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ABSTRACT 

Over the past decade, several long-duration subduction earthquakes took place in different 
locations around the world, e.g., Chile in 2010, Japan in 2011, China in 2008, and Indonesia in 
2004. Recent research has revealed that long-duration, large-magnitude earthquakes may occur 
along the Cascadia subduction zone of the Pacific Northwest Coast of the U.S. The duration of 
an earthquake often affects the response of structures. Current seismic design specifications 
mostly use response spectra to identify the hazard and do not consider duration effects. Thus, a 
comprehensive understanding of the effect of the duration of the ground motion on structural 
performance and its design implications is an important issue. 

The goal of this study was to investigate how the duration of an earthquake affects the 
structural response of special concentric braced frames (SCBFs). A comprehensive experimental 
program and detailed analytical investigations were conducted to understand and quantify the 
effect of duration on collapse capacity of SCBFs, with the goal of improving seismic design 
provisions by incorporating these effects. The experimental program included large-scale shake 
table tests, and the analytical program consisted of pre-test and post-test phases. The pre-test 
analysis phase performed a sensitivity analysis that used OpenSees models preliminarily 
calibrated against previous experimental results for different configuration of SCBFs. A tornado-
diagram framework was used to rank the influence of the different modeling parameters, e.g., 
low-cycle fatigue, on the seismic response of SCBFs under short- and long-duration ground 
motions. Based on the results obtained from the experimental program, these models were 
revisited for further calibration and validation in the post-test analysis. 

The experimental program included three large-scale shake-table tests of identical single-
story single-bay SCBF with a chevron-brace configuration tested under different ground 
motions. Two specimens were tested under a set of spectrally-matched short and long-duration 
ground motions. The third specimen was tested under another long-duration ground motion. All 
tests started with a 100% scale of the selected ground motions; testing continued with an ever-
increasing ground-motion scale until failure occurred, e.g., until both braces ruptured. The shake 
table tests showed that the duration of the earthquake may lead to premature seismic failure or 
lower capacities, supporting the initiative to consider duration effects as part of the seismic 
design provisions. Identical frames failed at different displacements demands because of the 
damage accumulation associated with the earthquake duration, with about 40% reduction in the 
displacement capacity of the two specimens tested under long-duration earthquakes versus the 
short-duration one. 

Post-test analysis focused first on calibrating an OpenSees model to capture the 
experimental behavior of the test specimens. The calibration started by matching the initial 
stiffness and overall global response. Next, the low-cycle fatigue parameters were fine-tuned to 
properly capture the experimental local behavior, i.e., brace buckling and rupture. The post-test 
analysis showed that the input for the low-cycle fatigue models currently available in the 
literature does not reflect the observed experimental results. New values for the fatigue 
parameters are suggested herein based on the results of the three shake-table tests. 

The calibrated model was then used to conduct incremental dynamic analysis (IDA) 
using 44 pairs of spectrally-matched short- and long-duration ground motions. To compare the 
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effect of the duration of ground motion, this analysis aimed at incorporating ground-motion 
variability for more generalized observations and developing collapse fragility curves using 
different intensity measures (IMs). The difference in the median fragility was found to be 45% in 
the drift capacity at failure and about 10% in the spectral acceleration (Sa). Using regression 
analysis, the obtained drift capacity from analysis was found to be reduced by about 8% on 
average for every additional 10 sec in the duration of the ground motion. 

The last stage of this study extended the calibrated model to SCBF archetype buildings to 
study the effect of the duration of ground motion on full-sized structures. Two buildings were 
studied:  a three-story and nine-story build that resembled the original SAC buildings but were 
modified with SCBFs as lateral support system instead of moment resisting frames. Two planer 
frames were adopted from the two buildings and used for the analysis. The same 44 spectrally-
matched pairs previously used in post-test analysis were used to conduct nonlinear time history 
analysis and study the effect of duration. All the ground motions were scaled to two hazard 
levels for the deterministic time history analysis: 10% exceedance in 50 years and 2% 
exceedance in 50 years. All analysis results were interpreted in a comparative way to isolate the 
effect of duration, which was the main variable in the ground-motion pairs. In general, the results 
showed that the analyzed SCBFs experienced higher drift values under the long-duration suite of 
ground motions, and, in turn, a larger percentage of fractured braces under long-duration cases. 
The archetype SCBFs analysis provided similar conclusions on duration effects as the 
experimental and numerical results on the single-story single-bay frame. 
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1 Introduction 

1.1 OVERVIEW 

Steel structures are commonly used in regions of high seismicity because they are able to resist 
lateral loading because of their high ductility. Lateral systems fall under two categories: braced 
frames or moment frames. Braced frames, such as special concentrically braced frames (SCBFs), 
are a popular design choice. They are cost effective, easy to assemble, and perform satisfactorily 
in terms of limited drift. When considering performance-based seismic design (PBSD), SCBFs 
must meet life safety and collapse prevention requirements under large infrequent earthquakes. 
To ensure that steel designs meet such objectives, proper simulation of the nonlinear behavior is 
mandatory. Because existing SCBFs analytical models are heavily dependent on several 
assumptions, e.g., low-cycle fatigue and fatigue-induced rupture, their response needs to be 
carefully validated. Modeling approaches currently used in practice might not accurately predict 
the post-yield mechanisms and failure modes, especially under special lateral loading cases tied 
to low-cycle fatigue, as might occur in earthquakes long in duration. Studying such long-duration 
effects is realized using mostly numerical rather experimental simulation; a brief literature 
review is discussed below. Thus, proper modeling and numerical simulation of seismic response 
of SCBFs is crucial. Simplified modeling in popular platforms such as OpenSees [McKenna et 
al. 2006] rely on beam–column elements rather than accounting for three-dimension (3D) local 
behavior. This begs the question: how reliable are these models are when used to assess the 
behavior of SCBFs under long-duration earthquakes or in the development of fragility curves for 
PBSD? 

Nonlinear behavior of SCBFs is controlled by the braces buckling in compression, 
yielding in tension, and post-buckling response through rupture. The gusset plates used to 
connect braces to the beams and columns must accommodate the large expected inelastic 
deformations and end rotations when the braces buckle, while still sustaining the full axial 
capacity of the brace. The actual design of gusset plates for SCBFs connections can significantly 
affect their deformation capacity; therefore, they need to be properly modeled to simulate large 
deformations associated with local and global brace buckling. Different methods are used to 
capture the onset of cracking or fracture of braces using strains values or components of strains, 
or the computed stress–strain history from the analyses. Ikeda and Mahin [1986] proposed a 
model based on a simplified geometric representation consisting of simply supported elastic 
brace member with an idealized plastic hinge located at mid-span. The analytical equations 
developed for this formulation were supplemented with empirically derived formulas related to 
the variation of tangent modulus of elasticity during cycling and the axial force-rotation 
relationship considered for the plastic hinge. 
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More complex modeling of SCBFs without relying on simplified approaches might 
require detailed 3D finite-element models (FEM) that uses solid elements. A recent study by 
Hassan and Mahmoud [2017], investigated the effect of modeling resolution on the seismic 
performance of a steel hospital building. Their models varied from a simplified two-dimensional 
(2D) model without soil–structure interaction to a complex 3D model that included soil–structure 
interaction. The study showed that the incorporating realistic material behavior and accurate 
connection modeling enhanced the system global behavior obtained from analysis. 
Unfortunately, a major shortcoming for such detailed or complex models is the substantial 
computational cost associated with such analyses, especially for structures with large numbers of 
degrees-of-freedom simulated through failure [Hsiao 2012]. 

Thus, even with recent advances in computing power, a complex 3D FEM is not typical 
practice in design offices. Simpler FEMs that consider a combination of one-dimensional (1D) 
force- or displacement-based beam–column elements and various translational and rotational 
springs are computationally appealing and more commonly used. Although modeling 
simplifications might compromise the accuracy of nonlinear analyses used to predict SCBFs 
seismic performance when compared to detailed 3D FEM, well-calibrated and informed FEMs 
that utilizes only 1D elements can still be very beneficial, providing insight for use in PBSD 
[Salawdeh and Goggins 2013]. For instance, such models use fundamental concepts of 
engineering mechanics to estimate the input parameters of its key components, which are then 
fine-tuned or calibrated using experimentally available research data to reasonably verify the 
overall geometric and component modeling assumptions. This design strategy will be used 
herein. 

The effect of earthquake duration on system response is not fully understood, even as 
long-duration ground motions have occurred and been recorded recently, including: Iquique, 
Chile (Mw 8.2, 2014), Tohoku, Japan (Mw 9.0, 2011) and Maule, Chile (Mw 8.8, 2010), etc.. 
Current seismic design codes do not consider duration effects and rely mainly on spectral 
accelerations. The influence of earthquake duration on structural performance does not only 
depend on the duration definition, but it is also highly dependent on the structural model and the 
engineering demand parameter (EDP) or damage metric used in judging the performance. 

In one of the earliest studies to tackle duration effects, Marsh and Gianotti [1995] used 
artificial acceleration records representing the Cascadia subduction zone earthquakes as an input 
for inelastic response history analyses of single-degree-of-freedom (SDOF) systems. They found 
that structures subjected to long-duration motions accumulate damage as a result of repeated 
cycles. Bommer and Martinez-Pereira [2000] reported more than 30 definitions of strong 
ground-motion duration in the literature. The most common duration definitions are the 
bracketed duration and the significant duration. The bracketed duration is defined as the measure 
of the time interval between the first and last exceedance of an absolute acceleration threshold, 
for example, 0.05g or 0.1g. The significant duration is defined as the interval over which a 
specific amount of Arias Intensity (AI) is achieved; this amount is usually taken as 5–95% or 5–
75% of AI. The significant duration for the different ground motions is the definition adopted in 
this study. Recently, records of long-duration ground motions became available after events such 
as the Tohoku earthquake and encouraged research into the effect of earthquake duration on 
structural performance, which will be discussed next. 
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Only a few studies have considered the problem of buckling and low-cycle fatigue in 
SCBFs in response to long-duration earthquakes. Foschaar et al. [2012] investigated the effect of 
ground-motion duration on the collapse capacity of a three-story steel-braced frame. They used 
two record sets, one with long-duration records and the other with spectrally equivalent short-
duration records. This approach isolated the effect of ground-motion duration from other ground-
motion characteristics. They found that duration affects significantly the collapse capacity. The 
seismic response of SCBFs is dictated by brace buckling and fatigue-induced failure, which, in 
turn, is expected to relate to duration effects and damage accumulation from longer earthquakes. 

While many studies did not necessarily look at the direct effects of short- versus longer-
duration earthquakes on SCBFs, the literature contains significant research on the fatigue life of 
braces among other steel components. For example, Kanvinde and Deierlein [2004] reported that 
the ultra-low-cycle fatigue, or sometimes referred to as extremely-low-cycle fatigue, caused 
failure in very few cycles (of the order of ten) and is strongly influenced by microstructure. Wen 
and Mahmoud [2015] developed a new fracture model for ductile fracture of metal alloys that is 
dependent on both stress tri-axiality and the Lode parameter. The model covered both monotonic 
and reverse loading. Pereira et al. [2014] reported fatigue behavior of piping-grade steel under 
monotonic, low-cycle, and ultra-low-cycle fatigue. They reported that ultra-low cycle fatigue is 
characterized by high-amplitude and short-duration motion where the number of cycles is less 
than 100. Therefore, understanding how the seismic performance of SCBFs is dependent on the 
fatigue life of braces in relation to duration of an earthquake is an important research problem, 
which is addressed in this study. 

1.2 RESEARCH PROBLEM 

This study investigated the effect of earthquake duration on seismic performance of steel SCBFs 
with special focus on low-cycle fatigue modeling effects. The ultimate seismic behavior of 
SCBFs is dominated by the low-cycle fatigue-induced braces collapse. At the onset of the braces 
failure, most of the lateral capacity is lost, causing noticeable drift ratios, and, depending on what 
drift ratios correspond to the failure versus what is intended from the design, a premature failure 
might take place. One of the questions this study addressed was whether a longer duration 
ground motion would lead to a complete failure or collapse at force or displacement values lower 
than design values because of damage accumulation or low-cycle fatigue effects. Obviously, 
damage accumulation increases with the increase of the ground-motion duration, or more 
precisely its “significant duration,” as discussed throughout this study. The next question was 
whether the existing computational models (e.g., steel constitutive models or low-cycle fatigue 
models) accurately capture the correlation between earthquake duration and damage 
accumulation. Force-based and displacement-based design philosophies incorporated in current 
design codes and standards depend mainly on the design response spectrum corresponding to a 
specific location, and do not account for ground-motion duration or the accumulation of damage 
cycles. Thus, the third question addressed in this study was whether the current code-compliant 
SCBFs designs sensitive to longer duration earthquakes or are valid for such scenarios and meet 
life-safety code requirements. To address these outstanding issues, a comprehensive 
experimental and analytical study was undertaken. 
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1.3 METHODOLOGY 

This study used an analytical and experimental framework to investigate the seismic behavior of 
SCBFs under long-duration earthquakes. The analytical part of the study was composed of a 
preliminary modeling and sensitivity analysis and post-test analysis, The experimental part 
included shake table tests. The first phase of the analysis focused on a preliminary investigation 
of duration effects on SCBFs using a detailed sensitivity analysis to understand the influence of 
modeling parameters. The sensitivity analysis was also used to determine whether or not current 
analytical methods and models capture accurately to duration effects and whether dedicated 
testing was needed for further validation. Preliminary analysis was used to finalize the 
experimental program in terms of selecting the shake table input ground motions, designing the 
test setup, instrumentation plan, etc. Following the sensitivity and pre-test analysis, a self-
contained experimental program was conducted, i.e., the effects of short- and long-duration 
earthquakes were compared. Three identical one-half-scale frames were tested under different 
ground motions scenarios to show the effect of the duration on the overall global behavior of 
one-story one-bay SCBFs with chevron brace configuration and not only individual components 
such as the braces. 

The subsequent post-test analysis used numerical models of the tested specimen and full-
system analysis on selected archetype SCBFs. The experimental results were used to calibrate 
and validate a reliable OpenSees model that captured the behavior of the tested steel frames 
under both short- and long-duration ground motions. The calibrated model for the test specimens 
was used to assess and evaluate the current different fatigue modeling parameters available in the 
literature based on the tested three specimens. In order to generalize the results of the tests 
beyond only three tests, the calibrated model was used to conduct additional analyses under 88 
ground motions with different durations. Forty-four pairs of spectrally-matched short- and long-
duration records were used to conduct incremental dynamic analysis (IDA) and develop fragility 
curves to better quantify the duration effect on the structural safety and collapse capacity of the 
tested specimens. 

The last part of the analysis considered full-scale SCBFs systems adopted from archetype 
buildings and compared these results with the results obtained from the analysis and testing of 
the one-half-scale single-bay single-story frames. In order to address the duration effect on 
realistic structures, three- and nine-story archetype buildings were selected as representative 
SCBFs to conduct extensive nonlinear time history analysis using the two different suites of 44 
ground motions as before to represent short-crustal and long-subduction earthquake events. Only 
deterministic analysis was conducted in this case. The 44 pairs of ground motions were scaled to 
two hazard levels that corresponded to 10% and 2% exceedance in 50 years. The behavior of the 
full SCBFs was assessed with respect to various EDPs at the two specific hazard levels to further 
study the effect of earthquake duration. 

1.4 RESEARCH OBJECTIVES 

The overall objective of the study was to study the seismic response of SCBFs under long 
duration earthquakes as it relates to low-cycle fatigue. More specifically, the objectives of the 
analytical and experimental tasks mentioned above were as follows: 



 

5 

 Investigate and rank the effect of structural and low-cycle fatigue modeling 
parameters on the seismic response of SCBFs through detailed sensitivity 
analysis; 

 Conduct three large-scale SCBF shake table tests under different crustal and 
subduction ground motions; 

 Use the test data to verify and calibrate computational models for low-cycle 
fatigue and the tested specimens in OpenSees, and utilize the calibrated model 
to assess validity of existing low-cycle fatigue input parameters; 

 Use the calibrated OpenSees model for the test specimens to conduct IDA and 
develop fragility curves under short- and long-duration suites of ground 
motions;  

 Develop detailed numerical models for representative SCBFs from archetype 
buildings to use for nonlinear time history analysis under a large number of 
short- and long-duration ground motions; and 

 Assess the seismic response of code-compliant SCBFs under short- and long-
duration earthquakes to provide insight for future design guidelines 
development to improve seismic design and performance-based assessment of 
SCBFs. 

1.5 REPORT OUTLINE 

This report is comprised of seven chapters and four appendices. Chapter 1 introduces the 
research problem and the study’s objectives. Chapter 2 provides a brief literature review. Chapter 
3 presents the development of finite-element models for SCBFs and calibrates the model using 
previous relevant experimental data in addition to the details and results of the conducted 
sensitivity analysis. Chapter 4 describes the design and development of the experimental 
program, including the following: specimens design, test setup, test program, instrumentation 
plan, and ground motions selection for the shake table tests. The tests results and discussion of 
global and local behavior of the tested frames are presented in Chapter 5. Next, Chapter 6 
compares the results obtain from the numerical model with the experimental test results to 
determine if such models are appropriate for conducting IDA and assessing existing low-cycle 
fatigue modeling parameters. The last part of the study is presented in Chapter 7, which extends 
the analysis to archetype buildings to better study the ground-motion duration effects. Overall 
summary and main findings and conclusions from the full study are presented in Chapter 8. The 
report also includes four appendices that provide detailed drawings and photographs of the 
specimens’ fabrication and testing along with the details of the ground motions used in this 
study. 
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2 Background and Literature Review 

This section presents a brief background and literature review summary focused on previous 
research on SCBFs and long-duration effects on structural performance. 

2.1 PREVIOUS RESEARCH OF SCBFS 

For life safety and collapse prevention, SCBFs are designed to develop brace buckling during 
large, infrequent earthquakes. After brace buckling, SCBFs exhibit highly nonlinear and inelastic 
behavior., Nonlinear behavior of bracing members mainly governs the system performance in 
SCBFs. During the 1970s and 1980s, experimental investigations were performed to better 
understand and improve the nonlinear behavior of SCBFs. The focus of those experimental 
investigations can be categorized into three groups: tests of brace components, gusset-plate 
connections, and full-scale braced-frame systems. Researchers who studied the post-buckling 
and tensile yield behavior of the brace include: Workman [1969], Wakabayashi et al. [1973], 
Popov et al. [1976], Kahn and Hanson [1976], Black et al. [1980], Astaneh-Asl [1983], Foutch et 
al. [1987], Lee and Goel [1987], and Aslani and Goel [1989]. 

Gusset connections were also investigated by applying tensile loads to the connections 
(e.g., Whitmore [1952] and Hardash and Bjorhovde [1985]). Those studies verified that the 
Whitmore method estimated with a sufficient degree of accuracy the maximum tensile stress in 
the gusset plates, and the block shear model was proposed to estimate the tensile fracture 
capacity. Thornton [1984] investigated the compressive capacity of the gusset plates and 
proposed a method to estimate the buckling strength based on the Whitmore width and the 
effective length of the gusset. Using the Thornton and Whitmore procedure, many experimental 
studies were been conducted to improve the performance of the gusset-plate connections using 
monotonic (e.g., Hu and Cheng [1987], Gross and Cheok [1988], Brown [1989], Cheng et al. 
[1994], and Sheng et al. [2002]) and cyclic loading (e.g., Rabinovitch and Cheng [1993], 
Walbridge et al. [1998], and Grondin et al. [2000]). The previous studies led to several key 
results that were comprehensively summarized and reported by Hsiao [2012]. 

More recent research tested full-scale SCBF systems consisting of bracing members with 
gusset-plate connections at the ends of the brace, which represented the interaction of the bracing 
member and gusset connections (e.g., Astaneh-Asl [1983], Goel and El-Tayem [1986], Aslani 
and Goel [1989], and Xu and Goel [1990]). These investigations mainly studied systems with 
single, double-angle, and double-channel bracing members. Past studies verified yield 
mechanisms and failure modes, e.g., brace yielding and buckling, gusset-plate yielding, brace 
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2.1.1 Previous Research Studying Long-Duration Effects 

The duration of an earthquake is expected to affect structural response; however, current seismic 
design specifications commonly use response spectra to identify the hazard and do not consider 
duration effects. Partly this is because, historically, ground-motion records of earthquakes with 
long duration are less common, and most ground-motion databases include mainly short-duration 
records. Recently, more seismic events, longer in duration, have occurred and recorded, e.g., the 
2011 Tohoku earthquake. Older studies considered synthetic ground motions and other methods 
to study earthquake duration effects because of the paucity of appropriate records. 

This section presents a number of previous studies that considered ground-motion 
durations that focused on duration effects on structural response. Note: most of the research in 
this area was analytical or numerical, with most of the applications focused on concrete 
structures. The review provided next includes research results on concrete buildings or bridge 
columns, and some recent studies on the duration effect on steel structures, including CBFs (or 
SCBFs), and moment resistant frames (MRFs). 

Kunnath et al. [1997] tested twelve identical reinforced concrete bridge columns. Some 
specimens were tested using standard cyclic loads, while others were tested using numerically 
predicted displacement values that represent the column’s response to different ground motions. 
They determined that the damage sustained was due to low-cycle fatigue of the longitudinal 
reinforcing bars and rupture of the spirals. Other studies addressed the effect of poor 
confinement of reinforced-concrete bridge columns under long-duration ground motions, either 
experimentally [Stapleton 2004; Ranf et al. 2006] or numerically [Thompson 2004]. These 
studies showed that poorly confined columns will experience minor damage when subjected to a 
large subduction zone earthquake, and that neither the short- nor the long-duration motions 
caused damage to bridge columns. 

Ou et al. [2014] performed both experimental and analytical studies of the seismic 
behavior of reinforced-concrete bridge columns under long-duration ground motions. They 
quantified the duration by the number of times the 5% PGA was crossed based on the 
acceleration history. An approximate threshold of 600 crossings was chosen to differentiate 
between the short- and long-duration motions. More recently, Mohammed et al. [2016] 
performed both experimental and numerical investigations on the effect of earthquake duration 
on the collapse capacity of reinforced-concrete bridge columns. They performed shake table tests 
on five identical large-scale columns subjected to ground motions from the 2011 Tohoku (long 
duration), 1989 Loma Prieta (short duration), and 2010 Maule (long duration) earthquakes. 
Mohammed [2016] used the results from these tests results to calibrate and validate an OpenSees 
model for testing bridge columns. Incremental dynamic analysis was employed, using different 
sets of spectrally equivalent long- and short-duration motions. Three ground-motion sets were 
used, one long duration and two short-duration sets. Each set consisted of 112 ground-motion 
records. Mohammed [2016] determined that ground-motion duration has a significant effect on 
displacement collapse capacity of reinforced-concrete bridge columns. Columns subjected to 
long-duration motions showed 25% lower displacement capacities compared to columns 
subjected to short-duration motions. 

Other researchers have focused on the structural safety and collapse capacity of concrete 
structures as related to ground-motion duration. Hancock and Bommer [2007] analyzed an eight-
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story reinforced concrete wall-frame building using 30 ground-motion records. The main 
objective was to study the correlation between ground-motion duration and different damage 
measures. They concluded that there was a correlation between the duration of the motion and 
cumulative damage measures, such as absorbed hysteretic energy and fatigue damage. 
Raghunandan and Leil [2013] investigated the influence of ground-motion duration on the 
collapse capacity of 17 reinforced-concrete building models using IDA subjected to a set of 76 
ground-motion records. The study concluded that the long-duration records significantly affect 
the collapse capacity of a structure as it imposes higher energy demands compared to short-
duration motions. Finally, Raghunandan et al. [2015] carried out nonlinear dynamic analyses on 
24 buildings designed according to outdated and modern building codes for the cities of Seattle, 
Washington, and Portland, Oregon. They found that the median collapse capacity of the ductile 
(post-1970) buildings is approximately 40% less when subjected to ground motions from 
subduction-zone earthquakes compared to crustal earthquakes. 

Unfortunately, there are only a few studies that have analyzed duration effects on steel 
structures. Lignos et al. [2011] studied the seismic capacity of high-rise steel buildings subjected 
to long-period long-duration ground motions. It was shown that connection fractures due to 
cumulative damage amplify maximum story-drift ratios at lower stories of high-rise buildings. 
Other researchers have studied steel moment-resisting frames behavior under long duration 
records. Li et al. [2014] investigated the collapse probability of mainshock-damaged steel 
buildings under aftershocks. Analytical studies were conducted utilizing structural degradation 
models derived from existing publicly-available NEEShub data. Although aftershocks are 
normally somewhat smaller in magnitude, their ground-motion intensity is not always smaller. 
Moreover, aftershocks may have a higher PGA compared to the mainshock, even longer in 
duration, and significantly different energy content as a result of the change in their location 
relative to the site. Li et al. [2014] found that collapse capacity of a structure may be 
compromised significantly when the building is subjected to a high-intensity mainshock and may 
collapse in response to a small aftershock following the mainshock. 

Chandramohan et al. [2016] investigated the effect of ground-motion duration on the 
collapse capacity of different structures. Two sets of long- and short-duration ground motions 
were used to conduct IDA to study the effect of the ground-motion duration on a five-story steel 
moment frame and a reinforced-concrete bridge. The duration of the ground motion was found to 
have a significant influence on structural collapse capacity. The median collapse capacity 
estimated by the long-duration set was less by 29% and 17% than that estimated by the short-
duration set for the steel frame and the bridge column, respectively. A comparison between 
different duration metrics was performed, and the significant duration was chosen as the 
preferred duration metric. Another recent study Barbosa et al. [2016] investigated the 
performance of steel moment-resisting frames under sets of 22 short-duration and 22 long-
duration motions compared in terms of the expected level of damage caused by the earthquakes 
and spectral acceleration. The obtained results indicated that for large spectral accelerations, 
longer duration motions tend to induce larger peak interstory drifts and damage indices. In 
addition, the relationship between the peak interstory drift ratio and damage indices was found to 
be nonlinear; this level of nonlinearity increases with ground-motion duration. 

Most recently, Marafi et al. [2019] simulated ground motions for a magnitude 9 Cascadia 
subduction zone earthquake that will affect the Puget Lowland region, including cities underlain 
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by the Seattle, Everett, and Tacoma sedimentary basins. This study is among several recent 
studies conducted at UW as part of a large research initiative named the M9 project. 

Marafi et al. [2019] reported that the current national seismic maps do not account for the 
effects of these basins on the risk-targeted maximum considered earthquake (MCER). The 
simulated motions for Seattle had large spectral accelerations (at a period of 2 sec, 43% of 
simulated M9 motions exceeded the MCER), damaging spectral shapes (particularly at periods 
near 1 sec), and long durations (5–95% significant durations near 110 sec). For periods of 1 sec 
or larger, the resulting deformation demands and collapse likelihood for four sets of single-
degree-of-freedom systems exceeded the corresponding values for motions consistent with the 
conditional mean spectra (CMS) at the MCER intensity. The regional variation of damage was 
estimated by combining probabilistic characterizations of the seismic resistance of structures and 
the effective spectral acceleration, Sa,eff, which accounts for the effects of spectral acceleration, 
spectral shape, and ground-motion duration. For high-strength, low-ductility systems located 
above deep basins (Z2.5 > 6 km), the likelihood of collapse during an M9 earthquake averaged 
13% and 18% at 1.0 sec and 2.0 sec periods, respectively. For low-strength, high-ductility 
systems, the corresponding likelihoods of collapse averaged 18% and 7%. 

Studies that specifically consider earthquake duration and steel CBFs or SCBFs (core of 
this report) are limited. Foschaar et al. [2012] investigated the effect of ground-motion duration 
on the collapse capacity of a three-story steel braced frame. They used two record sets, one with 
long-duration records and the other with spectrally equivalent short-duration records. This 
approach isolated the effect of the ground-motion duration from other ground-motion 
characteristics. They found that the duration affected the collapse capacity significantly. Using 
OpenSees, Tirca et al. [2015] studied the effect of mega-thrust subduction records versus crustal 
records by analyzing the nonlinear response of four-story, eight-story and 12-story moderately 
ductile (MD)-CBF office buildings located in Canada. They found that in the case of the eight-
story and 12-story MD–CBF buildings, the largest demand under both crustal and subduction 
record sets occurred on the bottom two floors. In the case of the four-story MD–CBF building, 
the largest demand occurred at the top floor under the subduction-record set and at the bottom 
two floors under the crustal-record set. They concluded that subduction records, characterized by 
a longer Trifunac duration, did not affect the peak interstory drift or the peak residual interstory 
drift; damage was concentrated at floors characterized by lower brace over strength. To avoid the 
occurrence of brace fracture when subjected to ground motions scaled to match the design 
spectrum, it is recommended to provide a sufficient safety margin when selecting the size of 
bottom floor braces. 

Recent M9 project work touched on SCBFs under potential subduction scenarios. Li et al. 
[2019] studied the effect of deep sedimentary basins and how they might increase the intensity of 
ground motions and their effect on SCBFs; such effects are not considered in U.S. building 
codes. Numerically, three-, nine-, and 20-story SCBF archetypes were subjected to large-
magnitude interface earthquakes recorded in basins in Japan with similar depths as the Seattle 
basin. The results demonstrate that deep basins in combination with the long ground-motion 
duration resulted in brace fracture at lower spectral accelerations. The results suggested that the 
strength of the archetypes inside deep basins and subjected to interface earthquakes would need 
to be increased by a factor of over 2.0 to ensure similar collapse probabilities as those located 
outside basins and/or subjected to crustal earthquake hazards. 
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In summary, most of the previous studies have concluded that longer duration 
earthquakes can have significant effects on structural performance and there is an urgent need for 
long-duration effects to be considered in the seismic design of structures. Given the potential 
seismic hazard in the Pacific Northwest, studies on the effect of long-duration earthquakes on 
SCBFs is long overdue. Testing is necessary to verify that current modeling techniques, 
especially those models that consider low-cycle fatigue, capture duration effects. This study 
focused on the results of shake table test and numerical methods as the first major step in 
determining the effect of long-duration ground motion on the structural performance of SCBFs, 
with an emphasis on  brace rupture and low-cycle fatigue damage associated with longer 
duration earthquakes. 
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3 Modeling and Sensitivity Analysis 

The objective of this chapter is to investigate the influence of modeling parameters on the 
seismic response of SCBFs as it relates to ground-motion duration. This analysis was also 
considered as a part of the pre-test analysis used to develop the experimental part of this study 
and assist in the selection of potential ground-motion records. 

3.1 LOW-CYCLE FATIGUE MODELING 

Low-cycle fatigue modeling is a critical feature in any analysis of the response of SCBFs to 
seismic excitation. The Fatigue material parameter implemented in OpenSees is wrapped around 
the parent Steel02 parameter assigned to braces that tracks the accumulated damage. One of the 
earliest brace-fracture models implemented in OpenSees was developed by Uriz [2005] and is 
based on low-cycle fatigue of constant plastic strain amplitude that predicts cumulative damage 
according to Miner's rule. Note: under seismic loading, the strain may not have constant 
amplitude [Uriz and Mahin 2008]. 

Based on independent research by Coffin [1953] and Manson [1965], the relationship 
between the plastic strain amplitude, i , experienced by each cycle i, and the number of cycles 

to failure, Nf, is linear in the log–log domain; the slope is equal to m [Equation (3.1)], and 0  is 

the strain for a single reversal. The m and 0  parameters are also known as the fatigue ductility 

exponent and fatigue ductility coefficient, respectively. The Fatigue wrapper counts cycles 
through a modified rainflow counting scheme, which uses only recent strain history and tracks 
the cumulated damage, D, at each fiber. Several studies suggest using different values for m and 

0  based on regression analysis of results from experimental data in the literature. 

Table 3.1 shows a summary of the different studies and recommended models or values 
for estimating the m and 0 , and are mainly valid for structural steel braces. Note that two of the 

listed studies in Table 3.1 provide equations [Equations (3.2) and (3.3)] for estimating 0  rather 

than the specific values as shown here. Equation (3.2) has been proposed by Lignos and 
Karamanci [2013] for predicting the value of 0  for slenderness ratio of up to 85, which was 

slightly modified by Tirca and Chen [2014]—as shown in Equation (3.3)—to account for HSS 
braces with slenderness ratio (kL/r) between 50 and 150 using data from fourteen experimental 
tests. 



 

14 

 0i

m
Nf    (3.1) 

0 0.291 0.484 0.613 0.3
y

kL w E

r t F


                  
 (3.2) 

0
0pred 0.006 0.859 0.6 0.1

y

bkL E

r t F


                 
 (3.3) 

The Giuffre–Menegotto–Pinto model [Menegotto and Pinto 1973] designated as Steel02 
material was the nonlinear constitutive law used for all members modeled in this study. The 
hysteresis loop simulated by the Giuffre–Menegotto–Pinto model follows the previous loading 
path for a new reloading curve, while deformations are accumulated. Karamanci and Lignos 
[2014] proposed some parameters for Steel02; see Table 3.2. Other researchers have used 
different modeling parameters to determine response, e.g., Chen and Tirca [2013] used a 
different set of input parameters for Steel02 simulation in OpenSees. Aguero et al. [2006] used 
different set of parameters to define the transition from the elastic to plastic response and 
considered isotropic hardening. The Steel02 input parameters or arguments, i.e., the OpenSees 
TCL command line, is illustrated in Equation [2.4) below for reader’s convenience. 

uniaxialMaterial Steel02 $matTag $Fy $E $b $R0 $cR1 $cR2 <$a1 $a2 $a3 $a4 $sigInit> (2.4) 

A sample set of Steel02 input [Aguero et al. 2006] uses the following values: R0 = 25; cR1 
= 0.925; cR2 = 0.15; a1 = a3 = 0.00001; a2 = a4 = 0.00002; the kinematic hardening parameter, b, 
set to 0.01. Note how these parameters vary from what is shown in Table 3.2 per Karamanci and 
Lignos [2014]. Accordingly, different sets of input parameters for Steel02 are used in this 
sensitivity analysis as will be explained later. 

Table 3.1 Different recommended values for OpenSees fatigue modeling (m 

and 0 ). 

Study m 0  

Lignos and Karamanci [2013] -0.30 Equation (2.2) 

Uriz and Mahin [2004] -0.50 0.095 

Tirca and Chen [2014] -0.50 Equation (2.3) 

Chen and Mahin [2012] -0.60 0.090 

Santagati et. al [2012] -0.46 0.070 

Salawdeh and Goggins [2013] -0.50 0.190 

Lai and Mahin [2012] -0.46 0.099 
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Table 3.2 Recommended Steel02 parameters based on Karamanci and Lignos 
[2014]. 

Section b R0 cR1 cR2 a1 a2 a3 a4 

HSS (rectangular) 0.001 22. 0.925 0.25 0.03 1.0 0.02 1.0 

HSS (round) 0.005 24. 0.925 0.25 0.02 1.0 0.02 1.0 

Wide Flange 0.001 20. 0.925 0.25 0.01 1.0 0.02 1.0 

3.2 ANALYTICAL MODEL 

3.2.1 Model Description 

Two selected braced frames (Figure 3.1) from previous experimental studies at the UW were 
used in this study to verify and calibrate the analytical developed herein. The two specimens, 
designated as HSS1 [Johnson 2005] and HSS31 [Palmer et al. 2012], used single diagonal and 
X-bracing, respectively. More details for the two frames are described in Table 3.3. 

Many modeling aspects used in this study followed Hsiao et al.’s [2012] methodology. 
Force-based nonlinear beam–column elements with five integration points were used to model 
the braces, beams, and columns. Fiber cross sections were employed to simulate various steel 
cross sections, assuming plane-strain compatibility. Concentrated spring elements were used to 
model the connections. The Giuffre–Menegotto–Pinto model, designated as Steel02 material, 
was the nonlinear constitutive law used for all members. The OpenSees model also was used to 
evaluate nonlinear models with pinned or rigid joints at the brace–beam–column connections. 

 

Figure 3.1 Typical test specimen for single-story single-bay SCBF: diagonal-
braced HSS1 (left) and X-braced HSS31 (right). 
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Table 3.3 Dimensions and material properties for selected UW test 
specimens. 

S
p

ec
im

en
 Beam 

W16*45 
Column 
W12*72 

Brace HSS Gusset plate Clearance 

Fy (ksi) Fy (ksi) Size 
Fy 

(ksi) 
a 

(in.) 
b 

(in.) 
tp 

(in.) 
Fy 

(ksi) 
Type N(t) 

HSS1 59.0 59.5 5×5×3/8 69.5 34.0 30.0 0.5 118.0 Linear 2 

HSS31 50.0 50.0 3×3×1/4 46.0 11.7 9.25 0.25 87.0 Elliptical 8 

 

The accurate modeling of a SCBF must include the full cyclic inelastic behavior of the 
brace, including buckling in compression, yielding in tension, and post-buckling behavior. 
Gunnarsson [2004] demonstrated that accurate simulation of brace buckling behavior is achieved 
with ten or more nonlinear beam–column elements along the length of the brace. Accurate 
predictions of the buckling curves [AISC 2005a] were achieved using an initial displaced shape 
using a sine function with the apex equal 1/500 of the length of the brace. Measured material 
properties are provided in Table 3.3. For the constitutive model, the strain-hardening ratio of 
0.01 was used. The brace was stiffer and stronger at the ends as result of the block shear length 
of the gusset and net section reinforcement. This increased local strength and stiffness was 
modeled, which reduced deformation and little local yielding occurred in this portion of the 
brace. To represent the complex cross section at these locations, an increased strength element 
was used at each end of the brace. 

The models captured tensile yielding, buckling, and post-buckling behavior of the brace, 
which are highly nonlinear behaviors and key elements in the seismic response of the SCBF 
system. Significant deformation and yielding of the gusset-plate connections were also 
considered along with local yielding of the beams and columns adjacent to the gusset plate. The 
OpenSees model used mainly simplified discrete component models including beam–column 
elements and concentrated springs. The modeling technique is similar to models used by Hsiao et 
al. [2012]. Force-based nonlinear beam–column elements with five integration points were used 
to model the braces, beams, and columns. Fiber cross sections were employed to simulate 
various steel cross sections, assuming plane-strain compatibility. Concentrated spring elements 
were used to model the connections. The following subsections provide additional detail of the 
modeling approaches and quantification of the important variables used for each component of 
the SCBFs. 

3.2.1.1 Gusset-Plate Connection 

Gusset-plate connections in actual structures are neither pinned nor fixed joints, and these 
connections have a significant effect on the stiffness, resistance, and inelastic deformation 
capacity of the SCBF system. Hence, accurate simulation of these connections is required. To 
simulate the nonlinear out-of-plane rotational behavior of the gusset-plate connections, single 
and multiple springs along the brace axial direction at and beyond the end of the brace were 
considered and investigated. Based on research of Hsiao et al. [2012], the correct estimate of the 
gusset-plate stiffness is required to accurately predict the buckling capacity of the brace. The 
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Figure 3.4 Illustration of the numerical model details used for the sensitivity 
analysis. 

3.2.2 Calibrated Model Results 

To verify and calibrate the numerical models, several iterations for calibrating the full model 
against experimental results were conducted for the HSS1 and HSS31 frames described above. 
Two criteria had to be met: (1) gain confidence in the overall modeling features and techniques, 
such as simulating gusset plate or welded connection behavior; and (2) provide a baseline set of 
input parameters that technically capture experimental response under cyclic load and relate it to 
both modeling sensitivity analysis and ground-motion duration effects. Many of the iterations 
were concerned with the m and ε0 values as these parameters can capture the onset of failure. 
Other iterations focused on the material model input parameters for Steel02. 

The developed OpenSees models for diagonal-brace (HSS1) and X-brace (HSS31) 
frames were analyzed under same cyclic loading history as the experimental portion of the study. 
The analysis and tests results were compared to validate the accuracy of the OpenSees models 
and finalize model calibration. Comparable nonlinear displacements and drifts histories were 
obtained from both the proposed numerical model and the experimental tests; see Figure 3.5. 
Moreover, Figurew3.6(a) and (b) show the force-deformation relationships (hysteresis) for the 
final calibrated HSS1 and HSS31 models, respectively. Both figures show that both models 
successfully reproduced the observed behavior from the corresponding experimental test. To 
ensure that the compression response was accurately simulated in the numerical model in both 
tests, the out-of-plane buckling value was compared with the experimental tests and showed very 
close agreement. 
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short-duration earthquakes, which is the case for current design codes with no specific 
consideration for longer duration earthquakes; and (2) ground motions scaled to this MCE 
spectrum at the considered frames periods are likely to fail under the so-called 100% scale; less 
incremental analysis runs will be needed to capture the full failure in all cases. 

With this in mind, for those cases where a failure (brace rupture) did not occur when 
subjected to the 100%-scale ground-motion intensity, the intensity was increased in 10% 
increments until the failure occurred, and both displacement and force capacities were obtained, 
as shown in the analysis results sections. A total of 16 records were chosen to cover a high range 
of duration from 13–119 sec based on the 5–95% significant duration definition. Table 3.4 shows 
the details of the selected ground motions used in this part of the study. Examples of the 
earthquake events considered in these sets include 1940 Imperial Valley, 1971 San Fernando, 
1999 Chi-Chi (Taiwan), and 2011 Tohoku (Japan) earthquakes. Figure 3.7 shows the response 
spectra for the selected scaled short- and long-duration individual records along with their mean 
as compared to the target spectrum. The figure’s legends also indicates the significant duration of 
each record and shows the match between the mean spectrum and target spectrum in the vicinity 
of the fundamental period of both of the frames considered. 

Table 3.4 Summary of ground motions used in the sensitivity analysis. 

Type GM # Earthquake Station name 
Ds 5–95 

(sec) 

S
ho

rt
-d

ur
at

io
n 

se
t 

1 1940 Imperial Valley El Centro Array 24.20 

2 1952 Kern County Santa Barbara Courthouse 22.10 

3 1952 Kern County Taft Lincoln School 30.30 

4 1961 Hollister Hollister City Hall 18.70 

5 1966 Parkfield Cholame - Shandon Array 13.14 

6 1971 San Fernando Lake Hughes 15.70 

7 1971 San Fernando Pasadena - CIT Athenaeum 14.50 

8 1983 Coalinga Cholame 3E 20.63 

Lo
n

g-
du

ra
tio

n 
se

t 

1 2011 Tohoku, Japan GNMH05 62.93 

2 2011 Tohoku, Japan TKY007 81.03 

3 2011 Tohoku, Japan IBR009 86.55 

4 2011 Tohoku, Japan YMT015 106.01 

5 2011 Tohoku, Japan SIT003 30.30 

6 1999 Chi-Chi, Taiwan CHY079, E 37.57 

7 1999 Chi-Chi, Taiwan CHY019, N 39.10 

8 2011 Tohoku, Japan Matanzas 34.96 
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 Number of Brace Elements (mesh discretization): Three different elements (6, 
8, and 12) were considered to simulate the brace buckling behavior and in 
turn, brace capacity. 

 Number of Integration Points: Four different values were used for the number 
of integration points per element (3, 5, 7, and 10) to investigate the nonlinear 
solver sensitivity if any. 

 

Table 3.5 Summary of varied Steel02 input parameters used for sensitivity 
analysis. 

Set # 
Varied input values; see Equation (3.4) above 

$R0 $cR1 $cR2 $a1 $a2 $a3 $a4 

Set 1 20 0.925 0.15 default built-in 

Set 2 20 0.97 0.15 0.003 0.01 0.002 0.01 

Set 3 18 0.10 0.15 0 1 0 1 

Set 4 20 0.925 0.15 1 1 0 1 

Set 5 18 0.925 0.15 0 1 1 1 
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Table 3.6 Sensitivity analysis models parameters for diagonal (D) and (X-) 
brace SCBFs 

CBF type 
Model 

ID 
Varied 

parameter 

Parameters input values 

m 0  Steel02 KL/r 
No. of 

elements 
No. of int. 

points 

Diagonal 
Bracing 

D-1 

Steel02 -0.5 0.138 

Set 1 

80 12 5 
D-2 Set 2 
D-3 Set 3 
D-4 Set 4 
D-5 Set 5 
D-6 

# of elements -0.5 0.138 Set 2 80 
6 

5 D-7 8 
D-8 12 
D-9 

# of 
Integration 

points 
-0.5 0.138 Set 2 80 12 

3 
D-10 5 
D-11 7 
D-12 10 
D-13 

m & �0 

-0.5 0.047 

Set 2 80 12 5 

D-14 -0.5 0.095 
D-15 -0.5 0.138 
D-16 -0.5 0.119 
D-17 -0.5 0.09 
D-18 -0.5 0.07 
D-19 -0.5 0.19 
D-20 -0.5 0.099 
D-21 

KL/r 

-0.5 0.105 

Set 2 

60 

12 5 
D-22 -0.5 0.119 80 
D-23 -0.5 0.123 100 
D-24 -0.5 0.191 120 

X- Bracing 

X-1 

Steel02 -0.5 0.152 

Set 1 

117 12 5 

X-2 Set 2 

X-3 Set 3 

X-4 Set 4 

X-5 Set 5 

X-6 

# of elements -0.5 0.152 Set 2 117 

6 

5 X-7 8 

X-8 12 

X-9 
# of 

Integration 
points 

-0.5 0.152 Set 2 117 12 

3 

X-10 5 

X-11 7 

X-12 10 

X-13 

m & �0 

-0.3 0.044 

Set 2 117 12 5 

X-14 -0.5 0.095 

X-15 -0.5 0.152 

X-16 -0.5 0.1784 

X-17 -0.5 0.0837 

X-18 -0.6 0.09 

X-19 -0.458 0.07 

X-20 -0.5 0.19 

X-21 

KL/r 

-0.458 0.099 

Set 2 

60 

12 5 
X-22 -0.5 0.0384 80 

X-23 -0.5 0.0849 100 

X-24 -0.5 0.1667 120 
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Table 3.7 Summary of mean peak response values for all models from two 
motions sets. 

Model 
no. 

Varied 
parameter 

Top displacement (in.) Base shear (kips) Top acceleration (g) 

Short-
duration 

Long 
duration 

Short-
duration 

Long 
duration 

Short-
duration 

Long 
duration 

Single (diagonal-) braced frame 
D-1 

Steel02 
input sets 

3.56 2.08 334.5 337.5 1.18 1.11 
D-2 4.04 2.35 367.0 361.5 1.22 1.19 
D-3 2.64 1.92 338.0 345.0 1.29 1.18 
D-4 9.85 10.71 417.5 427.0 1.57 1.35 
D-5 12.58 12.01 534.0 522.5 1.42 1.28 
D-6 

No. of 
elements 

3.05 2.02 374.0 363.0 1.30 1.17 
D-7 3.31 1.93 363.5 358.0 1.20 1.17 
D-8 4.04 2.35 367.0 361.5 1.22 1.19 
D-9 

No. of 
integration 

points 

4.03 2.24 366.5 361.0 1.21 1.22 
D-10 4.04 2.35 367.0 361.5 1.22 1.19 
D-11 4.18 1.92 357.5 361.0 1.21 1.19 
D-12 3.99 1.97 367.0 361.0 1.22 1.19 
D-13 

m and 0  

1.45 1.38 346.5 342.0 1.07 0.96 
D-14 2.89 1.73 359.5 350.0 1.17 1.01 
D-15 4.04 2.35 367.0 361.5 1.22 1.19 
D-16 3.24 1.97 357.5 361.0 1.24 1.13 
D-17 1.96 0.73 349.5 331.0 1.15 0.79 
D-18 1.95 1.29 350.0 342.0 1.16 0.91 
D-19 6.51 3.61 385.0 378.5 1.33 1.31 
D-20 2.34 1.96 363.5 357.0 1.07 1.03 
D-21 

KL/r 

4.92 4.14 684.5 596.5 1.85 1.66 
D-22 3.24 1.97 357.5 361.0 1.24 1.13 
D-23 4.05 2.25 221.5 207.5 0.99 0.82 
D-24 6.60 5.52 236.0 227.0 1.21 0.89 

Double (X-) braced frame 
X-1 

Steel02 
input sets 

4.90 6.15 295.00 265.00 0.98 0.77 
X-2 5.15 9.90 288.50 236.00 0.87 0.75 
X-3 4.40 6.75 287.50 263.50 0.93 0.82 
X-4 14.65 9.25 460.00 348.50 1.52 0.99 
X-5 11.55 6.90 680.00 562.50 1.47 1.11 
X-6 

No. of 
elements 

5.60 8.20 296.50 272.50 0.89 0.81 
X-7 9.50 8.85 232.50 202.50 0.80 0.76 
X-8 5.15 9.90 288.50 236.00 0.87 0.75 
X-9 

No. of 
integration 

points 

5.40 7.70 293.00 237.00 0.87 0.76 
X-10 5.15 9.90 288.50 233.50 0.87 0.75 
X-11 5.75 9.25 290.00 240.00 0.87 0.75 
X-12 4.75 6.75 290.00 235.50 0.87 0.74 
X-13 

m and 0  

7.10 9.95 222.50 200.00 0.75 0.75 
X-14 7.05 10.10 276.00 202.50 0.86 0.72 
X-15 5.15 9.90 288.50 236.00 0.87 0.75 
X-16 5.10 4.20 295.00 246.50 0.87 0.79 
X-17 8.16 8.90 235.50 192.50 0.83 0.67 
X-18 9.96 8.31 247.50 194.50 0.83 0.67 
X-19 8.06 6.26 312.00 240.00 1.14 0.78 
X-20 7.78 8.69 266.50 206.00 0.86 0.75 
X-21 

KL/r 

7.35 10.00 242.50 230.00 0.75 0.64 
X-22 8.05 10.05 280.00 227.00 0.84 0.71 
X-23 6.05 3.30 435.00 337.50 1.30 0.88 
X-24 5.10 4.20 295.00 246.50 0.87 0.79 
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3.6 SENSITIVITY ANALYSIS 

As previously discussed in Section 3.3 on ground-motion selection, the mean spectra of the 
short- and long-duration records match a target MCE spectrum at the considered frames periods. 
This means that, on average, the same seismic force demands were applied to the frames; 
however, different mean response values were reported at failure. The variation can be only 
attributed to the model or design in case of kl/r, parameters variability, and effect of the loading, 
i.e., cyclic versus realistic short- and long-duration earthquake loading. Note: the energy 
increment test was used in OpenSees with a tolerance of 1.0e-6 and 200 iterations. When 
convergence was not achieved, a smaller step (t) was implemented in order to achieve 
convergence. In this section, the effect of modeling variability is isolated from loading protocol 
effects, and a deterministic tornado diagram analysis is used to present the range of the effect of 
each of the considered variables. 

3.6.1 Tornado Diagram Analysis 

Two types of response results or simply EDPs, i.e., drift ratio at failure and base-shear capacity, 
were used to study and rank the effect of modeling variability on SCBFs seismic response using 
tornado diagrams. The tornado diagram, commonly used in decision analysis, is an effective way 
of representing uncertainties. It has been used in sensitivity analysis in earthquake engineering 
(e.g., Porter et al. [2002]) and probabilistic seismic evaluation of structural components and 
systems (e.g., Lee and Mosalam [2005]). The tornado diagram consists of a set of horizontal 
bars, referred to as swings, one for each source of uncertainty (random variable). The length of 
each swing represents the variation in the output due to the variation in the respective parameter. 
Thus, a variable with larger effect on the output has larger swing than those with lesser effects. 
In a tornado diagram, swings are displayed in the descending order of the swing size from the top 
to the bottom. This wide-to-narrow arrangement of swings eventually resembles the shape of a 
tornado. Extensive review of the procedure of developing a tornado diagram analysis can be 
found in Lee and Mosalam [2005]. In this study, a total of 68 tornado diagrams were developed: 
two considered EDPs × two brace configurations × 17 loading cases (1 cyclic loading case as per 
original the experimental testing and the 16 short- and long-duration ground motions). To isolate 
the effect of ground-motion variability from modeling variations, the results presented herein are 
for the mean values as obtained from each set of ground motions, leading to a total of 12 tornado 
diagrams (two EDPs × two brace configurations × three loading protocols). 

The OpenSees analysis was considered to be the deterministic function evaluation. In 
addition, each of the five groups of parameters that ranged between upper and lower bounds 
represented the input to the analysis. For instance, when one of the input parameters was set to a 
lower or upper bound, the rest of parameters were set to the values determined from model 
calibration as previously listed; see Tables 3.5 and 3.6. The absolute difference between these 
two values was the swing of the output corresponding to the selected input variable. The tornado 
diagram was then constructed by arranging the obtained swings in a descending order as 
mentioned above, and the sources of the tornado diagrams for the percentage of failure drift and 
base shear at failure outputs are shown next. Note: the results from each SCBF brace 
configuration is presented separately because the capacity dictated by rupturing one versus two 
braces may relate differently to the modeling parameters. 
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Among the SCBFs modeling parameters, the slenderness ratio, and the low-cycle fatigue 
parameters using the material model (Steel02) lead to significant change in the interpreted drift 
capacity (variation between 1% and 12%), unlike the effect of the brace meshing and number of 
integration points. Note: given the sensitivity of low-cycle fatigue model in OpenSees when 
conducting an analysis of SBCFs, any analysis results and validation of a model should be 
viewed with caution when making any design decisions. Recall that there are at least seven pairs 
of values available in the literature to define the fatigue model for HSS used in SCBFs. Also note 
that the slenderness ratio variation indirectly varied the low-cycle fatigue input, but a single 
slenderness ratio value was used when m and ε0 were varied. The brace configuration also results 
in different sensitivities to the modeling parameters because of the asymmetric capacity 
associated with single diagonal braces. 

3.6.3 Variation in Base-Shear Capacity 

Similar to before, the variation in the base-shear capacity of the SCBFs considered is presented 
in the form of tornado diagrams; see Figure 3.13. The most obvious observation gleaned from 
comparing the tornado diagrams for drift versus base-shear capacity is that the fatigue has much 
less effect on the base-shear capacity, which, in turn, is found to be highly sensitive to the 
material model input and slenderness ratio (which affects the strength of the brace, and, thus, the 
buckling behavior of the brace); this explains why this effect is more obvious in the case of 
single-diagonal braced frames compared to than double-braced frames. Obviously, the material 
model Steel02 can significantly affect the base-shear capacity, especially considered that the 
selected input values cover a wide range for material behavior and affect the strength of the 
frame under lateral loading. Note: this also highlights the importance of the proper selection of 
input values for Steel02 as it can skew the analysis results. 

3.7 EFFECT OF EARTHQUAKE DURATION 

Another objective of this study was to investigate the effect of earthquake duration on SCBFs but 
using an approach that considers critical modeling variables. The results from 768 analyses are 
presented below that averages out all considered modeling parameters in an attempt to isolate the 
effect of model sensitivity and provide insight into the effect of earthquake duration on collapse 
and fragility curves of the SCBFs considered. 

3.7.1 Collapse Assessment 

Using the same cases as analyzed earlier, the results were re-interpreted to quantify the effect of 
the duration rather than modeling sensitivity. In this regard, a preliminary regression analysis 
was conducted to determine whether the ground motion significant duration can be related to the 
drift capacity, which is expected to relate more to fatigue damage accumulation than strength or 
base shear capacity; see Figure 3.14. An inverse linear trend can be observed in the figure when 
results from all single-braced frame cases are considered (384 cases) altogether to average out 
the effect of modeling uncertainties. From Figure 3.14, the obtained drift capacity from analysis 
is reduced by about 7% on average for every 10 sec increase in ground motions duration. When a 
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This seems to agree with previous studies (e.g., Chandramohan et al. [2016a, b]) that 
demonstrated that when SCBFs are subjected to longer duration earthquakes they accumulate 
more damage and result in failures at lower displacement capacities than anticipated from the 
design. In addition, the study by Chandramohan et al. [2016a, b] also reported a clear trend 
between the spectral acceleration ratio (as an EDP) between and Ds5-75. The trend showed a 
smaller collapse capacity as a function of ground-motion duration. In contrast, it was not possible 
to find a meaningful trend for the X-bracing system due to the more progressive collapse nature 
of X-bracing associated with the sequence of brace failure and gradual loss of lateral capacity as 
braces alternate both tensile and compressive stresses after yielding. Moreover, the X-bracing 
dictates gusset plate connections at all joints unlike the case of the single-brace system where 
shear tab connections are used when no brace connection exists. The modeling of gusset plate 
connections usually contributes partially to the lateral frame capacity after brace buckling and 
fracture. In other words, the single-braced frame loses its entire capacity after brace failure; 
therefore, determining the trend for the duration effect can be better captured. 

3.7.2 Fragility Curves 

Fragility curves are conditional probability statements of the likelihood that a structure will meet 
or exceed a specified level of damage for a given ground-motion intensity measure (IM) [Padgett 
and DesRoches 2007]. Fragility curves are a powerful tool for seismic assessment of structures, 
and probabilistic methods are commonly used to account for different sources of uncertainties. 
For SCBFs, earthquake duration along with the uncertainty in crucial modeling parameters such 
as material input or low-cycle fatigue parameters have not been considered among other types of 
epistemic uncertainties when families of braced frames’ fragility curves were developed (e.g., 
Roeder et al. [2012]). Based on the results presented herein regarding the effects such parameters 
may have on the seismic response of SCBFs, two sets of preliminary collapse fragility curves 
were developed using the short- and long-duration earthquakes. The fragility curves presented 
below considered the variability inherited in the 24 different model variations for each frame 
configuration along with 8 different ground motions per set. Various response values were used 
to estimate probability of collapse and a log-normal distribution was fitted to the scattered data 
from the analysis to develop the fragility curves; see Figure 3.15. Two response parameters, 
namely, the drift ratio and the peak top acceleration designated as spectral acceleration (Sa), were 
used to develop the collapse fragility curves under the short- and long-duration earthquakes. The 
results are shown in Figures 3.15 and 3.16, respectively. 

As shown in Figures 3.15 and 3.16, the long-duration set leads to a higher probability of 
exceedance or collapse for a given IM. For single braced frames, the difference in the median 
fragility is about 45% of the drift capacity at failure, i.e., a reduction from 4% drift capacity to 
only 2.1% due to longer duration earthquakes. In contrast, about a 12% and 8% difference in the 
median spectral acceleration fragility can be observed in Figure 3.16 for the single- and double-
braced frames, respectively. In the later, about a 20% difference in median fragility was found 
between the short- and long-duration cases. Overall, these trends agree to some extent as that 
reported in previous studies (e.g., Raghunandan et al. [2015] and Chandramohan et al. [2016a, 
b]). For instance, Chandramohan et al. [2016a, b] reported that the median displacement collapse 
capacity change by about 29% when longer duration earthquakes are applied to modern steel 
moment frames. 
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(a) (b) 

Figure 3.15 (a) Typical procedure for developing fragility curve: and (b) 
comparison of developed collapse fragility curves for single-braced 
frame under short- and long-duration ground motions. 

 

Figure 3.16 Developed fragility curves using spectral accelerations (Sa) for 
single- and double-braced frames under short and long-duration 
ground motions. 
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4 Experimental Program Development 

This chapter presents the details of developing the shake table experimental program. A brief 
discussion on the current design practices and current code provisions as they apply to SCBFs as 
set forth by the American Institute of Steel Construction is presented first. Next, the design 
process used to design the three specimens is presented. Then, a discussion of the fabrication and 
material properties of the three identical test specimens follows. The experimental shake table 
test setup, instrumentation methods, and the ground motions used for the tests are also presented 
in details. 

4.1 PROTOTYPE AND SPECIMEN 

Three identical SCBFs were considered for the experimental program conducted in this study. 
The test specimens were adopted from a prototype building from the International Building 
Code’s Structural/Seismic Design Manual [2006]. The building’s footprint is 160 ft  120 ft. 
Bracing is supplied on the four sides of the building. Figure 4.1 shows a 3D view of the building, 
with the general plan illustrated in Figure 4.2. The bracing orientation is shown in Figure 4.3. 
The basement panel was chosen to determine the design forces and configuration for the test 
specimens. According to the shake table dimensions available at University of Nevada, Reno, 
and the height of the mass rig attached to the specimen, a geometric scale of 1/2 was used to 
determine design forces. The test specimens followed the simple laws of similitude [Lu et al. 
2008]; the main similitude scale factors are presented in Table 4.1. Figure 4.4 shows the final 
design specimen with all the dimensions and members used, with the details of the design of 
each member or connection provided in next two sections. Readers are also referred to Appendix 
A for the shop drawings and design details. 
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Figure 4.1 A three-dimensional view of the prototype building used to 
determine the test specimens design forces. 

 

Figure 4.2 Plan view of the prototype building. 
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Table 4.1 Similitude scale factors used for the conducted shake table tests 
(after Lu et al. [2008]). 

Parameter Relationship Model/prototype 

Length (L) SL ½ 

Young’s modulus (E) SE 1.0 

Stress (σ) Sσ = SE 1.0 

Strain (ε) Sε = Sσ / SE 1.0 

Density (ρ) Sρ = Sσ / SL 2.0 

Force (F) SF = SL
2.Sσ ¼ 

Mass (m) Sm = Sρ . SL
3 ¼ 

Stiffness (k) Sk = SE . SL ½ 

Time (t) and period (T) St = (Sm / Sk)
1/2 0.707 

Displacement (d) Sd = SL ½ 

Velocity (v) Sv = SL / St 0.707 

Acceleration (a) Sa 1.0 

4.2 DESIGN PHILOSOPHY 

The specimens were designed carefully to be consistent and representative of current practice. 
Sources used during the design of the test specimens included current codes, the SAC model 
building [1997], and technical consultation with local consulting firms. The final design was 
based on testing constraints. The codes and design recommendations used include the following: 
AISC LRFD Manual [2010b], AISC LRFD Seismic Provisions for Structural Steel Buildings, 
and Steel TIPS [2016]. A special feature of SCBFs is the gusset plate connection. Several 
methods are discussed herein for designing gusset plate connections. The widely used Uniform 
Force Method (UFM) was chosen for use in this study based on input from local design firms. 

4.3 DESIGN CALCULATIONS 

4.3.1 General 

Specimens were designed using AISC LRFD (2010b) in conjunction with LRFD seismic 
specifications. The prototype building used for determining the specimen forces was designed 
for a location in Seattle, Washington, using Seismic Design Category D with soil Site Class C. 
The building was designed to meet the ASCE-7 design spectrum. A response modification factor 
equals to 6 was used in the design. The calculated period was found to be 0.12 sec. 

The design loads and calculations were based on a full-scale prototype, and then scaling 
factors were applied to obtain the corresponding design forces values for the scaled specimen. 
The gravity load used was 76 psf on the typical floor and 74 psf for the roof. Loads from the 
exterior curtain wall and steel studs were taken as 20 psf, with an exterior wall height of 13 ft. 
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The total mass on floor was approximately 1605 kips and was distributed along two sides of 
bracing; each specimen had three vertical bracing systems. The scaled mass on each frame was 
approximately 67 kips. To simulate this mass for the shake table test, two concrete blocks (each 
weighing approximately 20 kips) were added to the mass rig frame, which weighs about 60 kips. 
The additional mass along with the specimen weight and the rigid link that connects the mass rig 
to the specimen all together provide a very close equivalent to the required 67 kips. 

The AISC Seismic Design Provisions [2002] require that the connection be designed for 
the plastic capacity of the brace. Therefore, the exact design checks for the connection are 
dependent on the members and connection types chosen. Therefore, in terms of this project, a 
brief discussion of the final frame design is presented below. The members chosen for the test 
specimens were: W1846 for the beam, W1230 for the columns, HSS 2.52.53/16 for the 
brace and a tapered gusset plate. These sizes were selected after designing the specimen. The 
selection of the brace was mainly controlled by considering buckling capacity, and then the 
selected brace size was checked for tension force. 

4.3.2 Brace Selection 

Member selection must be in accordance with AISC seismic provisions. The brace width-to-
thickness (b/t) ratio selected was 11.4, which satisfied the current limit for SCBFs. This limits 
the b/t ratio for rectangular HSS sections subjected to axial compression to: 

0.64 x

y

Eb

t F
  (4.1) 

Note: the braces size used in this study might not be representative of full-scale braces 
typically used in actual buildings. While a brace size is known to affect its fatigue and fracture 
properties, it is believed that this limitation would not affect the overall objective of the study, 
i.e., the relative comparison of the tested SCBFs and small-scale brace behavior under short and 
long-duration ground motions. 

4.3.3 Beam Design 

The axial load capacity of the beam was designed considering the maximum axial load that could 
be delivered to the beams by the rigid link. Consistent with the AISC, the beam design 
considered a vertical unbalanced load from the braces, and a beam with the dimensions W1846 
was selected. The beam flanges satisfied current seismic requirements, but the beam web did not 
satisfy current height-to-thickness requirements for highly ductile sections. 

4.3.3.1 Beam Strength 

Due to the concentration of force applied from the gusset plate to the beam and column web, 
checks had to be made to ensure adequate strength of the web and flange. The design checks 
included: web local yielding and web crippling. In addition, flange local bending was checked. 
All of these checks are done in accordance with AISC [2002] and were found to be adequate.  
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4.3.4 Column Design 

The columns were designed following the same basic load assumptions as before. Additional 
gravity loads attributed to the columns were considered for the design but were not applied 
during testing. Similar to the beam, although the column section satisfies seismic design 
requirements, the web and flanges did not satisfy current width-to-thickness requirements for 
highly ductile sections. The design was meant to represent real projects and construction 
limitations. As the brace had to be connected to a gusset plate, which in turn would be connected 
to the column flange and base plate, a large gusset plate footprint was required on the base plate. 
This resulted in a large base plate area with a large moment arm between the anchor bolts that 
was impractical for consideration as a hinged base connection. Therefore, this connection was 
designed to be fixed, which resulted in attracting around 20% of the horizontal load. These loads 
were taken in to account while designing the columns. 

4.3.4.1 Column Strength 

Due to the concentration of force applied from the actuator to the column flange, checks were 
made to ensure adequate strength of the web and flange. The web strength was found to be 
adequate against web yielding; however, columns flanges needed strengthening plates when the 
design force reflected the 160 kips actuator force capacity. Strengthening plates, 3/16 in. thick, 
were used on both sides 

4.3.4.2 Column–Base Plate Connection 

The base connection was designed to carry the yield moment of the column, as the columns were 
not expected to exceed the elastic range. The thickness of the gusset plate was designed based on 
the overall dimensions of the plate and distribution of the anchor bolts. Anchor bolts were not 
allowed to carry any base shear as the shake table’s limitations do not allow any lateral force on 
the table. This required having both base plates interact to increase the friction area. This was 
achieved by placing angles in the middle between the gusset plates to engage both base plates so 
that they would be able to carry all the base shear by friction rather by anchors. 

4.3.5 Brace-to-Gusset Plate Connection 

The next step in designing the system was to design the brace-to-gusset plate joint. The brace 
was connected directly to the gusset plate by fillet welds with a slotted HSS tubular brace; see 
Figure 4.5. The weld size and connection length were determined using AISC [2001]. The design 
force used for the welds was 1.1RyFy, which is the expected plastic capacity of the brace. 

As a final design consideration for this connection, fracture of the net section of the brace 
was also checked because the brace was slotted and only connected to the gusset plate on two 
sides of the brace. Fracture of the net section was checked using AISC [2001], and the capacity 
of the net section was checked against the yield on gross section of the brace increased by 10% 
in accordance with AISC Seismic Provisions [2002]. A thickener plate was added to reinforce 
the net section of the brace at the slot. In this study, the plates were welded to the unslotted 
surfaces of the brace using fillet welds. 
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Figure 4.5 Brace-to-gusset-plate connection. 

4.3.6 Gusset-Plate Design 

The first step in designing the gusset plate was to determine its thickness. Four checks were 
necessary in determining the plate thickness: block shear, yielding of the Whitmore section, 
fracture of the Whitmore section, and buckling. The values of Agt and Ant for a fillet welded 
tubular section are equal to the width of the brace multiplied by the thickness of the plate. These 
areas are illustrated in Figure 4.6. 

Yielding and fracture of the Whitmore section were computed using the concept of the 
“Whitmore width.”. The Whitmore width is an assumed width over which the load can be treated 
as a uniform stress. The Whitmore width (Bw) was found by extending lines at 30 relative to the 
brace from the beginning of the brace -to-gusset plate connection to the end of the connection: 
see Figure 4.6. 

  

(a) (b) 

Figure 4.6 (a) Illustration of block shear, and (b) Whitmore width for gusset 
plates. 
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A report by Cheng et al. [1994] reported that the Modified Thornton method was the most 
accurate method in predicting the buckling capacity of rectangular gusset  plates subjected to 
axial loading. Thus, this method was used herein in checking the buckling capacity of the gusset 
plates. The buckling capacity was calculated using the following expression in Equation (4.2): 

cr gw crP A F  (4.2) 

where crF  is the critical based upon the gusset plate slenderness as follows in Equations (4.3)–

(4.5): 
2

For 1.5 0.658cr yF F    (4.3) 

2

0.877
For 1.5 cr yF F


   (4.4) 

where 

12

29,000
y

p

FKl

t



  (4.5) 

In Equation (4.5), several values of K have been recommended by various research 
studies, ranging from 0.5 to 1.2. The value l is found as either the average of l1, l2, and l3, or is 
the maximum perpendicular distance from the Whitmore section to the interior corner of the 
gusset plate. 

4.3.7 Gusset Plate-to-Frame Joint Design 

4.3.7.1 Interface Forces 

Two design methods for finding the interface forces were considered. According to the UFM, the 
brace force is recharacterized into vertical and horizontal components at the beam and column 
interface. The forces are computed using equilibrium equations as found in AISC [2001]. The 
equations are provided below [Equations (4.6–4.10)] and illustrated in Figure 4.7. 

uc uV P
r


  (4.6) 

c
uc u

e
H P

r
  (4.7) 

b
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r
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
  (4.9) 

2 2( ) ( )c br e e      (4.10) 
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The second method, commonly referred to as the “KISS” method, involves 
recharacterizing the brace forces into a horizontal force at the beam and a vertical force at the 
column. The forces and moments found using this method are illustrated in Figure 4.7. 

  

(a) (b) 

Figure 4.7 Recharacterized forces: (a) UFM method and (b) KISS method. 

4.3.7.2 Gusset-to-Frame Weld Design 

One method recommended in AISC [2001] is to size the welds using the vertical and horizontal 
interface forces in conjunction with AISC’s Table 8-5. First, resultant forces, Puc and Pub, are 
found using the two components of force and for the column forces are as follows [Equation 
(4.11)]: 

2 2( ) ( )u uc ucP H V   (4.11) 

The angle at which this resultant force acts is found using Equation (4.12): 

1tan uc

uc

H

V
   
  

 
 (4.12) 

The minimum weld size is then calculated using the provided equation in the table, which is: 

min
1

1.4 uP
D

CC l
  (4.13) 

where Dmin  is the number of sixteenths-of-an-inch in the fillet weld size; l  is the length of the 
joint; and C1 is a tabulated coefficient. The 40% increase of the design force Pu is recommended 
in AISC [2001] Section 13. The increase of the force is to ensure adequate force redistribution in 
the weld group. 

Pu

Huc

Vub
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Mub
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4.3.8 Beam-to-Column (Simple Shear) 

4.3.8.1 Initial Design 

The beam-to-column connection was designed as a simple shear connection, which is common 
design practice. The shear force used to design the connection was related to the plastic moment 
capacity of the beam. This is not specified by AISC, but is commonly done by local design firms. 
The shear force was found using Equation (4.14): 

1.5 1.5p y b

b b

M F Z
V

l l
   (4.14) 

where the length l is the length between both shear connections. Then, using this shear force, the 
initial plate size and bolt size is found. 

4.3.8.2 Bolt Strength 

The strength of the bolts was checked for bolts subject to single shear. Then, using AISC [2001] 
Table 7-10 the bolt strength can be found for a single bolt. All bolts for this study were designed 
as A325 threads. 

4.3.8.3 Bearing Strength 

Bearing strength of the plate and beam web was checked next. For this check, deformation at the 
bolt hole was considered. In addition to this, the shear plate was assumed to be A572 steel. 

4.3.8.4 Shear Strength of the Plate 

For this check, the net area of the plate was taken as the gross area of the plate in the direction of 
shearing minus the area of the bolt holes. Next, the shear yielding strength of the plate was 
checked using Equation (4.15): 

2
(0.6)

3n p yR t lF     
 

 (4.15) 

In this equation, the value  is 0.75 according to AISC [2001]. The quantity two/thirds is the 
result of assuming a parabolic shear stress distribution as shown in Figure 4.8. Assuming this 
distribution, Equations (4.16) and (4.17) were used to express the stress. The final shear check of 
the plate was to check the block shear rupture strength, which was done in accordance with 
AISC [2001] Section J4.3. 

ave

3
0.6

2 yF   (4.16) 

ave

2
0.6

3 yF    
 

 (4.17) 
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Figure 4.8 Shear tab plate shear distribution. 

4.3.8.5 Plate Bending 

The bending capacity of the plate was checked next. For this check, the moment capacity of the 
plate, based on the section modulus of the plate, was checked against the applied moment caused 
by the applied shear force at a distance, e, away from the column face. Therefore, the check was 
done according to Equations (4.18) and (4.19) as follows: 

( )nR V e   (4.18) 

where 
2

6
p p

n y

t l
R F  (4.19) 

In this equation,  is 0.9, tp is the thickness of the plate, and l is the height of the plate. 

4.3.8.6 Shear Plate Welds 

As a final check, the capacities of the fillet welds that connect the shear plate to the column face 
were checked. 

4.4 CONSTRUCTION OF SPECIMENS 

The construction of the specimens was done by a fabricator in the Reno–Tahoe area, YAJIMA 
USA, by a group of experienced steel construction workers. The frames were constructed in 
several steps as follows: (1) cut beams, column and brace to length; (2) complete weld 
preparations; (3) complete beam and column connections; (4) connect column stiffener plates; 
(5) cut gusset plates to appropriate dimensions; (6) weld gusset plates to frame; (7) weld the 
brace to gusset plates; and (8) weld the brace thickener plates. 

As mentioned, each SCBF component was first cut to the needed size. Beams and 
columns were flame cut, and the cut surfaces were ground to length. The gusset plates were 
flame cut to size, and the edges were ground smooth using an angle grinder. The brace was cut to 
length using a band saw. In order to slot the brace, a hole was first drilled at the end of the slot; 
see Figure 4.9. Brace slots were then flame cut slightly oversized with a small taper in order to 
compensate for local shrinkage due to heat effects and to simplify placement of the brace. 
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4.5 MATERIAL PROPERTIES 

Each specimen contained both welded and bolted connections. All welded connections were 
made using 1/16 in. dual shield 7100 Ultra-E71T-9 Flux Cored ESAB weld wire. A325 3/4 in.-
diameter bolts were used to connect framing elements to each other. All bolted connections were 
pre-tensioned connections (in accordance with RCSC Specifications), with threads excluded for 
the shear plane. The grade of steel used for the specimen elements is shown in Table 4.2. 
Theoretical values of Fy and Fu were used for design calculations according to the grade of steel. 
Theoretical values for member geometries were also used in calculations for the design of the 
specimens. 

Table 4.2 Steel grades. 

Element Steel grade 

Beams A992 

Columns A992 

Brace A500-B 

Plates A572 

4.6 TEST SETUP 

The three SCBFs were tested on one of the biaxial shake tables at the Earthquake Engineering 
Laboratory at UNR. Figure 4.11 shows schematic details of the complete shake table test setup, 
and Figures 4.12 and 4.13 show the actual setup. In order to represent the inertial mass, each 
specimen was attached laterally with the mass rig system. This inertial mass system was 
designed by Laplace et al. [1999]. The mass rig was connected to the column flange using a rigid 
link to apply the lateral force to the specimen. A special link was designed and fabricated to 
connect the mass rig to the column flange. Four threaded high-strength rods were used to connect 
the special link with the mass rig. The total inertial mass was 60 kips, which was represented by 
two concrete blocks—weighing approximately 20 kips each—were added to the mass rig (which 
weighs about 20 kips). 

An important aspect of the test setup was the out-of-plane restraining system. All the 
tested frames had fixed-base connections in two directions, but additional safety frames were 
added to prevent any out-of-plane movement or vibrations. The out-of-plane restraints were 
developed to simulate the typical out-of-plane restraints provided by additional framing 
components but still provide a smooth and almost friction-free resistance to in-plane movement 
of the frames during the tests. The restraining system consisted of two columns, each was 
aligned with the main frame column, that were in turn connected to the main frame column with 
two pipe sections that connected the flanges at two different levels. In order to allow the 
translation in the excitation direction and prevent the out-of-plane translation, a special joint was 
added. The details of the restraining system are illustrated in Figure 4.14. This system was 
chosen, because it is economical and allowed for unobstructed in-plane translation of the frame. 
See Appendix C for several photographs of the different setup stages and close-ups of major 
instrumentation. 
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4.7 INSTRUMENTATION 

Multiple measurement techniques were used for each specimen during the tests. The specimens 
were instrumented to measure forces, displacements, strains, and accelerations. In addition, high-
definition video cameras were used to capture damage propagation. A summary of the 
instrumentation and layout is presented next. 

4.7.1 Load, Displacement, and Acceleration Measurement 

A load cell was inserted within the lateral rigid link connecting the specimen with the mass rig 
and used to measure total force applied to the specimen during testing. Measuring the total force 
applied to the specimen was important and used for capacity estimation. External lateral 
displacement of the frame was measured using one string potentiometer connected to the top of 
the frame at the north column. Each brace had two string potentiometers attached mid-span to 
measure both in-plane and out-of-plane displacements, and buckling during testing. In addition, a 
string potentiometer was attached along each brace to measure the amount of elongation 
occurring due to buckling. To capture the deformation of the bottom gusset plates, three linear 
variable displacement transducers (LVDTs) were attached to the gusset plates. Figure 4.15 shows 
the orientation and layout of all of the string potentiometers and LVDTs. 

Eight accelerometers were used to measure the accelerations for each specimen and 
distributed as follows: two were installed on the column top, two were installed on the mid-
height of the column, one was mounted on the beam mid-span, two were mounted on the two 
base plates, and one was mounted on the table; see Figure 4.15. In addition, all shake table 
actuators provide force, displacement, and acceleration feedback, which were used to compare 
measurements obtained from the other instrumentation used in all tests. 

 

Figure 4.15 String Pots, LVDTs layout, and location of accelerometers.. 
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4.7.2 Strain Measurement 

Several strain gages were used for each specimen at various locations. All strain gages used in 
this study were manufactured by Tokyo Sokki Kenkyujo Co. Ltd. Strain was measured only in 
the braces and gusset plates, using YEFLA-5 gauges. All gages had a nominal gauge factor of 
2.14 with a 6-mm gauge length. Strain gages with high elongation were used in the HSS brace 
elements. Several rosette strain gages were also used in the gusset plates to measure strains in 
two directions. Figure 4.16 shows the layout of the different strain gages for each specimen. 

 

Figure 4.16 Strain gages locations and distribution for each test specimen. 

4.7.3 Cameras 

During the tests, cameras were used to capture damage of the specimens. Two high-definition 
cameras were installed on the east and west side of the specimens, and go-pro cameras were used 
near the bottom gusset plates to capture any cracking or yielding that may occur. Note: target-
tracking digital image correlation (DIC) was applied for the tested SCBFs, which explains the 
black and white targets previously shown in Figures 4.12 and 4.13. The DIC work was part of 
another study that aimed at verifying DIC techniques for dynamic response monitoring and 
structural system identification [Ngeljaratan and Moustafa 2017; 2018]. Thus, results from DIC 
are not part of the scope of this study and are not shown in this report. However, the distribution 
of DIC targets and coordinate identification for one of the SCBFs is shown in Figure 4.17 as an 
example for clarification; more details are provided in Ngeljaratan and Moustafa [2017; 2018]. 
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seismic performance of SCBFs under long-duration subduction earthquakes. Both long-duration 
ground motions were adopted from the 2011 Tohoku, Japan, earthquake.  

For the two spectrally-matched ground motions, an original record from Tohoku was 
used for the long-duration case and a short-duration record from the PEER NGA West 2 
database [PEER 2011] was selected and matched in two steps. First, the online PEER NGA 
matching tool was used to get a close matching record to the selected long-duration record. Then, 
SeismoMatch [2016] was used to alter the frequency content of the short-duration record such 
that the response spectrum would closely match the one for the long-duration record such that 
the response spectrum would closely match the one for the long-duration record within the 
period ranges of interest: 0.05 to 0.6 sec, which well encompassed the specimen’s fundamental 
period. The actual records and characteristics are listed in Table 4.3. Figure 4.18 shows the 
acceleration histories of the short- and long-duration ground motions used for testing after time 
scaling for similitude; see Table 4.1. Figure 4.19 shows the response spectra of the original and 
matched short-duration record as compared to that of the long-duration record. 

For the third test, a second long-duration Tohoku ground motion was used, but the record 
was selected such that the velocity and/or displacement pulses—if they existed—were shifted 
from the peak acceleration or pulse. There was not a specific objective for such a selection other 
than to demonstrate the effects of another long-duration record with different characteristics, and 
to see whether the shifted displacement pulse affected the low-cycle fatigue damage 
accumulation. Figure 4.20 shows the acceleration, velocity, and displacement time histories of 
the third ground motion where the anticipated shift in the pulses or simply peak values occurred. 
A final note is that the two long-duration records were handpicked using several trials and 
extensive pretest analysis to follow these simple criteria: (1) to determine the feasibility of 
adopting a reasonably scaled short-duration ground motion as a means of comparison for this 
study, and (2) to maintain the expected force and acceleration demands all the way through brace 
rupture within the allowable shake table and actuators limits, i.e., 160 kips and 4.0g. 

Table 4.3  Characteristics of the selected ground motions for all three test 
specimens. 

 

Test ID Earthquake event 
Station 
name 

PGA (g) 
Significant 

duration (sec), 
scaled 

Notes 

S1 
Japan, 

Tohoku 2011 
YMTH04 NS2 0.57 70 

Spectrally 
matched 

S2 
USA, 

San Fernando 1971 
Santa Anita 

Dam 
0.75 7.8 

S3 
Japan, 

Tohoku2011 
IWT005 NS 0.48 64 

Shifted 
pulses 
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Figure 4.18 Acceleration time histories of the long- and modified short-duration 
records. 

 

Figure 4.19 Acceleration response spectra of the original and matched short-
duration record versus the long-duration record. 
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5 Experimental Results and Discussion 

This chapter summarizes the results of the shake table tests of the three specimens. The 
progression of testing and the damage sequence is documented. The global behavior of 
Specimens S1, S2, and S3, in terms of lateral forces, displacements, stiffness, and changes in 
period is presented first. Then, the localized behavior of the braces in terms of strains, and 
damage accumulation is discussed. 

5.1 GLOBAL RESPONSE 

5.1.1 Test Progression and Mode of Failure 

The exact number of runs and scales until brace rupture for each specimen tested was difficult to 
determine before the tests. In addition, every ground-motion test that occurred after the onset of 
buckling would directly contribute to the fatigue life and, thus, needed to be properly assessed. 
Optimally, it was desired to achieve brace buckling around the original 100% ground motion 
level so that the following larger scale runs would have meaningful contribution to the fatigue 
life, and, in turn, rupture could be achieved within few number of runs. One challenge associated 
with the fixed base of the columns of the frames was the distribution of the lateral dynamic 
forces between the columns and braces. Thus, it was not easy to determine what percentage of 
the force should be allocated to the braces to calculate buckling loads for estimating the best 
ground-motion scale. Accordingly, a small scale of the long-duration ground motion was 
conducted first. Using the strain gages attached to each brace at three different sections, the force 
in the braces was estimated and related to the total lateral force measured in the rigid link. Next, 
the equivalent total link force was back calculated and related to the original ground motion to 
find the intensity scale. This procedure was adopted mainly for the first long-duration ground 
motion, and similar scale factors were used for other tests for direct comparison purposes.  

For the purpose of the overall discussion of the test results, the first run reported herein is 
the first run to cause inelastic buckling. It was assumed that the contribution from the few small-
scale trials were conducted primarily to properly tune the shake table and adjust the scale; 
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5.1.4 Stiffness Degradation/Period Elongation 

As the tests progressed and the braces of a given specimen buckled, the overall frame’s stiffness 
degradation was observed, with a changing contribution from a buckled brace depending on 
whether it was in tension or compression. Typically, SCBFs suffer major stiffness loss with the 
first brace(s) buckling, then after complete brace rupture, the frame loses most of the lateral 
stiffness, given that all other components, e.g., columns, remain elastic. 

Stiffness degradation can be quantified in two ways. The first method is indirect by 
capturing the change in the specimens’ fundamental period as testing progress. A white noise is 
applied after each seismic test and the recorded accelerations are used to calculate the frequency 
response function (FRF). The FRF is a frequency-based measurement function used to identify 
the resonant frequencies of a physical structure by relating an output acceleration to the input; 
FRF is sometimes referred to “transfer function.” Figure 5.15 shows the FRF for the three 
specimens from three different white noise tests: an initial test before any seismic runs (Run #1), 
a test after both braces buckled, and a test after rupture was observed. The reduction in the 
detected fundamental frequency, illustrated in Figure 5.15, means period elongation and reflects 
stiffness reduction or degradation. The figure shows a similarity in the trend and values for the 
three specimens. 

Another way of presenting the stiffness degradation is to estimate the stiffness from the 
slope of best fitted linear regression from each seismic test, which is then plotted against the 
corresponding measured period; see Figure 5.16. The figure shows the stiffness degradation for 
all three specimens and confirms that the identical frames had very comparable stiffness 
estimates and vibration periods, which are mainly governed by brace buckling and rupture, and 
are independent from the earthquake duration. This is another key observation: it suggests that 
accurate numerical models for SCBFs will need to properly capture the buckling and damage 
accumulation through fracture rather than considering macro-models or hysteretic degradation 
models. 
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5.1.5 Summary of Key Test Results 

A comprehensive summary of key test results is provided in Table 5.1 for all runs for all three 
specimens. These results can be used in future studies to validate numerical models to properly 
capture the effect of earthquake duration. Values for the peak top accelerations, peak force 
demand in each run, frame displacements, brace out-of-plane buckling, and the residual 
displacements are presented. The force and displacement capacities for each specimen are 
highlighted in the table as well. It is shown that force capacity is approximately the same for all 
three specimens. Because it is dictated mainly by the inelastic brace buckling, it is insensitive to 
earthquake duration; since the displacement capacity is mainly dictated by the brace rupture, i.e., 
dictated by the low-cycle fatigue, it is sensitive to earthquake duration.  
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Table 5.1 Summary of key test results for all runs and specimens. 

Run 
# 

PGA 
(g) 

Global Response Brace 

Notes Peak 
acc. 
(g) 

Peak 
force 
(kip) 

Top 
Disp. 
(in) 

North brace 
(in.) 

South brace 
(in.) 

Peak Resid. Peak Resid. 
SPECIMEN 1 

1 0.91 2.58 140 0.51 2.80 0.04 --- --- 
Both braces buckled, SB 

wire pot. cut 
2 0.97 2.65 141 0.60 3.90 -0.46 4.68 -0.69 
3 1.08 2.74 149 0.70 3.44 0.50 5.77 0.37 
4 1.08 2.58 147 0.73 3.18 0.20 4.67 0.24 
5 1.08 2.49 144 0.73 3.34 -0.12 --- --- SB wire pot. Cut 
6 1.11 2.45 142 0.73 3.31 0.11 --- --- SB wire pot. Cut 

7 1.14 2.35 138 0.75 --- --- --- --- 
Both braces complete 

rupture, NB & SB wire pt. 
cut 

SPECIMEN 2 

1 1.28 2.53 139 0.43 1.51 -0.17 1.31 -0.17 Both Braces Buckled 
2 1.35 2.69 152 0.53 1.49 -0.33 1.92 -0.32 
3 1.28 2.64 141 0.53 2.05 -0.02 1.77 -0.03 
4 1.35 2.63 145 0.55 3.25 -0.35 2.39 -0.18 
5 1.35 2.48 141 0.56 2.22 -0.26 1.91 -0.15 
6 1.35 2.58 140 0.57 1.81 -0.09 4.08 1.44 
7 1.43 2.47 140 0.58 1.95 -0.01 2.65 0.22 
8 1.46 2.44 140 0.62 1.85 -0.04 3.39 0.20 
9 1.39 2.43 138 0.64 2.28 -0.05 4.68 0.14 

10 1.50 2.39 138 0.66 2.18 -0.16 4.65 -0.10 
11 1.58 2.43 142 0.68 1.92 -0.03 6.22 -0.17 
12 1.65 2.45 144 0.71 2.24 -0.09 4.63 -0.07 
13 1.69 2.39 145 0.72 2.10 -0.05 4.41 -0.43 

14 1.69 2.22 136 0.75 2.58 -0.10 6.81 -0.64 
South Brace Complete 

Rupture 
15 1.65 1.82 103 0.90 3.07 -0.56 3.11 0.07 

16 1.65 1.88 104 1.04 2.82 0.69 5.44 0.25 
North Brace Complete 

Rupture 

SPECIMEN 3 

1 0.91 2.22 126 0.29 0.58 -0.13 0.32 -0.01 
2 1.06 2.85 129 0.37 1.23 -0.22 0.49 0.06 Both Braces Buckled 
3 1.18 2.44 133 0.43 1.75 -0.24 1.55 0.15  
4 1.54 2.81 144 0.56 1.95 -0.39 2.63 0.42 
5 1.68 2.56 144 0.71 2.10 -0.80 3.87 0.25 

6 1.80 2.89 166 1.26 2.24 0.07 5.19 1.85 
Table Interlock, * values 

not representative of 
frame 

7 1.06 1.58 94 0.61 1.71 -0.06 1.81 -0.06 

8 1.18 1.89 121 0.78 2.13 -0.03 2.37 0.00 
Both Braces Complete 

rupture 
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1 north bracce strains at ssection A. 
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1 north bracce strains at ssection B. 
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1 north bracce strains at ssection C. 
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1 south bracce strains at section A. 
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1 south bracce strains at section B. 
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1 south bracce strains at section C. 

 



 

 

 

 

Fiigure 5.34 

 

Specimen 

82 

2 north bracce strains at ssection A. 
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2 north bracce strains at ssection B. 
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2 north bracce strains at ssection C. 
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2 south bracce strains at section A. 
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2 south bracce strains at section B. 

 



 

 

 

 

Fiigure 5.39 
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2 south bracce strains at section C. 
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3 north bracce strains at ssection A. 
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3 north bracce strains at ssection B. 
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3 north bracce strains at ssection C. 
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3 south bracce strains at section A. 



 

 

 

 

Fiigure 5.44 

 

Specimen 3

92 

3 south bracce strains at section B. 
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3 south bracce strains at section C. 
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As shown in Figures 5.28–5.45, the strain values at sections A and C, which were located 
at one-third and two-thirds of the brace length, were not significantly large or significantly 
exceeded the yield strains. Section B was the location where all the braces experienced the 
largest strains. In some cases; the brace ruptured exactly at a location of a strain gage where the 
strain gages reported extremely high values of strains indicating the cut and loss of the gage. 
Note: in Figures 5.28 –5.45, when a strain gage was cut or lost during one of the test runs, all the 
data from that point onwards was represented by a constant strain value for the last recorded 
strain value before the gage was cut. 

All the strains measured during S1 and S2 tests were used to populate a rainflow scheme 
as one way of interpreting fatigue life as it relates to the earthquake duration effects. The number 
of cycles corresponding to different strain ranges was calculated for the two specimens tested 
under the spectrally matched short- and long-duration earthquakes; see Figure 5.46. These 
numbers were counted from the accumulated strain from all runs until failure and using different 
strain ranges that exceeded the yield strain value. Figure 5.46 illustrates that the long-duration 
runs generated significantly larger number of strain cycles than the short-duration runs, mainly in 
the low strain ranges. This explains why failure occurred at a lower ground-motion scale for the 
long-duration record relative to the short-duration record: 200% versus 225%. In other words, 
the lower displacement capacity observed in the long-duration test can be interpreted as 
premature failure. In a case of a multi-story SCBR, this can be alarming as the damaging effect 
of the large number of low-range strain cycles associated with longer duration earthquakes could 
induce brace rupture at lower interstory drifts than what would be anticipated from the seismic 
design or performance-based assessment. 

For an alternative way of assessing fatigue life and damage accumulation, Figure 5.47 
compares the estimated damage index (DI) as it built up with the different strain ranges for S1 
and S2. The DI was calculated by running each strain range with its equivalent number of cycles, 
as shown in Figure 5.46, through the Coffin–Manson relationship, at which point Miner’s rule is 
applied to reach failure, i.e., DI = 1. As explained earlier, Coffin–Manson requires input for m 
and 0, which was estimated based on the empirical values obtained from calibrating the 
OpenSees numerical models used in Chapter 3 in the sensitivity analysis against the respective 
experimental results from the UW tests. The goal here was not to validate whether these values 
were correct or valid for the shake table tests as well, but to use same values for the purpose of 
comparison between S1 and S2. The figure confirms that S1 accumulated more damage (a higher 
DI) at the lower strain ranges than S2; Specimen 1 reached full failure (DI =1) earlier than S2. 
The difference in the strain range at DI =1 between S1 and S2 confirms again that long-duration 
earthquakes can cause failure before the full anticipated displacement or strain capacity from a 
typical short-duration earthquake is reached. In summary, the above results show, preliminarily, 
that it is not a matter of how severe the ground motion is in terms of ground accelerations; it is 
the accumulated “low-range” strain cycles with longer duration earthquakes that could adversely 
affect the seismic performance of SCBFs. 



 

95 

 

Figure 5.46 Number of cycles for different strain ranges as accumulated from 
all S1 and S2 runs until failure. 

.  

Figure 5.47 Representation of how outermost brace fiber accumulated damage 
from different strain ranges for all S1 and S2 runs until failure. 

5.2.3 Gusset Plates Strain Data 

Gusset plates play an important role in the design criteria of SCBFs as they ensure system 
ductility through an extreme event when the braces experience inelastic phases and act as the 
fuse for the structural system. Elastic deformations of upper and lower gusset plates were 
recorded during all shake table tests. Figures 5.48 and 5.49 show the strain data recorded for the 
upper and two lower gusset plates in Specimen S1 at the various locations indicated in each 
figure. Figures 4.50 and 4.51 and Figures 4.52 and 4.53 show same strain data but for Specimens 
S2 and S3, respectively. The figures and all the recorded strain data confirm that all gusset plates 
remained elastic during all the tests, meeting AISC design criteria; only the braces acted as fuse 
elements in the system. 
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6 Post-Test Analysis 

6.1 OVERVIEW 

Using results from the three 1/2-scale tested SCBFs, detailed finite-element models were 
calibrated as part of the post-test analysis phase and used for extensive nonlinear time history 
analysis. The purpose of this chapter is to use the calibrated models to generate larger number of 
data points on ground-motion duration effects in order to generalize and solidify the conclusions 
regarding the ground-motion duration effect on the structural response of SBBFs. The first part 
of the chapter presents the numerical model calibration for the tested specimens using OpenSees. 
Then, IDA was conducted using large number of short and long-duration ground motions to 
provide more insight on how earthquake duration effects could be addressed in future designs. 
For this purpose, results from the IDA were used to develop seismic fragility curves for the 
tested SCBFs to show the probability of collapse from the two suites of ground motions. This 
chapter focuses only on the tested SCBFs, where low-cycle fatigue modeling, those parameters 
that had been determined to affect analysis results, and seismic response of SCBFs were 
calibrated to gain confidence in the model’s validity. 

6.2 NUMERICAL MODEL CALIBRATION 

To develop numerical models in OpenSees, the same details and modeling procedures, and 
techniques as discussed in Chapter 3 were followed. Figure 6.1 shows all the modeling details 
and the locations of the rigid elements used to model the one-story one-bay SCBF with a 
chevron-brace configuration. The figure shows all the spring locations and the spring materials 
used for modeling in OpenSees. Twenty nonlinear force-based elements were used to model the 
braces. Fiber sections were implemented for all the nonlinear frame elements in the model. 
While all the geometric modeling assumptions, e.g., for gusset plates, were previously verified 
against the UW experimental program (see Chapter 3), the new calibrations were done here 
because of the concern with the fatigue parameters m and 0. Comparisons of the calibrated 
models results with the respective experimental data for all three specimens is presented next. 
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Figure 6.1 Schematic representation of the OpenSees numerical model. 

To calibrate the numerical model, several results obtained from the experiments and the 
models were compared, which included: the frame base shear, frame top displacement, frame 
stiffness degradation, and the overall force-drift hysteresis. These results were thought to 
represent both the global and local behavior of the specimen, and capturing such response 
guarantees that the model accurately represents the actual frame behavior. As previously 
mentioned, only the fatigue parameters were varied at this stage of the research to complete the 
calibration process, with most of the selected values based on trial and error. Different values 
from the literature were considered, but none captured the onset of failure, which is known to be 
highly dependent on the fatigue life of the braces. After several iterations that considered all 
three specimens, the values found to best capture the onset of brace rupture correctly based on 
the three shake-table tests were m = -0.5 and 0 = 0.23. Note: these values were consistent for the 
three tests and not based on averaging. 

6.2.1 Specimen S1 

Specimen S1 was subjected to one of the two long-duration ground motions used in the 
experimental program; see Chapter 4. Using the calibrated modeling parameters for low-cycle 
fatigue and other modeling assumptions, the force and displacement histories from the model 
were obtained and compared to the experimental results; see Figures 6.2 and 6.3, respectively. 
The figures also present close up views or zoom-in for a range of data to better show the match 
between the results.  
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available in the literature. The main objective of this section is to investigate the effect of the 
fatigue parameters, i.e., m and 0 previously explained in Chapter 3, on the analysis results. This 
exercise can be mainly used to assess the validity of such fatigue parameters reported in the 
literature (summarized in Table 3.1) to capture dynamic response of SCBFs, especially as it 
relates to earthquake duration. The assessment used results from all three experimentally tested 
specimens. Note: a similar comparative analysis was done as part of the sensitivity analysis 
discussed in Chapter 3. The comparative analysis discussed below was done for the tested 
specimen so that the assessment of the models can be based on the experimental results. 

The previously calibrated model was used again in this part of the study with one 
difference where the m and 0 input values were varied eight times to represent the different 
values reported by other researchers for low-cycle fatigue modeling (Table 3.1). Given that the 
onset of failure and ultimate rupture is mainly attributed to the fatigue capacity of the braces, 
reporting and comparing the onset of failure of the braces using the different fatigue parameters 
was the goal of this analysis. It is important to be reminded that the empirical fatigue parameters 
shown in Table 3.1 were calibrated using mostly individual braces cyclic loading tests, i.e., 
calibration using results when braces were tested as parts of full systems or under realistic 
earthquake loading is missing. In addition, the reported fatigue parameters originally used mostly 
20 finite elements for brace meshing, and allow using finer meshes, except for Lignos and 
Karamanci [2013] who used eight elements. 

The results obtained from this analysis are presented in Figure 6.14–Figure 6.16 which 
show the force-drift backbone curves as obtained for specimens S1, S2, and S3 using a similar 
model with varying fatigue parameters. The figures compares the analysis results to the 
experimental results as well as the numerical results from the fully calibrated model 
demonstrated in Section 6.2 above. As seen in the figures, the different models led to different 
results, which highlights how the fatigue parameters can affect the inferred seismic response of 
SCBFs under different earthquake loading scenarios. Most of the models predicted brace rupture 
at lower drift values. Thus, it is important to note that even though there is large variability in the 
results, yet all the variation is on the conservative side where force or displacement capacities are 
underestimated. 

To properly report the results for the sought assessment of the different models from the 
literature, Table 6.1 provides a summary of the obtained force and drift capacities at brace 
rupture in both loading directions for all different models. The table also provides the difference 
(%) in the analysis results relative to the experimental results for all the three specimens. 
Moreover, the results from comparison against all three tests were used to calculate the absolute 
(no signs) average variation from experiments as presented for force and drift capacities in 
Tables 6.2 and 6.3, respectively. Overall, the values provided by Salawdeh and Goggins [2013] 
can be considered the most relatively accurate in predicting the observed experimental behavior 
with an average variation of 6.8% and 7.3% in force and drift capacity, respectively. On the other 
hand, values reported by Chen and Mahin [2010] seem to give the largest variation from the 
experimental results with an average variation of 15% and 39.83% in force and drift capacity, 
respectively. The tables also quantify the variation in case of the calibrated values obtained from 
trial and error with an average variation of 6.5% and 1.7% in force and drift capacity, 
respectively. 
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Table 6.1 Summary of analysis results for varying low-cycle fatigue model 
parameters (m and ε0) as compared to experimental results. 

Basis for fatigue model 
parameters 

North results 
at rupture 

South 
direction 
(results at 
rupture) 

Difference relative to 
experiments (%) 

North 
direction 

South 
direction 

Force 
(kips) 

Drift 
(%) 

Force 
(kips) 

Drift 
(%) 

Force Drift Force Drift 

Specimen S1 

Experimental 125 0.82 145 0.85 N/A N/A N/A N/A 

Lignos and Karamanci [2013] 140 0.79 132 0.76 12.0 -3.7 -9.0 -10.6 

Uriz and Mahin [2000] 115 0.50 115 0.50 -8.0 -39.0 -20.7 -41.2 

Tirca and Chen [2014] 109 0.44 110 0.47 -12.8 -46.3 -24.1 -44.7 

Chen and Mahin [2010] 99 0.38 102 0.40 -20.8 -53.7 -29.7 -52.9 

Santagati et al. [2012] 109 0.42 108 0.45 -12.8 -48.8 -25.5 -47.1 

Salawdeh and Goggins [2013] 140 0.79 132 0.76 12.0 -3.7 -9.0 -10.6 

Lai and Mahin [2012] 122 0.56 121 0.55 -2.4 -31.7 -16.6 -35.3 

Calibrated model (this study) 143 0.83 142 0.87 14.4 1.22 -2.1 2.4 

Specimen S2 

Experimental 125 0.90 141 0.92 N/A N/A N/A N/A 

Lignos and Karamanci [2013] 124 0.66 125 0.70 -0.8 -26. 7 -11.4 -23.9 

Uriz and Mahin [2000] 127 0.66 130 0.69 1.6 -26.7 -7.8 -25.0 

Tirca and Chen [2014] 126 0.66 129 0.70 0.8 -26.7 -8.5 -23.9 

Chen and Mahin [2010] 126 0.66 131 0.71 0.8 -26.7 -7.1 -22.8 

Santagati et al. [2012] 126 0.66 129 0.70 0.8 -26.7 -8.5 -23.9 

Salawdeh and Goggins [2013] 134 0.80 133 0.78 7.2 -11.1 -5.7 -15.2 

Lai and Mahin [2012] 126 0.66 131 0.69 0.8 -26.7 -7.1 -25.0 

Calibrated model (this study) 137 0.93 136 0.92 9.6 3.33 -3.6 -0.5 

Specimen S3 

Experimental 143 1.00 137 0.83 N/A N/A N/A N/A 

Lignos and Karamanci [2013] 141 0.81 133 0.81 -1.4 -19.0 -2.9 -2.4 

Uriz and Mahin [2000] 125 0.61 125 0.62 -12.6 -39.0 -8.8 -25.3 

Tirca and Chen [2014] 134 0.78 135 0.79 -6.3 -22.0 -1.5 -4.8 

Chen and Mahin [2010] 121 0.57 115 0.50 -15.4 -43.0 -16.1 -39.7 

Santagati et al. [2012] 125 0.61 125 0.62 -12.6 -39.0 -8.8 -25.3 

Salawdeh and Goggins [2013] 149 1.02 141 0.84 4.2 2.0 2.9 1.2 

Lai and Mahin [2012] 141 0.81 141 0.81 -1.4 -19.0 2.9 -2.4 

Calibrated model (this study) 151 1.02 142 0.84 5.6 2.0 3.7 0.6 
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Table 6.2 Summary and average value for variation (%) in force values from 
experimental results associated with varying low-cycle fatigue 
model parameters. 

Basis for fatigue model 

parameters 
S1 S2 S3 Average 

Lignos and Karamanci [2013] 12.0 9.0 0.8 11.4 1.4 2.9 6.3 

Uriz and Mahin [2000] 8.0 20.7 1.6 7.8 12.6 8.8 9.9 

Tirca and Chen [2014] 12.8 24.1 0.8 8.5 6.3 1.5 9.0 

Chen and Mahin [2010] 20.8 29.7 0.8 7.1 15.4 16.1 15.0 

Santagati et al. [2012] 12.8 25.5 0.8 8.5 12.6 8.8 11.5 

Salawdeh and Goggins [2013] 12.0 9.0 7.2 5.7 4.2 2.9 6.8 

Lai and Mahin [2012] 2.4 16.6 0.8 7.1 1.4 2.9 5.2 

Calibrated model (this study) 14.4 2.1 9.6 3.6 5.6 3.7 6.5 

Table 6.3 Summary and average value for variation (%) in drift values from 
experimental results associated with varying low-cycle fatigue 
model parameters. 

Basis for fatigue model 

parameters 
S1 S2 S3 Average 

Lignos and Karamanci [2013] 3.7 10.6 26. 7 23.9 19 2.4 11.9 

Uriz and Mahin [2000] 39 41.2 27 25 39 25.3 32.7 

Tirca and Chen [2014] 46.3 44.7 27 23.9 22 4.8 28.1 

Chen and Mahin [2010] 53.7 52.9 27 22.8 43 39.7 39.8 

Santagati et al. [2012] 48.8 47.1 27 23.9 39 25.3 35.1 

Salawdeh and Goggins [2013] 3.7 10.6 11 15.2 2 1.2 7.3 

Lai and Mahin [2012] 31.7 35.3 27 25 19 2.4 23.4 

Calibrated model (this study) 1.22 2.4 3.3 0.5 2 0.6 1.7 

6.4 INCREMENTAL DYNAMIC ANALYSIS 

Incremental dynamic analysis (IDA) [Vamvatsikos and Cornell 2002] is a common analysis 
method where structures are analyzed using incrementally scaled ground motions until structural 
collapse occurs. IDA is frequently conducted using generic ground-motion sets such as the 
FEMA P695 [2005] far-field set, which was developed to be structure and site independent, and 
do not represent the seismic hazard at any particular site. Although IDA can be conducted using 
site-specific ground motions, the additional effort involved in selecting these ground motions 
makes unattractive [Chandramohan 2016]. Even if site-specific ground motions are used, using 
the same set of ground motions scaled to different intensity levels has been shown to produce 
inaccurate, hazard-inconsistent structural collapse risk estimates, since ground motions of 
different intensities are inherently expected to possess different characteristics. A procedure to 
compute a hazard consistent median collapse capacity by iteratively conducting a modified 
version of IDA using ground motions selected to match targets conditional on different 
successive intensity levels is described in FEMA P-58 [FEMA 2018, Appendix J], but this 
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method is limited and cumbersome. Most of the recent work at Stanford University 
[Chandramohan 2016] that incorporated ground-motion duration and response spectral shape 
used generic record sets to compute hazard-consistent collapse fragility curves using IDA. For 
such studies, two suites of short- and long-duration ground motions were used, which were the 
same ground motions used for this part of study as explained below. 

In this section, selected ground motions were used to conduct an IDA on the structural 
model of the single-bay/single-story building. Each ground motion was scaled to incrementally 
higher intensity levels until structural collapse, indicated by both braces rupturing. The collapse 
intensity of each ground motion, expressed in terms of the spectral acceleration at fundamental 
period, i.e., Sa (T1) value when scaled to the lowest intensity level required to cause structural 
collapse, was recorded similar to several previous studies (e.g., Chandramohan [2016]). The 
same previously calibrated model discussed in Section 6.2 was used with the fatigue parameters 
found from trial and error to best match the experimental results. 

6.4.1 Ground-Motion Selection 

In order to further study the ground-motion duration effect, a large number of ground motions 
was used to conduct IDA. For the purpose of determining the duration effect, it is important to 
establish a comparative reference—such as using spectrally-matched ground motions—that vary 
only in the duration. Thus, 44 pairs of ground motions were used in this study. Each pair has one 
short- and one long-duration motion, both are having the same spectral shape to guarantee that 
the only difference is the duration. Previous studies have used different criteria to define long-
duration motions. Chandramohan et al. [2013] used motions with significant duration, Ds (5–
95%) > 45 sec. Chandramohan [2016] used ground motions with significant duration, Ds (5–
75%) > 25 sec. Ou et al. [2014] differentiated between short- and long-duration motions based 
on the number of times the 5% of a given PGA level is crossed. Ground motions with a number 
of crossings exceeding 600 (approximately) were considered as long-duration motions. In this 
study, the 5–75% was used with the definition proposed by Chandramohan et al. [2016(a); (b)]), 
i.e., Ds (5–75%) > 25 sec. 

A generic set of 88 recorded ground motions was selected to analyze the structure, which 
was adopted from the previous work by Chandramohan [2016] and is listed in detail in Appendix 
D. The selected motions do not represent the hazard at any specific site. The 88 records is 
composed of two suites of ground motions, Forty-four of these ground motions were taken from 
the FEMA P695 far-field set, which contains relatively short-duration ground motions [with Ds 

(5–75%) < 25 sec), recorded from shallow crustal earthquakes. The remaining 44 records were 
selected from long-duration ground motions [with Ds (5–75%) > 25 sec] recorded from both 
large magnitude interface earthquakes such as the 2011 Tohoku (Japan), 2010 Maule (Chile), 
and 1985 Michoacan (Mexico) earthquakes, and large-magnitude crustal earthquakes such as the 
2008 Wenchaun (China) and 2002 Denali (U.S.) earthquakes. 

The ground-motion selection per Chandramohan [2016] was done so that the 88 selected 
records had a wide range of Ds (5–75%) values that covers the broad range of ground-motion 
durations anticipated in Seattle, which is located near the Cascadia subduction zone and at great 
risk from a large magnitude, long-duration earthquake. In addition, each of the 44 long-duration 
ground motions was selected to have a similar response spectrum to one of the short-duration 
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7 Effect of Duration on Archetype SCBF 
Buildings 

In Chapter 5, the effect of ground-motion duration on SCBFs was evaluated based on the results 
obtained from shake table tests. Due to the limitations of the shake table, half-scaled specimens 
were used. In Chapter 6, the effect of duration was further studied on the tested specimens but 
using analytical methods. To increase the “fictitious” number of tests to include more ground-
motion variability and better generalized conclusions, a detailed OpenSees model was calibrated 
and used to conduct IDA using 88 ground motions. Based on the scope of both Chapters 5 and 6, 
only the reduced-scale frames were considered. Thus, the main goal of this chapter is to 
complement what was previously presented and discussed on reduced-scale frames and 
investigate the effect of long-duration ground motions on full-scale archetype SCBF buildings. 
Two multi-story archetype buildings were selected—a three-story and a nine-story SCBF—and 
analyzed using OpenSees. Both buildings were analyzed under the same 88 short and long-
duration ground motions previously used. The ground motions were scaled to specific hazard 
level and deterministic analysis was conducted rather than IDA. Although no fragility curves 
were developed for the archetype frames, their seismic performance was compared under short 
and long-duration earthquakes. This chapter provides the details of the archetype buildings, the 
modeling procedure, ground-motion scaling for the deterministic analysis, and a discussion of 
the results obtained from the analysis. 

7.1 ARCHETYPE BUILDINGS 

Two archetype buildings were used in this study. The three- and nine-story buildings were 
adopted and based on the model buildings used as part of the SAC Steel project [FEMA 2000]. 
These designs adopted the basic floor plan, story height, and gravity loads. Appropriate 
modifications were made to transform the buildings from special moment-resisting frames to 
SCBFs. The new design details were taken after Hsiao et al. [2012]. The buildings were designed 
using the equivalent lateral force procedure [ASCE/SEI 7-10 [2013]; AISC [2002]]. Figures 7.1 
and Figure 7.2 show the typical floor plan and elevation of the three-story building; Figures 7.3 
and 7.4 show same details for the nine-story building considered herein. 
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Figure 7.1 Floor plan of the considered three-story archetype building. 

 

Figure 7.2 Elevation and brace configuration of the three-story archetype 
building. 
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Figure 7.3 Floor plan of the considered nine-story archetype building. 

A brief discussion of the design basis of the archetype buildings is presented next; the 
reader is referred to [Hsiao 2012] for additional details. The basic design R value used to adjust 
the design spectrum was 6. All of the buildings were designed for a location in Seattle, 
Washington, using Seismic Design Category D with soil Site Class C. The three-story building 
included 46 story braced bays identical in height. The nine-story building had 55 story braced 
bays, with a taller bottom story to reflect typical mid-rise construction, see Figure 7.4. The 
braced bays were placed on the perimeter of the buildings in a symmetric plan configuration 
using a multi-level X-bracing configuration; see Figure 7.4. The buildings were designed to meet 
the ASCE-7 design spectrum using the updated 2008 United States Geological Survey’s (USGS) 
[2018] mapped spectral acceleration values at 2% in 50-years hazard level for the building site. 
The short-period spectral acceleration, SS was 1.4g and spectral acceleration at the 1.0-sec period, 
S1 was 0.53g. The site class coefficients Fa and Fv are 1.0 and 1.3, respectively, and the damped 
spectra were adjusted to 2% of critical damping by applying damping adjustment factor s and 1 
of 0.8 [FEMA 273 1997]. The resulting design spectral acceleration parameters were SDS of 
1.17g and SD1 of 0.57g. The buildings were considered to be general office buildings, and an 
occupancy importance factor, I, of 1.0 was used. According to Hsiao [2012], Table 7.1 gives the 
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resulting design member sizes of the three- and nine-story buildings. Rectangular HSS were used 
for all brace sections and satisfied the AISC seismic compactness criteria [AISC 2010b]. For the 
current code design based on R = 6, the fundamental periods of the resulting frames were 0.38 
and 0.87 sec for the three- and nine-story buildings, respectively. 

 

Figure 7.4 Elevation and brace configuration of the nine-story archetype 
building. 

Table 7.1 Member sizes of the three- and nine-story archetype buildings with 
representative frames used for the analysis. 

Building Story Brace Beam Exterior col. Interior col. 

three-story 

1 HSS 6x6x5/8 W21x93 W14x90 W14x90 

2 HSS 6x6x1/2 W21x93 W14x90 W14x90 

3 HSS 5x5x1/2 W24x104 W14x90 W14x90 

nine-story 

1 HSS 8x8x1/2 W21x93 W14x283 W14x283 

2 HSS 7x7x1/2 W21x83 W14x283 W14x283 

3 HSS 7x7x1/2 W21x83 W14x283 W14x283 

4 HSS 7x7x1/2 W21x83 W14x193 W14x193 

5 HSS 6x6x5/8 W21x83 W14x193 W14x193 

6 HSS 6x6x1/2 W21x83 W14x120 W14x120 

7 HSS 6x6x3/8 W21x83 W14x120 W14x120 

8 HSS 5x5x1/2 W21x83 W14x74 W14x74 

9 HSS 5x5x5/16 W24x104 W14x74 W14x74 
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7.2 SYSTEM MODELING 

To assess the seismic performance of SCBFs under long-duration ground motions, 
comprehensive nonlinear dynamic analyses are needed, especially since full system testing is not 
feasible. The models needed for such purposes must include every yield mechanism and failure 
mode that impacts the seismic response of the overall frame, and must be capable of simulating 
the response beyond initial fracture. These requirements can be met by incorporating the various 
modeling techniques presented herein. Two representative planer (two-dimensional) frames from 
each building (see Figures 7.2 and 7.4) were considered herein and modeled using same 
approaches presented in Chapter 3. The gravity loads and second-order (P-delta) effects were 
included in the simulation by employing a leaning column connected to the frame by rigid links; 
see Figure 6.5. The gravity frame was modeled using shear-connection springs to simulate the 
total rotational strength and stiffness of gravity beam–column connections (shear-tab 
connections), which were located between the rigid link and the leaning column. The gravity 
loads at each floor level were placed on the gravity frame. The technique used herein was similar 
to that adopted by Hsiao [2012]. 

The properties of the shear-connection springs were based upon Liu’s model of shear tab 
connections with composite slabs [Liu and Astaneh-Asl 2004]. The springs were simulated using 
the Pinching4 material model in OpenSees. Each spring element had a stiffness and strength 
equivalent to the number of the gravity bays contributing to the seismic weight. The rigid beams 
used in the gravity frame model, which had the same length of the gravity bay, were supported 
by rollers. The nodes at the end of the rigid beams were slaved to the nodes at the middle of the 
braced frame in horizontal translation at each level; see Figure 7.5. The base of the leaning 
column was pinned. Wide-flange sections W1049 and W1265 were used for the gravity 
columns of the three- and nine-story buildings throughout the height, respectively. To represent 
the overall contributions, such as initial axial and bending stiffness and strength, of the gravity 
columns to the lateral-load resisting system, a particular cross section of the leaning column was 
adopted with a cross-sectional area, moment of inertia, and plastic moment capacity equal to the 
total of the gravity columns contributing to the seismic weight. 

 

Figure 7.5 Leaning column modeling. 
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As discussed in Section 7.4, all results from extensive analysis were compiled together to 
determine the probability of occurrence for each of the four performance limit states defined 
above. The probability of meeting a certain limit state is expressed in a simplified way through 
determining what percentage of the braces experienced a given limit state relative to total 
number of braces in the analyzed SCBF. Figure 7.26 shows such percentages for the three-story 
building at the 10%/50-years and 2%/50-years (MCE level) hazard levels as obtained from 
separate short- and long-duration analyses conducted. For the 10%/50-years hazard level, almost 
all braces buckled but no damage was reported according to the limit states defined above. For 
the 2%/50-years hazard level, the long-duration ground motions caused more damage when the 
possible brace replacements, brace rupture, and soft-story mechanism were considered than the 
short-duration ground motions in the case of the three-story building; that said, the difference 
between short and long-duration cases was not significant. This might be attributed in part that 
because of the short period of the three-story building, high force demands were expected in the 
frame regardless of the duration effect. 

Figure 7.27 shows similar damage levels for the 10%/50-years and 2%/50-years hazard 
levels for the nine-story building. The results for the 10%/50-years hazard level, show that brace 
buckling occurred at 100% of the analysis cases, but no additional damage was observed at this 
hazard level; for the 2%/50-years hazard level, long-duration earthquakes are shown to cause 
more significant damage either for excessive brace buckling (expressed as possible replacement 
limit state) or brace fracture. The soft-story mechanism was reported only in the case of long-
duration records. 

The results obtained from the archetype SCBFs analysis, especially those pertaining to 
the story mechanisms or possible brace ruptures, are yet another means of highlighting the 
importance of considering ground-motion duration in future designs or performance-based 
assessment. Overall, it was demonstrated in different analysis cases throughout this study that 
severe structural damage or even full collapse might have a larger probability of occurrence only 
because of the larger damage accumulation in SCBF braces associated with longer duration 
effects. 
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8 Summary and Conclusions 

8.1 SUMMARY 

Experimental and analytical investigations were conducted to study the effect of earthquake 
duration on SCBFs. In particular, the effect of long-duration ground motions on SCBFs’ collapse 
capacity was evaluated. The analytical part of the study consisted of two phases: (1) modeling 
sensitivity and pre-test analysis, and (2) post-test analysis for test specimens and archetype 
SCBFs. The experimental program involved shake table testing of three identical SCBFs 
subjected to long and short-duration motions. The test specimens for this study were adopted 
from a prototype building taken from the SEAOC Design Manual; one-half-scale single bay-
single story frames were used for the tests. 

Current seismic design codes are based on site-specific response spectra and do not 
consider duration effects. Based on the literature (see Chapter 2), most previous studies on 
earthquake duration effects on seismic performance of structures considered numerical methods, 
and only few considered experimental testing. Moreover, many of the studies were related to 
concrete structures with less focus on steel structures and specifically SCBFs. The lack of 
experiments and consensus in critical modeling features such as low-cycle fatigue in SCBFs 
motivated this study. First a sensitivity analysis to understand modeling effects was performed 
and then shake table testing of the SCBFs were conducted to verify the models. 

The first phase of the analytical investigation performed a detailed sensitivity analysis 
using OpenSees models that were preliminarily calibrated against previous experimental results 
for different configurations of SCBFs. This analysis aimed at finding and ranking the model 
parameters with greatest effects on analysis results that pertained to seismic behavior under short 
and long-duration earthquakes. The sensitivity analysis was conducted for two SCBFs 
configurations: a single diagonal brace and double X-bracing under cyclic loading, subjected to 
two sets of ground motions covering a wide range of significant durations. 

The experimental program was the core of this study, which included three large-scale 
shake table tests of identical single-story single-bay SCBFs with a chevron-brace configuration 
tested under different ground motions. Two specimens were tested under a set of spectrally-
matched short and long-duration ground motions. The third specimen was tested under another 
long-duration ground motion. All tests started with a 100% scale of the selected ground motions, 
then testing continued with increasing ground motion until failure, i.e., until both braces 
ruptured. The obtained test results were not only used to understand the effect of the duration but 
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provide valuable input for numerical model calibration and existing fatigue modeling parameters 
assessment in the post-test analysis. 

The post-test analysis was then conducted where an OpenSees model for the tested 
specimens was developed to capture the experimental response of the three specimens. First, the 
calibration matched the initial stiffness and overall global response, then the low-cycle fatigue 
parameters were fine-tuned to properly capture the experimental local behavior, i.e., brace 
buckling and rupture. The calibrated model for the test specimens was used to conduct IDA 
using 44 pairs of spectrally-matched short and long-duration ground motions. This analysis 
aimed at incorporating ground-motion variability for better generalized observations and 
developing collapse fragility curves using different IMs to compare the effect of ground-motion 
duration. 

The last stage of this study extended the calibrated model to full SCBFs archetype 
buildings to study the effect of ground-motion duration on full structures. Two buildings, a three-
story and nine-story structure that resembled the original SAC buildings, but modified to have 
SCBFs as lateral support system instead of moment resisting frames, were used. Two planer 
frames were adopted from the two buildings and used for the analysis. The same 44 spectrally-
matched pairs previously used in the post-test analysis were used to conduct nonlinear time 
history analysis and study the effect of duration. All the ground motions were scaled to two 
hazard levels for a deterministic time history analysis: 10% exceedance in 50 years and 2% 
exceedance in 50 years. All analysis results were interpreted in a comparative way to isolate the 
ground-motion duration effects. 

8.2 OBSERVATIONS AND CONCLUSIONS 

Several conclusions can be drawn from the various analytical and experimental parts of this 
study: 

 In general, the seismic response of SCBFs is more sensitive to material
behavior and low-cycle fatigue related input and less sensitive to brace
meshing or element-modeling parameters. Moreover, SCBFs models are less
sensitive to the input parameters under cyclic loading when compared to the
ground motions. Thus, many of our models under simplified loading scenarios
are best-suited for comparative studies, but also emphasize the importance of
using realistic ground motions to assess seismic response.

 The sensitivity analysis performed in Chapter 3 shows that the choice of the
modeling parameters can significantly affect the interpreted displacement
capacities. This is crucial because some models such as Steel02 in OpenSees
are commonly used by the research and engineering community, but without
proper calibration or validation in many cases.

 When modeling variability is averaged out, the assessment results show a
reduction in the drift capacity of SCBFs when subjected to long-duration
ground motions. There is about 7% reduction in the single-braced frame drift
capacity for every 10-sec increase in the duration of the earthquake. These
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values agree with the comparable values determined from the calibrated 
model of the tested specimens in the post-test analysis. 

 For the short and long spectrally-matched tests, the final damage state defined
by the two brace rupture was observed at 200% scale of the original long-
duration ground motion (after 7 runs) versus 225% scale (after 20 runs) in
case of the short-duration one. The larger short-duration ground-motion
intensity produced larger displacement and strain demands produced the same
effect as the long-duration one.

 The seismic capacity of SCBFs is not governed by acceleration or force
demands but rather displacement or strain cycles. This argument is supported
by the experimental evidence that almost a similar force capacity, mainly the
force needed for the two braces to undergo inelastic buckling, was observed
for all tested three specimens, i.e., they were insensitive to the earthquake
duration. In fact, the stiffness degradation, i.e., period elongation, due to brace
buckling can reduce the force demands, but brace rupture may still occur at
lower forces due to fatigue, which can be an extremely serious factor
considering the SCBFs structural integrity in the face of aftershocks or
stability and collapse concerns in multi-story SCBFs.

 In terms of the SCBFs’ structural response, the tested frames lost about 25%
of the lateral stiffness after both braces buckled, and 75% loss of stiffness
after the braces ruptured. The adopted AISC design approach for SCBF beams
for the unbalanced brace forces was validated as no evidence of yielding or
plastic deformation was reported during any of the tests.

 The shake table tests confirm the results from recent numerical studies that
earthquake duration effects can lead to premature seismic failures or lower
capacities, which provides more confidence for future initiatives to consider
duration effects as part of the seismic design provisions. The tests also
highlighted the importance of the fatigue role in dictating SCBFs seismic
capacities and the need for well-verified numerical models for low-cycle
fatigue. The experimental data provided in this study can be used in future
verification studies.

 Using the calibrated model from the post-test analysis, it was shown that the
fatigue parameters available from the literature can lead to different analysis
results, which highlights how the fatigue parameters can affect the inferred
seismic response of SCBFs under different earthquake loading scenarios.
Most of the models predicted brace rupture at lower drift values. Note: even
though there was large variability in the results, all the variation was on the
conservative side where force or displacement capacities were
underestimated.

 The fatigue parameters values provided by Salawdeh and Goggins [2013] can
be considered the most relatively accurate in predicting the observed
experimental behavior with an average variation of 6.8% and 7.3% in force
and drift capacity, respectively. On the other hand, values reported by Chen
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and Mahin [2010] seem to give the largest variation from the experimental 
results, with an average variation of 15% and 39.83% in force and drift 
capacity, respectively. 

 From the archetype buildings analysis at the 10%/50-years hazard level, the 
results showed very limited deformation and little concentration of inelastic 
deformation over building height. In the three-story building, the ground-
motion duration did not have any specific adverse effects. For the nine-story 
case, the long-duration suite of ground motions caused an average higher 
percentage of drift concentrated at the first floor, which was about a 25% 
increase in the drift demand compared to the short-duration ground motions. 

 At 2%/50-years hazard level, both archetype SCBFs experienced relatively 
more damage under the long-duration ground motions. The damage included 
severe brace buckling that exceeded three times the brace width and complete 
brace ruptures in many cases. In some cases, a soft-story mechanism was 
reported where all the braces within a certain floor were ruptured. In the case 
of the nine-story SCBF, about 50% higher drift demands and larger number of 
soft-story mechanisms were reported in the case of long-duration earthquakes. 

 The presented results from the archetype SCBFs analysis—especially that 
which pertains to the story mechanisms or possible brace rupture—are yet 
another means of highlighting the importance of considering ground-motion 
duration in future designs or performance-based assessment. 

 Overall, it was shown and demonstrated throughout this study that severe 
structural damage or even full collapse might have a larger probability of 
occurrence because of larger damage accumulation in SCBF braces associated 
with longer duration effects.  

 In summary, long-duration earthquakes are shown to have two main effects as 
reported from the various analytical and experimental parts of this study; they 
summarized in Table 8.1. First, longer duration ground motions can lead to an 
increase in drift demands for multi-story SCBFs relative to shorter duration 
motions with similar force demands. The second effect is a reduction of up to 
47% in displacement capacities of SCBFs at failure or collapse when 
compared to spectrally-matched short-duration ground motions. This overall 
conclusion is based on several frames and brace configurations that varied 
from single-story/single-bay to multi-story/multi-bay SCBFs. The provided 
table also shows the different global and local slenderness range of values for 
all braces considered in this study, which is shown to have a large impact on 
the low-cycle fatigue life of the braces. Such values follow current codes and 
detailing practices for SCBFs, yet render the braces and overall frame 
behavior sensitive to duration effects. 
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Table 8.1 Summary of the variation in the seismic demand in SCBFs as 
obtained from the various analytical and experimental parts of this 
study. 

8.3 FUTURE WORK 

Based on the research reported herein, several aspects pertaining to this work deserve further 
study: 

 There is an urgent need to assess existing steel and braced buildings—
especially older buildings with limited ductility—located in the Pacific
Northwest of the United States where longer duration earthquakes are
expected from Cascadia Subduction zone ruptures. Performance-based
assessment using comprehensive frameworks, e.g., FEMA P-58 [2018], can
be an appropriate methodology to determine whether existing buildings with
braced frames should be retrofitted.

 New research is needed to develop accurate fragility curves under suites of
long-duration earthquakes and incorporate into assessment frameworks.

 There is a need for more experimental testing of large-scale and full-scale
braces but under realistic short and long-duration earthquake loading for
calibrating better empirical models to address fatigue. Evaluation of the
behavior of SCBFs using hybrid simulation can be ideal where only the braces
can be tested experimentally and other system components that are expected
to remain elastic (columns, beams, and connections) can be modeled
computationally. Such testing will provide a feasible means to reduce testing
expenses (time and material) while providing new datasets of strain and
fatigue life of full-scale braces under realistic earthquake loading. Moreover,
hybrid testing can also help investigate how the brace design parameters, such
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as global and local slenderness, will affect its response to short and long-
duration earthquakes. 

 As shown in Table 8.1, all of the SCBFs were designed according to the
current design code that specifies limits for both the global and local
slenderness ratios for the braces design, defined as kL/r and b/t, respectively.
These limits are set based on short-duration or crustal ground-motion records.
One way of incorporating duration effects in future design provisions would
be to define restrictive limits for these slenderness ratios, change SCBFs
detailing to alter the global and local brace buckling behavior to reduce the
damaging content of low-cycle fatigue, and reduce or eliminate SCBFs
sensitivity to long-duration earthquakes. This will require new research to
experiment with various design details and local and global slenderness ratios
to define what those limits should be..

 Output and results from the University of Washington M9 project can be
further extended to address the scientific and engineering challenges in
reducing the risk of experiencing a M9 earthquake along the Cascadia
subduction zone fault. For instance, it would be beneficial to test SCBFs under
the synthetic long-duration ground motions developed by the M9 project.

 More investigation on the effect of ground-motion duration on structural
response is required based on specific characterization of the seismic hazard
in regions where long-duration motions are expected. The ultimate goal here
is to implement design parameters and provide design guidance to account for
duration effects. Potential ways would include incorporating simple factors to
adjust the design force to consider the duration effect based on spatial
distributions and hazard maps for longer duration scenarios.
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