistent with the peak vertical acceleration at the isolators being equal to the 
PGAV, dynamic amplification is possible, wherein the vertical acceleration at the isolators is 
amplified compared to PGAV. Phase-lag effects may also occur, such that the peak lateral base 
shear Vb,2D and peak vertical base shear Vb,V do not occur at the same time. Thus, ν = 1 could be 
justified if the dynamic amplification and phase-lag effects approximately cancel each other out. 
If there is no dynamic amplification and phase-lag effects are apparent, assuming a value less 
than 1 for ν may be appropriate. If considerable dynamic amplification is observed, and peak 
horizontal and vertical responses are in phase, then a value for ν considerably larger than 1 may 
best represent the response characteristics. 

Going forward, three different values for ν represent the three conditions described 
above: ν = 0.5, ν = 1, and ν = Sa(Tv)/PGAV, where Sa(Tv) = spectral acceleration of the vertical 
ground motion at the dominant vertical period Tv of the isolated structure. The final value is 
predicated on the assumption that if dynamic amplification is present, the realized vertical 
acceleration at the isolators can be estimated from the spectral amplification of the ground 
motion based on the dominant vertical mode. The period Tv should be chosen independently for 
every bridge. For the Base Model bridge configuration, Tv = 0.2 sec is selected because it 
approximately corresponds to Mode 7, the dominant vertical mode observed in the response; see 
Figure 4.21. 

As an example, sample calculations are tabulated for the Base Model bridge subjected to 
Group 1 motion SFPU. For excitation in the transverse direction, the peak isolator displacement 
was uo = 10.33 in., and base shear for 2D shaking was Vb,2D/W = 0.135. The isolator friction 
coefficient µ = 0.08, Reff = 120 in. (based on T = 3.5 sec), PGAV = 0.817g, and Sa(Tv)/PGAV = 
1.98. Calculations for each value of ν are shown in Table 5.1. 

The actual base-shear coefficient for 3D shaking simulation from RHA was 

,3 0.36b DV W  . Thus, for this example, a lower amplification factor underestimates the 

amplification of the base shear, but including an amplification factor based on the vertical 
spectral response leads to a slightly conservative estimate of the base-shear amplification. 
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Table 5.1 Estimated base shear for SFPU motion in transverse direction by 
the simplified method. 

ν Vb,V/W [Equation (5.8)] Vb,3D/W [Equation (5.9)] AE % BSNE % 

0.5 0.5(0.817)(10.33/120+0.08) = 0.068 0.135+0.068 = 0.203 -69.8 -43.8 

1.0 1.0(0.817)(10.33/120+0.08) = 0.136 0.135+0.136 = 0.271  -39.7 -25.0 

1.98 1.98(0.817)(10.33/120+0.08)= 0.269 0.135+0.269 = 0.404 19.4 11.8 

 

Figures 5.1 and 5.2 present the simulated base-shear coefficients for 2D and 3D motions, 
along with base-shear coefficient for 3D motions estimated with different amplification factors in 
the transverse and longitudinal directions, respectively. In the transverse direction, the estimated 
base-shear values are conservative for almost all motions, except for two Group 1 motions. 
These motions have high vertical acceleration intensity, which for SFPU was shown to lead to 
uplift and subsequent pounding on the isolators (Figure 4.4) that greatly increased the realized 
vertical acceleration and subsequent base shear. In such cases, the proposed approximations 
underestimated the base-shear coefficient for 3D shaking. For many motions, ν = 0.5 gives a very 
good estimate, while increasing the amplification factor leads to a more conservative estimate. In 
the longitudinal direction, the base shear is not as strongly affected by the vertical acceleration 
spikes, and the base-shear estimates are a little more conservative than in the transverse 
direction. Again, ν = 0.5 is often adequate, and ν = 1 is conservative for almost every ground 
motion in the longitudinal direction. 
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5.2 ERROR ESTIMATION 

To evaluate the overall applicability of either proposed method to estimate the increase in base 
shear due to vertical shaking, a meaningful quantification of error is necessary. The methods 
presented in Section 5.1 attempted to estimate directly the increase or amplification in base shear 
for 3D shaking relative to 2D shaking. Therefore, a logical approach is to quantify directly the 
error in this estimated base-shear amplification relative to the actual base-shear amplification. 
Thus, an amplification error or AE, is proposed as: 

est 100AE     
 (5.10) 

where 
estest ,3 ,2b D b DV W V W    is the estimated base-shear amplification, and 

est,3 ,2b D b DV W V W    is the actual (simulated) base-shear amplification. 

Using the calculations for the Base Model bridge subjected to the SFPU motion in the 
transverse direction and assuming 1v   (see Table 5.1), ,2 0.133b DV W  , ,3 0.36b DV W  , and 

est,3 0.271b DV W   by Equations (5.8) and (5.9). Substituting theses values into Equation (5.10), 

est 0.271 0.135 0.135    , 0.36 0.135 0.225    , and 39.7%AE   . The negative sign 

indicates that the base shear is underestimated. Values of AE for all three considered values of ν 
for this example are tabulated in Table 5.1. 

Figures 5.3 and 5.4 present AE for all motions in the transverse and longitudinal 
directions, respectively, for all three values of amplification factor ν. The value of AE is 
generally positive for moderate- and low-intensity vertical motions except for ν = 0.5 for some 
ground motions. The value of AE is most likely to be negative for high-intensity vertical motions 
as the amplification estimate is unconservative. Using an amplification factor ν = 0.5 seems to 
produce an average AE closest to 0 (i.e., it minimizes the average error), but increases the 
likelihood that the estimate may be unconservative. All amplification estimates are conservative 
on average. Incorporating the spectral acceleration in the amplification factor increases the 
likelihood that the estimated base shear is very conservative. 

Figure 5.4 illustrates instances of AE reaching more than 1000%, which would seem to 
imply that the proposed base-shear estimates are worthless; however, the AE measures the error 
only relative to the observed base-shear amplification, which may not give reasonable values 
when amplification of base shear due to vertical shaking is small. Evidence of this phenomenon 
is shown in Figure 5.2 for the LAL and IIS motions. The actual base-shear amplification from 
2D to 3D motion [Δ in Equation (5.10)] is 0.0035 for the LAL motion and 0.005 for the IIS 
motion. Since the quantity to be estimated is near 0, the apparent AE is very large. This does not 
necessarily mean that the overall estimate of base-shear coefficient is unreasonable or 
unacceptable. 
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Another error estimation method is presented hereafter to avoid penalizing observations 
where the amplification in the base shear is low. The proposed base-shear normalized error or 
BSNE, directly quantifies the error in the total 3D estimated base-shear coefficient estimate 
relative to the base-shear coefficient determined from the simulations: 

est,3 ,3

,3

100

b D b D

b D

V V

W WBSNE
V

W

 
 

  
  
 

 (5.11) 

where 
est,3b DV W  and ,3b DV W  are as defined earlier. 

Using the values presented earlier for the SFPU ground motion in transverse direction 
(Vb,3D/W = 0.36 and Vb,3Dest/W = 0.271 when ν = 1), BSNE = -25.0%. The BSNEs for all values of 
ν are listed in Table 5.1. The signs and their interpretations (negative = underestimated, positive 
= overestimated) are consistent with AE, but the magnitude of the error has decreased relative to 
AE as BSNE represents an error in the full base-shear coefficient, rather than just the 
amplification term. 

Figures 5.5 and 5.6 compare BSNE for the base-shear estimates in the transverse and 
longitudinal directions, respectively, for different values of the amplification factor ν. The trends 
are similar as those observed for AE, except that the error magnitudes are smaller. The average 
BSNE is around 0 for ν = 0.5, while the average increases (implying that the estimated base shear 
is more conservative) for ν = 1.0 and for ν computed by spectral acceleration. The potential for a 
large negative BSNE appears to exist only for the high-intensity motions and when ν is taken to 
be 0.5. A sufficiently conservative estimate is achieved, on the other hand, by using ν with the 
spectral acceleration amplification factor. 

Based on results from both error estimation methods, BSNE is concluded to be a more 
meaningful error estimate than AE. Going forward, results from other parametric variations will 
be evaluated using BSNE alone. For moderate- to low-intensity vertical intense shaking, ν = 0.5 
generally gives an adequate estimate of the base shear. For high-intensity vertical motions, the ν 
based on spectral amplification is, while more conservative, a better option to predict with base 
shear accurately. In the transverse direction, where coupling was observed between the 
transverse horizontal and vertical modes, the largest amplification factor can still underestimate 
the base shear for high-intensity vertical motions. Going forward, all amplification factors will 
be more comprehensively evaluated for a wider range of parameters. 
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6 Bridge Parameter Study 

This chapter describes parametric variations implemented on the Base Model bridge to evaluate 
the validity and accuracy of the proposed simplified method to predict amplified base shear 
under 3D motions. Section 6.1 considers isolation parameter variations applied to the Base 
Model bridge. Section 6.2 considers bridge parameters varied relative to the Base Model bridge. 
In both sections, the base-shear coefficients from RHA simulations are compared with the 
estimated base-shear coefficients obtained from simplified theory; analysis of the errors is 
presented. The validity of the proposed simplified method is further evaluated. 

6.1 INFLUENCE OF ISOLATION SYSTEM PARAMETERS 

The Base Model bridge was modified to create nine different models by changing only the 
isolation properties (friction coefficients and pendulum lengths that determine the period 
associated with each portion of the normalized backbone curve); all other parameters remained 
the same. The objective was to evaluate the accuracy of the proposed base-shear estimation 
methods and amplification factors across a range of isolation periods and friction coefficients. 
The isolation parameter variations listed in Table 3.3 were applied. Recall that µ2 is the friction 
coefficient and T2 is the period associated with the second slope of the normalized backbone 
curve (or sliding on the outer pendulum surfaces). All combinations of µ2 = 0.04, 0.06, and 0.08, 
and T2 = 2, 3.5, and 5 sec were considered. For each case, T1 = T2/4 and µ1 = µ2/4. 

Simulated and estimated base-shear coefficients under 2D and 3D input to the SFPU 
motion (Group 1), LPG motion (Group 2), and IIB motion (Group 3) are shown in Figure 6.1 for 
all isolation system parameter variations. The general trend in base-shear coefficient for each 
motion and longitudinal or transverse direction is easily explained. The isolation period T2 = 2 
sec for System Nos. 1–3, 3.5 sec for System Nos. 4–6, and 5 sec for System Nos. 7–9. Therefore, 
the actual base-shear coefficient decreases for each subgroup as the period increases. The base-
shear coefficient also increases slightly over each subgroup as the friction coefficient increases 
(e.g., µ2 increases from 0.04 to 0.08 over System Nos. 1–3). The general trend observed in the 
figure is that the amplification of base shear (the increase from 2D to 3D) tends to be 
proportional to the intensity of the base shear. Therefore, the shorter period systems with higher 
base-shear coefficients also see greater amplification of base shear. For the high-intensity motion 
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SFPU, amplification of the base-shear coefficient from 2D to 3D is significant for all isolation 
system parameters; see Figure 6.1(a)-(b). For the moderate- and low-intensity motions (LPG and 
IIB), the base-shear amplification is noticeable for the short-period T2 = 2 sec Systems 1–3, but is 
relatively small for other periods; see Figure 6.1(c)-(f). 

A key observation is that the base-shear coefficient estimates follow the trends observed 
in the simulated base-shear coefficients. In other words, these estimated base-shear coefficients 
vary with T2 and µ2 in a manner consistent with the simulated base-shear coefficients shown in 
Figure 6.1. Recall that the dependence of base-shear amplification on these isolation system 
parameters is inherently captured through Equation (5.8). Increasing the amplification factor 
offers an increasing level of conservatism in the estimate. 

For each pair of isolation parameters, the base-shear amplification and BSNE were 
evaluated for all motions, In addition, the average BSNE over the 11 motions was evaluated. 
Figure 6.2 compares average BSNE estimated for all amplification factors ν in the longitudinal 
direction [Figure 6.2(a)] and transverse direction [Figure 6.2(b)]. In general, the average BSNE is 
approximately constant with respect to isolation parameter variations, which confirms the 
observation that the base-shear estimates follow the trends shown in the simulations. In the 
longitudinal direction, the average BSNE increases slightly over the subgroups, which is 
correlated to increasing conservatism in the base-shear amplification estimate as the friction 
coefficient increases. The reason why is unclear, but the effect is slight, and the same trend is not 
apparent in the longitudinal direction. 

The average BSNE provides insight as to which amplification factor might be most 
appropriate. For ν = 0.5, the average BSNE oscillates near 0 but tends to be slightly negative. The 
range of the average BSNE is -5% to 2% in the longitudinal direction and -9% to -3% in the 
longitudinal direction. Thus, although the average BSNE is small, this lower amplification factor 
is likely to underestimate the base-shear coefficient, and a more conservative estimate may be 
preferred. The average BSNE for ν = 1.0 varies from 20% to 30% in the longitudinal direction 
and 14% to 21% in the transverse direction. This appears to be a good choice for the 
amplification factor leading to sufficiently conservative, but not overly conservative estimates. 
Applying the vertical spectral acceleration to the amplification factor further increases 
conservatism so that average BSNE is in the 40% to 60% range. Thus, consistent with 
observations noted in Chapter 5, using the spectral acceleration of the vertical motion to 
represent the dynamic amplification effect does not appear to be necessary. 
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periods for each bridge are tabulated below in Table 6.1. Again, for all bridge models, the 
isolator model was changed to a linear spring for modal analysis, corresponding to an isolation 
period of 3 sec. 

Figure 6.4 plots some common mode shapes of the bridge models. The first three modes 
in all bridge models are the isolation modes: the first mode is the longitudinal isolation mode, the 
second mode is the transverse isolation mode, and the third mode is the torsional isolation mode. 
These first two modes in all bridges have periods greater than 3 sec, and the third mode has a 
period a bit less than 3 sec. All bridge models have a vertical C-shape mode with all span 
movement in the same direction, which tends to lead to very high mass participation of that 
mode in the vertical direction. Most bridges have more than one vertical S-shape mode wherein 
individual spans move in different directions. A transverse C-shape mode causes in-plane 
bending of the deck in one direction. A deck torsional mode is characterized by rotation of the 
deck in two different directions from each end such that deck is in torsion. In contrast, a deck 
rotational mode represents rotation of the deck in one direction. 

The vertical mode with the 2C/3C/4C shape tends to be dominant and always shows up in 
the deck spectra, even if its period is higher than other modes. In this mode, the mass 
participation in vertical direction tends to be high—around 80%. Bridges 4, 5, and 8 have similar 
dynamic and modal properties as the Base Model (Bridge 1), and only the periods vary slightly 
according to the flexibility of each bridge. The close spacing of the vertical C-shape mode and 
transverse C-shape mode identified in the Base Model bridge (Figures 4.21 and 4.22) that led to 
modal coupling is also present in Bridges 4, 5, 7, and 8. Thus, transverse–vertical coupling 
would also be expected in Bridge 4, 5, 7, and 8. Bridges 2, 3, and 6 would not be expected to 
exhibit this coupling. In fact, for Bridge 6 the transverse mode does not appear in the first ten 
modes because the deck is very stiff in the transverse direction. In Bridge 3, the transverse mode 
and the vertical C-shape mode are not near each other, while in Bridge 2 the transverse mode and 
vertical C-shape modes are adjacent but the periods are far from each other. 
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Table 6.1 Modes and periods of bridge models. 

Mode# 
Bridge 1 

(Base 
model) 

Bridge 2 Bridge 3 Bridge 4 Bridge 5 Bridge 6 Bridge 7 Bridge 8 

1 
ISO Long. mode 

(3.02 sec) 
ISO Long. mode 

(3.06 sec) 
ISO Long. mode 

(3.01 sec) 
ISO Long. mode 

(3.02 sec) 
ISO Long. mode 

(3.03 sec) 
ISO Long. mode 

(3.03 sec) 
ISO Long. mode 

(3.02 sec) 
ISO Long. mode 

(3.01 sec) 

2 
ISO Trans. mode 

(3.01 sec) 
ISO Trans. mode 

(3.04 sec) 
ISO Trans. mode 

(3.0 sec) 
ISO Trans. mode 

(3.01 sec) 
ISO Trans. mode 

(3.01 sec) 
ISO Trans. mode 

(3.01 sec) 
ISO Trans. mode 

(3.01 sec) 
ISO Trans. mode 

(3.0 sec) 

3 
ISO torsional 

mode (2.69 sec) 
ISO torsional 

mode (2.82 sec) 
ISO torsional 

mode (2.43 sec) 
ISO torsional 

mode (2.69 sec) 
ISO torsional 

mode (2.7 sec) 
ISO torsional 

mode (2.61 sec) 
ISO torsional 

mode (2.69 sec) 
ISO torsional 

mode (2.69 sec) 

4 
1st vertical mode 

(0.35 sec) 

Deck transverse 
mode – C shape 

(0.39 sec) 

1st vertical mode 
–  S shape (0.43 

sec) 

1st vertical mode 
(0.44 sec) 

1st vertical mode 
(0.64 sec) 

1st vertical mode 
(0.35 sec) 

1st vertical mode 
(0.35 sec) 

1st Vertical mode 
(0.35 sec) 

5 
2nd vertical mode 

(0.25 sec) 
1st vertical mode 

(0.38 sec) 

2nd vertical mode 
– 2C shape 
(0.28 sec) 

2nd vertical mode 

(0.29 sec) 
2nd vertical mode 

(0.44 sec) 

Deck Rotational 
mode 

(0.25 sec) 

Deck transverse 
mode –    C 

shape (0.25 sec) 

2nd vertical mode 

(0.24 sec) 

6 
Deck transverse 
mode – C shape 

(0.20 sec) 

2nd vertical mode 
(0.29 sec) 

Deck rotational 
mode (0.13 sec) 

Deck transverse 
mode – C shape 

(0.25 sec) 

3rd vertical mode 
– 3C shape 
(0.35 sec) 

2nd vertical mode 
(0.24 sec) 

2nd vertical mode 

(0.24 sec) 

Deck transverse 
mode –    C 

shape (0.20 sec) 

7 
3rd vertical mode 

– 3C shape 
(0.20 sec) 

3rd vertical mode 
(0.22  sec) 

Deck torsional 
mode (0.12 sec) 

3rd vertical mode 
– 3C shape 
(0.24 sec) 

Deck transverse 
mode – C shape 

(0.35 sec) 

Deck torsional 

(0.21 sec) 

3rd vertical mode 
–  3C shape 
(0.24 sec) 

3rd vertical mode 
–  3C shape 
(0.19 sec) 

8 
Deck Rotational 
mode (0.14 sec) 

4th vertical mode 
– 4C shape 
(0.19 sec) 

Deck transverse 
mode – C shape 

(0.11 sec) 

Deck Rotational 
mode (0.15 sec) 

4th vertical mode 
(0.17 sec) 

Deck Rotational 
mode (0.21 sec) 

Deck Rotational 
mode  (0.18 sec) 

Deck Rotational 
mode (0.13 sec) 

9 
Deck torsional 

mode (0.11 sec) 

2nd Deck 
transverse mode 

(0.14 sec) 

3rd vertical mode 
(0.11 sec) 

Deck torsional 
mode (0.12 sec) 

Deck Rotational 
mode (0.15 sec) 

3rd vertical mode 
– 3C shape 
(0.19 sec) 

Deck torsional 
mode  (0.11 sec) 

Deck torsional 
mode (0.11 sec) 

10 
Deck Rotational 
mode (0.11 sec) 

Deck Rotational 
mode (0.13 sec) 

4th vertical mode 
(0.09 sec) 

Deck Rotation-al 
mode  ( 0.12 

sec) 

2nd deck 
transverse mode 

(0.12 sec) 

Deck torsional 
mode 

(0.12 sec) 

4th vertical mode  
(0.09 sec) 

Deck Rotational 
mode (0.11 sec) 
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Sa(Tv)/PGAV, the estimated base-shear amplification differs for different bridge models only due 
to changes in the period of the dominant vertical mode. 

Under the Group 1 motion SFPU, the base-shear amplification is high for all bridge 
models in both longitudinal and transverse directions [Figure 6.5(a) and (b)]. Of the three 
motions considered, SFPU produces the greatest variation in base-shear amplification for 
different models. Increased randomness in the response is expected as the vertical shaking 
intensity increases, as well as a susceptibility to uplift and the impact of dynamic effects. Note: 
there is no correlation between base-shear amplification and the bridge models that were 
expected to be most susceptible to transverse–vertical coupling (Bridges 4, 5, 7, and 8). Only the 
spectral acceleration amplification factor, ν = Sa(Tv)/PGAV, provides a conservative estimate of 
the base-shear amplification for this motion. Differences in spectral amplification due to vertical 
period shifts that affect the estimated base-shear coefficients are not consistent with simulated 
response. 

The base-shear coefficient and its amplification due to vertical shaking is least sensitive 
to bridge modeling parameters for the Group 2 moderate-intensity motion LGP [Figure 6.5(c) 
and (d)]. The amplification factor ν = 0.5 is quite accurate for this motion. For the Group 3 low-
intensity motion IIB, the simulated base-shear coefficient again shows some variation over 
bridge models (e.g., almost no amplification is observed for Bridge 3—a two-span bridge—in 
the longitudinal direction, while all other bridge models experience some amplification.) This 
result is a consequence of phase variation in the vertical and longitudinal response. Although it 
does not capture any variations in amplification over the bridge models, the amplification factor 
ν = 1.0 leads to accurate estimates for this motion. 

The base-shear amplification and BSNE for each bridge model were evaluated for all 
motions. In addition, the average BSNE over the 11 motions was evaluated. Figure 6.6 compares 
the average BSNE estimated for all amplification factors ν in the longitudinal direction [Figure 
6.6(a)] and transverse direction [Figure 6.6(b)]. The error trends with respect to bridge model 
variation are very similar to those found for isolation system parameter variation. That is, for 
each amplification factor, the BSNE is approximately constant—or varies within a narrow 
range—with the bridge parameter variation. The average BSNE is a little higher in the 
longitudinal direction (meaning the estimated base shear is more conservative) than in the 
transverse direction, which is likely due to the complexities associated with transverse–vertical 
coupling as mentioned previously. The average BSNE ranges are: -5% to 2% in the longitudinal 
direction and -7% to 1% in the transverse direction for ν = 0.5; 21% to 30% in the longitudinal 
direction and 15% to 27% in the transverse direction for ν = 1.0; and 40% to 61% in the 
longitudinal direction and 40% to 52% in the transverse direction for ν = Sa(Tv)/PGAV. 
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7 Summary and Conclusions 

In this study, a series of ground motions with a wide range of vertical shaking intensity were 
applied to three-dimensional models of bridges isolated with triple pendulum bearings (TPBs) 
that both excluded the vertical component (2D shaking) and included the vertical component (3D 
motion). Bridge response under 2D and 3D shaking was then compared to investigate the direct 
effect of vertical shaking. The objective of this work was to evaluate the amplification of base 
shear under 3D motion, and to develop a simplified method to predict base-shear amplification. 

An existing ground-motion suite was selected that had been fitted to a target horizontal 
spectrum, and vertical components were scaled individually to fit a target vertical spectrum that 
corresponded to the target horizontal spectrum. The target vertical spectrum was created based 
on NEHRP recommended seismic provisions [FEMA 2009b]. Ground motions were divided into 
three groups based on peak vertical ground acceleration (PGAV). The PGAV intensity ranges 
were: Group 1 = 0.8g and above (High Intensity), Group 2 = 0.5g to 0.7g (Moderate Intensity), 
and Group 3 = 0.2g to 0.4g (Low Intensity). 

Multi-span concrete box girder bridges were selected for this study as they are a 
prominent bridge type in California and are suitable for seismic isolation. A three-span, 45-ft 
wide, multi-column bent bridge was established as the Base Model bridge. The isolation system 
friction coefficients were µ1 = 0.02 and µ2 = 0.08, and isolation periods were T1 = 1 sec and T2 = 
3.5 sec for sliding on first and second slope of the backbone curve, respectively. A bridge 
parameter variation was implemented to evaluate the effect of various parameter variations on 
the amplification of base shear. Also, isolation system parameter variations were applied to the 
Base Model bridge. The Base Model bridge and all variations were modeled in OpenSees using 
the spine-modeling approach, and TPBs were modeled using the TripleFrictionPendulum 
element. 

Response histories were compared for a representative motion from each ground-motion 
group under 2D and 3D shaking. Peak responses were compared under 2D and 3D shaking for 
all motions. Modal and spectral analyses were also conducted to understand dynamic properties 
and behavior of the bridges under vertical motion. Deck acceleration spectral response at 
different locations revealed that higher modes were excited. 
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A simplified theory was also proposed, leading to a method to predict the amplified base-
shear coefficient for 3D shaking from the base-shear coefficient for 2D shaking. Thus, the 
method is applicable for bridge design based on equivalent static analysis. The theory predicts 
that the amplification of base shear is proportional to (uo/Reff + ), where uo is peak isolator 
displacement, Reff is the radius and  the friction coefficient of the effective pendulum 
mechanism, as well as PGAV, thus accounting for any variation of isolation system parameters in 
the estimate. Three different amplification factors, ν, were considered: ν = 0.5, ν = 1.0, and ν = 
Sa(Tv)/PGAV. The last, ν = Sa(Tv)/PGAV, can be interpreted as the effective or realized vertical 
acceleration at the isolators and is the spectral acceleration at the period of the dominant vertical 
mode. 

The proposed method with different amplification factors was evaluated using two 
different error estimates: the amplification error or AE, and the base-shear normalized error or 
BSNE. The simplified method with a different amplification factor was assessed over a range of 
isolation parameters and bridge parameter variations. Key conclusions from this work are as 
follows.  

1. Response history analysis over the suite of motions demonstrated that the horizontal 
response of the bridge was amplified when vertical motion was included. The transverse-
direction base shear in the Base Model bridge was amplified by factors ranging from 1.39 
to 3.59 for the Group 1 motions, 1.12 to 1.52 for the Group 2 motions, and 1.21 to 1.26 in 
Group 3 motions. The longitudinal-direction base shear in the Base Model bridge was 
amplified by factors ranging from 1.83 to 2.23 for the Group 1 motions, 1.03 to 1.46 for 
the Group 2 motions, and 1.18 to 1.47 for Group 3 motions. These amplification factors 
imply that exclusion of the vertical component of shaking could lead to underestimation 
of demand shear forces on bridge piers. Base shear was amplified more in the transverse 
direction than in longitudinal direction, which is believed to be due, in part, to excited 
horizontal–vertical coupled modes. 

2. A transverse–vertical modal coupling was observed in the Base Model bridge by 
examining spectral responses at various locations on the bridge. Mode 7, the vertical 
mode with the highest mass participation, was excited under 3D shaking. The vertical 
motion introduced a high-frequency axial force variation to the isolators, which was 
transferred to the isolator horizontal forces since the horizontal friction force is 
proportional to the axial force. It was determined that high-frequency oscillation affected 
the base shear at a period of around 0.2 sec, which is the period of the second transverse 
mode and, consequently, excited the second transverse mode under 3D motion only. This 
type of coupling has been observed in multi-story buildings, and the analysis here shows 
that such coupling is also possible in bridges. 

3. Modal analysis of the various bridge models in the parameter study showed that all 
bridges have a 2C/3C/4C-shape vertical mode with high modal-mass participation that is 
expected to be the dominant vertical mode. In many of the bridge models, the vertical 
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mode was closely spaced to a second transverse mode. Spectral responses were not 
examined in detail for these bridges, but modal coupling is expected for those models 
with closely spaced coupled horizontal–vertical modes. This type of transverse–vertical 
modal coupling should be evaluated on a case-by-case basis for bridges with the potential 
for being subjected to high-intensity vertical ground shaking. Because the effects of such 
coupling were not evident from analysis of the base-shear coefficient alone, the greatest 
impact of the coupling is expected to be amplification of mid-span accelerations, which 
may not be that significant for bridges. 

4. Regarding error estimates, the AE was found to be unreasonably large when amplification 
of the base shear from 2D to 3D is close to 0. Thus, the AE was not found to be a 
meaningful measure of the accuracy of the simplified method, whereas the BSNE 
evaluated directly the error in the total base-shear estimate relative to the simulated base 
shear. The BSNE was found to be a reasonable error measure and is recommended to 
evaluate the accuracy of the simplified method. 

5. Amplification of base shear decreased with the increase of effective period (or radius Reff 
of the effective pendulum mechanism) and increased with an increasing friction 
coefficient . The proposed method to estimate base shear for 3D shaking well captures 
these observed trends in the base-shear coefficient vs isolation system parameters. The 
average BSNE was essentially independent of the variation in isolation system 
parameters. Differences in base-shear amplification for bridge superstructure parameter 
variations were insignificant, and the simplified method also estimated base shear for 3D 
shaking accurately across the range of bridge model variations. 

6. Large dispersion of the BSNE was observed over the suite of ground motions. While the 
amplification factor ν = 0.5 led to the lowest average BSNE, using this amplification 
factor could lead to the possibility of significantly under-predicting the base-shear 
coefficient for an individual ground motion. On average, using an amplification factor ν = 
1.0 overestimated the base-shear coefficient by 15–30% (i.e., the average BSNE ranged 
between 15–30%). Application of the simplified method with ν = 1.0 is recommended for 
estimates of response that are sufficient but not overly conservative. Applying an 
amplification factor consistent with the vertical spectral acceleration of the dominant 
vertical mode of the bridge was unnecessarily conservative for most motions. In other 
words, dynamic amplification of the ground motion was not generally observed. 

7. Future work is advisable to fine tune the estimation method for implementation in bridge 
design codes. Analysis with a statistically significant number of ground motions and 
range of shaking intensities, along with model variations. should be used to determine a 
“best fit” value of the amplification factor. Because of the complexities associated with 
high-intensity shaking, determination of a threshold PGAV is envisioned above which the 
simplified method cannot reliably be applied, and 3D RHA procedures are recommended. 
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Implementation of a PGAV limit may improve the accuracy of the estimation method in 
the applicable range of ground-motion intensity. 
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