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ABSTRACT

Conditional models for the horizontal and vertical peak ground velocity (PGV'), given the pseudo-
spectral acceleration [PSA(T)] values, are developed for active crustal regions. The period of the
PSA(T) used in the conditional model, Ty, is magnitude dependent, which captures the effect
of the magnitude dependence of the earthquake source corner frequency on the PG'V'. Conditional
models can be used to estimate the PGV given a design spectrum and are applicable for magni-
tudes between 3.0 and 8.5, and for distances up to 200 km. The conditional PGV models can
also be combined with appropriate GMMs for PSA(T') to develop traditional GMMs for PGV
that are consistent with the more complex scaling included in the PSA(7T) model. Unlike previ-
ous conditional PGV models, the slope on the in[PSA(T)] term is allowed to be different from
unity. With this feature, an appropriate aleatory standard deviation of the resulting (n(PGV') can
be computed, avoiding the over-prediction of the aleatory standard deviation of the PG’V seen in
previous conditional PGV models.
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1 Introduction

The most common ground-motion parameters used to develop design ground motions are horizontal-
component elastic pseudo-spectral acceleration (P.S A) values.

While the PS'A values broadly represent the amplitude of the ground shaking important
to the response of buildings, there are other ground-motion parameters that can significantly affect
the response of different types of structures. Examples of secondary ground-motion parameters
that are often considered when developing design ground motions are the duration, peak ground
velocity (PGYV), presence of a velocity pulse, Arias intensity (/,), and cumulative absolute velocity
(CAV).

There are two main approaches for estimating the secondary ground-motion parameters
given a design earthquake scenario and a horizontal-component design spectrum. The first ap-
proach is to develop an empirical ground-motion model (GMM) for the secondary ground-motion
parameters in a manner similar to the approach used to develop GMMs for the horizontal PSA(T')
values. The secondary parameter can be estimated using the design earthquake scenario (e.g., mag-
nitude and distance) from the disaggregation of the hazard for the response spectral values at the
periods important for the structure.

An alternative approach is to include the design PSA(T') values as predictive parameters
in the GMM for the secondary parameters in addition to the source, path, and site parameters used
in traditional GMMSs. For example, a GMM for secondary parameters may include the design
PSA(T = 1) sec) value as an input parameter. Abrahamson et al. (2016) used the term “condi-
tional ground-motion model” for GMMs that include other ground-motion parameters as model
input parameters. This is consistent with the term “conditional” used in the conditional mean spec-
trum (CMS) described by Baker and Cornell (2006). The CMS uses the design response spectral
value at the conditioning period as input to compute the expected response spectral values at other
spectral periods. The conditional GMM approach differs from the CMS approach in that the con-
ditional GMM uses the design PSA(T') value directly as an input parameter rather than using the
normalized residual, ¢, for the design PSA(T') and the correlation coefficient between the € values
for the two spectral periods. Because the PS A(T') value already includes magnitude, distance, and
site scaling effects, conditional GMMs have weaker dependence on these parameters compared to
traditional GMMs. In addiition, they have much smaller aleatory variability, making the regression
more robust.

An advantage of using the conditional GMM approach is that it leads to estimates of the
secondary parameters that are compatible with the design response spectral values. In contrast,



using a traditional GMM approach can lead to estimates of the secondary parameters that are
inconsistent with the design PSA(T) values. For example, if the design PSA(T) value from
a probabilistic seismic hazard analysis corresponds to ¢ = 1.5 (i.e., the 93th percentile spectral
acceleration), then the common practice of computing the secondary parameter based on the 16th—
84th percentile range for the controlling scenario from the disaggregation will lead to a target range
of the values of the secondary parameter inconsistent with the design PSA(T') values.

This inconsistency issue can be addressed using the correlation between the e of the sec-
ondary parameter and the ¢ of spectral acceleration at the selected period, and computing the ex-
pected value of the secondary parameter given the € of the design PSA(T'), similar to the approach
for computing the CMS. It may seem easier to just follow this CMS-type approach; however, using
the correlation approach implicitly assumes that the GMM for the secondary parameter has a con-
sistent parameterization and consistent physical constraints on the extrapolation as the horizontal
PS A GMM. This is the case for spectral accelerations at different periods from a single GMM, but
it may not be the case for secondary parameters because the GMMs for the secondary parameters
are often developed by different researchers, and there is less information available from analytical
studies to provide physical constraints on the scaling for the secondary parameters.

A conditional GMM can be combined with a suite of GMM:s for the median and standard
deviation of the PSA(T) values to develop a suite of GMMs for the secondary parameter that
fully captures the aleatory variability as well as the magnitude, distance, and site scaling of the
median of the secondary parameter. For example, the single conditional model for /,,, developed
by Abrahamson et al. (2016), was combined with each of the five NGA-West2 GMMs per Gregor
et al. (2014) for the PGA and PSA(T = 1) values to produce five alternative GMMs for /,. In
this approach, the magnitude, distance, and site scaling for each PSA(T") model is incorporated
into a new I, model. Because of the smaller aleatory variability and the simpler functional forms
required, the coefficients of conditional models are stable and well constrained by the available
empirical data.

Conditional GMMs have been considered as overly simplified models that should only be
used if a traditional GMM is not available for the secondary parameter of interest. For example,
Bommer and Alarcon (2006) have claimed that estimating PGV using traditional GMMs for PGV
is preferable to estimating the PGV using conditional models based on the response spectral val-
ues. Furthermore, they recommended that conditional models should only be used for estimating
a secondary parameter if there are no appropriate traditional GMMs available for the secondary
parameter. We do not agree with this recommendation. More than just being a simplified model
used as a last resort, there are several key advantages to using the conditional GMM approach.

1. Conditional GMMs may take advantage of the significant effort that has been put into de-
veloping constraints on the extrapolation in the PSA-GMM scaling using analytical mod-
eling for effects not well constrained by the empirical data, such as short-distance satura-
tion, hanging-wall (HW) effects, soil-depth effects, and nonlinear soil effects. For example,
Abrahamson et al. (2016) showed that by combining a conditional GMM for [, without HW
effects with an NGA-West2 GMM that used seismological finite-fault simulations to con-
strain the HW effects, the resulting /, model captured almost all of the HW effect on the I,
by using the PG'A as an input parameter.



2. Regional differences in the scaling for the secondary parameters can be easily estimated by
combining a global conditional model with region-specific GMMs for the PSA(T') values.
This leads to a region-specific model for the secondary parameters for the new region.

3. Using conditional GMMs leads to secondary parameters that are consistent with PS A GMM.
Traditional GMMs for the secondary parameters are often developed by different researchers
than those that developed the PSA(T) GMM. As a result, they can have inconsistent scal-
ing from the PSA GMM in terms of how the model extrapolates outside the empirical data
range. So while the GMM for the secondary parameter fits the available data, it may give
estimates that are inconsistent with the design PSA(T") values if the models use different
analytical and seismological constraints outside the range well constrained by the data.

4. The conditional GMMs have simpler functional forms and much smaller aleatory variability
than traditional GMMSs, so the coefficients of the conditional GMMSs are better constrained
than the coefficients for traditional GMMs.

1.1 PREVIOUS CONDITIONAL MODELS FOR PGV

Newmark and Hall (1982) developed a model for the ratio of the pseudo-spectral velocity (PSV")
to the PGV for spectral periods in the velocity-controlled period range of the response spectrum.
For 5% damping, the median PSV (T')/ PGV ratio in the velocity-controlled region given by New-
mark and Hall (1982) is 1.65. While Newmark and Hall (1982) used this PSV(T')/ PGV ratio to
estimate the P.SV (7T') in velocity-controlled region given an estimate of the PGV, this ratio can be
also used to develop a conditional ground-motion model for PGV given the PSA(T'). Converting
the PSV(T') in cm/sec to PSA(T) in g and taking the natural logarithms, the Newmark and Hall
(1982) scale factor for PSV(T')/ PGV can be rewritten as:

In(PGV) = 4.55 — In(T) + 1.0In[PSA(T)] (1.1)

where the PGV is in cm/sec, the PSA(T) is in g, and the period, 7', is the period representing the
constant-velocity region.

Bommer and Alarcon (2006) evaluated the relationship between PGV and PSA(T) at
a range of spectral periods. They found that the In[PSA(T)] at a period of 0.5 sec had similar
magnitude scaling as the In(PGV'). Therefore, they developed a simple conditional model for
PGV for crustal earthquakes in active regions based on the 5% damped PSA at T' = 0.5 sec.

980PSA(T = 0.5)

P =
GV 50

(1.2)

where the PGV is in cm/sec, and the PSA(T') is in g. A magnitude term was not included in
this model because the magnitude scaling of the PGV and the PSA(T = 0.5) were found to be
similar. This PGV — PSA relation can be written as:



In(PGV) = 3.89 + 1.0in [PSA(T = 0.5)]) (1.3)

An issue with these models is the estimation of the standard deviation of the PG'V. Bommer and
Alarcon (2006) noted that GMMs developed for both PS' A and PGV show that the standard devi-
ation of In(PGYV) is smaller than the standard deviation of In[PSA(T = 0.5)]. In this case, adding
the variance from the residuals of the conditional in(PGV') model to the variance of the [n(PSA)
model would add to the overestimation of the total standard deviation of In(PGV) already present
due to the use of the standard deviation of In[PSA(T = 0.5)]. Therefore, they recommended not
including the standard deviation of the conditional model in estimating the aleatory variability of
the resulting In(PGV).

Huang and Whittaker (2015) developed an updated conditional PGV model for use in
seismic performance evaluations described in FEMA-58-1 (2018). Using ground-motion data from
the NGA-West2 dataset for active crustal regions, they developed two alternative empirical models
for the PSV/ PGV ratio: one based on the PSV/PGYV ratio averaged over the period range of 0.5
to 2 sec, and one based on the PSV/PGV ratio at a period of 1.0 sec. Their PSV/PGV model
using the T'=1 sec PSV is given by:

" [PSV(T = 1)

T ] =1.3-0.13M (1.4)

with a standard deviation of 0.43 natural log units. Converting the PSV in cm/sec to the PS A in
g, their model can be written as:

In(PGV) = 3.75 + 1.0in [PSA(T = 1)] + 0.13M (1.5)

For the model based on the PSV (T")/ PGV ratio averaged over the 0.5 to 2.0 sec period range,
the standard deviation of In[PSV (T")/PGV] is reduced to 0.33 natural log units. This reduction
in the standard deviation reflects that there is not a single predominant period for the PGV for
all earthquakes; therefore, using the PSSV averaged over a period range is a better parameter for
predicting the PGV for a range of magnitudes. For computing the standard deviation of In(PGV),
Huang and Whittaker (2015) add the variance of the conditional PGV model to the variance of
the In[PSA(T)] model.

All three of the previous models for estimating PGV given the response spectral values are
based on statistical modeling of the PSV (T')/ PGV or PSA(T)/PGV') ratios, which is equivalent
to constraining the slope on the in[PSA(T)] term to be unity; see Equations (1.1), (1.3), and (1.5).
As discussed later in the model development section, constraining the slope to unity limits the
ability to accurately compute the standard deviation of PGV'.

In this study, we have developed conditional ground-motion models for the horizontal and
vertical components of in(PGV') for active crustal regions. Our approach differs from the previous
models in that the conditional PGV models are developed directly for the [n(PGV') rather than
developing the model for the PSV (T')/ PGV or PSA(T)/PGV ratio, which allows the slope on
the In[PSA(T)] term to be different from unity. This approach allows for the aleatory variability



of In(PGV) for an earthquake scenario [i.e., without considering a given PSA(T) value] to be
accurately estimated by combining the conditional PGV model with the standard deviation of an
appropriate GMM for the PSA(T).






2 Datasets

For active crustal earthquakes, we used the NGA-west2 database (Ancheta et al., 2014) developed
by the Pacific Earthquake Engineering Research Center (PEER). This database includes ground
motions from earthquakes in active crustal regions around the world that have occurred between
1940 and 2011. The full database contains over 21,000 three-component recordings from 713
earthquakes. We used the same subset of this dataset as selected by Abrahamson et al. (2016)
for their conditional ground-motion model for Arias intensity (Al). This subset consists of 11,353
recordings with distances between 0 and 340 km from 431 earthquakes, with magnitudes between
3.0 and 7.9.

Recordings with a usable long-period range that does not cover the spectral periods relevant
to the PGV were removed. For the horizontal component, 47 recordings were removed due to the
usable period-range constraint. For the vertical component, 427 recordings were removed. The
magnitude and distance distribution of the 11,306 recordings from 427 earthquakes in the selected
horizontal dataset is shown in Figure 2.1.

The distribution of the Vg3 is shown in Figure 2.2. Most of the data are for Vg3 between
200 and 800 m/sec. There are only a few recordings on hard-rock conditions. The sample from
small and large magnitude is similar.
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3 Conditional PGV Models

The development of good empirical GMMs for earthquake engineering applications is more than
just a curve-fitting exercise. First, there should be a physical basis for the form of the model.
Second, there should be appropriate constraints on the extrapolation of the model outside of the
range constrained by the empirical data but that are important contributors to the seismic hazard.
Given an appropriate functional form and appropriate constraints, the regression analysis is used
to fit the model in the range covered by the empirical data.

3.1 PHYSICAL BASIS FOR THE PGV MODEL

For the relationship between PSA(T) and PGV, the key physical constraint comes from the
magnitude dependence of the source corner frequency in the Fourier amplitude spectrum (FAS)
of ground motions. This change in frequency content can be seen in the magnitude scaling of the
velocity FAS. Figure 3.1 shows the velocity FAS for M3 to M8 earthquakes in California based
on the Bayless and Abrahamson (2019) FAS GMM. Due to the magnitude dependence of the
corner frequency, there is an increase in the long-period content with increasing magnitude, and
the predominant period of the peak velocity will increase as the earthquake magnitude increases.
As aresult, the period of the PSA(T) that has the highest correlation between PGV and PSA(T),
denoted T'pgy, will also be magnitude dependent. The velocity time series for smaller magnitude
earthquakes will have a smaller Tpy values than for larger earthquakes.

The distance dependence on the frequency content of the velocity FAS is much weaker
than the magnitude dependence. Figure 3.2 shows that velocity FAS for M6 at distances of 5, 20,
50, 100, and 200 km using the Bayless and Abrahamson (2019) FAS GMM. Compared to the large
changes in spectral shapes for different magnitudes, the spectral shapes for the different distances
are very similar. Therefore, we do not consider the distance dependence in the model for T’p¢y for
the distance range of up to 200 km considered in this study.

3.2 DEVELOPMENT OF THE CONDITIONAL PGV MODEL

The development of the conditional PGV model starts with the evaluation of the magnitude depen-
dence of the correlation of the PGV and PSA(T). The data are first divided into magnitude bins
with a width of 1 magnitude unit. For each magnitude bin, the correlation between the in(PGV)

11



and the In[PSA(T)] is computed for 104 spectral periods between 0.01 and 10 sec, as given in the
PEER NGA-West2 dataset. Unlike the previous studies discussed above, the slope of the in(PSA)
term is a free parameter rather than being fixed at unity:

ln(PGV) =+ Cgln[PSA(TpG‘/)] (31)

The inclusion of the slope, co, as a free parameter is important because it captures the difference
in the standard deviation of the in(PGYV') relative to the standard deviation of the In[PSA(T)] as
shown below.

Using simple propagation of errors, the variance of the In(PGV) is given by

dnPGV  \’
2 2 2
OinpPGV = ( InPS A(TPGV)) OinPSA(Tpey) T TinPGV|PSA(Tpev) (3.2)

in which oy, pgyv and 0y, psa(7) are the standard deviations of the residuals from traditional GMMs
for In(PGV') and In[PSA(T')], respectively. For the simple model given in Equation (3.1), the
partial derivative is just a constant:

OlnPGV
alTLPSA(TPG‘/)

= Co (33)

The standard deviation of the conditional PGV GMM is related to the standard deviation
of the traditional PG'V GMM through the correlation coefficient:

UZQnPGV\PSA(TPGV) =(1- p2)012nPGV (3.4)

where p is the correlation coefficient between the normalized residuals from a traditional GMMs
for the In(PGV') and In[PSA(T)]. Substituting Equation (3.3) and Equation (3.4) into Equation
(3.2), the slope, c,, is given by

OlnPGV

Cp=p——— (3.5

OinPSA(Tpgv)

The correlation coefficient must be less than or equal to 1.0, and from the Abrahamson et al. (2014)
NGA-West2 GMM, o0;,pav < 0mpsacr) for all periods. Therefore, using Equation (3.5), ¢, will
be less than 1.0. Figure 3.3 shows the relation between the log(PGV') and the log[PSA(T = 1.5]
for a subset of crustal data with magnitudes between 6.5 and 7.5 and rupture distances less than 50
km. As expected, the slope of 0.829 is less than unity.

The magnitude dependence of the Trqy is evaluated using a subset of the dataset, with
rupture distances less than 50 km to focus on the source-scaling effects. The distance and site
dependence of the conditional PGV model is modeled in a later step using the full dataset. Using
this subset, a contour plot of the standard deviation of the fit to Equation (3.1) is shown as a
function of magnitude and spectral period in Figure 3.4 for the horizontal component.
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The Tpqy value found for each magnitude bin is listed in Table 3.1. The magnitude de-
pendence of the T'piy is shown in Figure 3.5, which is similar for both the horizontal and vertical
components. Also, the contours of the correlations shown in Figure 3.4 are broad. Therefore,
the Tpy values for the horizontal and vertical components are combined, and a single relation
is developed for both horizontal and vertical components. Based on the binned values shown in
Figure 3.5, a simple linear relation is used to model the magnitude dependence of the Tpqy for
rupture distances less than 50 km:

ln(Tpgv) = b1 + bQM (36)

An ordinary least-squares fit to the combined horizontal and vertical data results in b; = —4.09
and b, = 0.66, with a standard deviation of 0.2 natural log units.

We can compare the magnitude dependence of 7’p;y with the result of Bommer and Alar-
con (2006), where 1" = 0.5 sec was the best single period to use for estimating the PG’V from the
PSA(T). In the Abrahamson and Silva (1997) dataset used by Bommer and Alarcon (2006), the
magnitudes range from M4.4 to M7.4. Using Equation (3.6), the spectral periods with the highest
correlation for M4.4 to 7.4 range from 0.3 sec to 2.2 sec. The magnitude-independent value of
Tpay = 0.5 sec used by Bommer and Alarcon (2006) falls within this range.

Given the model for the magnitude dependence of T’r¢y, a new ground-motion parameter,
PSA[Tpcyv(M)), is computed from the NGA-West2 dataset. For Tpgy values that fall between
the spectral periods in this dataset, the PSA(T) value is computed using linear interpolation on
the log-period and log-P S A values.

To fully take advantage of the conditional GMM approach, simple magnitude, distance,
and site terms need to be included so that the slope of the [n(PSA) term represents the product of
the correlation and the ratio of the standard deviations, as shown in Equation (3.5). For slopes less
than unity, the full magnitude, distance, and site scaling is not included in the ¢, In(PSA) term.
The difference in the magnitude, distance, and site dependence of the in(PGV') and that of the
scaled Iin(PSA) is captured by the explicit magnitude, distance, and site terms.

The functional form used for the conditional PG’V model is given by

In(PGV) =a; + fi(M)In[PSA(Tpay)] + ay (M — 6) + as(8.5 — M)?

v
+agln [RRUP 4 560.4(M—6)] + [ar + ag(M —5)] In <%350) +0B+ oW

(3.7)

in which M is the moment magnitude, Ry p is the rupture distance in kilometers, the PS A is the
5% damped spectral acceleration in g, Vgsg is the time-averaged shear-wave velocity over the top
30 m in m/sec, and 6 B and W are the between-event and within-event residuals, respectively. An
initial analysis demonstrated that setting the finite-rupture saturation term at 5e°*(*~6) removed
any short-distance trend in the residuals at large magnitudes. Because the period of the PS A used
in the regression, 7' pgy, 1s magnitude dependent, the Vg3 scaling is also magnitude dependent. To
reduce the trade offs in the coefficients, the regression was implemented in two steps.
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1. The Vg3 scaling terms (a7 and ag) are set to zero.

2. The within-event residuals are fit with just the (a7 and ag) terms.

As discussed earlier, the slope of the In[PSA(Trqv)] term, fi, is related to the differences
in the aleatory standard deviations for In(PGV') and In[PSA(Tpgy)]. The differences in the
standard deviation for In|PSA(Tprqv)] and In(PGV') from the Abrahamson et al. (2014) GMM
are magnitude dependent. Therefore, the f; term is modeled as magnitude dependent. A simple
tri-linear form is used for f;(M):

a9 for M <5
fl(M) = as + (as — CLQ)(M — 50)/25 forb5 <M <75 (38)
as for M > 7.5

The coefficients are estimated using a random-effects regression analysis with a random
effect for the earthquake; see Abrahamson and Youngs (1992). The standard deviations of the
between-event and within-event residuals are denoted 7 and ¢, respectively. The total standard
deviation is given by o = \/¢? 4+ 72. The resulting coefficients and standard deviation terms are
listed in Table 3.2. The f;(M) term for the vertical component is smaller than for the horizontal
component, indicating that the correlation between PSA and PGV is weaker for the vertical
component.

The PSA(T'), magnitude, and distance scaling of the conditional PG’V model are shown
in Figures 3.6 and 3.7. Both figures show a strong dependence of the PGV on the PSA(Trqv).
Figure 3.6 shows that the horizontal and vertical models are similar for M4, but they separate at
larger magnitudes because the horizontal PGV has a stronger magnitude scaling than the vertical
PGV . Note: Figure 3.7 shows that there is a shift to smaller PGV values for larger distances, but
the scaling with distance is not strong.

3.3 EVALUATION OF RESIDUALS

The within-event residuals for the horizontal crustal data are shown as functions of the PSA(Tpqv)
in Figure 3.8 and as a function of rupture distance in Figure 3.9. The residuals in these two figures
are shown for subsets of the data by magnitude bin to check that there is not a trade off between
the magnitude scaling and either the PSA(Tpqy ) scaling or the distance scaling. In these figures,
there are no clear trends seen in the within-event residuals. The within-event residuals are shown as
a function of the Vgj, in Figure 3.10. Again, there are no trends seen in the within-event residuals.

The between-event residuals are shown as a function of magnitude in Figure 3.11. There
is no trend with magnitude in the between-event residuals, but there are two outlier events at M3.7
(EQIDs 1092 and 1100 in the NGA-West2 database). The event terms for PSA(T = 0.2) from
Abrahamson et al. (2014) for these two events are not outliers; therefore, we did not remove these
two earthquakes. The residuals for the vertical component for crustal earthquakes are not shown,
but no significant trends were observed in either the within-event residuals or the between-event
residuals residuals for the vertical component.
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To check the applicability of the conditional PGV model for near-fault directivity effects,
the within-event residuals for recordings with near-fault velocity pulses are shown in Figure 3.12.
The residuals are centered near zero: the mean residual for M > 6.5 is 0.06 natural log units.
Similarly, to check the applicability of the conditional PGV model for HW effects, the within-
event residuals for recordings from dipping faults—a dip less than 65 degrees—are shown in Figure
3.13 as a function of R, (the horizontal distance measured perpendicular to fault strike). For
0 < R, < 10 km (HW side), the residuals are also centered near zero: the mean residual is 0.02
natural log units. These residual plots indicate that the near-fault effects on the PGV are captured
in the observed PSA(Tpgy) values, and that the conditional PGV GMM is applicable to the
near-fault region.

3.4 MODEL APPLICATION

The conditional PGV model developed in this study uses the PSA(T) at different periods depend-
ing on the magnitude of the controlling earthquake, as given in Equation (3.6). Given a response
spectrum, the value of the PSA(Tpqy) should be interpolated using log-log interpolation on the
available PSA(T) values.

The use of magnitude-dependent period is a strength of the model, but it also limits for
applications in which the PSA(T') values are only available for a few spectral periods. For exam-
ple, design seismic hazard maps may only provide the PS A at a few spectral periods. In this case,
the model based on the PS A at a single period needs to be used rather than using the magnitude-
dependent period, PSA(Trqv).

To be applicable to the case in which only PGA or PSA(T = 1) values are available, the
regression was repeated using the PG A and the PSA(T = 1) values in place of the PSA(Tpqy)
values. The PGV scaling using a fixed spectral period does not work well over a large magnitude
range, so the dataset used for these two models was limited to earthquakes with M/ > 5. In
addition, the standard deviation will become magnitude dependent due to the worse fit to the PGV
data when using PG A and the PSA(T = 1) values in place of the PSA(Tpqy). For example,
using the PG A, the conditional GMM will provide a better fit to the smaller magnitudes because
Tpayv (M) is closer to the PG A for M5 than for M7. To capture this effect, the standard deviation
of the within-event terms is modeled using a tri-linear form shown in Equation (3.9). This same
functional form is used for the standard deviation of the between-event residuals, 7.

03} for M < M,
P(M) = ¢1+ (P2 — 1) ((]\Afg__]\]\?l)) for My < M < M, (3.9)
o5 for M > M,

Table 3.3 lists the coefficients for the PG A-based and the PSA(T = 1)-based conditional
PGV models for the horizontal component. Design maps are for the horizontal component only,
so PG A-based and the PSA(T = 1)-based conditional PG’V models are not included for the
vertical component.
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Given an estimate of the controlling magnitude and distance from disaggregation of the
hazard, the models given in Table 3.3 can be used to estimate the PGV from either the PG A
or the PSA(T = 1). While not as accurate as the full conditional PGV model, this simplified
approach still accommodates the differences in the aleatory variability between the (n(PSA) and
the In(PGV).
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Table 3.1: Response spectral period with highest correlation to PGV by magnitude bin.

Mag
Bin

Mean

Horiz

Vert

Mag Tpgv (sec) Tpay (sec)

3.0-3.5
3.5-4.5
4.5-5.5
5.5-6.5
6.5-7.5
7.5-8.5

34
4.0
5.0
6.1
6.9
7.6

0.20
0.28
0.40
0.95
1.4
2.8

0.15

0.22

0.32
1.1
1.3
3.0

Table 3.2: Conditional PGV model coefficients for crustal earthquakes.

Coeff Horizontal

Std Err  Vertical Std Err

a1
a3
as
Q4
as
Ge
az
ar
¢

T

g

5.39
0.799
0.654
0.479
-0.062
-0.359
-0.134
0.023

0.29

0.16

0.33

0.06
0.004
0.008
0.056
0.008
0.007
0.007
0.005

5.51 0.06
0.763  0.004
0.538  0.010
0.131 0.060
-0.106  0.008
-0.431  0.008
-0.089  0.008
0.017  0.006
0.32

0.15

0.35
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Table 3.3: Coefficients for PG A-based and PSA(T = 1)-based models for PGV for crustal

earthquakes
Horizontal Horizontal
Coeff PGA Model PSA(T=1) Model

ay 4.77 4.80

as 0.738 0.82

as 0.484 0.55

ay 0.275 0.27

as -0.036 0.054
ag -0.332 -0.382
ar -0.44 -0.21

as 0.0 0.0

01 0.32 0.28

02 0.42 0.38

T 0.12 0.12

To 0.26 0.17

o1 0.34 0.30

lop} 0.49 0.42
M, 5.0 5.0

M, 7.0 7.0
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Figure 3.1: Horizontal velocity FAS for different magnitudes for crustal earthquakes at a
distance of 30 km and for a site with 53, = 400 m/sec from the Bayless and Abra-
hamson (2019) model. The circles show the period with the highest correlation
between [n(PGV) and In[PSA(T)].

100 =
an 5km = 100 km
1034
H — 20km —— 200km
1,; — 50 km
B - i
8 /"— ““-
5 0.1 — -
E i ,, =
> . _ —.
S oo di¥al)’.d
S F—F—7
(5} f— /1
> // // /r
0.001 ' AV
J a Il
!/ /
0.0001 VAV.aY. ,/
[
7/
0.00001 i £
0.01 0.1 1 10

Period (sec)

Figure 3.2: Horizontal velocity FAS for M6 at different rupture distances for a site with Vg3,
= 400 m/sec from the Bayless and Abrahamson (2019) model.
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4 Converting Conditional GMMs to Traditional
GMMs

The conditional PGV model can be converted to a traditional scenario-based PGV model by
combining it with a GMM for the In[SA(Tpqy )] values. The median PGV is computed by using
the median PSA(Tpgy ) from the GMM as input to the conditional GMM for PGV'. The aleatory
variability is computed using the propagation of errors given in Equation (3.2).

4.1 MEDIAN MODEL

Figure 4.1 shows the resulting median PGV values from the conditional models compared to the
geometric mean of the PGV from the four NGA-W2 PGV GMMs for strike—slip earthquakes
with magnitudes between 3 and 8 for a rupture distance of 20 km and a stiff-soil site condition.
For this example, the geometric mean of the RotD50 PSA(T') values from the four GMMs is
computed and combined with the previous conditional PGV models and the conditional PGV
model developed in this study. The PGV estimates from all four conditional PGV models are
similar for the M6.0 to M6.5 range, which is near the center of the data available for the previous
studies. The Newmark and Hall (1982) and Bommer and Alarcon (2006) models do not include a
magnitude term, which results in weaker magnitude scaling above M6.5 for these two models than
observed in the GMMs. The Huang and Whittaker (2015) model includes a magnitude scaling
term, and this model is consistent with NGA-W2 PGV GMMs for M > 6. The model developed
in this study captures the magnitude scaling in the PGV GMMs over the full range of magnitudes.

Figure 4.2 shows the PGV resulting from the four individual scenario-based PGV models
as a function of magnitude along with the median PGV from the four NGA-West2 GMMs. The
four scenario-based models all capture the curvature in the magnitude scaling from M3 to MS.
There is only a small epistemic range in the median PGV, given the PSA(Tpgy ) values. For this
distance, there is adequate data to constrain the GMMs, so the four GMMs yield similar PSA(T')
values. The largest epistemic range is related to differences in break points in the magnitude scaling
for the four GMMs, causing kinks in the magnitude scaling.
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4.2 ALEATORY VARIABILITY

The aleatory variability of the In(PGV) for a given earthquake scenario is computed using simple
propagation of errors shown in Equation (3.2). With the functional form of the conditional PGV
model given in Equation (3.7):

dlnPGV
= fi (M 4.1
8[7’LPSA(TPG‘/) fl( ) ( )
The aleatory variability is then given by:
ompay = f1(M )UZQnPSA(TpGV) + UlznPGV|PSA(TpGV) 4.2)

Using the average of the NGA-West2 GMMs, the standard deviation of the (n(PGV') and
the PSA(Tpgy) are shown in Table 4.1 for magnitudes of 3, 4, 5, 6, 7, and 8 at a distance of 30
km. Using these values, the standard deviation of the In(PGV') given by the average of the NGA-
West2 GMMs is compared to the standard deviation computed using Equation (4.2) in Figure 4.3.
The standard deviation computed using the conditional PGV model shows a similar magnitude
dependence of 0y, pcy as given by the average of the four NGA-West2 GMMs for PGV'.

Figure 4.3 also shows the standard deviations computed using the approaches recom-
mended by Bommer and Alarcon (2006) and by Huang and Whittaker (2015). Bommer and Alar-
con (2006) recommend using the standard deviation of the PSA(7T = 0.5) without considering the
OinPGV|PSA(Tpey) term, whereas Huang and Whittaker (2015) recommend adding the variance of
the conditional PGV model to the variance of the PSA(T = 1). In this comparison, the standard
deviations from the ASK14 model are used for the o, pg4 terms; see Abrahamson et al. (2014).
The Bommer and Alarcon (2006) approach overestimates the standard deviation by 0.05 to 0.1
natural log units, which simply reflects the difference between the standard deviation of In(PGV')
and In[PSA(T = 0.5)]. The Huang and Whittaker (2015) approach overestimates the standard
deviation of the PGV by about 0.2 natural log units. This large overestimation results from both
the larger standard deviation of in[PSA(T = 1)] compared to [n(PGV') and the addition of the
variability from the conditional PGV model. This comparison demonstrates the value of allow-
ing the slope of the In(PSA) term to be different from unity for computing appropriate standard
deviations of the in(PGV) for a given scenario.

The results using the conditional model based on PGA or PSA(T = 1) are shown in
Figure 4.4. These models lead to similar PGV values, but they do not fit the scaling over the full
magnitude range as well as the model using a magnitude-dependent period, T’piy. The aleatory
standard deviations computed using the PG A or the PSA(T = 1) conditional models are shown
in Figure 4.5. The conditional model based on PSA(T = 1) gives similar standard deviations, but
the conditional model based on PGA underestimates the standard deviation.
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Table 4.1: Standard deviation for unconditional in(PGV) for crustal earthquakes, horizon-
tal component.

NGA-W2 OlnPGV
Mag Trav  fi(M) OwmpsaTrey) OinPGV|PSA(Tpey) This Study NGA-W2
3 0.12 0.819 0.86 0.33 0.78 0.75
4 0.23 0.819 0.84 0.33 0.75 0.75
5 0.45 0.819 0.76 0.33 0.70 0.70
6 0.88 0.772 0.72 0.33 0.65 0.62
7 1.7 0.724 0.71 0.33 0.61 0.60
8 3.3 0.677 0.71 0.33 0.58 0.60
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Figure 4.1: Comparison of the magnitude scaling for the conditional PGV model for the
horizontal component. The PSA(T) is for the median spectrum from four NGA-
West2 GMMs from a strike-slip earthquake at a rupture distance of 20 km at a
stiff-soil site conditions (V539 = 400 m/sec).
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5 Conclusions

Conditional ground-motion models are useful for developing design values for secondary ground-
motion parameters consistent with the design response spectral values. While models for the
PGV /PSA(T) ratio have been developed in previous studies, our model uses a magnitude-dependent
spectral period that captures a key physical behaviour of earthquake ground motion: the corner
frequency is magnitude dependent. With a proper physical basis, the conditional models can be
reliably extrapolated outside of the range that is constrained by the empirical data. For engineering
applications, we judge that the conditional PGV models developed in this study can be reliably
extrapolated up to M8.5 for crustal earthquakes based on the magnitude scaling of the corner fre-
quency.

The conditional PG’V models can also be combined with appropriate GMMs for PSA(T')
to develop traditional GMMs for PGV. Because the conditional models use the PSA(T') val-
ues as predictive parameters, they show less regional differences than traditional GMMs. That
is, the regional differences are captured in the PSA(T') values; therefore, a global ergodic con-
ditional GMM is more likely to be applicable to many different regions than a traditional GMM.
Due to the use of non-unity slopes for the In|PSA(T)] dependence in our conditional GMM, an
appropriate aleatory standard deviation of the resulting in(PGV') can be computed, avoiding the
over-prediction of the aleatory standard deviation seen in previous models.
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