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ABSTRACT 

The NGA-Subduction (NGA-Sub) project is one in a series of Next Generation Attenuation 
(NGA) projects directed towards database and ground-motion model development for 
applications in seismic-demand characterization. Whereas prior projects had targeted shallow 
crustal earthquakes, active tectonic regions (NGA-West1 and NGA-West2), and stable 
continental regions (NGA-East), NGA-Sub is the first to address specifically subduction zones, 
which are a dominant source of seismic hazard in many regions globally, including the Pacific 
Northwest region of the United States and Canada. 

This report describes the development of data resources for the NGA-Sub project. 
Agreements were formed with many owners and providers of ground-motion data and metadata 
worldwide to support data collection. Prior NGA projects organized the data collected into a 
series of spreadsheets. The enormous amount of the collected data for NGA-Sub required 
abandoning that strategy and ultimately the data was organized into a relational database 
consisting of 23 tables containing various data, metadata, and outputs of various codes required 
to compute desired quantities (e.g., intensity measures, distances, etc.). A schema was developed 
to relate fields in tables to each other through a series of primary and foreign keys. As with prior 
NGA projects, model developers and others largely interact with the data through flatfiles 
specific to certain types of intensity measures (e.g., pseudo-spectral accelerations at a certain 
oscillator damping level); such flatfiles are a time-stamped output of the database. 

The NGA-Sub database contains 70,107 three-component records from 1880 earthquakes 
from seven global subduction zone regions: Alaska, Central America and Mexico, Cascadia, 
Japan, New Zealand, South America, and Taiwan. These data were processed on a component-
specific basis to minimize noise effects in the data and remove baseline drifts. Component-
specific usable period ranges are identified. Various ground-motion intensity measures (IMs) 
were computed including peak acceleration, peak velocity, pseudo-spectral accelerations for a 
range of oscillator periods and damping ratios, Fourier amplitudes, Arias intensity, significant 
durations, and cumulative absolute velocity-parameters. 

Source parameters were assigned for earthquakes that produced recordings. Some of the 
1880 earthquakes were screened out because of missing magnitudes or hypocenter locations, 
which decreased the number of potentially usable earthquakes to 1782. Further screening to 
remove events without an assigned event type (e.g., interface, intraslab, etc.) or distances 
reduced the number of events to 976. For those 976 events, source parameters of two general 
types are assigned: those related to the focus (including moment tensors) and those related to 
finite-fault representations of the source. A series of source-to-recording site distances and other 
parameters are provided using finite-fault representations of seismic sources. Finite-fault models 
of sources were developed from literature where available and from a simulation procedure 
otherwise. As part of the NGA-Sub project, the simulation procedure was revised and more fully 
documented. In addition, all events are reviewed to assign event types, event classes (mainshock, 
aftershock, etc.), and event locations relative to volcanic arcs.  

Quality assurance (QA) of ground-motion data and source/path metadata was an 
important component of NGA-Sub. For ground motions, QA procedures included visual checks 
of records prior to processing, checks of records from each network that recorded each 
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earthquake to check for systematic outliers (perhaps indicative of gain problems), and checks of 
limiting distances beyond which data sampling for a given event is likely to be biased by data 
approaching noise thresholds. Source/path QA procedures largely involved checking that 
information in database fields accurately reflects source documents.  

Site metadata was compiled into a site table containing time-averaged shear-wave 
velocities in the upper 30 m of sites (VS30), basin depths, and related uncertainties. Major efforts 
were undertaken during the project to develop shear-wave velocity profile databases and to use 
those data to develop regional predictive models for site parameters when site-specific 
measurements are unavailable. Many of those predictive relations were published in journal or 
conference papers over the course of the NGA-Sub project (i.e., for Alaska, Cascadia, Chile, and 
Taiwan); those results are reviewed only briefly. Rather, emphasis in this report has been placed 
on procedures used for other regions. In addition to site parameters, all sites are also assigned a 
location relative to local volcanic arcs. 
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1 Introduction 

Yousef Bozorgnia, Jonathan P. Stewart, Norman A. Abrahamson, Sean K. Ahdi, Timothy D. Ancheta, 
Ralph J. Archuleta, Gail M. Atkinson, David M. Boore, Rubén Boroschek, Kenneth W. Campbell, Brian 
S.J. Chiou, Victor Contreras, Robert Darragh, Nick Gregor, Zeynep Gulerce, I.M. Idriss, Chen Ji, Ronnie 
Kamai, Tadahiro Kishida, Nicolas Kuehn, Dong Youp Kwak, Annie Kwok, Po-Shen Lin, Harold Magistrale, 
Silvia Mazzoni, Sifat Muin, Saburoh Midorikawa, Grace A. Parker, Hongjun Si, Walter J. Silva, Melanie 
Walling, Katie E. Wooddell, and Robert R. Youngs 

1.1 NGA-SUBDUCTION PROJECT OVERVIEW 

In 2003, the Pacific Earthquake Engineering Research Center (PEER) initiated a large research 
program to develop next generation ground-motion prediction equations (GMPEs)—formerly 
referred to as “attenuation relationships”—for shallow crustal earthquakes in active tectonic 
regions [Power et al. 2008]. This project, now referred to as NGA-West1, made a strong impact 
in the engineering and seismological community in three main respects: 

1. It changed the research culture related to the database and GMPE development, 
bringing leading experts together to collaborate on database development who 
routinely shared thoughts and best practices during model development. This 
improved model thoroughness and quality. 

2. The GMPEs were of high quality for the time, combining scaling from first principals 
(and informed by simulations) with data analyses to provide models that operated 
over the ranges required for many practical applications. 

3. The database was shared by all GMPE developer teams and then publically 
disseminated via a PEER website, which ultimately supported many subsequent 
research projects and practical applications related to time-series selection. 

The impact of the NGA-West1 project created demand for subsequent projects that were 
structured similarly. NGA-West2 [Bozorgnia et al. 2014] also applied to shallow crustal 
earthquakes in active tectonic regions and significantly expanded the database and certain GMPE 
attributes. NGA-East [Goulet et al. 2018] developed data resources and ground-motion models 
(GMMs) for stable continental regions, particularly central and eastern North America. NGA-
East made more extensive use of simulations than other regions due to data paucity for the 
magnitudes and distances of typical engineering interest. NGA-Subduction applied the NGA 
framework to subduction zone regions. 

The objectives of the NGA-Subduction project (NGA-Sub) were as follows: (1) develop 
a state-of-the-art database; (2) develop a series of GMPEs that operate over the parameter range 
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Participants in NGA-Sub project fall into three main domains. Yousef Bozorgnia was the 
Principal Investigator, providing leadership pertaining to project funding and coordination. Four 
ground-motion modeling teams were active in the project, sharing experiences in applying the 
data that benefitted the database checking and development. Finally, the database development 
involved the full NGA-Sub team but certain individuals took lead roles in the ground motion, 
source/path, and site components of the database. Those individuals are recognized by leading 
positions in chapter authorship (Chapters 3–5). Finally, Silvia Mazzoni and several collaborators 
took a lead role in developing the database as a formal relational database as described in 
Chapter 2. 

1.2 PRIOR SUBDUCTION DATABASES 

The subduction ground-motion database presented in this report is the most comprehensive 
database developed for subjection zones worldwide. It is not the first. The project team wishes to 
acknowledge the data development efforts that preceded NGA-Sub. 

Table 1.1 summarizes some key attributes of prior subduction databases. Most of the data 
in the Crouse et al. [1988] and Youngs et al. [1997] databases are from sparsely recorded events 
(often one recording). This gradually improved over time, with the Atkinson and Boore [2003] 
and Abrahamson et al. [2016] models having substantially more data, with some events being 
well recorded. Additional regional datasets have been prepared that are not shown in Table 1.1, 
e.g., Lin and Lee [2008] for Taiwan; Zhao et al. [2006] for Japan. 

None of the prior global subduction databases listed in Table 1.1 includes the large-
magnitude events from Tohoku Japan (2011) and Maule Chile (2010). These and many other 
events have dramatically expanded database size; see Chapters 3 and 4. Moreover, comparisons 
of large earthquakes to available models have not shown favorable results (e.g., Boroschek et al. 
[2012] and Stewart et al. [2013]). These issues illustrate the needs that the NGA-Sub project was 
formed to address. 

Table 1.1 Summary of pre-NGA-Sub global subduction databases. 

Reference 
M 

range 
Rrup or Rhyp 

range (km) 
# events # recs Event types distinguished? 

Crouse et al. [1988]1 5.1-8.2 28–470 84 129 No 

Youngs et al. [1997] 5.0-8.2 8.5–550 160 474 Yes: interface, intraslab 

Atkinson and Boore 
[2003] 

5.5-8.3 10–400 77 1148 Yes: interface, intraslab 

Abrahamson et al. 
[2016] 

5.0-8.4 13–300 292 9946 Yes: interface, intraslab 

1 The database from Crouse et al. [1988] was subsequently updated for the development of a GMPE by Crouse [1991]; however, 
event details for the latter were not presented and hence are not shown in Table 1.1. The expanded Crouse [1991] database was 
used subsequently by Youngs et al. [1997]. 
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1.3 ORGANIZATION OF THIS REPORT 

Chapter 2 of this report describes the relational database whereby data are entered into organized 
tables and related to each other through a series of primary and foreign keys. The use of a formal 
relational database during model development is new to NGA-Sub. 

Chapter 3 describes the processes used to identify, obtain, and process ground motions, as 
well as intensity measure (IM) computations. Procedures used for checking data for sampling 
bias at long distance are also explained. 

Chapter 4 describes procedures used to assign source and path parameters. Source 
parameters are of two general types: those related to the focus (including moment tensors) and 
those related to finite-fault representations of the source (from literature or simulations). 
Procedures used for distance calculations are also provided, which are non-trivial in the case of 
simulated finite faults. Other issues addressed in this chapter are QA procedures, assignment of 
event types (interface, intraslab, etc.), assignment of event classes (mainshock, aftershocks, etc.), 
and assignment of event locations flags relative to volcanic arcs. 

Chapter 5 describes the site tables used to assign time-averaged shear-wave velocity and 
basin depths to ground-motion recording sites. Major efforts were undertaken during the project 
to develop regional shear-wave velocity profile databases and to use those data to develop 
predictive models of site parameters when site-specific measurements are unavailable. The work 
described in the chapter produces mean estimates of site parameters and epistemic uncertainties. 

Suggested Citation: 

Bozorgnia Y., Stewart J.P., Abrahamson N.A., Ahdi S.K., Ancheta T.D., Archuleta R.J., Atkinson G.M., 

Boore D.M., Boroschek R, Campbell K.W., Chiou B.S.-J., Contreras V., Darragh R.B., Gregor N., Gulerce 

Z., Idriss I.M., Ji C., Kamai R., Kishida T., Kuehn N., Kwak D.Y., Kwok A.O., Lin P.S., Magistrale H., 

Mazzoni S., Muin S., Midorikawa S., Parker G.A., Si H., Silva W.J., Walling M., Wooddell K.E., Youngs 

R.R. (2020). Chapter 1: Introduction, in Data Resources for NGA-Subduction Project, PEER Report No. 

2020/02, J.P. Stewart (editor), Pacific Earthquake Engineering Research Center, University of California, 

Berkeley, California (headquarters).  
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2 Relational Database 

Silvia Mazzoni, Tadahiro Kishida, Sean K. Ahdi, Víctor Contreras, Robert B. Darragh, Brian S.-J. Chiou, 
Nico Kuehn, Yousef Bozorgnia, and Jonathan P. Stewart 

2.1 INTRODUCTION 

The database developed for the NGA-Subduction (NGA-Sub) project is a relational database, 
meaning that it has a well-defined data structure and can be queried using structured query 
language (SQL). Previous NGA projects have applied the term “database” to collections of 
spreadsheet files that were linked in an ad hoc manner using Excel macros [Chiou et al. 2008; 
Ancheta et al. 2014]. In contrast, a relational database is organized into a schema that describes 
the tables, fields, and relationships among tables. Tables are collections of information organized 
into fields (or columns). The contents of tables (i.e., each row) are identified using keys. Every 
entry in the database (i.e., a given row within a field) is assigned a primary key that uniquely 
identifies it. In some cases, a field from one table might appear in another table to relate the two 
tables. In such cases, the primary key from the host table appears as a foreign key in the other 
table to map the relationship. In other cases, the same primary key is used in multiple tables. This 
is applied for situations in which a series of tables could have been organized into a single table, 
but doing so would have made the table size inconveniently large and somewhat inefficient with 
respect to the information sources used to populate the table. For the present application, it was 
decided to use multiple tables that share primary keys in some cases. 

We developed the NGA-Sub database schema as a working group, and benefitted from 
regular communication and feedback from the broader NGA-Sub project participants through 
regular in-person and web meetings. Databases are living products, and the version described 
here was “locked-in” April 22 2019 (in technical content) so that ground-motion model (GMM) 
development could proceed with a fixed dataset; however, population of the database is likely to 
continue into the future, including the incorporation of recent events from Alaska and Mexico; 
see Chapter 4. Additional ground-motion parameters and source, path, or site metadata may also 
be added in the future. 

Outside of the relational database working group (the authors of this chapter), most 
NGA-Sub project participants interact with the data using a flatfile, which is a single file 
extracted from the database containing all fields of interest. The flatfile can be readily generated 
from the relational database using an SQL command; MS Access was used in this project, using 
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2.2 DATABASE ORIGINS 

The NGA-Sub database was not originally assembled as a relational database. Early stages of the 
project gathered data for various regions, which was organized into regional flatfiles. The 
regional flatfiles contained source, site, and ground-motion IMs for each of the following 
regions: Alaska (ALK), Cascadia (CAS), Central America and Mexico (CAM), Japan (JPN), 
New Zealand (NZL), South America (SAM), and Taiwan (TWN). The main emphasis of the 
work at that time was data collection from diverse sources, and relatively little effort was put 
forward to organizing the data in an optimal or consistent manner. 

Once the decision was made to create a relational database, information from the regional 
flatfiles was transferred to database tables (Tables 2.1–2.6). In some cases, information in these 
tables was supplemented or modified to response to QA procedures; see Sections 3.4 and 4.6. 
Moreover, new data since about 2017 was added in the relational database tables. 

2.3 KEY METADATA 

The Key Metadata consists of a single table (RecordMap table) that contains primary and foreign 
keys of the NGA-Sub database as well as unique identifiers collected from the original regional 
flatfiles. The primary purpose of this table is to map the source (NGAsubEQID) and site 
(NGAsubSSN) keys to the primary record key (NGAsubRSN). Additional data in this table 
provides a map to the original region-specific flatfiles. This map is made through the 
DatabaseRegion and OriginalFlatfile_RSN. The 
OriginalFlatfile_Station_Sequence_Number_SSNs are also stored in this table. These identifiers 
were included with rows for records in regional flatfiles, but in some cases are not unique (e.g., 
the same site may have multiple OriginalFlatfile_Station_Sequence_Number_SSNs in different 
regional flatfiles). Such non-unique flag assignments were corrected in the assignment of the 
final earthquake and site identification numbers. 

2.4 SOURCE METADATA 

The seismic source primary key is the Earthquake Identification Number (NGAsubEQID), a 
unique value assigned to each event. The assignment of NGAsubEQIDs is organized by region; 
see Table 2.1. Unique numbers were assigned as sequential integers of the pattern N×106 within 
each region, where N is an integer from one to seven accounting for each of the seven subduction 
zone regions; see Figure 1.1. Following the region identifier, additional digits were assigned 
sequentially. For example, NGAsubEQID=3000197 corresponds to an event in Central America 
& Mexico. NGAsubEQID is the primary key in the EventHypo table, with each of the other 
event-related tables listed in Table 2.2 representing different physical quantities. As described in 
Section 2.1, while the source data could have been stored in a single table, because different 
quantities are obtained from different sources, they are stored in different tables. 

Table 2.2 lists relational database tables related to source parameters. The table name is 
provided along with an indication of whether the information contained in the tables consists of 
dependent or independent metadata. Because source attributes are contained in a series of tables 
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that interact according to a schema, in effect this collection of information comprises a source 
relational database. 

The contents of the EventHypo and EventType table are largely drawn from global and 
local earthquake catalogs. As described in Section 4.2, critical issues in assembling these tables 
were selecting the preferred catalog when more than one is available, procedures for selecting a 
preferred rupture plane, and procedures for selecting event type (i.e., interface, intraslab, shallow 
crustal, outer rise, etc.) based on source location and focal mechanism. 

Table 2.1 Region identifier numbers used in assignment of earthquake and site keys. 

Region Region Identifier 

Alaska 1 

Cascadia 2 

Central America & Mexico 3 

Japan 4 

New Zealand 5 

South America 6 

Taiwan 7 

 

Table 2.2 Tables presenting source metadata in NGA-Sub relational database. 

Table Name Contents Information types 

EventHypo NGAsubEQID*, region, geodetic coordinates (latitude, longitude), 
hypocentral depth, date, time, seismic moment (M0), moment 
magnitude (mag), alternate magnitude scales (mb, ML, MS), preferred 
moment tensor parameters (rake – prefrake, strike – prefstrike, dip – 
prefdip), nodal plane angles (strike – np1-s, np2-s; dip – np1-d, np2-d; 
rake – np1rake, np2rake), focal mechanism (focalmech) 

Mostly independent 

Dependent = mag, 
focalmech 

EventType NGAsubEQID*, flag (Table 4.5) Dependent 

FFmodel NGAsubEQID*, # rectangles (Norect), coordinates of upper left corner 
of fault as viewed from hanging wall, along-strike length (L), down-dip 
width (W), strike, dip, rake 

Independent 

FFmodelmultiseg Applies for Norect > 1 only. NGAsubEQID*, for 𝑖=1:Norect, each of 
the parameters listed in FFmodel 

Independent 

FFsim NGAsubEQID*, coordinates of upper left corner of fault as viewed 
from hanging wall, along-strike length (L), down-dip width (W), strike, 
dip 

Dependent 

Magbrk NGAsubEQID*, break magnitude Independent 

EventClass NGAsubEQID*, event class indicator (CL1 or CL2) Dependent 

EventVolArc NGAsubEQID*, flag (Table 4.11) Dependent 

* Assigned as primary key 
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The contents of the FFmodel and FFmodelmultiseg tables are drawn from published 
studies presenting finite-fault models inverted from various ground-motion and geodetic data. As 
described in Section 4.3, critical issues in assembling those tables included selecting a preferred 
model when more than one is available and trimming published models to identify portions of 
the fault that are mostly likely to produce strong ground motion. The parameters recorded in the 
tables are needed to establish the positions of the rectangles for distance calculations. 

The contents of the FFsim table mirror those in FFmodel, except that the parameters in 
the FFsim table are the result of a simulation procedure (hence, they are dependent metadata). As 
described in Section 4.4, critical aspects of this process are statistical relations for fault 
dimensions given magnitude and event type, relations for hypocenter location on a rectangular 
fault, and details of the simulation procedure. 

The contents of the Magbrk, EventClass, and EventVolArc tables provide region-specific 
information on magnitudes where breaks in ground-motion scaling slopes might be expected, 
assignment of events as mainshocks/foreshocks or aftershocks, and assignment of event positions 
relative to volcanic arcs, respectively. EventClass and EventVolArc contain fields with event 
attributes inferred from spatial analyses; see Sections 4.7–4.8. Magbrk fields are drawn from 
literature and are region specific; details can be found in Campbell [2020] for interface events 
and Ji and Archuleta [2018] for intraslab events. 

2.5 SITE AND STATION METADATA 

The site and station primary key is the Station Sequence Number (NGAsubSSN), a unique value 
of which is assigned to each site and each instrument at a given site that has produced a 
recording. The NGAsubSSN values were assigned in a manner similar to the NGAsubEQID, 
where the first digit represents the geographic region of the location of the station (Table 2.1), 
and the remainder of the number was assigned sequentially and randomly. NGAsubSSN is the 
primary key in the Site table and other tables defining site-related parameters and is a foreign key 
elsewhere. 

Separate NGAsubSSNs were assigned for cases when the station network changed but 
the instrument ostensibly remained the same, or the instrument itself was changed at the same 
location. In the case of vertical arrays, with multiple sensors at the same latitude and longitude 
but different depths, multiple “sites” (with distinct NGAsubSSNs) are provided in the Site table, 
each having a different sensor depth. This is why the instrument depth is included in the Site 
Database instead of the record database. 

Table 2.3 lists relational database tables related to site parameters. Most of the 
information is contained in the Site table. Additional information related to site position relative 
to volcanic arcs is contained in the SiteVolArc table. Additional information on instrument type 
is contained in the Station table. In Table 2.3, the table name is provided along with an indication 
of whether the information contained in the tables consists of dependent or independent 
metadata. 

The contents of the Site table are drawn from diverse information sources including 
region-specific instrument catalogs, VS-profile databases (many assembled as part of the NGA-
Sub project), global digital elevation models, local or regional geologic maps, and models for the 
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structure of sedimentary basins. The fields in the Site table contain both independent variables 
taken directly from source materials and derived quantities. Chapter 5 describes procedures used 
during data collection and interpretation. 

Table 2.3 Tables presenting site and station metadata in NGA-Sub relational database. 

Table Name Contents Information types 

Site 

 NGAsubSSN* 

 Site name and station ID (from data-providing networks) 

 Station location, including geodetic coordinates, elevation, 
depth, housing 

 Recommended VS30 in m/sec. Codes indicating how VS30 was 
assigned, associated NEHRP site category 

 Information on VS profiles, as available, including profile 
depth (zp) and time-average VS to depth zp (VSZ) 

 Proxies used for VS30 prediction, as available, including 
surface geology, ground slope, geomorphic terrain class 

 Basin depth information, including depth to a particular VS 
horizon (i.e., zx = the depth to the x km/sec iso-surface; 
values of x=1.0 and 2.5 km/sec are used), source of depth 
information, basin name 

Mostly independent 

Dependent = VSZ, VS30 
(from profiles), VS30 
(from proxy-based 
models), zx,  

SiteVolArc NGAsubSSN*, region, flag  Dependent 

Station NGAsubSSN*, instrument Independent 

* Assigned as primary key 

2.6 PATH METADATA 

A particular source-to-site path is associated with a unique record. The primary key for 
recordings (termed Record Sequence Numbers, NGAsubRSNs) are assigned in the relational 
database tables related to path and also in tables related to ground motions and IMs. 
NGAsubRSNs are not used as foreign keys. To minimize possible errors when using this table, 
the NGAsubEQID and NGAsubSSN are contained in this table as foreign keys even though they 
have been defined in the Keys table. 

Table 2.4 lists the relational database tables related to path parameters. The Path table 
contains distance parameters and other fields derived from source, site, and ground-motion data 
(i.e., dependent metadata). The PathVolArc table contains dependent variables on relative 
percentages of path length in four zones on different sides of volcanic arcs (e.g., the forearc and 
backarc). 

As described in Section 4.5.1, distance parameters were computed using a code (P4CF) 
that takes as input the finite geometry of the source (the position of one or more rectangles) and 
site locations. The code returns distance and directivity parameters. As described in Section 
4.5.2, parameter Rmax represents the distance beyond which data from a given event and recorded 
by a particular network may exhibit bias due to either lack of instrument triggering or motions 
near instrument noise levels (for weaker-than-average motions). 
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Table 2.4 Tables presenting path metadata in NGA-Sub relational database. 

Table name Contents Information types 

Path 

NGAsubRSN*, various distance parameters (Rrup, RJB, Rx, Ry, Ry0, 

Repi, Rhyp, Rrms), location on fault surface from which the closest 

distance is measured (geodetic coordinates and depth), directivity 

parameters, maximum recommended distance Rmax 

Dependent  

PathVolArc NGAsubRSN*, Zone0%Dist, Zone1%Dist, Zone2%Dist, Zone3%Dist Dependent 

* Assigned as primary key 

2.7 GROUND-MOTION TIME SERIES AND INTENSITY MEASURES 

The primary key for a given ground-motion recording is the Record Sequence Number 
(NGAsubRSN), which is assigned in both the Path table (Table 2.4) and in the RecordMeta table 
and other tables containing ground-motion information. 

The NGAsubRSN is connected to path parameters (Section 2.6) and various dependent 
fields derived from time series. Time series gathered and processed as part of the NGA-Sub 
project are described in Sections 3.1 and 3.2. Due to the large cumulative size of the ground-
motion files, they are not incorporated into the NGA-Sub database, but they are called by codes 
that operate with the database. 

Table 2.5 lists relational database tables related to ground-motion time series files and 
how the database interacts with them. Table 2.6 lists relational database tables related to IMs. 
Table names are provided along with an indication of whether the information contained in the 
tables consists of dependent or independent metadata. 

Table 2.5 Tables related to ground-motion time series files in the NGA-Sub 
relational database. 

Table name Contents Information types 

RecordMeta 
NGAsubRSN*, as-recorded horizontal azimuths, processing details 

(low-cut and high-cut corner frequencies) 
Independent 

RecordtoAT2 NGAsubRSN*, computer path to access time series data (.AT2 files) Independent 

HeaderData 
NGAsubRSN*, time step, other information given in headers of .AT2 

files (station name, event name, and date/time) 
Independent 

*Assigned as primary key 
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Table 2.6 Tables presenting ground-motion intensity measures and related metadata. 

Table name Contents Information types 

OscPeriods 
List of oscillator periods for pseudo-spectral acceleration calculations 
(common to all motions, hence no NGAsubRSN) 

Independent 

OscDamp 
List of oscillator damping values for pseudo-spectral acceleration 
calculations (common to all motions, hence no NGAsubRSN) 

Independent 

PSA_𝑖𝑗 

NGAsubRSN*, period (one field per period), pseudo-spectral 
acceleration (provided in rows for each period) 

𝑖 = component (H1, H2, V, RotD0, RotD50, RotD100) 

𝑗 ൌ damping ratio (decimal) 

A single file provides information for all records. 

Dependent 

DurationMetrics_𝑖 
NGAsubRSN*, Arias Intensity for components 𝑖=H1, H2, and V; 
times for 𝑖=H1, H2, and V (percentiles of Arias Intensity = 0.05 to 
0.95, step of 0.05) 

Dependent 

FAS_𝑖 
NGAsubRSN*, frequencies (one field per frequency), Fourier 
amplitudes for components 𝑖=H1, H2, and smoothed EAS (provided 
in rows for each frequency) 

Dependent 

CAV_𝑖 
NGAsubRSN*, CAV for components 𝑖=H1, H2, and V, CAV5 for 
components 𝑖=H1, H2, and V 

Dependent 

RecordFlag NGAsubRSN*, data quality assurance flag (Table 3.5) Dependent 

 

The RecordMeta and HeaderData tables contain independent metadata that are 
descriptive of individual ground-motion components. The information is from ground-motion 
catalogs and header files. As noted previously, ground-motion time series (.AT2 files) are not 
part of the database, but the database needs to interact with these files that are stored on a server. 
The RecordMeta table contains information obtained from regional flatfiles derived during 
record processing (e.g., unfiltered PGA, corner frequencies etc.) that connect with a particular 
version of the ground-motion file; in some cases, records were later re-processed, and the 
contents of this table may be out of date. The RecordtoAt2 table provides links that allows 
individual ground-motion components to be found on the server and opened to compute ground-
motion parameters. 

The contents of the OscPeriods and OscDamp tables provide oscillator properties 
(periods and damping ratios) for which pseudo-spectral accelerations are computed. The results 
of the calculations appear in PSA_𝑖𝑗 tables, with separate tables provided for each ground-motion 
component and damping ratio; see Table 2.5. Procedures used to calculate these parameters are 
given in Section 3.3.1. 

Additional ground-motion parameters are provided in DurationMetrics_ 𝑖, FAS_ 𝑖, and 
CAV_ 𝑖 tables. Separate tables are provided for different components of 𝑖. Procedures used to 
calculate these parameters are given in Section 3.3.2. 
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The RecordFlag table assigns flags to individual records based on their being improbable 
for the event. Details on the flag assignments are given in Section 3.4, with the flags defined in 
Table 3.5. 

Suggested Citation: 
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Stewart J.P. (2020). Chapter 2: Relational Database, in Data Resources for NGA-Subduction Project, 

PEER Report No. 2020/02, J.P. Stewart (editor), Pacific Earthquake Engineering Research Center, 
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3 Ground Motions and Intensity Measures 

Tadahiro Kishida, Robert B. Darragh, Brian S.J. Chiou, Yousef Bozorgnia, Silvia Mazzoni, Víctor 
Contreras, Rubén Boroschek, Fabián Rojas, and Jonathan P. Stewart 

3.1 DATA SOURCES 

An extensive effort was undertaken to coordinate the NGA-Subduction Project (NGA-Sub) with 
local agencies in areas affected by subduction earthquakes, with an emphasis on Alaska, 
Cascadia, Central America and Mexico, Japan, New Zealand, South America, and Taiwan. This 
included communications to identify relevant sources of ground-motion data and either (i) 
identifying public repositories of data that could be accessed by the project; or (ii) forming 
collaborative agreements to enable data sharing between the NGA-Sub project and individual 
network operators. We obtained digital but unprocessed versions of records from either 
accelerometers (accelerograms) or seismometers (velocity time series). This chapter describes 
the data processing and computation of the IMs. 

Table 3.1 shows the agencies from each of the above regions from which we obtained 
uncorrected records. The Chilean Seismic Network (CSN) is operated by the Seismology 
Department at the University of Chile. As a result of the recent rapid growth of the Chilean 
seismic networks, uncorrected strong-motion recordings are distributed for earthquakes with 
magnitudes ≥ 4.0 for individual networks known as the C, CX, C1, and RNA networks. Both 
CSN and the individual networks will be referred to in various parts of this report. 

In total, 70,107 recordings were obtained and processed for NGA-Sub from all sources. 
Section 3.2 describes steps in the data processing. Section 3.3 describes the computation of 
ground-motion parameters and the ground motion intensity measure (IM) tables incorporated 
into the relational database. 
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Table 3.1 Ground-motion catalogs contributing data to NGA-Sub database. 

Region Catalog 
Number of 

processed motions 

Alaska 

CESMD 

IRIS 

GSC 

36 

2,812 

178 

Cascadia 

CESMD 

COSMOS 

IRIS 

NSMP 

NCEDC 

GSC 

29 

100 

1,432 

112 

219 

217 

Central America 
and Mexico 

NORSAR 

COSMOS 

NOAA 

IRIS 

MARN 

Universidad de Costa Rica (Networks LIS, 
XY, OV) 

292 

349 

727 

908 

227 

145 

Japan 

NIED, K-NET 

NIED, KIK-NET 

JMA 

PARI 

NOAA 

HI-NET 

Electricity Companies (TEPCO, EPCO) 

20,869 

18,836 

444 

303 

44 

72 

149 

South America 

CESMD 

NOAA 

IRIS 

GFZ 

RENADIC (U Chile, CEE Dept) 

CSN (U Chile, seismology), including C, CX, 
C1 and RNA networks 

CISMID 

RNAC (Columbia) 

RENAC (Ecuador) 

213 

40 

1,689 

1,193 

1,274 

1,076 

 

213 

409 

89 

Taiwan 

CWB, TW 

IES 

K-NET 

JMA 

11,176 

1,196 

62 

69 
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3.2.2 Time Windows for Data Processing 

Using a process introduced with the NGA-East project [Goulet et al. 2014], six time windows 
were selected for each time series; see Figure 3.2. The first time window includes the entire 
record (blue box in the figure). This window includes the pre-event noise (recorded before the P-
wave onset), P-waves, S-waves, and coda waves. The second to fifth windows contain only the 
pre-event noise (magenta box), P-waves (yellow box), S-waves (green box), and coda waves 
(gray box), respectively. The sixth window contains both P- and S-waves. All time windows are 
selected during data processing in order to calculate the FAS from the different waves in these 
windows. Details on window selection are described by Ancheta et al. [2013], Goulet et al. 
[2014], and Ktenidou et al. [2014], and are briefly outlined below. 

The start time of the P-wave window (tp), which is also the end of the noise window, was 
first selected visually by inspecting the three components for the first, generally impulsive, large-
amplitude wave arrival. Then, the end time of the P-wave window, which is the start time of S-
wave window (ts), was selected visually considering amplitude and frequency content of the 
three-component acceleration, velocity, and displacement time series. As a selection guide, the 
theoretical S arrival time (t′s) is plotted with the time histories, based on the selected P arrival 
time and the hypocentral distance as follows: 

  (3.1) 

where Rh is the hypocentral distance, and P- and S-wave velocities are assumed to be 6.0 and 3.5 
km/sec for the crust, respectively. 

The end time of the S-wave window was automatically selected using a computed S-wave 
duration, which is a function of magnitude and hypocentral distance and is expressed as follows: 

  (3.2) 

where Td-rup is a base duration, which is related to, but generally larger than, the rupture (source) 
duration, and Td-prop is the additional duration introduced along the source-to-site path, including 
scattering effects. Table 3.2 shows the Td-rup used in the data processing, where fc in the table is 
calculated by the following formula [Aki 1967; Brune 1970; and Boore 1983]: 

 

1

3
6

0

4.9 10cf M


 

   
 

 (3.3) 

where M0 is the seismic moment, given as Hanks and Kanamori [1979]  

 1.5 +16.05
0 10M  M  (3.4) 

 is the shear-wave velocity at the source (assumed as 3.2 km/sec);  is the stress drop 
(assumed as 6 MPa, an average value for large earthquakes in California [Atkinson and Silva 
1997]; and M is the moment magnitude. 
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  (3.8) 

Finally, the entire time window was selected from tn to f
ct . 

3.2.3 Fourier Spectra 

(a) Mean removal and taper 

Mean removal and tapers are applied to each windowed time series before calculating the Fourier 
spectra. Mean removal (also sometimes referred to as DC-removal) is defined by: 

 aaa   (3.9) 

where a denotes the acceleration time series after mean removal, and a and a  denote the 
windowed acceleration time series and the mean offset, respectively. After mean removal, cosine 
tapers are applied at the start and end of each window as (e.g., Kanasewich [1981]): 
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where nb is the number of points within the beginning taper, and ne is similarly defined for the 
end taper. For example, when the beginning taper is applied with a taper length of 0.5 sec to time 
series with dt = 0.005 sec, nb is 0.5/0.005 = 100. These functions produce a weight of zero at the 
first and last points in the time series, and gradually increase to 1.0 at the opposite ends of the 
tapers. Table 3.3 lists the durations of cosine tapers applied to the time series. 

Table 3.3 Cosine taper length applied to windowed accelerations. 

Windowed time histories 
Cosine taper length 

Start time End time 

Entire 1% of total length 1% of total length 

Pre-Event Noise 0.5 sec 0.5 sec 

P-Wave 0.5 sec 0.5 sec 

SLg-Waves 0.5 sec 0.5 sec 

Coda 0.5 sec 0.5 sec 

 
(b) Computation of Fourier spectra 

Fourier spectra are calculated from the windowed time series after mean removal and tapering. 
Fourier amplitude spectra (FAS) and Fourier phase spectra (FPS) are saved as output files. 
Before calculating Fourier spectra, a series of zeroes are added at the end of recordings to 
increase the number of data points to a power of 2. The signal durations increase to 
approximately 40–50 minutes for signals to be used with acausal filters, depending on the 

S
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sampling frequency, as shown in Table 3.4. This window length was selected based on the 
longest-duration recording in the NGA-East dataset so that all the recordings become at least 
twice as long as the recorded duration, which avoids wrap-around effects in the time domain 
after applying acausal filters. The lengths of pre-event noise, P-wave, S-wave, and coda wave 
windows are all increased to 50 minutes with zeroes. This process provides a consistent 
frequency step (df) among the different windows and recordings; hence, these FAS are well-
formatted for subsequent application without the need to perform frequency domain 
interpolation. 

Consider an acceleration time series ( )a t , which is sampled at N discrete points in time 
separated by step dt. Complex-valued Fourier coefficients are computed at 2N+1 frequencies at 
step df: 

     1 1

1

1 N
j k

k N
j

C a j
N

  



   (3.12) 

 
 2 i N

N e    (3.13) 

where k is a frequency index, Ck is a Fourier coefficient, and 1i   . The Fourier amplitude 

 A  is computed as: 

 A dt N C   (3.14) 

Equations (3.12) and (3.14) show that Ck decreases, but Fourier amplitudes are not changed by 
zero padding of the time series. Fourier phase spectra    are calculated from the real and 

imaginary values of Fourier coefficients: 

    1tan Im ReC C      (3.15) 

where the phase ranges from – to  in the output file. 

Table 3.4 Minimum frequencies for Fourier spectra calculation. 

Sampling 
frequency (Hz) 

dt (sec) Duration (sec) Power of 2 df (Hz) 

10 0.1 3276.80 15 0.00030518 

20 0.05 3276.80 16 0.00030518 

40 0.025 3276.80 17 0.00030518 

50 0.02 2621.44 17 0.00038147 

100 0.01 2621.44 18 0.00038147 

200 0.005 2621.44 19 0.00038147 
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3.2.4 Filtering Methodology 

High-pass (low-cut) and low-pass (high-cut) filters in the frequency domain are applied to the 
windowed record encompassing the entire signal; the other five time windows (the four shown in 
Figure 3.2 and the combined p- and s-windows) are not filtered. Causal and acausal Butterworth 
filters are applied in which 5 and 4 poles are used for high-pass and low-pass filters, respectively. 

High-pass corner frequencies ( )c HPf   are selected based on the theoretical acceleration 

decay at low frequency according to the 2f  model [Brune 1970; Boore and Bommer 2005], 
which is shown on the FAS plots for guidance (Figure 3.3). Corner-frequency selection is also 
aided by comparison of the “entire signal” FAS to the “noise window” FAS; hence signal-to-
noise ratio (SNR) is computed to guide these selections. At low/high frequencies, these will 
generally converge by approaching SNR = 1.0, and the high-pass/low-pass corner frequency is 
typically selected to be slightly higher/lower than the frequency of convergence. A SNR of 3.0 is 
typically referenced. Additionally,  c HPf   are iteratively selected by reviewing displacement 

amplitude in the noise window (e.g., Boore and Bommer [2005]). In consideration of both of the 
above factors (conformance with 2f  model and SNR, displacement amplitude in pre-event noise 

window), the  c HPf   selected for the example recording is 0.1 Hz. A low-pass corner frequency 

 c LPf  is selected at 30 Hz due to anti-alias filter of the recording instrument; this is a commonly 

encountered situation for ground motions recorded by modern digital instruments. The 
methodology described and illustrated here was applied to all NGA-Sub records that passed 
screening criteria; see Section 3.2.1. This resulted in selected values of  c HPf  and  c LPf   for 

all three as-recorded components for each ground motion. The usable frequency is calculated 
with a multiplicative factor of 1.25 inward as is standard practice in NGA projects (e.g., Ancheta 
et al. [2014]). 

Filtered versions of each record are provided using acausal Butterworth filters. Boore and 
Akkar [2003] and Bazzurro et al. [2005] reviewed attributes of acausal vs. causal filters and 
determined that the phase shift introduced in the application of causal filters that is absent in 
acausal filters is the most important distinction. Both filters have the same amplitude of the 
transfer function. The following sections describe both filters in greater detail. 

(a) Acausal Butterworth filter 

The acausal Butterworth filter (high-pass) is applied by modifying both real and complex 
components of signal Fourier coefficients as: 

  
 

2

2
1

p

p

n

c
n

c

f f
Y

f f



 (3.19) 

where np is the number of poles, and fc is the corner frequency. Acausally filtered time series 
were used for computation of RotDxx IMs [Boore 2010]; see Section 3.3. Figure 3.4 shows the 
time domain response of Equation (3.19) for different corner frequencies. The input time series is 
an impulse at t = 20 sec with an amplitude of 1/dt. The figure shows that the filter produces time-
domain responses prior to impulse arrival (also referred to as pre-event motions; see Bazzurro et 
al. [2005]). Figures 3.5 and 3.6 show the Fourier amplitude and phase spectra for acausal filters 
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Arias Intensity is computed per Arias 1970]: 

   dtta
g

AI 2

2


 (3.23) 

Arias intensity is provided in units of cm/sec. Times to various percentiles of AI are provided as 
measured from the start of the pad-stripped acceleration time series that is produced by the 
processing procedures described in Section 3.2. Cumulative absolute velocity is computed as: 

  CAV a t dt   (3.24) 

Cumulative absolute velocity is also computed excluding portions of the absolute accelerogram 
with amplitudes less than 5 cm/sec2, which is referred to as CAV5. This definition of CAV has 
been used, for example, to predict pore pressure generation in sands [Kramer and Mitchell 2006]. 

Smoothed FAS are provided for vertical as-recorded components as well as for a 
smoothed effective amplitude spectrum (EAS) defined per Goulet et al. [2018] as: 

      2 2

1 2

1

2 H HEAS f A f A f  
   (3.25) 

where  1HA f  and  2HA f  are Fourier amplitudes of the two as-recorded horizontal motions. 

Smoothing and desampling were performed after computing EAS following the approach by 
Goulet et al. [2018]. The values stored in the relational database are for the entire window. The 
calculations provide Fourier amplitude for all windows, but these additional data are not 
incorporated into the relational database. Fourier phases were not retained following smoothing 
and desampling. 

3.3.3 Ground-Motion Tables in Relational Database 

Chapter 2 of this report describes the database schema and introduces the various tables that 
comprise the database. Tables in the database that relate to ground-motion parameters and related 
information described in this chapter include the following (RSN = record sequence number, 
which is a unique identifying index for each ground motion): 

RecordMeta: RSNs, as-recorded azimuths, high-pass corner frequencies; 

RecordtoAT2: maps RSNs to the corrected time series (.AT2 files); 

HeaderData: contains time step and other information from headers of AT2 files; 

OscPeriods: list of oscillator periods used to compute PSA; 

OscDamp: list of oscillator damping values used to compute PSA; 

PSA_ij: RSN, periods, PSAs (periods are columns, RSN are rows); 

‐ i = component (H1, H2, V, RotD0, RotD50, RotD100) 
‐ j = damping ratio 
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DurationMetrics_k: RSN; AI for components k = H1, H2, and V; times for k = 
H1, H2, and V (i.e., percentiles of AI = 0.05 to 0.95 in steps of 0.05); 

FAS_k: RSN; frequencies; Fourier amplitudes for components k = H1 amp, H2 
amp, EAS; Frequency in columns, FAS in rows; and 

CAV_k: RSN; CAV for components k = H1, H2, and V; CAV5 for k = H1, H2, 
and V. 

3.4 DATA-QUALITY FLAGS 

Individual recordings may have amplitudes that are so low or high that they are likely in error, 
and as such, may not be suitable for use in ground motion model (GMM) development. Sources 
of such errors might include incorrect gain, calibration problems, or incorrect units. Similarly, 
the population of recordings for individual earthquake events might be unreasonably high or low, 
which could indicate source location errors. 

We sought to identify recordings potentially subject to such errors through the 
assignment of data-quality flags. The assignment of flags occurred mid-way through the NGA-
Sub project and prior to GMM development. Our approach was to evaluate data for individual 
events relative to a global GMM available at that time (i.e., the “BC Hydro” model of 
Abrahamson et al. [2016]). Using ground-motion IMs and metadata from a regional flatfiles 
(Section 2.2), residuals were computed relative to the Abrahamson et al. [2016] model. An IM 
from a recording is considered potentially problematic if its residual falls outside the range of 

4 , where  is the total standard deviation. Figure 3.17 shows IMs vs. distance for a sample 
event in Japan, from which several records falling below the range can be seen. 

Residuals were computed for the four IMs for which data are illustrated in Figure 3.17: 
PGA and 5%-damped pseudo-spectral accelerations at oscillator periods of 0.1, 0.3, and 1.0 sec. 
Flags were then assigned as indicated in Table 3.5. The -999 flag is assigned for recordings from 
non-interface or intraslab events (the Abrahamson et al. [2016] GMM does not apply in such 
cases), records with missing IMs, or missing metadata (most often distance). Data-quality flags 
are provided in the RecordFlag table for incorporation into the NGA-Sub relational database. 

Table 3.5 Criteria for assignment of data-quality flags. 

Flag Description 

0 All residuals within 4  

1 Residuals for one intensity measure beyond 4  

2 All four residuals beyond 4  

-999 
Residuals not calculated due to missing data or 

metadata and for event types other than intraslab or 
interface 
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Figure 3.17 Comparison of data to median +/- four standard deviations from 
Abrahamson et al. [2016] model, used for flag assignments. 
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4 Source and Path Metadata 

Víctor Contreras, Jonathan P. Stewart, Tadahiro Kishida, Robert B. Darragh, Brian S.J. Chiou, Silvia 
Mazzoni, Nico Kuehn, Sean K. Ahdi, Katie Wooddell, Robert R. Youngs, Yousef Bozorgnia, Rubén 
Boroschek, Fabián Rojas, and Jennifer Órdenes 

4.1 OVERVIEW AND ORGANIZATION 

4.1.1 Introduction 

For the earthquakes considered in the NGA-Subduction (NGA-Sub) project, a series of 
descriptive source parameters are needed to support the development of ground-motion models 
(GMMs). For a given ground-motion recording site, source parameters also allow path 
parameters to be defined, so the issues of source and path are strongly linked in the NGA-Sub 
database development. This chapter describes the manner by which those parameters were 
compiled and assembled in a source and path database file, which has been developed for events 
with ground-motion recordings obtained in different regions affected by subduction-zone 
earthquakes around the world. 

Chapter 2 describes the overall schema for the NGA-Sub database. This chapter concerns 
the source and path database and its contributing tables, which is a component of the broader 
database. The individual fields that comprise the source and path database are listed in Chapter 2. 
Certain obvious parameters listed in Chapter 2 are not explained here (e.g., region flags). This 
chapter describes what many of those parameters are in more detail and explains how they were 
developed. 

4.1.2 Overview of Events 

Figure 4.1 shows global maps with locations of the epicenters and the strong-motion recording 
stations in the NGA-Sub database. As presented in this figure, the source and path database has 
been organized into seven major regions: Alaska (ALK), Cascadia (CAS), Central America and 
Mexico (CAM), Japan (JPN), New Zealand (NZL), South America (SAM), and Taiwan (TWN). 
Also shown in Figure 4.1 are the main tectonic plates and plate boundaries as defined in a digital 
model assembled by Bird [2003]; the boundaries shown in red are mostly classical oceanic-
beneath-continental subduction boundaries whereas other plate boundaries are shown in black. 
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(a) Magnitude 

Moment magnitude is the magnitude scale used in NGA projects, including NGA-Sub. 
Whenever possible, moment magnitude is computed from seismic moment, M0 [Hanks and 
Kanamori 1977] as: 

 0

2
log 10.7

3
M M  (4.1) 

Seismic moment (M0) and/or hypocenter location was collected from the following agencies: 

 The Global Centroid Moment Tensor (CMT, Ekström et al. [2012]) 

 The National Earthquake Information Center (NEIC) at the United States Geological 
Survey (USGS) 

 The Lamont-Doherty Cooperative Seismographic Network (LD) at Columbia University 

 The International Seismological Centre [ISC 2019]; a “groomed” version of the ISC 
catalogue was produced by Engdahl et al. [1998], and is referred to as the EHB catalogue 

 The Duputel et al. W phase catalog (DUPUTEL) [Duputel et al. 2012] at the University 
of Strasbourg 

 In Alaska, the Alaska Earthquake Center (AEC), housed at the University of Alaska 
Fairbanks 

 In Cascadia, the Pacific Northwest Seismic Network (PNSN), housed at the University of 
Washington, and Natural Resources Canada (NRCAN) 

 In northern California, the Northern California Earthquake Data Center (NCEDC), 
housed at UC Berkeley 

 In Chile, the Chilean National Seismological Center (CSN), also referred as GUC 
(Department of Geophysics at the University of Chile) 

 In Taiwan, the National Center for Research on Earthquake Engineering (NCREE) and 
the Broadband Array in Taiwan for Seismology (BATS) 

 In Japan, the National Research Institute for Earth Science and Disaster Resilience 
(NIED) and the Japan Meteorological Agency (JMA) 

Seismic moments from the CMT catalog were preferred when available, which was the 
case for most events. Other catalogs were used when CMT estimates of M0 were not available; 
Table 4.2 lists the catalogs considered by region in order of preference for the selected M0. For 
eight earthquakes in Japan with FFMs and ten earthquakes in Cascadia, the seismic moment was 
taken from specific studies published in the literature; see Section 4.3 for details. 
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Table 4.1 Example events from NGA-Sub database (highlighted in maps in Figures 4.2–4.11), showing compiled source 
parameters. 

 

                                                 
1
 Intra/Inter flag’ is defined in section 4.2.2d and refers to the event-type (interface, intraslab, shallow crustal, outer-rise). 

2
 ‘FFM flag’ indicates if the event has an available FFM in the database as described in Section 4.3 (0 = event without FFM, 1 = event with FFM). 

3
 Source review flag’ is defined in Section 4.6 and refers to the QA procedure applied to review the source parameters of each event. 

Region 
NGA‐
sub 
EQID 

Earthquake name, 
Country/State 

Date  M 

Hypocenter location  Event‐
Type 

flag
1
 

FFM 

flag
2
  

No. of 
segments 

L (km) 
W 

(km) 
Ztor 
(km) 

Strike 
(deg) 

Dip 
(deg) 

Rake 
(deg) 

Source‐
review 

flag
3
 

# 
recs. Latitude 

(deg) 
Longitude 
(deg) 

Depth 
(km) 

ALK 
1000002 Rat Islands, Alaska 2003/11/17 7.78 51.1965 178.1844 29.7262 0 1 1 120 140.4 5.61 280.4 18.8 121.9 0 6 

1000142 Iniskin, Alaska 2016/1/24 7.15 59.6531 -153.4457 129.4159 1 1 1 30 28 108.62 60 66 33 0 191 

CAS 

2000004 Nisqually, Washington 2001/2/28 6.8 47.1574 -122.6801 53.1749 1 1 1 24 21 46.13 350 70 -91 0 147 

2000009 1815881, Oregon 2004/7/12 4.9 44.2977 -124.4869 12.82 0 0 1 3.6 3.6 12.279 353 16 75 0 92 

2000011 1852721, Oregon 2004/8/19 4.7 44.6677 -124.3201 18.09 0 0 1 2.7 2.8 17.908 349 7 99 0 76 

CAM 
3000271 Michoacan, Mexico 1985/9/19 7.99 18.1814 -102.5691 16.2637 0 1 1 150 139 6 300 14 72 0 26 

3000201 Oaxaca, Mexico 1999/9/30 7.46 16.054 -96.907 40 1 0 1 69.9 32.3 32.582 300 49 -78 0 8 

JPN 

4000001 Tohoku, Japan 2011/3/11 9.12 38.1165 142.823 17.4965 0 1 3 482 186 8.65 200 12 88 0 1293 

4000219 Sea of Okhotsk, Russia 2013/5/24 8.36 54.8172 153.3558 608.1717 1 1 1 195 70 601 184 10 -98 0 48 

4000093 Hokkaido Tohu-oki, Japan 1994/10/4 8.28 43.711 147.457 27.459 1 1 1 60 70 18.1 160 40 30 0 30 

NZL 
5000179 Fiordland, New Zealand 2009/7/15 7.81 -45.8339 166.6363 20.9 0 1 1 100.23 100.23 8.76 27 33 154 -999 27 

5000013 Te Anau, New Zealand 1988/6/3 6.69 -45.1 167.17 60 1 0 1 25 55 32.57 310 86 118 -999 3 

SAM 

6000149 Maule, Chile 2010/2/27 8.81 -36.2089 -72.9587 30.4055 0 1 1 480 160 0.74 15 18 109.3 2 49 

6000323 Valparaiso, Chile 1985/3/3 7.98 -33.125 -71.61 40 0 1 2 222 135 6.4 5 20.4 97.2 0 27 

6000061 Tarapaca, Chile 2005/6/13 7.78 -20.03 -69.28 110 1 1 1 47.5 45 101.21 187 23 -73 0 30 

TWN 

7000044 Offshore Hualien, Taiwan 2002/3/31 7.12 24.1602 122.172 33 0 1 1 33 32 21.34 292 32 121 0 426 

7000048 Offshore Pingtung, Taiwan 2006/12/26 7.02 21.88703 120.56844 44.1 1 1 1 89.9 35 24.13 349 53 -54 0 458 

7000045 7418598, Taiwan 2004/10/15 6.59 24.470833 122.777833 88.02 1 0 1 18.7 23.5 84.756 200 17 6 0 439 
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The seismic moment is not available for some events. This is most frequently the case for 
older events (pre-1976 when the CMT catalog began) and events of small magnitude. In the 
NGA-Sub source database, 96% of M>6 events and 79% of M<6 events are based on seismic 
moment (considering only earthquakes with an event-type classification). For those events 
without a reported M0 value, linear relationships between different magnitude scales were 
utilized to estimate M. Alternate magnitude scales used in these relationships include local 
magnitude (ML), surface-wave magnitudes (MS), and body-wave magnitude (mb). 

Table 4.2 Earthquake catalogs and published studies used to assign seismic moment. 

Region Catalog No. of events 

Alaska 

CMT 

ISC 

NEIC 

IDC 

128 

7 

2 

1 

Cascadia 

Adopted from NGA-West2 

NEIC 

CMT 

Ichinose et al. [2006b] 

Oppenheimer et al. [1993] 

NRCAN 

Williams et al. [2011] 

PNSN 

Ichinose et al. [2004] 

Ichinose et al. [2006°] 

13 

6 

3 

3 

3 

2 

2 

1 

1 

1 

Central America and Mexico 
CMT 

NEIC 

79 

1 

Japan 

CMT 

NIED 

LD 

Abe [1975] 

Hatanaka & Takeo [1989] 

Kanamori [1971] 

Kikuchi & Fukao [1987] 

Shiba & Uetake [2011] 

Takeo & Mikami [1990] 

Yagi et al. [1998] 

Yoshioka & Abe [1976] 

142 

10 

1 

1 

1 

1 

1 

1 

1 

1 

1 

South America CMT 213 

Taiwan 

CMT 

NIED/BATS 

BATS 

DUPUTEL 

NEIC 

LD 

34 

15 

8 

4 

3 
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information for these events. In addition, two aftershocks of the 2003 Tokachi-oki 
earthquake (events 4000199 and 4000200) lack seismic moment because they 
occurred just after the large magnitude event; for event 4000199 we take M as ML and 
for event 4000200 we take M as MS; 

6. South America: Ten events lack seismic moment. M is taken as Mw from CSN for 
four events, M–ML relations [Equations (4.2) and (4.3)] are applied to four events, 
and the M–MS relation [Equation (4.4)] is applied to two events; and 

7. Taiwan: 10 events prior to 2000 lack seismic moments, mostly because in this period 
the Broadband Array in Taiwan for Seismology (BATS) did not routinely compute 
M0 for events with magnitudes < 6.2. These events have produced 928 records. For 
these events, M is taken as mb, and ML for 8 and 2 events, respectively. 

(b) Hypocenter location 

Hypocenter locations incorporated into selected FFMs were used when available; in most cases 
the hypocenter is on the ruptured fault plane. In some cases, the hypocenter documented in the 
FFM paper is not on the fault plane. In those cases, the hypocenter was projected on to the fault-
rupture plane (the projection was made in the direction orthogonal to the plane). 

When FFMs were not available, which is the case for most events, hypocenter locations 
were obtained from the different catalogues listed in Section 4.2.2(a). The preferred catalogues 
for location assignments differed from those used for magnitudes. Table 4.3 lists catalogues in 
the order of preference for each region. For New Zealand, this information is provided in Van 
Houtte et al. [2017] and is not shown in Table 4.3. 
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Table 4.3 Earthquake catalogs and published studies used to assign hypocenter locations. 

Region 

Alaska Cascadia 
Central America and 

Mexico 
Japan South America Taiwan 

Catalogue 
No. 
of 

events 
Catalogue 

No. 
of 

events 
Catalogue 

No. 
of 

events 
Catalogue 

No. 
of 

events 
Catalogue 

No. 
of 

events 
Catalogue 

No. 
of 

events 

CMT 

ISC 

NEIC 

IDC 

AEC 

117 

10 

8 

2 

1 

Adopted from NGA-West2 

ISC 

Oppenheimer et al. [1993] 

Williams et al. [2011] 

NRCAN 

PNSN 

Ichinose et al. [2004] 

Ichinose et al. [2006(a)] 

13 

12 

3 

2 

2 

1 

1 

1 

EHB 

ISC 

CMT 

Mendoza and Hartzell [1989] 

Mendoza [1993] 

56 

23 

1 

1 

1 

JMA 

JMA / Bai et al. [2014]* 

NEIC 

ISC 

CMT 

SEVO [1996] 

NIED 

JMA / EIC [2003] 

JMA / Ref. 135.1 

Yagi [2004] 

Shiba and Uetake [2011] 

Yagi et al. [1998] 

Nagai et al. [2001] 

Abe [1975] 

Takeo and Mikami [1990] 

Namegaya and Tsuji [2005] 

Yamanaka and Kikuchi [2004] 

Tsuchida et al. [1983] 

Takiguchi et al. [2011] 

Fukuyama and Irikura [1986] 

Tanioka et al. [1995] 

Nakayama and Takeo [1997] 

Koketsu et al. [2004] 

Atkinson and Macias [2009] 

Yamanaka [2005] 

JMA [2012(b)] 

JMA [2012(c)] 

115 

16 

5 

2 

2 

2 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

CSN 

EHB 

ISC 

NEIC 

Delouis et al. [2010] 

Lay et al. [2010) 

Melgar et al. [2016] 

Lay et al. [2014] 

Shao and Ji (n.d.] 

Sladen [2007] 

Mendoza et al. [1994] 

Hayes [2016] 

Kuge et al. [2010] 

Lay et al. [2014] 

Schurr et al. [2012] 

Salichon et al. [2003] 

107 

69 

31 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

NCREE 75 

* for aftershocks of the 2011 Tohoku earthquake. 

 



 

65 

(c) Fault type 

The style of faulting was defined based on the rake angle as shown in Table 4.4. The rake angle 
was compiled for all events with moment tensor solutions from earthquake catalogs; see Tables 
4.2 and 4.3. When a rake angle is provided with a FFM (Section 4.3), it is preferred to values 
from catalogs. 

Table 4.4 Fault mechanism based on rake angle (after Ancheta et al. [2013]). 

Fault mechanism Flag Range of rake angle (°) 

Strike-slip 0 

-180 <  < -150 

-30 <  < 30 

150 < < 180 

Normal 1 -120 <  < -60 

Reverse 2 60 <  < 120 

Reverse–oblique 3 
30 <  < 60 

120 <  < 150 

Normal–oblique 4 
-150 <  < -120 

-60 <  < -30 

Unknown -999 Unknown 

 

(d) Event type 

When event type (interface, intraslab, shallow crustal, and outer-rise) is defined in literature 
(typically the same documents that have FFMs), we adopted the event-type classification from 
those prior studies. For events without a prior event-type classification, we applied an automated 
process to identify earthquake type. This process considers the location of the hypocenter relative 
to the depth of the surface of the subducting (typically oceanic) plate as defined by Hayes et al. 
[2012]. Also considered is the event focal mechanism. Exceptions to the use of these automated 
procedures are Taiwan and New Zealand; in Taiwan we used event-type classifications from 
NCREE, and for New Zealand we used event-type classifications from Van Houtte et al. [2017]. 

Figure 4.22 shows an example for Event 6000055 in Chile that illustrates the procedure. 
The blue solid line is the geometry of the top surface of the subducting Nazca plate and the 
dashed lines represent the estimated error of the Hayes et al. [2012] model (±10 km). Three 
regions are defined: 

 Region A: depth to top of subducting plate, using the mean representation, is 
< 10 km; 

 Region B: 10 km ≤ depth to top of subducting plate ≤ ZBC; and 

 Region C: depth to top of subducting plate > ZBC. 

Depth ZBC is the mean depth to the top of subducting slab at the maximum depth of interface 
earthquakes and is region-dependent (50 km in ALK and CAM, 55 km in JPN and SAM; Hayes 
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et al. [2012]; Tichelaar and Ruff [1993]). Depth ZBC defines the boundary between Zones B and 
C.  

These three regions and the plate boundary are used to define several zones as follows: 

 Shallow depths, above the shallowest interpretation of the subducting plate 
depth (mean – standard deviation depth), or 20 km in region B, or 30 km 
in region C, whichever is shallower. Marked in green and taken as shallow 
crustal; 

 Region B, below the shallowest interpretation of the subducting plate 
depth or 20 km, whichever is shallower, and above 60 km. Marked in light 
blue and taken as interface; 

 Region C, below the shallowest interpretation of the subducting plate 
depth, as well as depths > 60 km in Regions A-B. Marked in gray and 
taken as intraslab; 

 Region A, depths < 60 km. Marked in yellow and taken as outer rise; and 

 Region C, below 30 km and above 60 km. It taken as undetermined. 

For Event 6000055 in Figure 4.22, the location is in Zone 2 and the event type is classified as 
interface.  

Following these assignments, event types are checked using moment tensor solutions. 
Interface earthquakes should have a reverse mechanism. If an event near the interface is not 
reverse, we assign a shallow crustal designation. Intraslab earthquakes are typically normal or 
strike slip. Event type is reported in the source database using flags as defined in Table 4.5. Low-
confidence flags are assigned when (1) nodal planes are not available to check event-type 
assignments; (2) event locations are near the boundaries between regions; and (3) moment 
tensors are incompatible with the region (e.g., normal faulting in an interface region). Procedures 
similar to these have been described previously by Poblete [2008] and Contreras [2009]. 

Table 4.5 Flags in source database that indicate event-type classification. 

Event-type classification Flag 

Interface 0 

Intraslab 1 

Shallow crustal / overriding intraplate 2 

Outer-rise 4 

Intraslab, specially lower double seismic zone 5 

Outer-rise event with lower confidence -444 

Shallow crustal / overriding events with lower confidence -666 

Intraslab events with lower confidence -777 

Interface events with lower confidence -888 

Unknown -999 

 



 

Figu

4.3 S

Some of 
more rec
given eve
from a re
fault surf
fault). W
to derive

T
plane’s u
plane dim
identified
these par

In
database.
on speci

re 4.22 E
th
N

SOURCE PA

the paramet
ctangles, wh
ent. The prin
ecording site
face) and Jo

While not use
 hanging wa

The paramete
upper left co
mensions, an
d and (in mo
rameters wer

nformation d
. In the case
fic planes w

NGAs

Event-type cla
he top of the

NGAsubEQID

ARAMETE

ters compile
hich represen
nciple need 
e to a fault su
oyner-Boore 
ed in NGA-S
all effects an

ers listed in S
orner as vie
nd rake ang
ost cases) m
re derived fo

derived from
e of events fo
within the m

subEQID = 600

assification s
 surface of t

D 6000055, wh

ERS FOR E

d for the NG
nt the appro
for these par
urface, inclu
distance RJB

Sub GMMs, 
d rupture dir

Section 4.2.
ewed from t
gle. This sec

modified for 
or earthquake

m FFMs is 
or which the
model are c

67 

00055 Event-t

scheme base
he subductin
hich is defin

VENTS WI

GA-Sub sour
oximate surf
rameters is f

uding rupture
JB (the closes

other applic
rectivity effe

1 that are de
the hanging 
ction describ
application 
es without F

contained i
e FFM inclu
contained in

type: Interface

ed on hypoc
ng plate. Exa
ed as interfa

ITH FINITE

rce database
face over wh
for the calcu
e distance Rr

st distance t
cations inclu
ects for dipp

erived from F
wall (geod

bes how FF
in NGA-Sub

FFMs. 

in the FFm
udes more th
n the FFmod

e 

center locatio
ample event 
ace. 

E-FAULT M

e describe att
hich fault sl
ulation of dis
rup (the close
to the surfac
ude defining
ping faults.  

FFMs includ
detic coordin
Ms from th
b. Section 4

model table i
han one segm
delmultiseg 

 

on relative to
is 

MODELS 

tributes of o
lip occurred
stances mea
est distance t
ce projection
g parameters

de location o
nates and de
he literature 
4.4 describes

in the NGA
ment, inform

table. For 

o 

one or 
d in a 
sured 
to the 
n of a 
 used 

of the 
epth), 
were 

s how 

A-Sub 
mation 

those 



 

68 

events, the finite fault parameters in the FFmodel table are for a single planar representation of 
the full model (needed for when single values of L and W are required for modeling purposes, 
e.g., for studies of directivity). 

4.3.1 Finite-Fault Models Collected 

We identified FFMs mainly by reviewing compilations of past studies in the literature presented 
at the following websites: 

 SRCMOD website [Mai and Thingbaijam 2014], available at 
http://equake-rc.info/SRCMOD/ (last accessed November 2019); 

 Source Models of Large Earthquakes, Caltech Tectonic Observatory, 
available at http://www.tectonics.caltech.edu/slip_history/index.html (last 
accessed November 2019); and 

 Rupture processes of global large earthquakes (M > 7), UC Santa Barbara, 
available at 
http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/home.html (last 
accessed November 2019). 

We also performed independent literature searches for the largest magnitude events (2010 M8.81 
Maule, Chile, and 2011 M9.12 Tohoku, Japan) and other recent, large events, some of which 
occurred contemporaneously with the data compilation for NGA-Sub (e.g., the 2001 M8.41 
Arequipa earthquake in Southern Peru and the 2007 M7.75 Tocopilla, 2014 M8.15 Iquique, and 
2015 M8.31 Illapel earthquakes in Chile). 

Table 4.6 lists the FFMs used in NGA-Sub for 88 earthquakes. For some earthquakes, 
more than one FFM is available in the literature; Section 4.3.2 describes how a preferred model 
was selected in these cases. In many cases, the fault dimensions in the literature were trimmed to 
develop the values shown in Table 4.6; Section 4.3.3 presents the procedures used to perform 
this trimming. Section 4.3.4 discusses special considerations related to multi-segment models. 
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Table 4.6 FFMs selected for use in NGA-Sub database. 

NGA 
Sub 
EQID 

Date 
Earthquake name, 

Country/State 
M 

FFM 
reference 

Hypocenter location
1
 Nodal plane

2
 

Slip
3
 

(cm) 
Rupture 

dimensions 
Upper-left 

corner 
Event 
Class. 
Flag

4
 

Lat. 
(°) 

Lon. 
(°) 

Depth 
(km) 


(°) 


(°) 


(°) 

M T 
L 

(km) 
W 

(km) 
Lat. 
(°) 

Lon. 
(°) 

ZTOR 
(km) 

Japan (JPN) – 63 events 

4000001  3/11/2011 Tohoku, Japan 9.12 Yokota et al. [2011] 38.1165 142.823 17.4965 200 

5 

88 3500 NO 

482 63 39.5163 144.4071 8.65 

0 12 482 62 39.7144 143.7911 13.9 

20 482 61 39.9103 143.1683 26.4 

4000219  5/24/2013 Okhotsk, Russia 8.36 Ye et al. [2013] 54.8172 153.3558 608.1717 184 10 -98 990 220 195 70 55.4265 154.0676 601 1 

4000222  11/15/2006 Kuril Doublet1 8.33 Ammon et al. [2008] 46.592 153.266 11 215 15 92 700 NO 310 130 48.1243 155.5177 0 0 

4000068  9/25/2003 Tokachi-oki 8.29 Koketsu et al. [2004] 41.7796 144.0786 25.0101 230 20 90 706 NO 120 100 42.1796 144.8114 23.3 0 

4000093  10/4/1994 Hokkaido Toho-oki 8.28 Tanioka et al. [1995] 43.711 147.457 27.459 160 40 30 1680 NO 60 70 43.8256 147.5468 18.1 1 

4000095  5/16/1968 Tokachi-oki 8.26 Nagai et al. [2001] 40.6184 143.6866 7.851 156 20 90 929 NO 200 80 41.6671 143.1441 5.58 0 

4000223  1/13/2007 Kuril Doublet2 8.13 Ammon et al. [2008] 46.229 154.5457 20.6325 43 59 -115 1400 200 235 55 45.6304 153.5358 0 4 

4000010  3/11/2011 IbarakiOff 7.92 JMA [2011] 36.1037 141.2473 32.3653 200 29 90 488 NO 90 90 36.2174 141.8235 7.8 0 

4000220  5/30/2015 Chichi-shima 7.89 JMA [2015] 27.8713 140.7021 627.5655 32 25 -44 656 98 36 40 27.8226 140.3958 617 1 

4000094  12/28/1994 Sanriku-ho 7.76 Nakayama & Takeo [1997] 40.4365 143.7558 10.6174 180 

6 

90 495 74 

100 80 40.9315 144.05 8 

0 16 90 10 40.9315 143.1 16.36 

30 90 80 40.9315 142.9734 19.45 

4000091  7/12/1993 Hokkaido_sw 7.74 Mendoza & Fukuyama [1996] 42.7814 139.2002 20.015 
20 

29.8 
100 

436 NO 
110 70 42.355 138.6511 5 

0 
340 50 80 70 41.4618 138.9642 2 

4000097  5/26/1983 Middle.Japan.Sea 7.74 Fukuyama & Irikura [1986] 40.3583 139.0708 8.0782 
15 

20 90 758 NO 
30 30 40.2998 138.9469 5 

0 
350 60 30 40.5607 139.0387 5 

4000096  6/12/1978 Miyagi-oki 7.65 Yamanaka & Kikuchi [2004] 38.1496 142.1672 36.9798 200 20 95 211 NO 80 70 38.6003 142.4336 35.28 0 

4000173  6/16/1964 Niigata 7.65 Shiba & Uetake [2011] 38.3672 139.2182 24.7595 200 60 90 880 NO 84 24 38.6882 139.5023 5.7 2 

4000092  1/15/1993 Kushiro-oki 7.59 
Ide & Takeo [1996] 
Nozu [2007] 

42.8903 144.4208 107.1658 256 0.5 -36 800 NO 60 40 42.748 144.6072 107 1 

4000108  4/1/1968 Hyuganada 7.57 Yagi et al. [1998] 32.2798 132.5302 14.9961 227 12 90 403 60 63 63 32.2729 132.8647 10.32 0 

4000074  9/5/2004 Ki_se 7.41 Yagi [2004] 33.235 137.0304 12.6998 85 40 90 390 110 108 21.3 33.242 136.3208 7.1 -444 

4000009  3/11/2011 Iwate_off 7.40 JMA [2011] 39.8339 142.6992 32.0373 187 10 74 346 NO 45 50 40.0155 142.9985 28 0 

4000132  6/17/1973 Nemuro-oki 7.40 Namegaya & Tsuji [2005] 42.9571 145.9611 33.4149 230 27 111 120 NO 90 100 42.8375 146.9804 1 0 

4000069  9/25/2003 Tokachiokiaft 7.37 Atkinson & Macias [2009] 41.7534 143.6114 44.8185 208 18 86 N/A N/A 60 24 41.9021 143.7943 43 0 

4000002  3/9/2011 Tohoku foreshock 7.36 JMA [2011] 38.301 143.221 18.0334 187 11 75 222 78 70 70 38.7201 143.5146 14.2 0 

4000102  10/9/1994 Hokkaido.Eastoff.as 7.28 Ye et al. [2016] 43.9124 147.9175 33.2881 227 19 104.6 270 50 50 50 43.936 148.3136 26.5 0 

4000054  12/7/2012 Miyagi-oki 7.23 JMA [2012] 38.0216 143.8381 21.0373 
174 61 82 

908 136 
24 24 37.9492 144.1553 41 

-777 
188 44 -100 75 40 38.2722 144.0363 8.2 

4000073  9/5/2004 Ki_se 7.23 Yagi [2004] 33.0904 136.619 18.4711 280 42 105 510 150 54 30 32.9064 136.9093 4.6 -444 

4000078  8/16/2005 Miyagi-Eq 7.22 Yamanaka [2005] 38.1438 142.2324 39.5357 198 25 76 90 30 25 20 38.2335 142.3349 37 0 

4000035  4/7/2011 Miyagi_Pre.Off 7.15 JMA [2011] 38.253 141.9645 66.4296 24 37 87 250 51 45 35 38.1898 141.6554 50 1 

4000111  6/12/1968 Iwate-oki 7.11 Yoshioka & Abe [1976] 39.3549 143.0977 29.0773 241 30 90 N/A N/A 80 30 39.4374 143.8059 16.7 0 

4000167  8/9/2009 TokaidoSouth 7.09 ERI [2009] 33.1017 138.4143 334.2059 105 25 -176 140 40 50 30 33.2104 138.0448 332.9 1 

4000042  7/10/2011 Sanrikuoki 7.03 JMA [2011] 38.0338 143.51 34.3521 67 74 7 117 NO 100 30 37.9547 143.1135 14.8 -777 

1
 Hypocenter location is not necessarily exactly the same as in the FFM. Many times it was adjusted to make it consistent with the trimmed FFM, 

2= strike,  = dip, = rake, 3 M = maximum, T = trimmed. N/A = Slip values are not 
reported (only relative distribution). The model is already trimmed using approx. 15‐20% of maximum slip as limit. NO = no trimming was applied, and 

4
 Event classification defined in Table 4.5. 
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Table 4.6 FFMs selected for use in NGA-Sub database. 

NGA 
Sub 
EQID 

Date 
Earthquake name, 

Country/State 
M 

FFM 
reference 

Hypocenter location
1
 Nodal plane

2
 

Slip
3
 

(cm) 
Rupture 

dimensions 
Upper-left 

corner 
Event 
Class. 
Flag

4
 

Lat. 
(°) 

Lon. 
(°) 

Depth 
(km) 


(°) 


(°) 


(°) 

M T 
L 

(km) 
W 

(km) 
Lat. 
(°) 

Lon. 
(°) 

ZTOR 
(km) 

 

4000067  5/26/2003 SouthSanriku 7.03 Okada & Hasegawa [2003] 38.9471 141.6793 65.2354 198 60 92 300 60 24 20 38.9436 141.7217 59 1 

4000146  7/23/1982 Ibaraki-oki 7.03 Takiguchi et al. [2011] 36.2699 141.65 29.9684 203 14 86 660 NO 11.4 11.4 36.2958 141.7642 27.9 0 

4000077  11/28/2004 Kushirooki 7.01 HERP [2006] 42.9533 145.2529 51.0142 211 24 81 400 150 25 25 42.9775 145.4365 45.93 0 

4000162  11/14/2005 Sanriku 7.01 JMA [2005] 38.0255 144.927 8.0399 173 49 -118 140 NO 56 22 38.3626 144.9447 1 4 

4000072  10/31/2003 Fukushima-oki 7.00 EIC [2003] 37.7175 142.7453 30.8572 204 14 92 60 20 80 76 38.0882 143.4563 20.8 0 

4000050  3/14/2012 Sanrikuoki 6.98 JMA [2012] 40.7922 145.2319 15.2067 276 42 -81 367 NO 31 24.5 40.7016 145.2839 6.6 4 

4000145  3/21/1982 S.Urakawa 6.91 Tsuchida [1983] 42.1079 142.6131 12.5433 320 65 90 60 NO 30 40 42.0466 142.5898 0 -666 

4000059  1/28/2000 NemuroSE 6.83 Takahashi & Hirata [2003] 43.2973 147.0443 67.4 160 35 15 N/A N/A 30 15 43.4429 147.0521 63.1 1 

4000063  3/24/2001 Geiyo 6.83 Kakehi [2004] 34.1298 132.7025 45.8808 

170 60 

110 240 NO 

15 18 34.1744 132.7258 40 

1 
177 63 3 18 34.0375 132.7511 40 
183 67 3 18 34.0075 132.7489 40 
190 70 9 18 33.9779 132.7385 40 

4000049  1/1/2012 Torishima 6.82 JMA [2012] 31.4268 138.5691 364.9843 5 84 -73 103 NO 31 25 31.3563 138.5537 357.6 1 

4000224  7/23/2008 Middle Iwate 6.82 Suzuki et al. [2009] 39.739 141.6665 114.8789 
179 71 -93 

240 50 
14 35 39.6856 141.7613 94.2 

5 
223 65 -107 16 35 39.872 141.7623 93.3 

4000225  9/11/2008 Toakchi-oki 6.80 JMA [2008] 41.7792 144.1493 30.6548 228 21 108 160 NO 36 31 41.8064 144.4086 26 0 

4000161  12/6/2004 KushiroAs 6.77 HERP [2006] 42.8463 145.3371 45.9837 222 26 90 200 50 20 20 42.859 145.5011 41.6 0 

4000041  6/22/2011 Iwateoff 6.76 JMA [2011] 39.9678 142.5565 36.7789 185 17 74 86 17 18.25 12 40.0639 142.5974 36 0 

4000165  10/19/1996 Hyuganada 6.74 Yagi et al. [1999] 31.7808 131.8515 3.3449 210 12 80 290 NO 32.12 29.2 31.9065 132.0591 1.22 0 

4000048  9/16/2011 Iwate-oki 6.70 JMA [2011] 40.2604 143.0867 24.8842 172 17 57 94 NO 36 37 40.4121 143.3957 16.23 0 

4000036  4/11/2011 Hamadori 6.69 Anderson et al. [2013] 36.9597 140.726 4.2147 
342 

66 -75 172 NO 
23 20 36.9492 140.7081 0 

2 
308 15 15 36.9864 140.829 0 

4000166  12/2/1996 Hyuganada2 6.69 Yagi et al. [1999] 31.9197 131.5977 5.1662 210 12 80 140 NO 29.2 29.2 31.9159 131.8221 1.22 0 

4000100  12/17/1987 ChibaEastoff 6.53 Fukuyama [1991] 35.4012 140.5014 50.4243 
349 85 180 N/A NO 16 24 35.3556 140.4907 28.5 

1 
79 90 0 N/A NO 6.4 8 35.3483 140.4069 45 

4000070  9/29/2003 Tokachias 6.47 Atkinson & Macias [2009] 42.3041 144.579 35.5 244 17 114 N/A N/A 19 10 42.3029 144.7082 34 0 

4000119  9/9/1969 Gifu 6.43 Takeo & Mikami [1990] 35.47 137.05 2 333 89.9 180 170 NO 20 11.2 35.3899 137.1001 0.6 2 

4000045  7/30/2011 Fukushimaoki 6.40 JMA [2011] 36.852 141.3085 56.9556 21 39 93 205 31 14 18 36.8429 141.1918 49.4 1 

4000043  7/23/2011 Miyagi-oki 6.37 JMA [2011] 38.8743 142.0966 39.9204 173 26 62 53 8 15 15 38.9722 142.1837 35.62 0 

4000044  7/24/2011 Fukushimaoki 6.34 JMA [2011] 37.7479 141.4771 51.2429 200 22 88 51 8 24 24 37.7474 141.6788 44.5 0 

4000014  3/11/2011 NorthNagano 6.33 Nagumo [2012] 36.9883 138.5921 9.3111 26 32 80 100 NO 12 10 37.0028 138.5025 4.4 2 

4000047  8/19/2011 Fukushima-oki 6.32 JMA [2011] 37.6415 141.7811 50.96 190 53 92 117 NO 14 15 37.7 141.8146 48.6 1 

4000038  4/11/2011 ChibaEastoff 6.25 HERP [2011]  35.4786 140.8657 26.4153 299 75 162 78 N/A 20 10 35.3986 141.0067 20.5 1 

4000082  8/10/2009 Suruga-bay 6.20 GSI [2009] 34.8406 138.4434 19.2 309 38 122 77 N/A 16.7 5.6 34.7779 138.4993 17.5 1 

4000218  11/24/2011 UrakawaOff 6.19 JMA [2011] 41.7457 142.8422 43.0034 223 16 103 132 17 16 14 41.7644 142.9922 40.8 0 

4000112  7/1/1968 Saitama 6.10 Abe [1975] 36.072 139.3972 52 6 30 90 N/A N/A 6 10 36.0534 139.2979 47 0 

4000022  3/15/2011 ShizuokaEast 6.00 JMA [2011] 35.3354 138.7148 14.1 31 80 42 110 NO 12 7 35.2915 138.6758 11.1 2 

4000046  8/1/2011 Surugawan 5.98 JMA [2011] 34.7054 138.5393 21.3002 284 31 99 150 33 10 8 34.6431 138.6105 18.21 -444 

4000037  4/12/2011 Nakadori 5.97 JMA [2011] 37.0497 140.6217 18.3625 170 40 58 248 NO 12 6 37.0904 140.6522 15.47 2 

4000024  3/19/2011 NorthIbaraki 5.86 JMA [2011] 36.7729 140.6166 3.5106 150 45 -81 28 7 14 8.4 36.8353 140.5938 1.8 2 

 
1
 Hypocenter location is not necessarily exactly the same as in the FFM. Many times it was adjusted to make it consistent with the trimmed FFM, 

2= strike,  = dip, = rake, 3 M = maximum, T = trimmed. N/A = Slip values are not 
reported (only relative distribution). The model is already trimmed using approx. 15‐20% of maximum slip as limit. NO = no trimming was applied, and 

4
 Event classification defined in Table 4.5. 
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Table 4.6 FFMs selected for use in NGA-Sub database. 

NGA 
Sub 
EQID 

Date 
Earthquake name, 

Country/State 
M 

FFM 
reference 

Hypocenter location
1
 Nodal plane

2
 

Slip
3
 

(cm) 
Rupture 

dimensions 
Upper-left 

corner 
Event 
Class. 
Flag

4
 

Lat. 
(°) 

Lon. 
(°) 

Depth 
(km) 


(°) 


(°) 


(°) 

M T 
L 

(km) 
W 

(km) 
Lat. 
(°) 

Lon. 
(°) 

ZTOR 
(km) 

South America (SAM) – 13 events 

6000149  2/27/2010 Maule, Chile 8.81 Delouis et al. [2010] -36.2089 -72.9587 30.4055 15 18 109.3 2129 319 480 160 -37.8975 -74.5879 0.74 0 

6000057  6/23/2001 Arequipa, Peru 8.41 Lay et al. [2010] -16.2081 -73.6217 28.7746 310 18 62 N/A N/A 264 145 -18.1423 -72.4881 0.24 0 

6000338  9/16/2015 Illapel, Chile 8.31 Melgar et al. [2016] -31.5571 -71.6617 29.81 3.7 
10.5 

109 1070 161 
240 50 -32.1337 -72.6568 7.4 

0 17.0 140 38 -31.6236 -72.0986 16.51 
23.5 130 55 -31.9598 -71.7436 27.62 

6000079  4/1/2014 Iquique, Chile 8.15 Lay et al. [2014] -19.6420 -70.8173 20.1125 357 18 106 670 101 157.5 105 -20.3526 -71.0105 12.20 0 

6000081  7/30/1995 Antofagasta, Chile 8.02 Shao and Ji (n.d.) -23.4317 -70.4542 36.86 4 18 97 387 58 
180 91 -24.9529 -71.4113 9.10 

0 
150 52 -24.3340 -70.5128 37.21 

6000272  8/15/2007 Pisco, Peru 8.00 Sladen [2007] -13.3247 -76.5154 38.55 318 
6 

59.5 986 148 
144 20 -14.5955 -76.5687 5.53 

0 20 144 70 -14.4809 -76.4289 7.25 
30 144 90 -14.0844 -75.9724 31.05 

6000323  3/3/1985 Valparaiso, Chile 7.98 Mendoza et al. [1994] -33.125 -71.610 40.0 5 
15 90 

329 49 
255 75 -34.6044 -72.8109 6.4 

0 
30 110 180 60 -34.1236 -71.9781 25.81 

6000339  4/16/2016 
Coastal Ecuador, 
Ecuador 

7.82 Hayes [2016] 0.2988 -79.9979 19.0058 29 15 114 397 60 168 155 -0.0722 -80.9329 0.00 0 

6000061  6/13/2005 Tarapaca, Chile 7.78 Kuge et al. [2010] -20.03 -69.28 110.0 187 23 -73 >1000 200 47.5 45 -19.8048 -69.0515 101.21 1 

6000080  4/3/2014 Iquique afs., Chile 7.76 Lay et al. [2014] -20.5165 -70.4689 25.6509 357 18 113.6 279 42 90 90 -20.9471 -70.8842 10.8 0 

6000095  11/14/2007 Tocopilla, Chile 7.75 Schurr et al. [2012] -22.3421 -70.0235 49.844 3 20 98 258 39 180 60 -23.2348 -70.5310 32.78 0 

6000050  11/12/1996 Nazca, Peru 7.74 Salichon et al. [2003] -15.0056 -75.6422 31.7612 307 30 47 437 66 180 120 -16.1123 -74.7536 8.00 0 

6000055  7/7/2001 Arequipa afs., Peru 7.64 Kikuchi & Yamada [2001] -17.543 -72.077 20.0 315 16 64 450 68 80 80 -18.0399 -72.0691 9.00 0 

Cascadia (CAS) – 4 events 

2000004  2/18/2001 Nisqually, Washington 6.80 Ichinose et al. [2004] 47.1574 -122.6801 53.1749 350 70 -91 200 30 24 21 47.0337 -122.6825 46.13 1 

2000001  4/13/1949 Olympia, Washington 6.70 Ichinose et al. [2006(a)] 47.2028 -122.9315 57.1527 0 66 -111 166 25 34 28 47.0371 -122.9907 47.1 1 

2000002  4/29/1965 Olympia, Washington 6.62 Ichinose et al. [2004] 47.3714 -122.3060 59.9797 344 70 -90 200 30 20 18 47.2876 -122.3037 53.4 1 

2000014  1/10/2010 Ferndale, California 6.55 Pitarka et al. [2013] 40.6548 -124.6933 21.6881 230 86 11 120 N/A 25 14 40.7259 -124.5766 18 1 
Alaska (ALK) – 3 events 

1000001  6/23/2014 Aleutian_Isl-Alaska 7.96 USGS [2014] 51.6928 178.8871 103.7969 206 25 -13 789 NO 80 130 51.8207 179.8826 77.92 1 

1000002  11/17/2003 Rat_Islands-Alaska 7.78 USGS [2003] 51.1965 178.1844 29.7262 280.4 18.8 121.9 184 28 120 140.4 50.4649 178.8753 5.61 0 

1000142  1/24/2016 Iniskin 7.15 USGS [2016] 59.6531 -153.4457 129.4159 60 66 33 302 45 30 28 59.6912 -153.644 108.62 1 

Taiwan (TWN) – 3 events 

7000044  3/31/2002 2944860 7.12 Lee [2019] 24.16020 122.17200 33.0 292 32 121 462.4 <100 33 32 23.9104 122.3585 21.34 0 

7000048  12/26/2006 Pingtung.Doublet1 7.02 Lee et al. [2008] 21.88703 120.56844 44.1 349 53 -54 319 48 89.9 35 21.376 120.527 24.13 1 

7000049  12/26/2006 Pingtung.Doublet2 6.94 Lee et al. [2008] 22.02975 120.40508 33.8 151 55 4 260 39 84.9 35 22.29 120.313 25.61 1 
Central America and Mexico (CAM) – 2 events 

3000271  9/19/1985 Michoacan, Mexico 7.99 Mendoza & Hartzell [1989] 18.1814 -102.5691 16.2637 300 14 72 749 112.4 150 139 17.2996 -101.7377 6.0 0 

3000272  9/21/1985 Zihuatanejo, Mexico 7.56 Mendoza [1993] 17.5977 -101.8192 20.1586 300 14 100 209 31.4 67.5 67.5 17.1640 -101.6485 12.0 0 

 
1 Hypocenter location is not necessarily exactly the same as in the FFM. Many times it was adjusted to make it consistent with the trimmed FFM, 2 = strike,  = dip,  = rake, 3 M = maximum, T = trimmed. N/A = Slip values are not 
reported (only relative distribution). The model is already trimmed using approx. 15-20% of maximum slip as limit. NO = no trimming was applied, and 4 Event classification defined in Table 4.5. 
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Table 4.7 Computed distances (Rrup) using the seven FFMs for the 2010 Maule earthquake. 

Recorded strong motion Closest distance to the fault-rupture plane, Rrup (km) 

No 
NGA-sub  

RSN 
Network FFM 1 FFM 2 FFM 3 FFM 4 FFM 5 FFM 6 FFM 7 

Range 
(min–max) 

1 6001819 RENADIC 82 142 150 82 137 135 86 82 150 

2 6001829 RENADIC 39 88 94 41 83 80 36 36 94 

3 6001810 RENADIC 39 88 93 42 83 80 36 36 93 

4 6001827 RENADIC 36 84 90 38 80 76 32 32 90 

5 6001828 RENADIC 37 86 92 39 81 78 33 33 92 

6 6001817 RENADIC 39 43 40 42 43 41 30 30 43 

7 6001824 RENADIC 63 88 91 66 93 83 54 54 93 

8 6001821 RENADIC 60 80 81 63 83 75 51 51 83 

9 6001822 RENADIC 65 91 94 70 97 86 56 56 97 

10 6001811 RENADIC 65 89 91 69 95 84 56 56 95 

11 6001823 RENADIC 66 87 90 71 95 83 57 57 95 

12 6001818 RENADIC 36 36 28 38 38 34 26 26 38 

13 6001815 RENADIC 64 66 60 66 74 68 54 54 74 

14 6001816 RENADIC 48 49 38 51 49 51 38 38 51 

15 6001825 RENADIC 57 57 46 59 58 63 47 46 63 

16 6001813 RENADIC 36 36 27 38 36 40 26 26 40 

17 6001809 RENADIC 35 35 25 37 32 38 24 24 38 

18 6001812 RENADIC 54 54 41 56 50 53 43 41 56 

19 6001826 RENADIC 189 215 146 163 146 120 197 120 215 

20 6001799 C 34 33 24 35 30 36 22 22 36 

21 6001807 C 50 55 50 53 54 52 41 41 55 

22 6001805 C 66 99 103 70 104 93 58 58 104 

23 6001802 C 73 101 105 84 113 96 66 66 113 

24 6001803 C 63 90 93 66 95 85 54 54 95 

25 6001804 C 65 84 86 68 92 80 55 55 92 

26 6001800 C 66 96 100 71 103 91 57 57 103 

27 6001801 C 61 112 116 63 106 104 59 59 116 

28 6001806 C 41 68 71 44 64 61 32 32 71 

29 6001808 C 54 105 109 56 99 97 52 52 109 
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The three major considerations in evaluation of FFMs are: (1) the model is generated 
using default (automated) procedures vs. an inversion process managed and interpreted by 
experts; (2) the data sources considered in the inversion; and (3) peer-review, or lack thereof, of 
the model and the process by which is was derived. The data sources used in FFM development 
can include: 

 Permanent crustal displacement caused by the earthquake, typically 
measured from GPS sensors, InSAR, or measurements of on-land 
elevation change (typically in coastal areas);  

 Teleseismic waveforms from global network; 

 Broadband ground-motion sensors in reasonably close proximity to the 
source;  

 Tsunami-related data (run up heights and wave heights as measured by 
ocean buoys); and 

 Spatial distribution of aftershocks, typically within 24 to 60 hours of the 
mainshock event. 

We prefer FFMs that have been reviewed/developed by experts (not preliminary or automatic 
solutions), have been developed using multiple data sources (inclusive of ground-motion data, 
preferably from proximate stations), and have appeared in peer-reviewed documents. 

In the case of the Maule, Chile, earthquake, the seven considered models have the 
attributes shown in Table 4.8. Three are automatically generated models. Five consider only a 
single data source (teleseismic or ground displacement only). The model by Delouis et al. [2010] 
was ultimately identified as the preferred model because it considered multiple data sources, is 
not from an automated procedure, and appears in a peer-reviewed journal. Lorito et al. [2011] 
has similar attributes, but the considered data sources do not include ground motions, which is 
why we prefer Delouis et al. [2010]. The hypocenter of the Maule, Chile, earthquake from the 
preferred FFM is shown in Figure 4.24. This hypocenter is located essentially on the fault plane 
(no projection required). 

Table 4.8 Alternate FFMs for 2010 M8.81 Maule, Chile, earthquake. 

Model Automated (Y/N) Data sources 
Peer-review 

document (Y/N) 

Sladen [2010] Y Teleseismic N 

Hayes [2010; 2017] Y [2010]; N [2017a] Teleseismic N 

Luttrell et al. [2011] N Crustal displacement Y 

Shao et al. [2010] Y Teleseismic N 

Delouis et al. [2010] N Teleseismic; crustal displacement Y 

Lorito et al. [2011] N Crustal displacement; tsunami Y 

Pollitz et al. [2011] N Crustal displacement Y 
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4.3.3 Trimming Criteria 

Once a published FFM model is selected, it is typically necessary to apply some trimming of the 
rupture dimensions. This is important because faults are often set as large geometric objects at 
the outset of the inversion so as to avoid “missing” areas of potential rupture. As a result, the 
inverted fault may contain broad regions with relatively little slip in addition to concentrated 
areas of high slip. This need for trimming is not unique to NGA-Sub; it was addressed earlier in 
the NGA-West1 project [Power et al. 2008]. At that time, on average, a threshold of 50 cm of 
slip was generally applied, i.e., portions of the fault having slip below this value were trimmed 
(excluded) in the development of representative fault geometries used for distance calculations. 
Similar procedures were subsequently used in NGA-West2. 

Because the amounts of slip on subduction sources can be very large relative to the 
crustal sources considered in NGA-West1 and NGA-West2, we were concerned that the 50 cm 
threshold may not provide a reliable basis for fault trimming in all cases. Accordingly, we re-
examined this issue, starting with a fresh look at the source models used to develop the 50 cm 
threshold in previous NGA projects. The trimmed models were of seven crustal events in 
California, Idaho, and northern Mexico summarized in Table 4.9 (three of the ten models in this 
analysis were trimmed by the FFM authors), which shows the calculation of the average 
threshold that was utilized in the trimming of the source models. These events had maximum 
slips in the approximate range of 45 to 790 cm, so that, on average, the 50 cm threshold 
corresponded to approximately 15% of the maximum. For NGA-Sub, we consider this 
percentage of the maximum slip, in lieu of the 50-cm threshold directly, given the large rupture 
dimensions and slip values involved in subduction-zone earthquakes when compared to the M6-
7 shallow crustal events upon which the original criteria had been based. When the 15% criteria 
was applied to large subduction events with FFMs, the results were judged to be reasonable by 
the source working group. Accordingly, we trim the FFMs by applying a threshold of 15% of the 
maximum slip and then draw one or more rectangles around the high-slip areas. Dimensions 
derived using this process appear in Table 4.6 and in the FFmodel tables in the source database. 
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Table 4.9 Summary of trimming applied for NGA-West and NGA-West 2 projects. 

EQ 
ID 

Earthquake name Magnitude, M 

Maximum 
slip in 

the FFM 
(cm) 

Maximum slip in 
the trimmed row or 
column of the FFM 

(cm) 

Percentage of the 
maximum trimmed 
value relative to the 

maximum slip 

48 Coyote Lake 5.9 120 0 0% 

87 Borah Peak 6.8 128 9 7% 

101 North Palm Springs 6.2 45 9-11 22% 

113* Whittier Narrows 5.9 90 No trim (< 58 cm) No trim (<64) 

125 Landers 7.3 790 60 8% 

127* Northridge 6.7 319 No trim (< 140 cm) No trim (<46) 

118* Loma Prieta 6.9 513 0 (< 105 cm) 0 (< 20 cm) 

280 El Mayor-Cucupah 7.2 700 180 26% 

177 San Simeon 6.5 300 70 23% 

179 2004 Parkfield 6.0 52 18 35% 

Average** 305 cm 50 cm ~15% 

* Events 113 (Whittier Narrows), 127 (Northridge), and 118 (Loma Prieta) applied models as published, because trimming appears 
to have been done by the FFM authors. 

**Average is computed without the pre-trimmed events. 

4.3.4 Multi-Segment Ruptures 

Some FFMs involve multiple segments. Figure 4.25 presents all eight interface events in the 
NGA-Sub database having a multiple-segment rupture. Four of them are located in Japan, 
including the 2011 M9.12 Tohoku earthquake [Figure 4.25(a)], and four in South America, 
including the 2016 M8.31 Illapel, Chile, earthquake [Figure 4.25(b)]. Both the Tohoku and 
Illapel earthquakes are modeled with three segments. Figure 4.26 presents four intraslab events 
having multiple-segment ruptures. All of them are located in Japan, including the 2001 M6.83 
Geiyo earthquake [Figure 4.26(b)], which is the event with the most number of segments (four) 
in the NGA-Sub database. 

Multiple-segment ruptures introduce issues related to distance calculation and 
representation of the fault with a single rectangle, as required for the FFmodel table. To describe 
the manner in which multi-segment faults are managed for distance calculation, the required 
configuration of fault geometry for the distance computation code (P4CF; Section 4.5) should be 
understood. While most earthquakes are represented by a single rectangle, this code can take as 
input a series of rectangles provided they share a continuous line at the top (shallowest portion) 
of the fault [e.g., Figure 4.27(a), which shows continuous (at the top) rupture segments for the 
1983 Middle Japan Sea earthquake]. In this case, the various rectangles are provided to the code, 
closest distance parameters are computed for each internally within the code, and the segment 
producing the smallest values is used. For multi-segment ruptures that are discontinuous at the 
top [e.g., Figures 4.26(a) and 4.26(d)], or that are listric [dip varies across fault width, see Figure 
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where A is rupture area in km2, 1a  and 2a  are regression coefficients, 1n  is the standard normal 

variate (zero mean, standard deviation of 1), and A  is the standard deviation. Regressions were 

performed at two stages in the NGA-Sub project. The first regression was performed using data 
from 29 earthquakes (a subset of data from Table 4.6) available at that time (approximately 
November 2017) along with data from Skarlatoudis et al. [2016]; the 29 events used at that time 
are depicted in Figure 4.28(a), and the resulting coefficients are indicated in the figure (marked 
as “Applied”). The next regression was performed near the end of the project (December 2019) 
using all 47 events and Skarlatoudis et al. [2016] data for non-redundant events, with the results 
shown in Figure 4.28b (marked as “Complete”). 

Note that self-similarity is assumed, which is typical in models of this sort, i.e., 2a  is 

unity for the log10 of area [equivalent to  2 ln 10a  . The regression coefficients and standard 

deviations from the two models in literature and the present model are provided in Figure 4.28. 
There is no appreciable difference between the “Applied” and “Complete” versions of the mean 
model although dispersion increases in the update. The fits derived in the present study are 
similar to those derived by Murotani et al. [2013]. The fit provided by Skarlatoudis et al. [2016] 
was on A directly, not its logarithm. The present results are lower because Equation (4.6) fits the 
mean of the log of the data. 

For the aspect-ratio relation the following expression was used: 

    3 1 2

1 2

7.25 :
ln

:
n L W

n L W

a
L W

 
 

    

M M M

M M
 (4.7) 

where L/W is the aspect ratio, and 3a  and 1M  are model coefficients. Results are shown in 

Figure 4.29 for the first regression [“Applied”; see Figure 4.29(a)] and the subsequent regression 
[“Complete”; Figure 4.29(b)], with similar results. The mean aspect ratio does not extend below 
unity. Figure 4.29 shows data both from literature [Skarlatoudis et al. 2016] and the present 
study. No prior fits are available from literature; therefore, only the fit from Equation (4.7) is 
shown. 

Figure 4.30 shows fault-rupture areas and aspect ratios for the 27 intraslab events with 
FFMs; dimensions were taken from Table 4.6. A model from Strasser et al. [2010] for the 
rupture area, with the same form as Equation (4.6), is shown in Figure 4.30(a). That model was 
considered to provide an adequate fit to the data and was applied in the present study. We did not 
find a model for L/W in literature for intraslab events. The November 2017 dataset was fit using 
Equation (4.7) with the result shown in Figure 4.30(b) and marked as “applied.” That dataset 
included 16 earthquakes in Table 4.6 and one event in Japan (marked with a black asterisk) that 
was initially considered as intraslab and subsequently reclassified as outer-rise; those events are 
depicted in Figure 4.30(b) using filled symbols. The open symbols represent ten events in Japan 
and one event in Cascadia that were not used in the regression analysis but are now part of the 
NGA-Sub database. The addition of the new data suggests that the dependency of the aspect ratio 
on magnitude for intraslab events is not as strong as initially considered. The mean of all the data 
(excluding the outer-rise event) is also shown in Figure 4.30(b) for reference. 
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Figure 4.30 shows fault-rupture areas and aspect ratios for the 27 intraslab events with 
FFMs; dimensions were taken from Table 4.6. A model from Strasser et al. [2010] for the 
rupture area, with the same form as Equation (4.6), is shown in Figure 4.30(a). That model was 
considered to provide an adequate fit to the data and was applied in the present study. We did not 
find a model for L/W in literature for intraslab events. The November 2017 dataset was fit using 
Equation (4.7) with the result shown in Figure 4.30(b) and marked as “applied.” That dataset 
included 16 earthquakes in Table 4.6 and one event in Japan (marked with a black asterisk) that 
was initially considered as intraslab and subsequently reclassified as outer-rise; those events are 
depicted in Figure 4.30(b) using filled symbols. The open symbols represent ten events in Japan 
and one event in Cascadia that were not used in the regression analysis but are now part of the 
NGA-Sub database. The addition of the new data suggests that the dependency of the aspect ratio 
on magnitude for intraslab events is not as strong as initially considered. The mean of all the data 
(excluding the outer-rise event) is also shown in Figure 4.30(b) for reference. 

The orientation of the fault rectangle is represented by strike angle  and dip angle ; see 
Figure 4.19. Among earthquakes without FFMs, most have moment tensor solutions that provide 
two estimates of these angles. One is often preferred based on physical considerations (i.e., 
alignment of dip angle with slab orientation) and is used in the simulations “as-is.” Where a 
particular nodal plane is not preferred, both are considered; see Section 4.4.2. For events without 
a moment tensor, the mean strike ( )  is estimated as parallel to the nearest portion of the 

subducting plate (for all event types). Mean dip ( )  is similarly taken from the dip of the 
subducting plate for interface events. For intraslab events, mean dip is taken as an average of 
nearby events with available moment tensor solutions. A specific set of angles used in 
simulations is given as: 

      (4.8) 

      (4.9) 

where   and   are uniform distributions centered on the means with ranges of ± 30°and 10°, 

respectively. 

Figure 4.31 shows the parameterization of hypocenter location on the fault plane, with L  

and W  representing normalized location relative to the upper left corner (as viewed from the 

hanging wall). A model for these locations was presented by Mai et al. [2005]. The mean 
location along strike is at the midpoint  0.5L   and slightly deeper than the mid-point in the 

down-dip direction  0.57W   [Mai et al. 2005]. 

Figure 4.32 shows hypocenter locations using the data from Table 4.6 for interface 
events. An earlier analysis (November 2017) used to derive parameters applied in simulations 
was based on a subset of 27 events, mainly from Japan and South America; see Figure 4.32(a). 
The results confirm an along-strike mean close to the mid-point  0.535L   whereas the down-

dip mean varies by region ( 0.451W   for events in Japan and 0.624W   for events in South 

America). Figure 4.32(b) presents updated results derived using data in its current state, which 
include 18 additional interface events. Results are congruent with previous observations, though 
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For modeling purposes, a specific hypocenter location is expressed as: 

 3 LL L n       (4.10) 

 4 WW W n       (4.11) 

where 3n  and 4n  are standard normal variates. The distributions are truncated at the limits of 

the rectangle (i.e., both L  and W  have a range of 0 to 1.0). Based on the results of earlier 

analyses performed to support project simulations (dated November 2017) and shown in Figures 
4.32(a) and 4.33(a), the along-strike mean was taken at the mid-point  0.5L   for both 

interface and intraslab earthquakes. Down-dip means were taken using the regionally variable 
values in Figure 4.32(a) for interface events and at mid-depth  0.5W   regardless of region for 

intraslab. The utilized standard deviation values as derived from data are shown in Figure 4.32(a) 
for interface events and in Figure 4.33(a) for intraslab events. 

4.4.2 Finite-Fault Simulation Procedure 

A simulation procedure is used to generate approximate fault dimensions conditional on the 
magnitude of the earthquake (M), the earthquake type, the hypocenter location (latitude, 
longitude, and focal depth), and orientation of one or two nodal planes (strike and dip). As part 
of the NGA-Sub project, we modified a procedure presented by Chiou and Youngs [2008]. The 
modified procedure operates as follows: 

1. Identify source-specific information that comprises the input to the simulation 
procedure—hypocenter location, M, nodal plane strikes, and dips (if available). The 
procedure allows for one preferred nodal plane from a moment tensor, two equally 
likely nodal planes from a moment tensor, or variable plane strike/dip angles when no 
moment tensor is available [per Equations (4.8–4.9)]. 

2. Compute mean values of along-strike length as  ln 0.5 ln lnL A L W   and down-

dip width as  ln 0.5 ln lnW A L W  , with mean area and aspect ratio taken from 

Equations (4.6–4.7), respectively (with “applied” coefficients and n  terms set to 

zero). 

3. Using independent random number generators, select a realization of variates 1n  to 

4n . 

4. Define the fault dimensions L and W for the realization in (3) as: 

  1 2ln 0.5 ln lnn A n L WL A L W        (4.12) 

  3 4ln 0.5 ln lnn A n L WW A L W        (4.13) 



 

92 

6. Define the specific fault location aligned with the strike and dip of the nodal plane 
using Equations (4.8–4.9). Note that the absolute location of the hypocenter in space 
is fixed and does not change. 

7. Sample across random variables as follows: 

a. If a preferred moment tensor nodal plane is defined for the event, use N = 101 
realizations across variates 1n  to 4n . 

b. If two alternative nodal planes are to be considered, repeat the process in (4a) for 
both nodal planes. For this case we use N = 101 realizations across both variates 

1n  to 4n  and across both nodal planes (approximately 50 realizations of the 
variates for each plane). 

c. For events without a moment tensor in which strike and dip are estimated, N = 
101 realizations are applied for variates 1n  to 4n .and   to  . 

8. For all 101 realizations of fault rectangles from (3)–(6), compute distances to a grid 
of points on the ground surface. The grid is defined as an array in polar coordinates 
 ,  . The radius    extends to 300 km from the epicenter, with variable spacing 
between grid points ranging from 2 km near the epicenter  20 km   to 25 km in 
the outermost region  125 km 300 km  . The angular coordinate    varies 
from 0 to 345° in 15° increments. 

9. For each grid point, compute the median distance among realizations. Identify the 
single fault plane among the 101 realizations that minimizes the misfit (sum of square 
of residuals) to the set of medians for all grid points. 

This procedure is coded in Fortran (CCLD5). 

4.5 SITE-TO-SOURCE DISTANCE 

4.5.1 Distance Computation 

Final site-to-source distance computations were performed using a code (P4CF) that takes as 
input the locations of ground-motion stations that recorded the event (geodetic coordinates) and 
the three-dimensional representation of the ruptured fault. The fault is represented by one or 
more rectangles, each of which is located by geodetic coordinates and depth of the upper left 
corner (when viewed from hanging wall), strike, dip, along-strike length, and down-dip width. 
As described in Sections 4.3 and 4.4, attributes of the fault surface rectangles are established 
from FFMs in literature with some trimming, as discussed in Section 4.3.3, and from a 
simulation procedure otherwise. Where more than one rectangle is used to represent a rupture 
surface, distances are computed to each and the closest distances are used. 

The output of P4CF for a given site is rupture distance (closest distance from site to any 
point on the fault surface), Joyner-Boore distance (closest distance from site to any point on the 
surface projection of the fault surface), Rx (distance measured perpendicular to the fault strike 
from the surface projection of the up-dip edge of the fault plane), Ry (distance measured parallel 
to the fault strike from the midpoint of the surface projection of the fault plane), Ry0 (distance 
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measured parallel to the fault strike from the end of the surface projection of the fault plane), Rhyp 
(hypocentral distance), Repi (epicentral distance), Rrms (root-mean-square distance), the location 
on the fault surface from which the closest distance was measured (geodetic coordinates and 
depth), and a series of parameters related to rupture directivity modeling that were not used in 
NGA-Sub. These outputs are saved to the Path table. Another path-related table, derived using 
procedures described in Section 4.8, lists percentages of the path through zones with different 
volcanic-arc flags (EventVolArc table). 

4.5.2 Calculation of Rmax 

Earthquake ground motions can be subject to sampling errors for conditions that tend to produce 
low-amplitude shaking near the trigger threshold for triggered instruments or the noise threshold 
for instruments that record continuously. This is typically the case at large distances; it is more 
pronounced for small magnitude events than large magnitude.  

The problem is not that no records are obtained for such conditions, but that the recorded 
ground motions may be unusually strong. Weaker motions that do not exceed trigger thresholds 
are not recorded and those near noise levels are not useful, which tend to bias the dataset. One 
way of managing this problem in the development of ground-motion models is to not consider 
data beyond a limiting distance, which is referred to as Rmax. The selection of Rmax should take 
into account event magnitude and the sensitivity of the recording instruments. 

As part of the NGA-Sub project, Rmax values were calculated for different events, 
networks, and instrument types. The Rmax values were calculated by fitting a truncated robust 
regression to the data from each source region, and then calculating the intersection of the 
median prediction for each event minus a scale factor times the estimated within-event standard 
deviation with the truncation levels. Values of Rmax are saved to the Path tables. 

(a) Data selection 

The analysis was carried out using the version of the NGA-sub flatfile dated 11/17/2017. An 
initial data screening was performed with the following exclusion criteria: 

 M > 4; 

 Rrup >0; 

 VS30 > 0; 

 ZHYP >0; 

 dip angle larger than zero; 

 rake angle not equal to -999 or -888; 

 multiple event flag not equal to 1; 

 Inter Intra Flag equal to 0,1,5 ; 

 sensor depth < 2 m; 

 exclude Geomatrix 1st letter equal to F [Chiou et al. 2008]; 

 visual quality flag not equal to 2 or 9 (late S-trigger and “do not use”); and 

 exclude records with absolute value of peak acceleration < 0 . 
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(b) Truncation levels 

The calculation of Rmax values depends on the truncation level for each network: the truncation 
level affects the fit of the truncated regression as well as the calculation of the intersection with 
the fit. For some networks, the truncation level is known, but not all networks in the database 
have an associated trigger level. In addition, even for a known trigger threshold, it is possible to 
observe ground motions that are lower than the trigger threshold [e.g., if one of the horizontal 
components has a peak ground acceleration (PGA) value that is larger than the trigger threshold 
but the other has a smaller PGA value, then it is possible that RotD50 is lower than the nominal 
truncation level]. For the truncated regression, it is required that the target variable is larger than 
the truncation level, so the truncation levels are set dependent on the observed data for each 
network. 

By plotting histograms of the PGA values from each network, as well as plots of PGA vs. 
distance, it is possible to visually identify truncation levels; however, these truncation levels are 
subjective, and the analysis does not work for networks with a limited amount of data. 

The truncation levels were set in an automated way. Different truncation levels were used 
for instrument types “A” (accelerometers) and “V” (broadband instruments). For instrument type 
“V”, the truncation level is set to 10-7g for all networks, which is assumed to correspond to the 
noise level. 

For instrument type “A”, first, a list of possible truncation levels was generated. The 
possible truncation levels are 0.0001gal, 0.0002gal, 0.0003gal..., 0.001gal, 0.002gal,..., 1gal, 
2gal... Then, the following methodology to estimate truncation levels for the different networks 
was carried out:  

1. For each network, select all records of instrument type “A”; 

2. Discard 10% of the selected records that have the lowest PGA values; and 

3. Find the largest truncation level from the list of possible values that is lower than 
the lowest PGA value of the remaining records. 

Records with instrument type −999 (unknown) were treated as accelerometers. 

(c) Regression 

For each source region, a truncated robust multilevel regression was performed. The following 
functional form was used: 
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where ln  is the median prediction (including the event term E ), and the event term is sampled 

from a normal distribution with mean zero and standard deviation 𝜏. The ground-motion 
likelihood is modeled as a truncated Student-t distribution with degree-of-freedom parameter ν 
and standard deviation  . SF  denotes the interface/intraslab flag, and lh(ꞏ) is a logistic hinge 

function defined as follows: 
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The following coefficients were fixed using values in the “BC Hydro” model [Abrahamson et al. 
2016]: 

c4 = 10 

θ9 = 0.4 

β10 = 0 

β3 = 0.1 

β2a = −0.23 

δ = 0.1 

zb = 120 km 

Coefficients evaluated by region include β1, β2, β4, β5, β6, β8, β9, as well as the standard 
deviations τ and   together with the parameter ν and the event terms 𝜂ா. The other coefficients 

are set to values estimated by a global regression. The magnitude break point is 8bm   for 

interface events and 7.5bm   for intraslab events. 

The Student-t distribution has heavier tails than the normal distribution and is thus less 
sensitive to outliers. For large values of ν, the Student-t distribution approximates a normal 
distribution. 

All parameters of the model were estimated via Bayesian inference, with weakly 
informative priors. Only events with at least five recordings were used for the regression. 

The estimated standard deviations and parameters ν for the different regions are shown in 
Figure 4.34. Large values of τ are probably due to the fact that several coefficients are fixed, 
making the model less flexible. Low values of ν might indicate that there are a lot of outliers for 
that particular region. 
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were assembled for Alaska, Cascadia, Central America and Mexico, Japan, New Zealand, South 
America, and Taiwan. The Data Comparison depicted in Figure 4.36 is to check for consistency 
between the content of the relational database and the regional flatfiles. Differences could occur 
due to logistical errors in copying material from one set of tables to another, or from technical 
updates made following completion of the regional flatfiles. 

If an inconsistency is found (in Figure 4.36, Consistent?  No), we next check regional 
source information (i.e., the information used to assemble the regional flatfiles). This occurs in 
the Analyze Issues box in Figure 4.36. This might include, for example, re-examining the 
regional earthquake catalogs used to assign seismic moments and hypocenter locations (e.g., 
Tables 4.2–4.3). These comparisons check for data entry errors or protocol errors (e.g., not using 
the preferred earthquake catalog for a given region). Various iterations of these checks have 
impacted event locations (and therefore site-to-source distances), magnitudes, event types 
(interface, intraslab, shallow crustal, outer-rise), and fault types (focal mechanisms). On the basis 
of this review, a source review flag is assigned, as shown in Table 4.10. In many cases, events 
with negative source review flags are not considered in model development. Other aspects of the 
data that might be evaluated in the Analyze Issues box include data derived from recordings (see 
Chapter 3) and site data (see Chapter 5). 

Moving to the right within Figure 4.36, if issues cannot be resolved through the checks of 
source documents (Resolved? diamond), the data in question is marked with a flag; see Table 
4.10 for the case of issues with source parameters and Table 3.5 for ground motions. If the issues 
are resolved, the data enter the protocol for distance metrics calculation. This phase is also 
reached when the consistency check between regional databases and the current flatfile does not 
identify problems. 

Moving forward in Figure 4.36, in order to compute distance metrics, different paths are 
followed depending on the availability of a FFM (Available FFM? diamond). For events with a 
FFM, the fault plane is used in P4CF to compute distances (Distance calculation (P4CF)). In the 
absence of a FFM, source geometry simulations are performed using CCLD5 (Fault plane 
simulation (CCLD5)), which produce a fault plane that is then used in P4CF. Distance revisions, 
along with any updates to source and other parameters, including the source review flag, are then 
applied to component tables in the relational database (Update Relational Database). A new 
flatfile is then generated, which completes an iteration of the review-and-update process. 
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not to identify all aftershocks but to identify the subset of aftershocks that allow for testing of the 
hypothesis. To avoid confusion with definitions used in seismology, the NGA-Sub project 
classifies earthquake mainshocks as Class 1 (C1) events, and the subset of aftershocks that occur 
sufficiently close to the Class 1 rupture plane in both space and time are classified as Class 2 
(C2) events. The main content of this section was previously presented by Wooddell [2018]. 

4.7.1 Methodology 

Similar to NGA-West 2 [Wooddell and Abrahamson 2014], the NGA-Sub earthquake 
classification algorithm is based on the windowing approach of Gardner and Knopoff [1974]. 
The Gardner–Knopoff time window was adopted without modification. The distance window 
was modified and two new distance metrics were developed, resulting in two new algorithms for 
classifying earthquakes. The first approach is based on the closest distance from the Class 1 
rupture plane to the potential Class 2 hypocenter (RCLOSEST_P2H). In this approach, if a potential 
Class 2 event is within the Gardner-Knopoff time window and has a hypocenter within a 
predetermined cutoff distance, it is a Class 2 event. The second approach is based on the closest 
distance from the Class 1 rupture plane to the potential Class 2 rupture plane (RCLOSEST_P2P). In 
this approach, if a potential Class 2 event is within the Gardner–Knopoff time window and has a 
RCLOSEST_P2P distance within a predetermined cutoff distance, it is a Class 2 event. For this 
method, the percentage of the Class 2 rupture plane within the predetermined cutoff distance is 
also computed. Development of two alternative distance metrics was motivated by different 
ideas about what part of the rupture process has the greatest effect on the resulting ground 
motion. The metric RCLOSEST_P2H suggests that closeness of the Class 1 rupture plane to the center 
of the moment release in the Class 2 event will have a greater effect on the resulting ground 
motion, whereas the RCLOSEST_P2P metric assumes that the more important parameter is the 
distance between the two rupture planes and the percentage of the Class 2 rupture plane within 
the defined distance window from the Class 1 rupture plane. 

Figure 4.37 illustrates the difference between the different distance metrics for two faults 
with four segments (each represented by a plane). The Class 1 rupture plane is defined as C1a-d, 
and the potential Class 2 rupture plane is defined as C2a-d. Each rupture plane is divided into 
subfaults of dimension 1km2 and a red star indicates the location of the hypocenter. In this case, 
RCLOSEST_P2H results in a greater distance than the RCLOSEST_P2P metric because the potential Class 
2 hypocenter is far from the Class 1 rupture plane. Therefore, for this pair of faults, the potential 
Class 2 earthquake would be less likely to be classified as a Class 2 event if the RCLOSEST_P2H 
metric is used and more likely to be classified as a Class 2 event if the RCLOSEST_P2P metric is 
used. 

For each distance metric, classifications were made using earthquake datasets from the 
following regions: Alaska, Cascadia, Central America and Mexico, Japan, South America, and 
Taiwan. Classifications were not made for New Zealand. Classifications were made for cutoff 
distances of 10, 20, 40, and 80 km, and the results are included in the EventClass table of the 
relational database. For the RCLOSEST_P2P metric, an additional column is also included showing 
the percentage of the Class 2 rupture plane within the prescribed cutoff distance from the Class 1 
rupture plane. 
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5 Site Condition Parameters 

Sean K. Ahdi, Timothy D. Ancheta, Víctor Contreras, Tadahiro Kishida, Dong Youp Kwak, Annie O.L. 
Kwok, Grace A. Parker, Francisco Ruz, and Jonathan P. Stewart 

5.1 OVERVIEW AND ORGANIZATION 

The site component of the NGA-Sub relational database comprises a list of metadata for stations 
that have recorded the contributing events from Chapter 4. The principle regions from which 
data has been collected are: Alaska (ALK), the Cascadia region of North America (CAS), 
Central America and Mexico (CAM), Japan (JPN), New Zealand (NZL), South America (SAM), 
and Taiwan (TWN). A global map of stations with recorded ground motions that are included in 
the NGA-Sub project database is presented in Figure 5.1. 

The words “site” and “station” are used somewhat interchangeably, with “station” 
generally referring to the actual strong-motion instrument, and “site” referring to a more general 
description of the location of interest (which for this project coincides with the strong-motion 
stations). The site component of the NGA-Sub database contains 6433 sites. For each site the 
following data is provided: 

 Site name and station ID, often adopted from the original strong motion 
network’s station code/name; 

 A unique station sequence number (SSN) that acts as the identifier for 
every site in the database; 

 Information about station location, such as latitude, longitude, depth below 
ground surface, elevation, and in some cases, information on sensor 
housing; 

 Recommended VS30 values and uncertainties linked to codes that describe 
VS30 assignment protocols, along with associated NEHRP site classes 
[Dobry et al. 2000];  

 Details related to measured VS profiles when available, such as the 
maximum depth of the profile (zp) and time averaged VS to zp (VSZ); 

 Site information used to predict VS30 from proxy-based models when 
measured VS30 values are absent; 
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To avoid redundant listings of sites, a hierarchy for removal of duplicate sites was 
applied, whereby sites were combined when they had identical latitude and longitude coordinates 
(within 0.0001-decimal degree precision), reasonably consistent station names, and/or 
identification numbers from the station network. Separate SSNs were assigned for cases when 
the station network changed. but the instrument ostensibly remained the same, or the instrument 
itself was changed at the same location. In the case of vertical arrays with multiple sensors at the 
same latitude and longitude but different depths, multiple “sites” (with distinct SSNs) are 
provided in the Site table, each having a different sensor depth. 

5.1.2 Sources of Station Data 

Regional ground-motion data were generally obtained from websites of organizations that 
operate local accelerograph or seismograph networks. These websites often have some basic 
station information, typically including station locations, instrument information, and in some 
cases, geotechnical data and seismic velocity profiles. Details on data sources are given in 
Chapter 3. 

Most sites in Japan are part of the KIK-NET, K-NET, Port and Airport Research Institute 
(PARI), Japan Meteorological Agency (JMA), or Tokyo Electric Power Company (TEPCO) 
networks. Taiwan station data is derived from the Taiwan Strong Motion Instrumentation 
Program, managed by the Central Weather Bureau (CWB), as well as the broadband seismic 
observation network, co-managed by CWB and the Institute of Earth Sciences, Academic Sinica 
in Taiwan [NCREE 2017]. Station information from Alaska was obtained from the Alaska 
Earthquake Center at the University of Alaska at Fairbanks [AEC 2018]. In Cascadia, data was 
accessed from sites belonging to numerous networks, including the IRIS Transportable Array 
(TA array) [IRIS 2003], the Pacific Northwest Seismic Network (PNSN) [UW 1963], and the 
Canadian National Seismograph Network [GSC 1989], among others across California and other 
western states (BDSN, NCEDC, CI, CGS, USGS, NSN, ABSN, UO, UU). In Mexico, station 
data were mainly obtained from the Guerrero Network operated by University of Nevada, Reno 
(UNR) [Anderson et al. 2006, and the Center for Engineering Strong-Motion Data (CESMD). In 
Central America, major networks exist for most countries, such as the Red Sismológica Nacional 
de Costa Rica (TC) [UNR 1989], the Medio Ambiente y Recursos Naturales (MARN) network 
in El Salvador [SNET 2018], and the Tomography Under Costa Rica and Nicaragua (TUCAN) 
network [Abers and Fischer 2003]. In South America, station data comes from 36 different 
networks; particularly important networks within this region include the Chilean Seismological 
Network and RENADIC, operated by the University of Chile, the Red Nacional Accelerógráfos 
de Colombia (CM), the Peru Lithosphere and Slab Experiment (PULSE) [Wagner et al. 2010], 
and the Ecuador Seismic Network (EC). The data from New Zealand was taken from Kaiser et 
al. [2016; 2017], which contains site information for stations included in a flatfile in Van Houtte 
et al. [2017]. 

Each network has varying levels of existing site-characterization information, details of 
which are discussed below. Table 5.1 lists all networks in the NGA-Sub database and the number 
of sites from each. Network acronyms are as given Chapter 3, here, or in the footnote of Table 
5.1. There are 92 networks represented in the database. Of the 6433 stations, 417 (6%) lack 
network assignments, with nearly all (412) coming from New Zealand. 
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Table 5.1 Number of sites in contributing strong motion station networks for NGA-Sub. 

Network Count Network Count Network Count Network Count 

K-NET 1032 GFZ1 113 YC1 22 MX1 5 

CWB 802 TUCAN 49 INETER1 20 IGP1 4 

KIK-NET 702 UNR 45 ESCIGSMN1 18 ONA1 4 

TA 414 COSMOS 39 XH1 17 CERESIS1 3 

JMA 345 PULSE 39 CGS 24 G1 3 

UW 191 XS1 38 NU1 13 II1 3 

CSN 149 AV1 37 TEPCO 17 NR1 3 

AEC 146 NSMP 100 XV1 13 RUT1 5 

GSC 136 Historic 35 XJ1 11 IE1 2 

RENADIC 132 IU1 35 GI1 10 NV1 2 

LIS 122 OV 34 CM 9 TC 2 

RNAC 121 BDSN 34 IdeI1 9 UU 2 

MARN 114 RENAC 33 CC1 8 AX1 1 

PARI 102 C 32 ICE1 8 MG1 1 

NCEDC 77 DGG1 29 SV1 8 PA1 1 

BO1 69 CX 27 ABSN 7 PUCP1 1 

PB1 64 NN 27 CU1 6 WC1 1 

XY 64 C1 25 EC1 6 YJ1 1 

CI 63 TW 24 GT1 6   

USGS 71 CISMID 23 UO 6   

1 BO=Bosai‐Ken Network, NIED,  Japan; PB=Plate Boundary Observatory; GFZ=GFZ Potsdam, Germany  (ZA, 2B, Y9,  ZW 
arrays);  AV=Alaska  Volcano  Observatory;  IU=Global  Seismograph  Network;  DGG  =  Deutsche  Geophysikalische 
Gesellschaft;  2B=PUDEL  Network,  Argentina,  GFZ  Potsdam;  Y9=Tocopilla,  GEOFON  Program,  GFZ  Potsdam;  YC=Slab 
Geometry  in  the  Southern  Andes;  INETER=Nicaraguan  Geosciences  Institute;  ESCIGSMN=El  Salvador  Geotechnical 
Investigation Centre Strong Motion Network; XH=Altiplano‐Puna Volcanic Complex Seismic Experiment; NU=Nicaraguan 
Seismic  Network;  XV=Fault  Locations  and  Alaska  Tectonics  from  Seismicity,  Univ.  Alaska,  Fairbanks;  XJ=Seismic 
Experiment  in  the Aisen Region of Chile, Univ. Cambridge; GI=Red  Sismologica Nacional‐Guatemala;  Idel=Instituto de 
Ingenieria, Universidad Nacional Autonoma  de Mexico  (UNAM);  CC=Cascade Chain Volcano Monitoring;  ICE=Instituto 
Costarricense de Electrcidad; SV=Servicio Nacional de Estudios Territoriales, El Salvador; CU=Caribbean USGS Network; 
EC=Ecuador Seismic Network; GT=Global Telemetered Seismograph Network; MX=Mexican National Seismic Network, 
Universidad  Nacional  Autónoma  de México;  IGP=Geophysical  Institute  of Peru; ONA=Onagawa Nuclear  Plant,  Japan; 
CERES=Regional Centre for Seismology for South America; G=GEOSCOPE Observatory, Institut de Physique du Globe de 
Paris;  II=IRIS/IDA  Seismic  Network,  Scripps  Institution  of  Oceanography;  NR=Network  of  Autonomously  Recording 
Seismographs (NARS), Utrecht University, Netherlands; RUT=Rutgers Univ. (OO, ZX arrays); IE=Idaho National Laboratory 
Seismic Monitoring Program; NV=NEPTUNE Canada, Ocean Networks Canada; AX=Departamento Meterologico Aruba; 
MG=Seismic Network of North Eastern Mexico, Universidad Nacional Autónoma de México; PA=Red Sismica Volcan Baru, 
Panama; PUCP=Pontificia Universidad Catolica del Peru; WC=Curacao Seismic Network; YJ=Studies of  crust and upper 
mantle structure, mantle flow and geodynamics of the Chile Ridge subduction zone, IRIS/PASSCAL. 
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The remainder of this chapter describes site data and metadata used for NGA modeling 
purposes. Emphasis is placed on proxy-based models used to estimate VS30 and its aleatory 
variability and uncertainty for regions for which related studies were not already published. This 
includes Central America and Mexico (events from the Cocos subduction zone), and South 
America (Nazca subduction zone), excepting Chile. Regions for which VS30 prediction models 
have been published are briefly reviewed (Taiwan, Cascadia, Alaska, Chile, and New Zealand). 
For Japan, data and proxy-based models were published as part of NGA-West2 and other 
projects, and are updated here. 

5.2 MEASURED VS DATA FOR VS30 EVALUATION 

5.2.1 Data Sources 

Wherever possible, VS profiles developed from in situ geophysical testing are identified for use 
in the characterization of site conditions at a ground-motion instrument site. The profile is used 
to compute and assign VS30 and, where applicable, to assign depths to 1.0 and 2.5 km/sec shear-
wave velocity iso-surfaces. In general, VS profile data is considered if it reflects direct 
measurements (from in situ geophysical testing), the profile extends to a profile depth zp of at 
least 5 m, the profile begins within 5 m of the ground surface, and the profile location (geodetic 
coordinates) is known. Data derived using a wide array of geophysical measurement techniques 
were included. One technique that is not considered credible (CXW) [Poran et al. 1994] was 
nonetheless used for estimates of VS30 for sites in Alaska, as explained in Ahdi et al. [2017(b)]. In 
general, profiles from the ReMiTM method [Louie 2001] were not compiled for use in the profile 
databases from which VS data was extracted this study, with the exception of a small number of 
sites in Chile. 

Of the 6433 sites in the Site table, 2530 have a VS30 value computed using a VS profile. As 
part of the NGA-Sub project, considerable effort was put into identifying suitable profiles. 
Correspondence with national and regional agencies was undertaken, as well as contact with 
individual researchers and geotechnical/geophysical consulting firms. Ultimately all of the data 
used in the project is in the public domain. The profiles and accompanying metadata had 
disparate formats in source documents. The VS profiles were digitized (if not already in digital 
form) and assembled into “profile databases” (PDBs) for individual regions. Further information 
on these PDBs are described in Ahdi et al. [2017(a)] for Cascadia and Ahdi et al. [2017(b)] for 
Alaska (updated here). For Taiwan, profile data was obtained from a website maintained by the 
CWB; see NCREE [2017] and Kwok et al. [2018]. For Chile, the PDB was derived from a 
variety of university reports and profiles from the personal files of a consulting firm; see 
Contreras et al. [2018]. For Japan, VS data for stations that are part of the KIK-NET and K-net 
networks was obtained from a web site maintained by National Research Institute for Earth 
Science and Disaster Resilience (NIED) (http://www.kyoshin.bosai.go.jp/). Site data for stations 
in the Port and Airport Research Institute (PARI) network were obtained from the PARI website 
(https://www.eq.pari.go.jp/kyosin/). We did not identify a source of VS profile data for sites in the 
JMA network. In the case of New Zealand, we did not compile a PDB, but relied on site 
metadata compiled for strong-motion stations by Kaiser et al. [2016; 2017], some of which are 
measurement-based (their quality factor Q1, and in some cases, Q2). This is described further in 
Section 5.3.3. 
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in which 
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where ttz is the travel time for shear waves to travel from depth zp to the ground surface. In 
practice, the integral is taken as a summation across depth intervals with constant velocities. 
When zp ≥ 30 m, which occurs for 1490 of 2530 sites with assignment of VS30 from measured VS 
profiles, VS30 is computed by replacing zp with 30 m. 

For the 1024 sites having zp < 30 m, VS30 is estimated by extrapolation. There exist 
numerous extrapolation schemes in the literature, which are described and compared in the 
Appendix of Ahdi et al. [2017(a)]. Statistical analyses of five different VSZ-to-VS30 extrapolation 
schemes (Boore [2004]; Boore et al. [2011]; Dai et al. [2013]; Midorikawa and Nogi [2015]; and 
Wang and Wang [2015]), presented in the Appendix of Ahdi et al. [2017(a)] and expanded upon 
in Kwak et al. [2017], demonstrate that, in general, the model framework developed by Dai et al. 
[2013], which relies on regressions using VS profiles for individual regions or datasets to predict 
the time-averaged VS from zp to 30 m, provides the lowest uncertainty in VS30 estimates for 
regions with available models. Dai et al. [2013] was used for shallow profiles in Japan, with 
regression coefficients provided in Table 2 of Kwak et al. [2017], and in the PNW [Ahdi et al. 
[2017(a)]. Similar but Taiwan-specific extrapolation VSZ-to-VS30 procedures discussed in Kuo et 
al. [2012] were used in Taiwan by Kwok et al. [2018]. 

5.3 PROXY-BASED ESTIMATION OF VS30 

A substantial effort was made to develop region-specific, proxy-based VS30 prediction models for 
application to key NGA-Sub regions for which VS profile data was accessible. This differs from 
the NGA-West2 project for which proxy-based VS30 prediction models from prior literature were 
generally used, with some exceptions; see Seyhan et al. [2014]. The region-specific prediction 
models used in NGA-Sub are:  

 Pacific Northwest: Ahdi et al. [2017(a)]; 

 Alaska: Ahdi et al. [2017(b)]; 

 Taiwan: Kwok et al. [2018]; 

 Chile: Contreras et al. [2018]; 

 New Zealand: Kaiser et al. [2016; 2017]; and 

 Japan: Not previously published and presented below. 

Following a review of methods used for VS30 prediction in Section 5.3.1, Section 5.3.2 describes 
a general framework for development and application of models that reflects regional data 
availability and associated uncertainties. Region-specific models are then briefly summarized for 
NGA-Sub applications that are published elsewhere and described (in more detail) for regions 
where proxy-based models were not previously developed (i.e., Central America and Mexico, 
and South America, excepting Chile). 
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5.3.1 Methods used for Proxy-Based VS30 Prediction 

Proxy-based models can be categorized in different manners. One is on the basis of region of 
applicability, with global models distinguished from local models. Global models require two 
attributes: (1) the proxy itself must be globally available and (2) the predictive model of VS30 
given the proxy should be based on a geographically diverse dataset. Based on this definition, the 
principle global model is that of Wald and Allen [2007] and Allen and Wald [2009], which uses 
the proxy of topographic slope gradient at 30 arc-sec resolution and collections of VS30 
measurements from California, Italy, and Taiwan (the model for active tectonic regions) and 
Australia and Tennessee (the model for stable continental regions). The same digital elevation 
model (DEM) used for topographic slope can also be used to define geomorphic terrain classes 
on the basis of slope gradient and metrics of convexity and texture (e.g., Iwahashi and Pike 
[2007] and Iwahashi et al. [2018]). Hence, while a global model is possible using these 
approaches, to date the applications have been local, specifically California [Yong et al. 2012; 
Yong [2016], Greece [Stewart et al. 2014], Taiwan [Kwok et al. 2018], and Cascadia [Ahdi et al. 
2017a]. Different resolutions of DEMs can also be used [Allen and Wald [2009] and Stewart et 
al. [2014], but these different resolutions may result in biased slope estimates for a given location 
based on canopy effects due to vegetation or presence of buildings at higher DEM resolutions 
[Stewart et al. 2014]. 

Local models are applicable to a particular domain, typically defined on the basis of 
political boundaries or changes in the predominant crustal structure. For a given domain, a 
second level of categorization concerns the type of proxies considered. These include surface 
geology, geotechnical descriptors, slope gradient, geomorphic terrain class, elevation, and 
hybrids of more than one proxy. Table 5.3 summarizes some existing VS30-prediction 
relationships, including the region of applicability and the proxies used. Several recent models 
use a combination of surface geology and ground slope, an approach introduced by Wills and 
Gutierrez [2008] and advanced by Thompson and Wald [2012], Thompson et al. [2014], and 
Parker et al. [2017], among others. The Thompson et al. [2014] study, later updated by 
Thompson [2018], begins with a geology-slope approach and then computes residuals between 
VS30 data at profile locations and the model, which are then mapped using a Kriging approach. 
For application to the USGS ShakeMap product, VS30 estimates are provided by combining the 
model prediction with location-specific residuals. The Japan Engineering Geomorphologic 
Classification Map (JEGM) provides an effective category-based proxy that reflects geological 
and morphological conditions; means and standard deviations of VS30 are provided by category, 
which is similar to the terrain-based methods. The other method listed in Table 5.3 is based on 
geotechnical descriptors [Chiou and Youngs 2008] and applied in California. This approach was 
not used in the present work. 

5.3.2 Proposed VS30 Prediction Framework 

For large, global projects like NGA-Sub, there is a need to estimate the site parameter VS30 for 
regions with highly variable levels of data availability and quality. Some regions, like California, 
Taiwan, and Japan, have relatively extensive VS data and map resources (geology, etc.) that 
provide relevant proxies at high resolution. Other regions largely lack VS profile data and may or 
may not have reliable maps for proxies other than global 30 arc-sec DEM maps (e.g., SRTM30, 
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and Farr and Kobrick [2000]). Project requirements dictate that values of VS30 are needed for all 
sites, so a framework is needed to provide this, along with appurtenant uncertainties. 

The framework described here distinguishes between variability and uncertainty. 
Variability here refers to the standard deviation representing the dispersion of VS30 data relative 
to a mean estimate for a given set of predictor variables and is denoted as 

ln( )V . Uncertainty 

here refers to lack of knowledge of the appropriate value of statistical moments (mean and 
standard deviation), also known as epistemic uncertainty, and is denoted as ( )ep . Emphasis is 

placed on epistemic uncertainty in mean estimates. 

(a) Approach I: Good quality VS data and proxy maps 

Regions for which Approach I applies have ample VS profile data and geological map resources 
that allow relevant proxies to be mapped at high spatial resolution. The development of 
appropriate VS30-prediction models for such regions begins by assembling a VS PDB. Preferably, 
this VS data is of high quality, dense spatial resolution, and spans a wide array of geological and 
geomorphological environments. In most recent models, the primary proxy that is considered is 
surface geology, which should be presented at high resolution (ideally 1:50,000 or larger scale). 
Larger map scales provide more confidence of mapping accuracy with respect to the geological 
units present at a site of interest. Morphological information such as topographic gradient and/or 
elevation is often combined with mapped geologic category. 

Judgment is used to group categories from various geological maps of different scales 
and potentially from different authors or institutions. Next, VS30 moments are computed for each 
category, usually under the assumption of a log-normal distribution. The aleatory uncertainty is 
taken as category standard deviation ln( )V , the mean is the category mean in natural log units. 

By convention, the exponent of that mean is denoted ln( )V  in units of m/sec. Where justified by 

the data, the mean within a category may be dependent on slope and possibly elevation. VS30 
moments are developed in a like manner for multiple groups, which taken together constitute a 
proxy-based VS30 prediction model. In some cases, additional factors, such as influence of basins 
or prior glaciation on VS30 (e.g., Parker et al. [2017] and Ahdi et al. [2017(a)]), can be 
investigated using residuals analyses to find particular groupings that improve the model’s 
predictive power.  

Epistemic uncertainties in mean estimates developed for Approach I can be represented 
by the standard errors, which decreases as standard deviation decreases and the number of data 
points used to compute moments increases. This uncertainty is generally small and is not 
reported. 

For NGA-Sub, region-specific proxies developed in this manner were prepared for the 
Pacific Northwest [Ahdi et al. 2017(a)] and Taiwan [Kwok et al. 2018]. A prior model meeting 
this general description was updated for Japan. A proxy-based model conditioned on terrain 
categories instead of geology was developed for Chile [Contreras et al. 2018]. 
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Table 5.3 Literature summary for proxy-based methods for VS30 estimation. 

Proxies considered Region 
Parameterization 

(category/equation) 
No. of 
groups 

References Description/notes 

Surface geology 
California 

Beijing 
Categories, 
Equations 

19 
4 

Wills and Clahan [2006] 
Xie et al. [2016] 

Xie et al. [2016]: Bilinear model with two 
equations covering 4 surface geological units. 

Topographic gradient Global Categories 8 
Wald and Allen [2007] 
Allen and Wald [2009] 

Slope gradient computed from 30 arc-sec (~1 km) 
resolution grid spacing from SRTM. 

Terrain categories 

California 
Greece, 
Taiwan, 

PNW 

Categories 16 

Iwahashi and Pike [2007] 
Yong et al. [2012] 

Yong [2016] 
Stewart et al. [2014] 
Kwok et al. [2018] 

Ahdi et al. [2017(a, b)] 

Surface morphology categorized by slope 
gradient, local convexity, and surface texture. 

SRTM DEM at 30 arc-sec grid spacing. 

Geotechnical 
Descriptors 

California 
Japan 

Categories 5 
Chiou and Youngs [2008] 

Seyhan et al. [2014] 
Geotechnical site categories, from Geomatrix 3rd 

letter scheme. 

Geomorphic/geologic 
maps 

Japan Categories 22 

Matsuoka et al. [2006] 
Matsuoka and Wakamatsu 

[2008] 
Wakamatsu and Matsuoka 

[2013] 

National geomorphic/geologic maps digitized at 
7.5 arc-sec. VS30 predicted from JEGM category, 

slope gradient, elevation, and distance from 
mountain/hill. 

Hybrid: geology and 
topographic gradient 

California 
CENA 

Greece, 
PNW, 
Alaska 

Categories, 
Equations 

15 
14 
5 

Wills et al. [2015] 
Parker et al. [2017] 
Stewart et al. [2014] 

Ahdi et al. [2017(a,b)] 

Geologic units from various maps grouped into 
categories based on descriptions of lithology/ 
depositional environment. For certain groups, 

slope-depended regression equations presented. 

Hybrid: geotechnical 
and elevation 

Taiwan 
Categories, 
Equations 

5 
Chiou and Youngs [2008] 

Ancheta et al. [2013] 

Grouped by GMX 3rd letter geotechnical 
descriptors combined with station elevation within 

each GMX category. 

Hybrid: surface 
geology, slope, 

elevation 
Taiwan 

Categories, 
Equations 

3 
Ahdi et al. [2017(b)] 
Kwok et al. [2018] 

Surface geology classified using 1:50,000-scale 
maps (otherwise 1:250,000). SRTM DEM at 30 

arc-sec grid spacing for gradient. 
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(b) Approach II: Limited VS data, good quality maps 

Approach II is applicable to regions where some VS profile data is available, but the amount of 
information is not adequate to develop models for geologic categories in the manner described 
for Approach I. These regions generally have good-quality geologic maps, as with Approach I 
regions. 

The concept behind this approach is to apply a proxy-based VS30 prediction model for a 
source (Approach I) region to a target (Approach II) region, and then to assess the applicability 
using residuals analysis. This allows variations between geologic categories, established from the 
data-rich source region, to be applied to the target region. If residuals analyses reveal bias, this 
bias should be removed by adjusting the source model for application to the target region. 

The geologic categories used for the target region should be appropriate for the regional 
geologic conditions (e.g., accounting for local features such as glacial or volcanic deposits). A 
source region with categories appropriate for comparison to the target must be selected carefully. 
Prior to NGA-Sub, the primary example of Approach II was the use of a California geology-
based model [Wills and Clahan 2006] for alluvial sites in Italy [Scasserra et al. 2009]. Approach 
II was used in NGA-Sub for some geology groups in Alaska, with the PNW taken as the source 
region (described in Ahdi et al. [2017(b)]. 

Aleatory uncertainties for Approach II are generally taken from the source region. 
Epistemic uncertainties can be estimated from the standard error of the bias computed during 
validation. 

(c) Approach III: VS data absent or of low quality, variable access to geologic maps 

Approach III is applied when little to no measured VS/VS30 data is available for a region or for a 
specific geologic group of interest within a region. Approach III can also apply when data is 
available, but it is judged to be unreliable. These regions may or may not have reliable geologic 
maps. If geologic maps are available, region-specific geological groups are identified as in 
Approaches I and II. VS30 moments for similar groups are then assigned from other (source) 
regions. This is similar to Approach II, but without the validation step. If geologic maps are not 
available, global slope or terrain class models may be applied. This approach is not preferred if 
geologic maps are available because several studies have found stronger predictive power from 
geology-based proxies or hybrid geology-slope proxies [Seyhan et al. 2014; Ahdi et al. 2017(a); 
and Parker et al. [2017]. 

Approach III involves larger epistemic uncertainty than other approaches. To estimate 
this uncertainty, lnV  values are assembled from Approach I studies for California [Wills et al. 

2015], Taiwan [Kwok et al. 2018], Greece [Stewart et al. 2014], the Pacific Northwest [Ahdi et 
al. 2017(a)], and CENA [Parker et al. 2017]; see Table 5.4. The standard deviations of the 
natural logs of these means provide an estimate of epistemic uncertainty. These standard 
deviations are estimated separately for Holocene sediments (principally alluvium), Pleistocene 
sediments (principally older alluvium and terrace deposits), and Tertiary-aged sedimentary 
bedrock materials. As shown in Table 5.4, the epistemic uncertainty ( )ep  in each case is 

approximately 0.2 in natural log units. Accordingly, 0.2ep   is assigned as the epistemic 

uncertainty. 
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Examples where Approach III was implemented in NGA-Sub include geology groups in 
Alaska that had little to no measured VS30 data [Ahdi et al. 2017(b)] and geomorphic terrain 
classifications per Iwahashi and Pike [2007] for Central America, Mexico, and South America, 
excepting Chile. 

Table 5.4 Computation of average epistemic uncertainty for similar VS30 geological 
age groups across multiple study regions. 

Age 
Mean (ln) VS30 values across regions (m/sec) Group moments 

PNW CENA CA Greece Taiwan μlnV (m/sec) ( )ep  

H 277 210 278 327 320 279 0.158 

Pl 458 271 362 471 508 404 0.229 

T 455 351 405 456 702 460 0.232 

Note: H = Holocene, Pl = Pleistocene, T = Tertiary 

5.3.3 Application of Existing Regional Proxy-Based VS30 Prediction Models 

Over the five-year duration of the NGA-Sub project, regional proxy-based VS30 prediction 
models were developed for the Pacific Northwest, Alaska, Taiwan, New Zealand, and Chile. 
Those models are published elsewhere. In this section, those models are briefly reviewed, and 
comments are provided regarding their application to NGA-Sub sites. 

(a) Pacific Northwest 

The Pacific Northwest (Cascadia) model is presented in Ahdi et al. [2017(a)], and formally 
encompasses northern California, Oregon, Washington, and southwestern British Columbia. The 
VS profile dataset gathered in Cascadia allowed for development of 18 well-populated surficial 
geology categories based on geologic map units largely at 1:24,000 to 1:100,000 scale, providing 
a high level of resolution in geologic units, encompassing a range of alluvial and glaciation-
related sedimentary depositional environments, and three types of rock (sedimentary, igneous, 
and metamorphic). As such, this is an Approach I model. 

Six of the 18 groups were found to exhibit correlation between VS30 and topographic 
slope, which is captured using a power-law model. A geomorphic terrain proxy-based model, 
following the 16 classes prescribed by Iwahashi and Pike [2007] (later updated by Iwahashi et al. 
[2018]) was also developed with 13 of 16 classes having well-populated groups (greater than 3 
data points). 

An electronic supplement to Ahdi et al. [2017(a)] contains VS30 assignments and 
supporting metadata for Cascadia sites. In a few cases, sites missing from that supplement have 
assignments added in to the Site table using the procedures described in Ahdi et al. [2017(a)]. 
Sites that recorded Cascadia events but are located in California have VS30 assignments from the 
Wills et al. [2015] VS30 prediction model, which is based on surficial geology and three slope 
bins for alluvial categories (254 sites). For 314 sites located in the intermountain west of the 
U.S., an Approach III framework was utilized whereby the terrain classification-based VS30 
prediction model from Yong [2016] was used to assign mean and standard deviation VS30 values, 
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with an epistemic uncertainty assigned ( 0.2)ep  . Sites that recorded Cascadia events that are 

located in CENA have VS30 assignments from the Parker et al. [2017] prediction model. 

(b) Alaska 

The VS30 prediction model for Alaska was developed in coordination with model development 
for Cascadia. The model is described in Ahdi et al. [2017(b)]. The VS profile dataset in Alaska is 
limited in number, and the measurements that are available are clustered in relatively few areas 
(Anchorage, Fairbanks, Seward, Valdez, and areas considered in post-earthquake reconnaissance 
following the 2002 Denali event). For much of Alaska, large-scale geologic maps are not 
available, which necessitated the use of very small-scale regional maps (e.g., the statewide map 
of 1:584,000, see Wilson et al. [2015]). 

As a result, much of the Alaska-specific regional model was developed following 
Approach II, but with some geological groups utilizing Approaches I and III as well. Comparing 
the 18 geological groups from Cascadia to the site conditions in Alaska resulted in an 
implementation of five different categories of proxy attribution. Approach I was used for one 
group (alluvium), which had enough Alaska-specific VS30 measurements. A combination of 
Approaches I and II was used for three groups (lacustrine, alluvial fan, and loess deposits) that 
had similar data populations in Alaska and Cascadia without appreciable inter-region bias. 
Approach II was used for two groups (artificial fill and glacigenic sediments) where bias was 
checked against Cascadia group moments and was found to be negligible. Approach III was used 
for other groups that were underpopulated with respect to Alaskan data or had site conditions not 
present in the Cascadia proxy framework (e.g., tectonic mélange). The source region used to 
assign moments to Alaska was generally Cascadia, although California [Wills et al. 2015] was 
used for the tidal-flat and mélange groups.  

Metadata and VS30 assignments for Alaska sites were not presented in Ahdi et al. 
[2017(b)], but they are provided in the Site table based on the protocols presented in that paper. 

(c) Chile 

Chile is among the most seismically active countries in the world and has contributed 
substantially to the worldwide subduction event inventory (Chapter 4 of this report). The density 
of recording stations was relatively low up through the time of the 2010 M8.8 Maule earthquake, 
with the available networks primarily being operated by two academic departments in the 
University of Chile. Since that time, the number of strong-motion stations has increased 
significantly [Leyton et al. 2018], as has the amount of seismic site characterization performed at 
stations and for engineering projects. 

As part of NGA-Sub, a profile database was assembled for Chile, drawing heavily upon 
university and industry contacts. Contreras et al. [2018] describes the VS dataset (492 VS30 
measurements) developed for Chile. To date, geologic maps have not been accessed to provide 
surface geology metadata. As a result, geomorphic terrain classes (based on Iwahashi and Pike 
[2007]) were used as the proxy for VS30 prediction. All but two of the 16 categories were well 
populated with profile data. In three cases, terrain classes of similar description were grouped. 
Aside from terrain class, the model considers regional effects caused by differences in climate in 
the arid north and more fertile regions to the south. The model is presented in Contreras et al. 
[2018] and was applied here for metadata and site class assignments in the Site table. Future 
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work for Chile entails development of a hybrid geology/slope VS30 model, once suitable geology 
maps are accessed.  

(d) New Zealand 

As noted in Section 5.2.1, Kaiser et al. [2016; 2017] assembled site metadata for strong-motion 
stations in New Zealand. Each site has an assigned value of VS30 along with an indicator of Q1, 
Q2, or Q3. These indicators qualitatively describe the quality and uncertainty of the site 
parameters, as follows:  

 Q1 (assigned to 29/412 [7%] of New Zealand sites in the Site table) indicates “well-
constrained measurements of VS30 from non-invasive surface-wave methods or borehole 
Seismic Cone Penetrometer Testing (SCPT).” 

 Q2 (33 sites) is defined as being one or more of the following: (1) “estimates based on 
partly constrained near-surface VS structure (i.e., well-constrained to depths less than 30 
m)”; (2) “estimates from known local strata and VS approximated using established 
correlations”; or (3) “well-constrained measurements at nearby geologically similar 
sites.” This description makes it difficult to determine on a site-specific basis which Q2 
sites are measurement- or proxy-based. 

 Q3 (350 sites) is defined as one or both of the following: (1) “Estimates from broad-scale 
national VS30 maps” or (2) “estimates at sites with poor constraints.” Sites with Q2 and 
Q3 estimates of VS30 are considered to be based on Approach I, given the local attributes 
of the estimates. 

VS30 values provided by Kaiser et al. [2016] are adopted for NGA-Sub without 
modification. For Q1 sites, an aleatory variability is assigned that is appropriate for VS30 as 
established from a VS profile, which is ln( 0.1)V   [Seyhan et al. 2014]. For Q2 sites, lnV  is 

assigned as 0.25, which is a typical value for VS30 uncertainty as derived from profiles developed 
using geotechnical data [Kwak et al. 2015]. For Q3 sites, lnV  is assigned as 0.4, which is a 

typical value for VS30 uncertainty as derived from surface geology proxies (e.g., Figure 13 of 
Ahdi et al. [2017(a)]). 

Researchers in New Zealand developed a VS30 map of the entire country based on 
geological and topographic constraints, similar to work done by Thompson et al. [2014] in 
California. They used Bayesian inferencing to condition statistical groups based on a priori 
group moments obtained from the Cascadia hybrid geology/slope proxy model, and updated 
posterior distributions based on added New Zealand VS30 data [Foster et al. 2019]. 

(e) Taiwan 

Kwok et al. [2018] assembled a VS profile database from site data on the CWB website and used 
this data to develop a Taiwan-specific VS30 prediction model conditioned on geological age 
categories in combination with slope and elevation. The geological categories were derived using 
large-scale maps (1:50,000). A terrain classification proxy (based on the classes identified by 
Iwahashi and Pike [2007]) was also developed, with 15 of 16 classes being well-populated with 
measured VS30 data. These models are best described as Approach I. An electronic supplement to 
Kwok et al. [2018] provides VS30 assignments and supporting metadata; this information was 
transferred to the Site table. 
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Table 5.5 Moments for Iwahashi and Pike [2007] (IP07) terrain classes for 
application in Japan. Moments adopted from California are shown in 
parenthesis. 

IP07 Terrain 
Class 

N 
μlnV 

(m/sec) 
σlnV 

μlnV of 
Y16 

(m/sec) 

σlnV of 
Y16 

1 205 498 0.411 519 0.38 

2 (CA) 4 (586) (0.16) 586 0.16 

3 212 416.8 0.456 517 0.38 

4 29 374.6 0.415 568 0.46 

5 120 422.8 0.43 425 0.37 

6 6 381.6 0.16 448 0.14 

7 245 354.9 0.479 429 0.38 

8 16 301.4 0.27 382 0.32 

9 46 286.4 0.421 353 0.16 

10 (CA) 0 (348) (0.09) 348 0.09 

11 98 267.6 0.412 392 0.48 

12 12 300.2 0.355 281 0.20 

13 22 290.5 0.513 NA NA 

14 (CA) 2 (236) (0.14) 236 0.14 

15 83 223.3 0.365 460 0.52 

16 40 186.1 0.309 225 0.20 

The other proxy that was considered was introduced by Matsuoka et al. [2006] for 
categories within the “Japan Engineering Geomorphologic Classification Map” (JEGM). The 
JEGM utilizes geomorphology, surface geology, slope angle, and relative relief to classify 
locations into geomorphologic units. The empirical correlations are based on shear-wave velocity 
profiles from 1937 sites (this is a different dataset than that compiled for NGA-Sub). 
Subsequently, new categories were added, with the list as of 2013 provided in Table 5.6 (from 
Wakamatsu and Matsuoka [2013]; three categories that do not have stations in NGA-Sub have 
been omitted). Also shown in the table are: (1) category means and standard deviations as 
provided by Matsuoka et al. [2006]; and (2) the minimum, maximum, and median of the mapped 
VS30 values for the category, which differ from the Matsuoka et al. [2006] category mean due to 
varying morphological influences within the categories (from changes in slope angle and relative 
relief). Categories 1–4 correspond approximately to rock conditions, 5–7 are transitional 
categories, and categories of 8 and above represent various soil conditions. Matsuoka et al. 
[2006] provide intra-category regressions against elevation for categories 8–13, against slope for 
categories 3, 5, and 8–11, and against distance from hills for categories 8, 10, 13, 15, and 18–19. 
We used JEGM maps and associated values of VS30 at 7.5 arc-sec grid-size resolution by 
Wakamatsu and Matsuoka [2013]. No modifications to these VS30 values were applied. 



 

131 

Because two models (using different proxies) have been developed for prediction of the 
natural log mean and standard deviation of VS30, a weighted combination of the two estimates is 
needed. An approach that has the objective of minimizing the standard deviation of the estimate 
of VS30 that results from the combination of the two proxies was applied; see Kwok et al. [2018] 
for the mathematical formulation. This approach was originally developed as part of NGA-Sub 
for VS30 assignments in Japan by the fifth author. The weights applied to the two proxies depend 
on the standard deviation of residuals for the respective categories used in each proxy ln( )V  and 

the degree of correlation between proxies. Using the Japan PDB compiled for NGA-Sub, the 
standard deviations for the dataset as a whole are 0.44 for the prediction model based on terrain 
categories, and 0.30 for the JEGM-based model; however, different combinations of categories 
between proxies can lead to more similar dispersions. For example, JEGM category 3 (Hill) has 

ln( 0.40)V   and is shared for some sites with terrain class 15 ln( 0.37)V  . 

The correlation coefficient is calculated using normalized residuals: 

 

 30 ln

ln

ln S Vi
i

Vi

V 






 (5.3) 

where index i refers to model 1 (terrain) or 2 (JEGM), and ln(VS30) is a measured value from the 
profile database. Figure 5.6(a) shows that the two sets of residuals are relatively weakly 
correlated with 12( 0.68)  for the dataset taken as a whole. This correlation coefficient is used 

for all category combinations. Based on this correlation coefficient and the respective lnV  

values, the JEGM model typically receives higher weights. For example, the combination of 
category 15 for both JEGM and terrain provides ln 0.25V   and 0.37, respectively, which gives 

a weight of essentially unity to JEGM with a combined standard deviation of 0.25. On the other 
hand, for sites with JEGM category 3 and terrain class 15, the weights are 0.35 (JEGM) and 0.65 
(terrain). Each combination of categories in the application of the two models receives a unique 
set of weights. 

Additional prediction models based on other proxies were considered for use in Japan, 
including a geotechnical classification scheme by Chiou and Youngs [2008] as updated in 
Seyhan et al. [2014], and topographic slope in Wald and Allen [2007] and Allen and Wald 
[2009]. The geotechnical scheme was not used because category assignments are subjective, and 
because the dispersion ln( )V  is larger than that for the conceptually-similar JEGM approach. 

Topographic slope was not used because of strong correlation with the terrain-based approach 
( 0.87)  , which is shown in Figure 5.6(b). 
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Table 5.6 JEGM site categories, within-category moments from Matsuoka et al. [2006], 
(“Mea06”), and attributes of mapped VS30 within categories from Wakamatsu 
and Matsuoka [2013]. 

Cat. Description 
μlnV (m/sec) 

(Mea06) 
σlnV 

(Mea06) 
Max. VS30 
(m/sec) 

Med. VS30 
(m/sec) 

Min. VS30 
(m/sec) 

1 Mountain 707.5 0.295 775.5 708.4 641.3 

2 Mountain footslope 400 0.212 400.3 400.3 400.3 

3 Hill 428 0.403 526.1 408.3 294.7 

4 Volcano 509 0.373 510.4 510.4 510.4 

5 Volcano footslope 302 0.23 361.3 294.5 226.9 

6 Volcanic hill 405 0.136 405.6 405.6 405.6 

7 Rocky strath terrace 351 0.216 351.4 351.4 351.4 

8 Gravelly terrace 418 0.281 589.2 466.6 252.9 

9 
Terrace covered with volcanic 

ash soils 
269 0.265 418.5 270.5 197.4 

10 Valley bottom lowland 345 0.364 544.2 394.5 191.5 

11 Alluvial fan 323 0.267 436.2 337.5 253.1 

12 Natural levee 198 0.286 267.1 201 185.2 

13 Back marsh 160 0.267 192.9 166.55 140.6 

14 Abandoned river channel 183 0.21 183.8 183.8 183.8 

15 Delta and coastal lowland 171 0.246 207.5 168.15 141.6 

16 Marine sand and gravel bars 258 0.262 260.2 260.2 260.2 

17 Sand dune 194 0.283 194.5 194.5 194.5 

18 
Lowland between coastal 

dunes and/or bars 
NA NA NA NA NA 

19 Reclaimed land 182 0.283 236.3 173 149.9 

20 Filled land NA 0.276 253.3 188.3 152.6 

21 Rocky shore, rock reef NA NA 429.1 429.1 429.1 
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5.4 VS30 ASSIGNMENTS 

As described in preceding sections, assignments of VS30 can be made using a wide range of 
methods with variable levels of associated variability and uncertainty, depending on the 
availability of VS measurements and locally-calibrated proxy-based VS30 prediction models. For 
each site in the NGA-Sub Site table, a preferred median VS30 ln( )V  and an associated variability 

ln( )V  were assigned. In cases where mean estimates carry large epistemic uncertainty, a 

standard deviation on the mean ( )ep  was also assigned. The process by which these 

assignments are made is shown in Table 5.7 (the codes are given in the site database file). 

Table 5.7 Protocol used in NGA-Sub for assignment of preferred VS30 and related parameters. 

Code Description 

0 
VS30 computed using profile with zp ≥ 30 m. Standard deviation taken as ln 0.1V  . Epistemic 

uncertainty on mean not assigned. 

1 

Profile is available but maximum VS profile depth zp < 30 m. VS30 is estimated using an extrapolation 
relationship, preferably with region-specific regression coefficients, e.g. those in Kwak et al. [2017] for 

each region, for use with the method described in Dai et al. [2013]. 2 2
ln 0.1V e   . Values of e  

given in Kwak et al. [2017]. 

1.5 

Estimate VS profile from standard penetration test blow counts and local correlations between VS and 
penetration resistance/effective stress (this correlation is only used in Japan; Kwak et al. [2015]). VS30 
computed from estimated profile: ln 0.25V  . 

2 

No profile available. Mean VS30 estimated using region-specific models based on geology or hybrid 
geology-morphology proxies. This code applied in PNW, portions of Alaska and Canada, Japan, 
Taiwan, and New Zealand. lnV  assigned based on category statistics.  

3 

No profile available. VS30 and its variability are estimated using region-specific models based on 
geomorphic terrain categories [Iwahashi and Pike 2007]. This code used in Chile, Japan, and California 
(for Cascadia events). lnV  assigned based on category statistics. 

4 

No profile available. Mean VS30 estimated using models developed for source region other than the 
target region. Source region models can be based on geology, hybrid geology-terrain proxies, or 
geomorphic terrain categories. This code applied in portions of Alaska, Central and South America 
(excepting Chile), and western Canada and the Alaska Panhandle. lnV  assigned based on source 

region category statistics. Epistemic uncertainties  ep  assigned. 

5.5 BASIN-DEPTH TERMS 

5.5.1 Overview 

Basin depth terms as used in GMMs are defined as vertical distances from the ground surface to 
the first occurrence of a particular VS horizon. These depths are used to provide a first-order 
representation of basin geometry in alluvial or sedimentary basin environments. Commonly used 
basin depths are z1.0. and z2.5, which are depths to the VS = 1.0 km/sec and 2.5 km/sec velocity 
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horizons, respectively, and were used in four of the five NGA-West2 GMMs [Gregor et al. 
2014]. 

Depth parameters are assigned to a site in the Site table from a measured in situ VS profile 
that meets or exceeds the specified velocity horizon or, when such profiles are not available, 
from a 3D seismic velocity model for a particular region. An exception is New Zealand, where 
Kaiser et al. [2016; 2017] provide depth term z1.0 from profiles where available, and otherwise 
estimate z1.0 using various methods unrelated to a 3D seismic velocity models (resolution 
indicated by quality flags Q1–Q3). Table 5.8 summarizes the number of sites assigned basin 
depth terms in the NGA-Sub Site table from both of these assignment protocols. A significant 
portion of sites (2350/6433, i.e., 39%) do not have an assignment of a basin depth term. Such 
terms are not compiled in Alaska and Central America, and Mexico. Only three sites have this 
parameter assigned in South America. 

Table 5.8 Summary of basin depth terms included in NGA-Sub Site table for various 
regions. “Estimated” depths are from 3D models, with exception of New 
Zealand. 

Region 
Total # 
sites 

z
1.0

 z
2.5

 

Assigned Measured Estimated Assigned Measured Estimated 

Cascadia 1126 15 15 NA 458 1 457 

Japan 2283 2,228 609 1619 2,021 113 1908 

New Zealand 412 412 29 383 0 0 NA 

South America 942 3 3 NA 0 0 NA 

Taiwan 849 802 0 802 NA NA NA 

5.5.2 Cascadia 3D Velocity Models 

The USGS has developed a 3D seismic velocity model for the PNW, which was first presented 
by Stephenson [2007] and recently updated by Stephenson et al. [2017]. The model was 
developed to support seismic hazard studies and ground-motion simulations. The model 
encompasses a region from approximately 40.2°N to 50°N latitude, and from about 122°W to 
129°W longitude, and 0–60 km depth. 

As described by Stephenson [2007], the backbone of the velocity model is a geologic 
model encompassing six units, as shown in Figure 5.9: 

 continental sedimentary basins (a combination of Quaternary and Tertiary 
basin units); 

 continental crust; 

 continental mantle; 

 oceanic sediments; 

 oceanic crust; and 

 oceanic mantle. 
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