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ABSTRACT 

Semi-empirical models based on in situ geotechnical tests have been the standard-of-practice for 
predicting soil liquefaction since 1971. More recently, prediction models based on free, readily 
available data have grown in popularity. These “geospatial models” rely on satellite remote sensing 
to infer subsurface traits without in situ tests. While the concept of such an approach is not new, 
the recent models of Zhu et al. [2015; 2017] are arguably the most rigorously formulated and well-
trained to date. The use of such models is appealing for a range of applications, but these models 
have not been evaluated using independent datasets, nor have they been tested against more 
established geotechnical methods. These independent evaluations are important for community 
acceptance and for identifying pathways to improve the models via future research. In other words, 
when the geospatial models perform poorly, what do they miss that geotechnical models do not? 
Moreover, the physical damage and monetary loss from liquefaction are arguably more important 
than the probability of liquefaction occurring. The extension of geospatial models to predict the 
consequences from liquefaction is both enticing and consistent with the objectives of PEER. 
Accordingly, the presented study has two main components. 

First, using 15,222 liquefaction case histories from 24 earthquakes, the performance of 23 
models based on geotechnical or geospatial data are assessed using standardized metrics. 
Uncertainty due to finite sampling of case histories is accounted for and used to establish statistical 
significance. Geotechnical predictions are found to be significantly more efficient worldwide, yet 
successive models proposed over the last twenty years show little or no demonstrable 
improvement. In addition, geospatial models outperform geotechnical models for large subsets of 
the data—a provocative finding given the relative time and cost requirements underlying these 
predictions. Comparisons between geotechnical predictions versus geospatial models provide key 
insights into improving geospatial models. 

Second, while geospatial models have limitations that can and should be addressed via 
future research, their capacity for predicting liquefaction is promising, as demonstrated herein for 
certain events. Accordingly, functions are developed to extend the use of the Zhu et al. models 
[2015; 2017] to predict: (1) severity of liquefaction ejecta; (2) magnitude of ground settlement; 
and (3) infrastructure damage and loss. Each of these efforts utilizes a subset of data for which 
geospatial models performed well in the first part of the study (i.e., the locations studied are those 
where geospatial models, in general, correctly predicted the occurrence and non-occurrence of 
liquefaction). These analyses thus represent a best-case scenario for predicting liquefaction 
consequences using geospatial models. 

With respect to infrastructure damage and loss, this study focuses on structures built atop 
shallow foundation systems, which are the most common worldwide. Utilizing damage-survey 
data and insurance loss assessments for 62,000 such assets, functions are developed to predict 
liquefaction-induced damage conditioned on the Zhu et al. models. It is shown that while 
geospatial models are relatively useful for predicting some modes of damage (e.g., global 
settlement of foundations), they appear not to capture other significant and very costly modes (e.g., 
stretching, twisting, and separation of foundations). These modes of failure are presumably 
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dependent on asset- and site-specific details that geospatial models do not consider. As an example, 
differential settlements cause structural distortion and are typically very costly, but such 
settlements are likely correlated to subsurface variability, which geospatial models cannot predict. 
Due to these limitations (i.e., the inability to predict all modes of damage), currently geospatial 
models are poor predictors of monetary loss at the site and neighborhood scales. Efforts to predict 
damage and loss at coarser scales (e.g., on a per-earthquake basis) may be more fruitful. 

The most salient conclusions of this study are summarized as follows: 

1. Geospatial models demonstrate provocative potential for predicting the 
occurrence and severity of surficial liquefaction manifestations in the free field. 
Moreover, these models outperform geotechnical models (which are far costlier 
and time-consuming to implement) for the large subsets of the data analyzed. 

2. However, geospatial models were significantly less efficient on a global scale 
(i.e., when considering case histories worldwide) and provided results that were 
much closer to random guessing as opposed to accurate predictions. This 
highlights the inherent difficulty of predicting what is below the ground using 
only information from above the ground. Efficient geospatial models may be 
developed for certain locales, but the development of a single model that 
efficiently predicts subsurface traits across various seismological, geological, 
geomorphic, and climatic settings is inherently challenging. Given these 
findings, the global “portability” of geospatial models must be improved and 
considered a future research priority. Results from the testing of geotechnical 
vs. geospatial models provide useful insights for model improvement. Specific 
lessons and pathways for achieving these improvements are presented herein. 

3. Functions to predict infrastructure damage and loss using geospatial models are 
presented. These functions are detailed within the report and were developed 
for several specific types of shallow foundation and for several specific modes 
of foundation failure. In addition, functions combining all foundation types and 
all modes of failure were developed. These broadly applicable functions do not 
require asset-specific information (i.e., the specific type of foundation) and 
attempt to predict the severity of damage independent of the associated failure 
mode. Although these functions may be more desirable for general, region-scale 
analyses, the performance/utility of the developed functions is generally poor, 
regardless of whether asset-specific information is available. This may be 
attributable to the fact that some failure modes appear to be strongly dependent 
on “meso-scale” details (e.g., building geometry, construction quality, 
subsurface variability, etc.) that are inadequately captured by “macro-scale” 
geospatial data. The functions developed herein to predict loss are especially 
ineffective, due to accurate loss prediction being strongly dependent on 
accurate damage prediction. 

4. Lastly, considering (a) the relatively poor performance of geospatial models 
globally; (b) the relative inability of the models to predict the consequences of 
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liquefaction (even when the models efficiently predict liquefaction); (c) the 
primary applications of the models (e.g., post-earthquake reconnaissance and 
response; regional simulations); and (d) the seminal state of geospatial model-
development, it is the authors’ opinion that near-term investment should focus 
on model improvement rather than model extension. Research that improves 
the capacity of geospatial models to predict liquefaction (e.g., via development 
of new models or modification of existing models) is likely to be more 
impactful than research to adapt existing models for prediction of downstream 
consequences. Although geospatial liquefaction models have demonstrated 
surprising and provocative potential, there remains significant room for 
improvement.  
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PREFACE 

This report is presented in three parts. Part One details liquefaction case-history data newly 
compiled from three earthquakes in Canterbury, New Zealand, the quantity of which exceeds that 
obtained from all other earthquakes combined. The data is presented in a dense array structure, 
allowing researchers to easily access and analyze a wealth of information pertinent to free-field 
liquefaction response. The methods used to obtain and process the case-history data are detailed, 
as is the structure of the compiled file. Recommendations for analyzing the data are outlined, 
including nuances and limitations that users should carefully consider. Part Two presents a 
rigorous field assessment of liquefaction prediction models based on geotechnical vs. geospatial 
data. The compilation and analysis of more than 15,000 liquefaction case-histories from 24 
earthquakes provides a baseline for model performance and elucidates pathways for model 
improvement (e.g., when geospatial models perform poorly, can the geotechnical data tell us 
why?). Part Three addresses the extension of geospatial models for predicting the severity of 
liquefaction ejecta; magnitude of ground settlement; and infrastructure damage and loss, 
specifically for infrastructure founded on shallow foundation systems. By synthesizing insights 
gleaned from Parts Two and Three, overall conclusions are presented, followed by 
recommendations for future research investment. 
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1 CPT-Based Liquefaction Case Histories from 
Three Earthquakes in Canterbury, New 
Zealand 

Earthquakes occurring over the last decade in the Canterbury region of New Zealand have resulted 
in liquefaction case-history data of unprecedented quantity. This provides the profession with a 
unique opportunity to advance the prediction of liquefaction occurrence and consequences. 
Towards that end, this paper presents a curated dataset containing ~15,000 cone-penetration-test 
(CPT)-based liquefaction case histories compiled from three earthquakes that occurred in 
Canterbury. The compiled, post-processed data is presented in a dense array structure, allowing 
researchers to easily access and analyze a wealth of information pertinent to free-field liquefaction 
response (i.e., triggering and surface manifestation). Research opportunities using this data 
include, but are not limited to, the training or testing of new and existing liquefaction-prediction 
models. The many methods used to obtain and process the case-history data are detailed herein, as 
is the structure of the compiled digital file. Lastly, recommendations for analyzing the data are 
outlined, including nuances and limitations that users should carefully consider. 

1.1 INTRODUCTION 

Within the six years following the 4 September 2010 Mw7.1 Darfield earthquake, which triggered 
widespread liquefaction in the city of Christchurch, New Zealand, and its environs, 21 additional 
Mw ≥ 5 earthquakes occurred within ~20 km of the city’s center. While some liquefaction was 
observed in at least 10 of these events [Quigley et al. 2013], damaging liquefaction was most 
notably triggered by ruptures on 22 February 2011, 13 June 2011, 23 December 2011, and 14 
February 2016. A comprehensive summary of the first three of these, including tectonic and 
geologic settings, seismology, and effects, is provided by Quigley et al. [2016]. Specific to 
liquefaction, observed consequences included: damage to low-, mid-, and high-rise structures, 
resulting in widespread loss of building stock (e.g., Cubrinovski et al. [2011]; van Ballegooy et al. 
[2014a]; and Bray et al. [2014]; failure of water, wastewater, power, and communications networks 
(e.g., O’Rourke et al. [2014]; Kwasinski et al. [2014]; and Tang et al. [2014]); loss of road, rail, 
bridge, and levee functionality (e.g., Green et al. [2011]; Wotherspoon et al. [2011]; and 
Cubrinovski et al. [2014]); and impairment of port infrastructure (e.g., Chalmers et al. [2013]). 
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These effects in a major urban center facilitated and motivated the collection of vast 
amounts of data, including seismologic, hydrologic, geospatial, and geotechnical measurements, 
much of which was uploaded to the open access Canterbury Geotechnical Database [CERA 2013], 
now the New Zealand Geotechnical Database [NZGD 2020]. These bulk, raw ingredients 
constitute the makings of an unprecedented quantity of liquefaction case histories, which can be 
used to train or test predictive models. While several “tiers” of liquefaction prediction models exist 
[Geyin et al. 2020], most prevalent models in practice are based on in situ geotechnical tests, 
among which the cone-penetration-test (CPT) has important advantages [NRC 2016]. Although 
such models are widely used to predict liquefaction, to date they have been trained on relatively 
modest datasets. For example, the CPT-based liquefaction triggering model of Boulanger and 
Idriss [2014], when developed, was trained on essentially all published case histories from all 
earthquakes combined, or 255 datapoints. 

This study described within has compiled a curated digital dataset of approximately 
14,500–15,500 CPT-based case histories from three earthquakes in Canterbury—namely, the 
September 2010 Mw 7.1, Feb. 2011 Mw6.2, and February 2016 Mw5.7 earthquakes—with the exact 
total depending on criteria discussed subsequently. The post-processed data is presented in a 
structure array (i.e., a single file), allowing researchers to readily access and analyze a wealth of 
information pertinent to free-field liquefaction response. As shown in Figure 1.1, this considerably 
augments the data available for model training and testing (by at least 50 times), presenting the 
profession with a unique opportunity to advance the science of liquefaction prediction. 

Chapter 1 is an introduction to the data compilation program. 

Chapter 2 describes the methodology involved in compiling this curated database. The 
methods used to obtain, process, and populate the database are first detailed, with each “datapoint,” 
including: 

 identifying information (e.g., geographic coordinates); 

 processed CPT data, both with and without inverse-filtering and interface 
correction [Boulanger and DeJong 2018]; 

 peak ground acceleration (PGA) and earthquake magnitude (Mw); 

 groundwater table (GWT) depth; and 

 the classified occurrence and severity of liquefaction manifestation at the ground 
surface, with explicit focus on free-field level ground sites. 

The structure and formatting of the resulting data array are then discussed, following which 
recommendations for analyzing the data are given, including nuances, uncertainties, and 
limitations that users should carefully consider 

Chapter 3 presents a rigorous field assessment of liquefaction prediction models based on 
geotechnical vs. geospatial data using the outputs of Chapter 2. Chapter 4 addresses the extension 
of geospatial models for predicting the severity of liquefaction ejecta; magnitude of ground 
settlement; and infrastructure damage and loss, specifically for infrastructure founded on shallow 
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foundation systems. Synthesizing insights gleaned from Chapters 3 and 4, overall conclusions are 
then presented, followed by recommendations for future research investment. 

 

 
Figure 1.1 Chronology of CPT-based case histories, as compiled by Geyin et al. 

[2020]. 
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2 Part One: Case History Compilation 

Case histories were compiled from the September 2010 Mw7.1, February 2011 Mw6.2, and 
February 2016 Mw5.7 earthquakes. This effort built upon successive compilations [Maurer et al. 
2014; 2015b], augmenting the largest by more than 50%. While data could potentially also be 
compiled from the aforementioned events of 13 June and 23 December 2011, these events are 
complicated by the occurrence of multiple, similar-magnitude ruptures only minutes-to-hours 
apart [Bradley 2016]. As a result, reconnaissance captured the compounded effects of multiple 
events (complicating observations of response) and pore pressures were elevated at the start of 
latter events (complicating predictions of response). We thus choose not to present these data, 
focusing instead on three events without this obfuscating circumstance. 

2.1 CPT DATA AND PROCESSING 

The CPT data was obtained from the New Zealand Geotechnical Database [NZGD 2020] at sites 
where liquefaction manifestations could be reliably classified. During this process, CPTs were 
rejected if inferred from geospatial autocorrelation analyses [Anselin 1995] to have terminated 
prematurely (e.g., due to impedance from gravel), such that liquefiable soils potentially exist at 
greater depth. The local geology of Christchurch is well characterized, with dense, non-liquefiable 
soils typically found at a certain depth and unlikely to be underlain by looser soils that contribute 
to liquefaction hazard. In particular, beach, estuarine, and coastal swamp sediments were deposited 
across Christchurch as the sea level rose during the late Pleistocene and Holocene, reaching a peak 
~6,500 years before present, with the coastline located 1–2 km west of the present-day city center 
[Brown et al. 1995]. Since then, alluvial deposition has resulted in progradation of the coast to its 
present location [Brown et al. 1995]. Collectively, the deposits resulting from coastline 
transgression and progradation are known as the Christchurch formation and overlay Pleistocene 
gravels (i.e., the Riccarton Gravel formation). The terrestrial thickness of the Christchurch 
formation is greatest beneath the present-day coastline and tapers from east to west, terminating 
around the mid-Holocene coastal highstand, beyond which the surface geology is characterized by 
the Springston formation of alluvial gravels and sands [Begg and Jones 2012]. Thus, where the 
Springston formation dominates (and in some areas of the Christchurch formation), gravelly soils 
force CPT termination at shallow depth (< 20 m). 

Figure 2.1 maps the expected, surficial geologic units as described in Table 2.1, and the 
locations and termination depths of CPT soundings. The termination-depth trends shown in Figure 
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2.1(b) generally agree with the known geologic profile, such that these depths diminish from east 
to west. While the possibility of liquefiable soils at greater depths exists, it was assumed for this 
study that their limits are generally defined by CPT termination depths. However, the database 
was first parsed using an Anselin Local Morans I analysis [Anselin 1995] to identify and remove 
outliers with sounding depths statistically less than the spatial average (i.e., soundings more likely 
to have prematurely terminated before reaching the Riccarton Gravel formation). 

 

(a) (b) 

Figure 2.1 Case-history locations in context of: (a) surifical geologic units, as 
described in Table 1.1; and (b) CPT sounding termination depths. 
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Table 2.1 Surficial geologic units of study area. 

Geologic 
unit 

Description Source 
Percent (%) of 
CPTs in units 

A Alluvial sand and silt of overbank deposits Brown [1975] 59.39 

B Peat swamps now drained 
Brown and 

Weeber [1992] 
2.24 

C Fixed dune sand and beach deposits Brown [1975] 35.34 

D 
Saline sand, silt and peat of drained lagoons 
and estuaries 

Brown and 
Weeber [1992) 

2.26 

E 
Fluviatile gravel, sand, and silt of historic river 
flood channels 

Brown and 
Weeber [1992] 

0.43 

 

While the CPT offers advantages among in situ tests used to predict liquefaction, it is still 
limited by the volume of soil mobilized around the cone. As an intermediate-to-large-strain 
penetration test, this mobilized zone acts as a physical “low-pass filter” on the true soil 
stratigraphy, removing information from the low spatial wavelengths, such as the data defining a 
thin soil stratum or the interface between two disparate soils. These spatial smoothing effects, 
which are commonly referred to as “thin layer” and “transition” effects, have long been recognized 
and studied (e.g., Treadwell [1976]; Lunne et al. [1997]; Ahmadi and Robertson [2005]; Robertson 
[2011]; and van der Linden [2016]). While chart-based methods exist for manually correcting these 
effects on CPT data, Boulanger and DeJong [2018] proposed the first programmable procedure. 
This methodology, referred to as an “inverse filtering and interface detection” procedure, predicts 
the “true” CPT profile from measured CPT values. Since these measured values reflect a filtered 
view of reality, their correction would improve subsurface characterization. As a demonstration of 
the methodology, CPT data from Christchurch is shown in Figure 2.2, both with and without 
correction. 

While the performance of Boulanger and DeJong’s [2018] procedure is currently being 
evaluated (see Yost et al. [2020]), its use can change a site’s perceived liquefaction hazard, with 
the direction and magnitude of change dependent on numerous factors. Considering this potential 
influence, and that the Boulanger and DeJong [2018] procedure might prove to be efficacious, both 
measured and “true” CPT data are provided in the database. While the reader is referred to 
Boulanger and DeJong [2018] for complete details, the procedure’s “baseline” parameters were 
used to compute “true” CPT data. This was the case both for the methods that invert tip resistance 
and sleeve friction, and that which detects and corrects stratigraphic interfaces. Conceivably, these 
defaults can be calibrated via site-specific study (e.g., from borings adjacent to a CPT), but the 
information compiled for this study either was insufficient to attempt calibration or provided 
insufficient statistical support to justify it. 

As part of the processing methodology, CPT tip- and sleeve-measurements were aligned 
using statistical cross-correlation [Buck et al. 2002], both for measured and “true” CPT data. In 
addition, CPT data was infilled in the “pre-drill” zone (i.e., where borings were used to safety 
bypass pavements or utilities, most often to a depth of ~1 m where applicable (~40% of CPTs were 
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pre-drilled). In the absence of this correction, the recorded data is that of noise as the cone 
penetrates an open boring. Accordingly, CPT data was sampled 15 cm beyond the recorded depth 
of pre-drill, then uniformly applied to the pre-drill interval. While this provides reasonable data 
for approximating soil unit weights, and, by corollary, in situ stresses below the pre-drill zone, 
users should consider the relative depths of pre-drill and groundwater when analyzing case 
histories, as discussed herein. As part of this process, CPTs with unknown pre-drill depth were 
preemptively removed from the dataset, as were CPTs with pre-drill depth exceeding 2.5 m. All 
CPT processing was completed using the open-source software Horizon [Geyin and Maurer 2020]. 

 
Figure 2.2 Example CPT with (i.e., “true”) and without (i.e., “measured”) inverse-

filtering and interface correction via the Boulanger and DeJong [2018] 
method, as implemented in the software Horizon [Geyin and Maurer 2020]. 

2.2 LIQUEFACTION MANIFESTATIONS 

Emphasis was placed on compiling case histories from free field level-ground sites, with the 
occurrence and severity of surface manifestation defined primarily by liquefaction ejecta. In this 
respect, sites with other indicators of liquefaction (e.g., evidence from ground-motions or 
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foundation settlements) were expressly omitted. While ~7% of case histories were characterized 
by a predominance of lateral spreading, the majority were compiled from level-ground sites. In 
particular, surface manifestations were observed at CPT sites following at least one of the three 
aforementioned earthquakes and manually classified by the authors as “none,” “marginal,” 
“moderate,” “severe,” “lateral spreading,” or “severe lateral spreading” using criteria modified 
from Green et al. [2014] and given in Table 2.2; the identifying codes assigned herein to each 
classification are also provided. This was accomplished using high-resolution satellite imagery and 
reconnaissance reports available in the NZGD [2020]. Classifications were based on a circular 
sample area centered on each CPT, with approximate radius of 15 m. Sites where surface 
manifestations could not be reliably classified following an event are denoted as “unknown” and 
coded “10” (i.e., sites where manifestations were classified following at least one earthquake, but 
not all three, which was the case for ⁓18% of study sites). Of the resulting 15,890 compiled case 
histories, 61% were classified as “none” and 39% are cases in which manifestations were observed 
and classified in accordance with Table 1.2. Owing to nuances that will be discussed subsequently, 
the quantity of data best suited for model training and testing is ultimately reduced to ⁓14,500–
15,500 cases. 

Table 2.2 Criteria used to classify liquefaction manifestations (after Green et al. 
[2014]). 

Classification Severity ID Criteria 

None 0 No observed liquefaction ejecta or lateral spreading 

Minor  1 Small, isolated liquefaction features less than a vehicle width; < 5% of 
ground surface is covered by ejecta; no lateral spreading. 

Moderate  2 Groups of liquefaction features greater than a vehicle width; 5–40% of 
ground surface is covered by ejecta; streets are generally passable; no 
lateral spreading. 

Severe  3 Adjoining large liquefaction features that are greater than a vehicle width; 
> 40% of ground surface is covered by ejecta; streets are generally 
impassable; no lateral spreading. 

Lateral spreading 4 Ejection of liquefied material at the ground surface may be observed, but 
lateral spreading is the predominant manifestation and damage 
mechanism of liquefaction. Measured crack-displacement widths are less 
than 200 mm.  

Severe lateral 
spreading 

5 Ejection of liquefied material at the ground surface may be observed, but 
lateral spreading is the predominant manifestation and damage 
mechanism of liquefaction. Measured crack-displacement widths exceed 
200 mm. 

Unknown 10 Insufficient information to reliably classify: out of bounds, no reliable 
documentation, obscured or otherwise ambiguous imagery.  
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2.3 HYDROLOGIC DATA 

The GWT depths at CPT locations were obtained from the time-dependent models of van 
Ballegooy et al. [2014b]. These models, which reflect seasonal and local fluctuations across the 
region, were derived in part using long-term monitoring data from a network of ~1000 monitoring 
wells and provide a best estimate of GWT depths at the time of each earthquake. LiDAR Digital 
Elevation Models and physical surveys were used to correct well measurements for elevation 
changes caused by the earthquakes. River and coastline data were used to shape and position GWT 
contours at places of significant groundwater-surface water interaction [van Ballegooy et al., 
2014b]. The median GWT diminishes from 10+ m elevation (relative to sea level) west of 
Christchurch to less than 1-m elevation in the eastern suburbs (i.e., near the coast), which were 
roughly consistent with the change in ground elevation. The GWT depth is generally 1–2.5 m 
beneath much of the study area but reaches 5 m west of the city center. A histogram of GWT depth 
for all compiled case histories is shown in Figure 2.3(a). 

  
(a) (b) 

Figure 2.3 Histograms of: (a) ground water table depth; and (b) peak ground 
acceleration for case histories compiled in the curated dataset. 

2.3.1 Peak Ground Accelerations 

To date, peak ground acceleration (PGA) is the most common ground-motion intensity measure 
(IM) for quantifying seismic demand in liquefaction models. Among other standard IMs, it has 
been shown to be the most efficient predictor of pore-pressure generation and the initiation of 
liquefaction [Sideras 2019]. In this study, PGAs were estimated at CPT sites via the Bradley [2014] 
method, which has been used widely in research related to the Canterbury earthquakes (e.g., van 
Ballegooy et al. [2015]; Geyin et al. [2020]; and Geyin and Maurer [2021]). This method 
geostatistically coalesces instrumentally recorded PGAs with predictions from ground-motion 
models (GMMs), where the former were recorded by more than 20 near-source strong-motion 
stations (SMS) (e.g., Bradley and Cubrinovski [2011] and Bradley [2012]. Using this approach, 
the PGA at SMS, i, is expressed as: 
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lnPGAln(PGA ) (Site, Rup)i ii
     , (2.1) 

where ln(PGAi) is the natural logarithm of the observed PGA at SMS i; lnPGA (Site, Rup)
i

  is the 

mean of the natural logarithm of PGA at SMS i predicted by a GMM, which is a function of site 
and rupture parameters; η is the inter-event residual; and εi is the intra-event residual. Within 
Equation (2.1), a GMM predicts a PGA distribution: 

2 2
lnPGAln(PGA ) ~ ( , )i i

N      (2.2) 

where 2~ ( , )X XX N    is shorthand notation for X having a normal distribution with mean, 𝜇௑, 

and variance, 2
X . By definition, all PGAs recorded in a given earthquake have the same interevent 

residual, η. Conversely, the intraevent residual, εi, varies from site to site but is correlated spatially 
due to similarities in path and site effects. Accordingly, PGAs at SMS locations can be used to 
compute conditional distributions of PGAs at CPT locations. 

First, the Bradley [2013] New Zealand GMM was used to compute the unconditional 
distribution of PGAs at SMS locations. A mixed-effects regression was then used to determine the 
inter-event residual, η, and the intraevent residuals, εi’s, for each strong-motion station (e.g., 
Abrahamson and Youngs [1992]; Pinheiro et al. [2008]). Second, the covariance matrix of intra-
event residuals was computed by accounting for the spatial correlation between SMS locations and 
a test site of interest. The joint distribution of intra-event residuals at a site of interest and the SMS 
is given as: 

site
2site 0

,N




                  

12

21 22
0SMstation




 

(2.3) 

where ~ ( , )X N X   is shorthand notation for X having a multivariate normal distribution with 

mean X  and covariance matrix   (i.e., same as above, but in vector form, with bold denoting 

vectors or matrices); and site
2
  is the variance of the intraevent residual at the site of interest. In 

Equation (2.3), the covariance matrix has been expressed in a partitioned fashion to elucidate the 
subsequent computation of the conditional distribution of site . The individual elements of the 
covariance matrix were computed from: 

,( , ) i j i ji j      (2.4) 

where ,i j  is the spatial correlation of intraevent residuals between two locations i and j; and i
and j  are the standard deviations of the intraevent residual at locations i and j. Based on the 

joint distribution of intraevent residuals given by Equation (2.3), the conditional distribution of 
site  was computed from Johnson and Wichern [2007]: 
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(2.5) 

Using the conditional distribution of the intraevent residual given by Equation (2.5) and 
substituting into Equation (2.2), the conditional distribution of PGA at a site of interest, PGAsite, 

is: 

 site SMstation site SMstation
2

site SMstation ln PGAln PGA ln PGA ,
i

N    
          (2.6) 

That is, the conditional distribution of PGA at a site is a lognormal random variable completely 
defined by the conditional median and conditional uncertainty (i.e., lognormal standard deviation). 
Intuitively, in cases where a CPT is located far from any SMS, the conditional distribution (i.e., 
final estimate of PGA) is similar to the unconditional distribution (i.e., GMM estimate of PGA), 
and for a CPT very near to a SMS, the conditional distribution approaches the value observed at 
the SMS. The conditional median and conditional uncertainty of PGA were computed at CPT sites 
using the spatial correlation model of Goda and Hong [2008]. Both are given in the dataset. A 
histogram of these median PGA values for all case histories is shown in Figure 2.3(b). 

2.4 DATA STRUCTURE 

The compiled post-processed data is presented in a structure array (i.e., a single file), with each 
case history that includes: identifying information (e.g., ID, geographic coordinates); CPT data, 
both with and without inverse-filtering and interface correction; earthquake magnitude (Mw); the 
median and uncertainty (i.e., lognormal standard deviation) of the conditional PGA; GWT depth; 
and the classified occurrence and severity of surficial liquefaction manifestation. 

The curated dataset is available via the NHERI DesignSafe Cyber-Infrastructure data depot 
at https://doi.org/10.17603/ds2-tygh-ht91 and provided in both Matlab data format and as a python 
data frame. The data fields, classes, contents, and their units are described in Table 2.3 and its 
accompanying footnotes. The structure of the data array is depicted in Figure 2.4 and arranged 
such that case histories are principally sorted by a CPT identification (ID) number, wherein 
multiple liquefaction case histories may be accessed. Event-specific data fields (e.g., Mw and PGA) 
are 3  1 arrays containing information from the 2010, 2011, and 2016 earthquakes, respectively. 
The CPT measurements, which are depth-dependent but not event-specific, are li  1 arrays, where 
li is the length of CPT i. Other fields include CPT ID, geographic coordinates, pre-drill depth, and 
test date. Recommendations for analyzing these data are discussed next, including important 
nuances and limitations that users should consider prior to analysis. 
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Table 2.3 Data fields, typologies, descriptions, and units. 

Field Class  Content 

ID cell  1CPT identifier for reference 

CPTname char  Name of the CPT  

FILEname char  Name of the CPT  

Date datetime  Date CPT conducted 

NorthingNZMG double  NZMG – y coordinate 

EastingNZMG double   NZMG – x coordinate 

NorthingWGS84 double  WGS – y coordinate 

Easting WGS84 double   WGS – x coordinate 

depth double  Depth below the ground surface [m] 

qc double  Measured tip resistance [kPa] 

qc_inv double  2True tip resistance [kPa] 

fs double  Measured sleeve friction resistance [kPa] 

fs_inv double  2True sleeve friction resistance [kPa] 

u2 double  CPT pore pressure measurement, if present 
[kPa] 

pd double  Pre-drill depth [m] 

Magnitude struct  3Earthquake moment magnitude (Mw) 

PGA struct  3Event-specific conditional median peak ground 
acceleration (g) 

PGAsigma struct  3Event-specific conditional uncertainty of peak 
ground acceleration (g) 

GWT struct  3Event-specific groundwater table depth (m) 

Manifestation struct  3,4Classified type/severity of surface manifestation 

1CPT IDs from original CPT data (.csv or .xlsx files; identifiers recorded by the field engineers). 
2Processed per the Boulanger and DeJong [2018] procedure; specifically, using the “baseline” inversion model. 
3There are three earthquakes within the fields from which event-specific data is compiled: Mw7.1 4 September 2010 (Yr2010), 
Mw6.2 22 February 2011 (Yr2011), and Mw5.7 14 February 2016 (Yr2016).  
4The occurrence/severity of surface manifestation was manually classified for each CPT location in each earthquake per the criteria 
in Table 1.2. Classifications are based on a circular sample area, centered on each CPT, with approximate radius of 15 m. 
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Figure 2.4 Depiction of the Canterbury case-history dataset structure array. 

2.5 DISCUSSION: DATA NUANCES, ALTERNATIVES, AND ANALYSIS 

The compiled, post-processed data allows researchers to easily access and analyze a wealth of 
information pertinent to in situ site characterization and free-field liquefaction response (i.e., 
triggering and surface manifestation). Research opportunities using this data include but are not 
limited to: 

(i) methods for quantifying/simulating subsurface spatial variability; 

(ii) training or testing of new and existing liquefaction-prediction models; 

(iii) temporal assessment of CPT data during shaking sequences, including 
use of aging-correction factors for liquefaction prediction (i.e., KDR); and 

(iv) evaluation of CPT inversion filters in the context of liquefaction model 
performance. 

Prior to such analyses, however, users should carefully consider several important data nuances, 
alternatives, and limitations. These topics are discussed as follows and ordered by: 

(i) additional data exclusion criteria; 
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(ii) alternative sources of data; 

(iii) correlations and decisions for analysis; and 

(iv) lingering uncertainties. 

2.5.1 Additional Data Exclusion Criteria 

GWT and CPT Pre-Drill Depths 

As discussed previously, CPTs where the pre-drill depth exceeded 2.5 m were preemptively 
removed from the dataset. For the remainder of CPTs, the pre-drill interval (typically ~1 m when 
present) was infilled with CPT data from just below the pre-drill (i.e., where the sensors began 
penetrating undisturbed soil). While this provides reasonable data for estimating in situ stresses, 
users performing liquefaction studies should consider the relative depths of pre-drill and 
groundwater. Case histories in which the depth of pre-drill exceeds that of the groundwater have 
additional uncertainty, given that CPT data below the expected water table is extrapolated rather 
than measured. A histogram of the GWT depth minus pre-drill depth is shown in Figure 2.5 for 
the 15,890 compiled case histories. Of these, 1503 have pre-drill depth exceeding the GWT depth; 
however, this differential exceeds 0.5 m for just 420 cases and exceeds 1 m for just 52 cases. 
Nonetheless, analysts might exclude some or all such cases to avoid near-surface site-
characterization uncertainty. For example, some 1D liquefaction manifestation models are 
especially sensitive to this uncertainty owing to depth-weighting functions (e.g., Ballegooy et al., 
[2014a] and Maurer et al. [2015b]). 

 
Figure 2.5 Histogram of ground water table depth minus pre-drill depth, for compiled 

case histories. 

Peak Ground Accelerations 

Profiles subjected to a PGA less than the expected threshold for inducing pore pressure [Dobry et 
al. 1982] might not provide meaningful data for testing liquefaction analytics. That is, if the 
expected peak strain is less than the volumetric threshold shear strain for a very loose soil, the 
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absence of liquefaction is easily predicted by judgment. Using such cases to test liquefaction 
models could thus increase the prediction efficiency in a misleading manner. Accordingly, analysts 
might select a site-specific PGA threshold for excluding data or a general threshold considering 
the most susceptible soil that could be encountered (e.g., de Magistris et al. [2013]). Considering 
all compiled cases, 0.096g was the lowest PGA for which surface manifestation of liquefaction 
was observed, albeit this is distinctly different from that which may induce pore pressure at depth. 
Of the 15,890 compiled case histories, 98 had a PGA less than 0.075g; see Figure 1.4(b). 

Model Applicability 

Lateral spreading is a distinct manifestation of liquefaction influenced by topographic factors that 
were not compiled in this study, but which could be sampled (e.g., ground slope, distance to free 
face). However, users should consider whether such case histories are appropriate for model 
training or testing. As an example, 1D liquefaction manifestation models may not fully account 
for the factors known to cause lateral spreading, resulting in poor predictions (e.g., Maurer et al. 
[2015c] and Rashidian and Gillins [2018]). Thus, for some purposes, it may be most appropriate 
to exclude such cases from analysis. Of the 15,890 compiled case histories, 1110 were cases in 
which lateral spreading was the predominant manifestation of liquefaction. For further coverage 
of lateral spreading in Canterbury, see Cubrinovski and Robinson [2016]. 

2.5.2 Alternative Sources of Data 

Ground Motions 

As previously outlined, PGAs were obtained by statistically coalescing strong-motion records with 
GMM predictions [Bradley 2014], the general concept of which is common, and which could be 
used to obtain other IMs of interest. Notably, liquefaction likely occurred at some SMS sites during 
the Canterbury earthquakes, potentially effecting measured PGAs and, in turn, the adopted 
approach. In particular, evidence of liquefaction was observed in several SMS records from the 22 
February 2011 earthquake (e.g., Bradley and Cubrinovski [2011]), namely: (i) high-frequency 
acceleration spikes, inferred to result from cyclic mobility/dilation response [Kramer et al. 2016]; 
and (ii) subsequent reduction in high-frequency motion, inferred to result from the softening of 
liquefaction [Kramer et al. 2016]. 

One such example is shown in Figure 2.6. It can be seen that a recorded PGA—if associated 
with a high-frequency dilation spike—could exceed the peak acceleration prior to liquefaction, 
and possibly that which would have occurred in its absence (i.e., from the time of liquefaction 
onward). Wotherspoon et al. [2015] identified four such SMS records (station codes CBGS, 
CCCC, NNBS, and REHS) and proposed reducing PGAs to those observed prior to interpreted 
dilation spikes. Adopting these values within a liquefaction analysis, Upadhyaya et al. [2019] 
suggested that existing prediction models performed slightly better when using the corrected 
values. However, given that liquefaction obscures SMS records following its onset, the “true” 
PGAs cannot be known. Whereas dilation spikes may inflate the PGA, selecting a peak value prior 
to any evidence of liquefaction may artificially depress it. Nonetheless, users should be aware of 
this issue. 
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Regardless of which PGAs are used within the adopted Bradley [2014] approach, they 
could be less accurate when complex local phenomena are not captured by empirical predictions 
(e.g., the effects of rupture directivity, basin-generated surface waves, and near-surface 
stratigraphic and topographic features). In contrast, physics-based simulations can provide insight 
into these phenomena via explicit modeling of kinematic fault rupture, wave propagation, and the 
subsurface velocity structure, thereby predicting IM patterns more accurately. Users may thus be 
interested in the physics-based simulations of Bradley et al. [2017], which predict both common 
IMs and full acceleration time series for each of the three earthquakes in the dataset. These may 
be obtained at case-history coordinates via the SeisFinder [2020] web portal. 

 
(a) 

 
(b) 

Figure 2.6 Ground-motion records (SMS code NNBS) during the: (a) Mw7.1 
September 2010 Darfield; and (b) Mw6.2 February 2011 Christchurch 
earthquakes, showing the effects of liquefaction on recorded PGAs. 

Liquefaction Manifestations 

As previously discussed, surface manifestations were manually classified at individual CPT sites 
using a circular sample with 15-m radius. Inherent to this process, which required hundreds-to-
thousands of hours to complete, sites where manifestations could not be reliably classified are 
denoted “unknown.” These sites either lacked ground reconnaissance data, were beyond the 
bounds of high-resolution satellite imagery, had obscured or otherwise ambiguous imagery, or 
lacked sufficient and consistent information to support classification. Following a similar 
approach, but without concern for CPT locations or compiling case histories, Townsend et al. 
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[2016] presented GIS files for the September 2010 and February 2011 earthquakes wherein 
observed manifestations were mapped by polygon and assigned a confidence rating of “certain,” 
“probable,” “possible,” or “uncertain.” These polygons could supplement/replace the 
classifications made herein or could provide additional quality control. While Townsend et al. 
[2016] provide a high-quality dataset, caveats for use include: 

(i) polygons and ratings are for positive observations only (i.e., they do not 
explicitly delineate negative observations or assign the confidence therein, 
although a lack of liquefaction may be inferred where polygons are not 
present); 

(ii) the mapping does not classify the severity of liquefaction, which may 
be useful for model training/testing; and 

(iii) due to the scale of polygons (e.g., that of building parcels), a polygon 
may be classified as positive but lack manifestations over some or much of 
its surface area. 

For these reasons, the classifications made herein may differ from those of Townsend et al. [2016]. 
Nonetheless, users should be aware of this excellent database and consider its use. 

2.5.3 Correlations and Decisions for Analysis 

Liquefaction Susceptibility 

Existing “simplified stress-based” triggering models (e.g., Robertson and Wride [1998]; Moss et 
al. [2006]; Boulanger and Idriss [2014]; and Green et al. [2019]) are not intended to be applied to 
high plasticity, fine grained, “non-liquefiable” soils, which could result in less accurate predictions 
of cyclic response, and for which other, more appropriate methods exist (e.g., Boulanger and Idriss 
[2007]). Soils not susceptible to liquefaction triggering are thus generally identified and screened 
from analysis, consistent with the development of the models. Various criteria based on lab indices 
have been proposed for this purpose (e.g., Polito [2001]; Seed et al. [2003]; Bray and Sancio 
[2006]; and Boulanger and Idriss [2006]); an overview is given by Green and Ziotopoulou [2015]. 
However, while soil samples may be obtained using a CPT push-sampler, continuous sampling 
and testing to assess susceptibility is prohibitively expensive. For this reason, the CPT soil-
behavior-type index (Ic)—proposed by Jeffries and Davies [1993] and modified by Robertson and 
Wride [1998]—is generally used to assess susceptibility by way of correlations with lab criteria. 
For example, an Ic = 2.6 threshold is common, such that soils with Ic < 2.6 are inferred to be 
liquefiable [Robertson and Wride 1998]. However, because Ic boundaries between soil types are 
approximate, regional refinement may be needed for optimal efficiency (e.g., Pease [2010]). 
Accordingly, analysts of the data compiled herein may be interested in the susceptibility 
correlations of Maurer et al. [2019], which were developed specifically for soils in Christchurch. 
Using these correlations, the probability that a soil is “susceptible” to liquefaction is: 

 
   

susceptible

ln
1 c m

c

I x
P I


 

   
   (2.7) 



19 

where Φ is the Gaussian cumulative distribution function; xm is the median value of the distribution 
(the value of Ic corresponding to 50% probability); and β is the logarithmic standard deviation. 

Using this form, Maurer et al. [2019] correlated Ic to four criteria based on Atterberg limits, 
the coefficients for which are provided in Table 2.4, and an example of which is shown in Figure 
2.7. Here, “susceptible” generically refers to the varying definitions adopted by the respective 
works. For example, the Boulanger and Idriss [2006] criterion was explicitly developed to 
determine the most appropriate analysis procedure for predicting cyclic response based on whether 
the soil’s expected behavior is “sand-like” or “clay-like.” For deterministic analyses in which a 
single Ic threshold is desired, the median value of the probability distribution (xm) is recommended, 
such that soils with Ic exceeding xm are not susceptible per the underlying criterion. 

Table 2.4 Model coefficients for Ic-susceptibility relationship (Eq 7) [Maurer et al. 2019]. 

Susceptibility criterion β xm 

Boulanger and Idriss [2006] 0.0851 2.5031 

Polito [2001] 0.0988 2.5474 

Seed et al. [2003] 0.1348 2.6214 

Bray and Sancio [2006] 0.1275 2.7315 

 
Figure 2.7 The probability of liquefaction susceptibility per the Boulanger and Idriss 

[2006] criterion as a function of measured Ic. The range of deterministic Ic 
thresholds common in practice is also highlighted [Maurer et al. 2019]. 

Fines Content 

Some liquefaction models use fines content (FC) as a predictive variable. As with liquefaction 
susceptibility, FC is best measured directly, but continuous sampling and measurement is not 
feasible for a large CPT campaign. Accordingly, CPT correlations developed from global data are 
commonly used to estimate FC but can often be improved via regional calibration. Analysts testing 
or training response models may thus be interested in the regional Ic–FC correlations of Lees et al. 
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[2015a] and Maurer et al. [2019]. Lees et al. [2015a] calibrated the general Ic–FC correlation of 
Boulanger and Idriss [2014], wherein FC (%) is estimated as: 

  FCFC 80 C 137cI    (2.8) 

where CFC is a calibration parameter that may adjust the general correlation (i.e., CFC = 0) to region-
specific conditions. Analyzing 2600 FC measurements from Canterbury, Lees et al. [2015a] 
proposed that CFC = 0.2 was optimal. Using a similar amount of data but different processing and 
regression methods, Maurer et al. (2019) proposed that FC be estimated as: 

 FC 80.645 128.5967cI     (2.9) 

where FC  is the mean estimate of FC (%), limited to 0% ≤ FC (%) ≤ 100%. Guidance on using 

this correlation probabilistically is given in Maurer et al. [2019]. A comparison of the Maurer et 
al. [2019] correlation and others, along with data from Christchurch, is shown in Figure 2.8. 

 
Figure 2.8 Canterbury Ic—FC data and correlations [Lees et al. 2015a; Maurer et al. 

2019], and comparison with the generic Robertson and Wride [1998] and 
Boulanger and Idriss [2014] correlations. 

Soil Density 

Total and effective vertical stresses are integral to CPT data processing and a common input to 
liquefaction models. While the authors are unaware of calibrated, Canterbury-specific correlations 
for estimating soil unit weights, several global correlations are available, including Mayne et al. 
[2010] and Robertson and Cabal [2010], with the latter being used in previous Canterbury 
earthquake research by the authors (e.g., Green et al. [2018] and Geyin and Maurer [2019]). While 
liquefaction models may be relatively insensitive to the adopted correlation, users should consider 
constraints, as needed and reasonable, to limit physically indefensible values. 
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GWT at Time of Testing 

As discussed, the database contains event specific GWT depths, which are an estimate of 
conditions immediately prior to each earthquake. These may be used to infer the depth of saturation 
for assessing liquefaction susceptibility (to be further discussed) but may differ from the GWT 
depths at the time of testing, which are needed for CPT stress-normalization as part of routine data 
processing. While regional hydrologic models are unavailable for CPT test dates, which are shown 
in Figure 2.9(a), most CPTs (~90%) were performed between 22 February 2011 and 30 September 
2013. In addition, it can be seen in Figures 2.9(b) and (c) that GWT depths in February 2011 were 
typically ⁓1% shallower relative to September 2010 and ⁓14% deeper relative to February 2016. 
In the absence of more rigorous modeling, adopting a GWT depth either interpolated from the 
three estimates available, or simply averaged from the February 2011 and February 2016 values 
(since most CPTs were performed during this time), may provide a reasonable estimate for CPT 
stress normalization. Estimates could also be obtained from analyses of the CPT u2 data, although 
the reliability of this data due to issues with porous stone saturation, etc. is unknown for the 
compiled database. 

(a) 

  
(b) (c) 

Figure 2.9 Case-history database statistics: (a) monthly histogram of CPT test dates; 
(b) GWT depths from September 2010 versus February 2011; and (c) GWT 
depths from February 2011 versus February 2016. 
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Model Training, Testing, and Bias 

Historically, publications proposing, calibrating, or evaluating liquefaction models often lack 
standard test metrics (e.g., Maurer et al. [2015d]), hindering quantifications and comparisons of 
model performance. Receiver-operating-characteristic (ROC) analyses (e.g., Fawcett [2006]) are 
ubiquitous in medical diagnostics and data science [Zou 2007], and increasingly, are being adopted 
in geotechnical modelling (e.g., Oommen et al. [2010]; Zhu et al. [2017]; Green et al. [2017]; and 
Upadhyaya et al. [2020]). The ROC analyses provide a standard and objective assessment of 
prediction efficiency via the area-under-the-ROC-curve (AUC) and are relatively insensitive to 
sampling imbalance (i.e., unequal positives and negatives). Analysts using the curated data to test 
or train liquefaction models should similarly adopt standard, objective, and repeatable measures 
of performance, be it ROC analyses or some other. In addition, while the Canterbury earthquakes 
resulted in a wealth of data, this data nonetheless samples the geologic and seismologic setting of 
one region, the findings from which may or may not translate elsewhere. Analysts should carefully 
consider sampling bias and weigh results from Canterbury with those from global case histories 
(e.g., Brandenberg et al. [2020]). Given that the compiled Canterbury database is much larger than 
that resulting from all other earthquakes combined, the finite-sample uncertainty of model 
performance should be computed for each respective database (e.g., via bootstrap sampling) and 
used to test for statistical significance. That is, to illustrate the sensitivity of performance to the 
data available for analysis and to assess whether differences could arise from chance (i.e., due to 
finite sampling), and not because one model is better than another. As an example, p-values 
specific to ROC analyses may be computed per DeLong et al. [1998], an application of which is 
presented in Geyin et al. [2020] for liquefaction case-history data. 

2.5.4 Lingering Uncertainties 

GWT Depth and Saturation 

It is established that liquefaction resistance and degree of saturation are inversely related, all else 
being equal (e.g., Ishihara and Tsukamoto [2004] and Hossain et al. [2013]), and that soil beneath 
the apparent GWT can conceivably be less than 100% saturated (e.g., due to seasonal or tidal 
fluctuations, or to biologic activity). This phenomenon has been inferred from crosshole p-wave 
velocities [Cox et al. 2018] at select locations in Christchurch and investigated as a possible cause 
of observed mispredictions of liquefaction by popular models [McLaughlin 2017; Boulanger et al. 
2018; Yost et al. 2019; and Ntritsos and Cubrinovski 2020]. 

One detailed study of this issue is that of McLaughlin [2017], who analyzed 31 cases in 
Christchurch and computed liquefaction potential index (LPI) values with and without various 
corrections. These included corrections for partial saturation, site-specific FC, and inverse filtering 
and interface correction. While evidence of partial saturation was found at some locations, the 
corrections to the LPI were typically minor compared to those made for FC and inverse filtering. 
The results of McLaughlin [2017] indicate that partial saturation beneath the GWT could 
potentially be important at some sites, but in general, does not sufficiently or consistently explain 
mispredictions of liquefaction. Nonetheless, uncertainties pertaining to partial saturation persist, 
but could only be adequately addressed via extensive additional in situ testing and/or regional 
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hydrologic modeling. Owing to the rarity of p-wave measurements in parallel with CPTs, it is 
unknown whether partial saturation beneath the GWT is present in other case histories, previously 
collected elsewhere globally.  

CPT Spacing in Time 

As discussed, multiple case-histories were often developed from a single site (i.e., CPT) affected 
by multiple earthquakes, wherein the event-specific GWT, PGA, and response were known. This 
raises the question of whether a CPT performed at one moment in time [predominantly between 
February 2011 and September 2013; see Figure 2.9(a)] is representative of a soil profile at multiple 
other times when earthquakes occurred? This will be addressed in three parts. 

First, does the approach taken break from precedent? When considering all liquefaction case 
histories published to date (e.g., Boulanger and Idriss [2014]), in situ testing has been performed: 

(i) well in advance of an earthquake; 

(ii) months-to-years after an earthquake; 

(iii) decades after an earthquake; and 

(iv) all scenarios in between. 

Additionally, between the time of in situ testing and the occurrence of an earthquake, or between 
the time of the occurrence of an earthquake and in situ testing, it is often the case that multiple 
other earthquakes of varying intensity have affected a site. In the authors’ opinion, there has 
historically been no standard or best practice for the relative timing of in situ testing when 
publishing liquefaction case histories. The Boulanger and Idriss [2014] global database contains 
cases representing each of the four scenarios above, with multiple case histories based on the same 
CPT. Of the 255 case histories compiled therein, 25% are cases in which one CPT was used to 
develop multiple case histories. As an example, four case histories were developed from one CPT 
affected by earthquakes occurring over a 10-year span. 

Second, does CPT data change over time once deposited or disturbed? Increases in the 
strength and stiffness of sands over time, or “aging effects,” have been widely investigated. 
Temporal gains have been discerned both from penetration resistance, with reported gains of 3–
7% per log-cycle in years [Mesri et al. 1990; Kulhawy and Mayne 1990], and from liquefaction 
resistance (i.e., CRR), with reported gains of 9–17% per log-cycle in years [Arango et al. 2000; 
Hayati and Andrus 2009; and Saftner et al. 2015]. It has thus been proposed that aging effects may 
be resolved into gains measurable by intermediate-to-large-strain penetration data and gains in 
liquefaction resistance, where the latter is influenced by small-strain fabric phenomena difficult to 
detect at large strains [Leon et al. 2006]. Of relevance to the compilation of case histories, CPT 
measurements could conceivably vary with time, particularly over short time scales following 
liquefaction. For example, assuming the rates above, and that a soil is “reset” following 
liquefaction, CPT resistance measured one month after an earthquake could be 3–7% less than if 
measured one year later. While such changes are plausible, they would be difficult to distinguish 
from site variability and measurement uncertainty, and to-date, have not been considered in case-
history publications. 
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Third, does CPT data change due to repeated disturbance from shaking, and if so, does the 
magnitude and direction of change (e.g., an increase or decrease in penetration resistance) depend 
on whether liquefaction did or did not occur? A closely related, but different question, is whether 
liquefaction resistance changes due to prior shaking/liquefaction, even if CPT data does not 
change? Researchers have sought answers to these questions using a variety of approaches: 

(i) CPT testing in the field before and after shaking/liquefaction (e.g., Lees 
et al. [2015b] and Finno et al. [2016]); 

(ii) CPT testing in centrifuge and shaking-table models, before and after 
shaking/liquefaction (e.g., Darby et al. [2016] and Dobry et al. [2019]); and 

(iii) cyclic triaxial and cyclic simple-shear tests wherein samples were 
subjected to multiple shaking/liquefaction sequences (e.g., Ha et al. [2011] 
and Wang et al. [2013]). 

Various conclusions were collectively drawn from these experiments, including: 

(i) penetration resistance increases; 

(ii) penetration resistance decreases; 

(iii) penetration resistance does not change, even after severe liquefaction; 

(iv) penetration resistance changes in some parts of the profile but not 
others; 

(v) the magnitude and direction of the change in penetration resistance 
depends on the number of previous shaking cycles, and on the pore pressure 
generated by those cycles; and 

(vi) liquefaction resistance may change, independent of whether this change 
is detected via CPT data. 

Currently, most relevant to the current effort, perhaps, is the work of Lees et al. [2015b], who 
studied pairs of CPTs performed at 30 locations before and after the 22 February 2011 
Christchurch earthquake, and concluded that CPT measurements did not change in a statistically 
significant manner. 

In summary, the approach taken by this study is consistent with past precedent. 
Additionally, questions pertaining to CPT data and soil response during earthquake sequences—
which are very worthy of investigation—have not been adequately resolved to suggest when CPTs 
should or should not be used to compile liquefaction case histories. However, the compiled dataset 
could potentially be analyzed to further study these issues in the field, making use of the provided 
CPT coordinates and test dates. 

2.6 CONCLUSIONS 

Earthquakes occurring over the last decade in Canterbury, New Zealand, resulted in liquefaction 
case-history data of unprecedented quantity. Accordingly, this report discusses a curated dataset 
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containing ⁓15,000 CPT-based liquefaction case-histories compiled from three earthquakes in this 
sequence. The compiled, post-processed data has been provided in a dense array structure, 
allowing researchers to easily access and analyze information pertinent to CPT-based site 
characterization and free-field liquefaction response. Research opportunities using this data may 
include, but are not limited to, the training or testing of new and existing liquefaction-prediction 
models. The many methods used to obtain and process the case-history data have been detailed 
herein, as is the structure of the compiled file. Numerous recommendations for analyzing the data 
have been outlined, including nuances and limitations that users should carefully consider prior to 
analysis. 

2.7 DATA AVAILABILITY 

The Canterbury dataset is available in digital format through the NEHRI DesignSafe Data Depot 
at https://doi.org/10.17603/ds2-tygh-ht91. 
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3 Part Two: Field Assessment of Liquefaction 
Prediction Models Based on Geotechnical 
vs. Geospatial Data, With Lessons for Each 

Semi-empirical models based on in-situ geotechnical tests have been the standard-of-practice for 
predicting soil liquefaction since 1971. More recently, prediction models based on free, readily 
available data were proposed. These “geospatial” models rely on satellite remote sensing to infer 
subsurface traits without in situ tests. Using 15,223 liquefaction case histories from 24 
earthquakes, this study assesses the performance of 23 models based on geotechnical or geospatial 
data using standardized metrics. Uncertainty due to finite sampling of case histories is accounted 
for and used to establish statistical significance. Geotechnical predictions are significantly more 
efficient on a global scale, yet successive models proposed over the last twenty years show little 
or no demonstrable improvement. In addition, geospatial models perform equally well for large 
subsets of the data—a provocative finding given the relative time- and cost-requirements 
underlying these predictions. Through this performance comparison, lessons for improving each 
class of model are elucidated in detail. 

3.1 INTRODUCTION 

Since the inception of the so-called “simplified stress-based procedure” for predicting liquefaction 
triggering [Seed and Idriss 1971; Whitman 1971], variants based on several in situ geotechnical 
measurements have been developed. These include CPT indices, standard penetration test (SPT) 
blow counts, and shear-wave velocity (Vs), among others. In conjunction with such measurements, 
“simplified” liquefaction triggering models have been used in virtually every seismic zone on 
Earth. The outputs from these triggering models are also often used cooperatively with other 
models that predict surface manifestations, such as ground settlement (e.g., Cetin et al. [2009]), 
lateral spreading (e.g., Zhang et al. [2004]), liquefaction ejecta (e.g., Maurer et al. [2017]), and 
foundation movements (e.g., Bray and Macedo [2017] and Bullock et al. [2018]. While this 
approach to modeling liquefaction occurrence and consequence is popular worldwide, it requires 
field measurements that can be costly and time consuming to perform, especially over large areas. 
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More recently, “geospatial” models have been proposed to predict liquefaction using data 
that is freely available via satellite remote sensing [Zhu et al. 2015; 2017]. Like the geotechnical 
approach, geospatial models characterize liquefaction demand using ground-motion IMs. In lieu 
of characterizing liquefaction resistance via in situ measurements, geospatial models use surface 
parameters to infer subsurface traits. Examples include surface slope, mineralogy, roughness, and 
wetness; distance to and elevation above rivers, streams, and other water bodies; and compound-
topographic-index; all can be derived from satellite data. Geospatial models are particularly suited 
for applications where time- and cost-considerations outweigh the required, expected model 
accuracy (e.g., regional earthquake simulations; planning and policy development; post-event 
response and reconnaissance; and hazard assessments in regions that lack geotechnical testing). 
Implicit to this statement is the assumption that geotechnical models are more accurate than 
geospatial models. But are they? 

The efficacies of these two model classes (i.e., geotechnical and geospatial) have not been 
directly compared using a consistent set of case histories and standardized performance metrics. 
Such an assessment could elucidate pathways to improve each model class (e.g., what can each 
class teach the other?) and inform ensemble-modeling approaches that statistically coalesce 
multiple predictions [Bradley et al. 2018]. In addition, while numerous “simplified” geotechnical 
models have been proposed over the last twenty years, the popular question of “which performs 
best?” remains contentious—the answer obscured, in part, by prior paucity and inconsistency of 
test cases, as well as use of differing, non-standard, non-objective performance metrics. Further, 
though often ignored, the performance of any model is intimately tied to the site-specific 
consequences, or “economies” of misprediction. Thus, we should ask not only “which model 
performs best?” but also “which model performs best for particular misprediction economies?” 

Accordingly, the objective of this study was to rigorously assess and compare the 
performance of 18 geotechnical models and 5 geospatial models using 15,223 liquefaction case-
histories compiled from 24 earthquakes in 9 countries. As part of this assessment, standardized 
and objective metrics were used to evaluate model performance, both in an overall, comprehensive 
sense, as well as for particular misprediction economies that may be encountered. 

3.2 GEOTECHNICAL AND GEOSPATIAL LIQUEFACTION MODELS 

The hierarchy of liquefaction models may be loosely defined by three tiers: (T1) wholly-empirical 
models that require only geologic or geospatial data and are accessible to a broad userbase (e.g., 
Youd and Hoose [1977]; Kramer [2008]; FEMA [2013]; and Zhu et al. [2017]); (T2) semi-
mechanistic “simplified stress-based” models that require in situ measurements and are generally 
limited to use by geoengineers (e.g., Kayen et al. [2013] and Boulanger and Idriss [2014]); and 
(T3) wholly-mechanistic constitutive models, which typically require many soil and model 
parameters, and which are generally limited to use by geoengineers trained in computational 
mechanics (e.g., Cubrinovski and Ishihara [1998]; Byrne et al. [2004]; and Ziotopoulou and 
Boulanger [2016]). While advances to “T3” models and the enabling technologies have grown 
their use, their application to predicting liquefaction triggering remains relatively rare. This is due 
to the required inputs and operator skill, but also to uncertainties about model adequacy and the 
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interpretation of results [NRC 2016]. As such, these models are not evaluated in this study, but are 
mentioned to provide proper context to the assessment of “T1” and “T2” models presented herein. 

For brevity, the “T2, simplified stress-based models” are henceforth referred to as 
“geotechnical models.” Six liquefaction triggering models were used in this study: Robertson and 
Wride [1998], Architectural Institute of Japan [2001], Moss et al. [2006], Idriss and Boulanger 
[2008], Boulanger and Idriss [2014], and Green et al. [2018]. All six are based on the CPT, which 
offers significant advantages over other in-situ tests [NRC 2016]. Because triggering models 
predict liquefaction at-depth within a soil profile, an evaluation of their performance requires direct 
investigation of the subsurface (i.e., to assess the agreement between predicted and actual 
responses in various strata). This might be accomplished proactively using downhole instrument-
arrays (e.g., Holzer et al. [2007]) or reactively using vision penetrometers [Raschke and Hryciw 
1997] or geoslicers [Nakata and Shimazaki 1997]. Yet, such investigations are generally 
expensive, exceedingly rare, and may not result in definitive interpretations (e.g., Takada and 
Atwater [2004]). 

Thus, nearly all existing case-histories simply document whether manifestations of 
liquefaction were observed at the surface. Accordingly, to compare predictions of liquefaction at-
depth against surface observations, the six triggering models will each be used in series with three 
separate manifestation models: Iwasaki et al. [1978], van Ballegooy et al. [2014a], and Maurer et 
al. [2015a], who respectively proposed models named LPI, LSN, and LPIISH. It must therefore be 
understood that “geotechnical model” refers to the combined use of a triggering model and a 
manifestation model. There is simply no practical or objective way to isolate and assess the 
independent performance of triggering models. While LPI, LSN, and LPIISH were each proposed 
as general “ground failure” predictors, they have been calibrated almost exclusively on the 
observed occurrence or non-occurrence of liquefaction ejecta. 

The 18 CPT-based geotechnical models (6 triggering models and 3 manifestation models) 
were tested against the performance of 5 “T1” geospatial models. While several types of “T1” 
model exist, those of Zhu et al. [2015; 2017] are arguably the most rigorously formulated and well-
trained to date; they were also recently implemented into U.S. Geological Survey post-earthquake 
data products to provide automated content on possible impacts (e.g., Allstadt et al. [2019]). These 
models were trained on observations of ground failure and thus inherently merge liquefaction 
triggering and manifestation. Three of the five models to be assessed are region specific—
developed specifically for Canterbury, New Zealand—and will be referred to as regional 
geospatial models (RGMs). The remaining two were trained on successively larger datasets from 
global earthquakes and will be referred to as global geospatial models (GGMs). A summary of the 
23 models to be evaluated, and the symbols henceforth used to identify them, is provided in Table 
2.1. Additional model details are provided subsequently in Section 3.4. 
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Table 3.1 Summary of geotechnical and geospatial liquefaction models evaluated in 
this study. 

Geotechnical models (18) 

Triggering model Symbol Manifestation model Symbol 

Robertson and Wride [1998] RW98 
Iwasaki et al. [2015] LPI 

Arch. Intitute, Japan [2001] AIJ01 

Moss et al. [2006] Mea06 
Van Ballegooy et al. [2014a] LSN 

Idriss and Boulanger [2008] IB08 

Boulanger and Idriss [2014] BI14 
Mauer et al. [2015a] LPIISH 

Green et al. [2019] Gea19 

Geospatial models (5) 

Triggering/manifestation 
model 

Symbol 

Zhu et al. [2015] Regional 1  RGM1 

Zhu et al. [2015] Regional 2  RGM2 

Zhu et al. [2015] Regional 3  RGM3 

Zhu et al. [2017] Global 1  GGM1 

Zhu et al. [2015] Global 2  GGM2 

3.3 DATA 

This study analyzed 15,223 liquefaction case histories resulting from 24 earthquakes, as 
summarized in Table 3.2. However, because most of these cases were compiled from three 
earthquakes in the Canterbury region of New Zealand, results are separately presented for these 
and the other 21 earthquakes, henceforth respectively referred to as the “Canterbury dataset” and 
“global dataset.” The details of these case-history datasets are discussed next. 
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Table 3.2 Summary of liquefaction case-histories analyzed. 

Date Earthquake Country 
Magnitude 

(Mw) 
Number of case 

histories 

16/6/1964 Niigata Japan 7.60 3 

9/2/1971 San Fernando USA 6.60 2 

4/2/1975 Haicheng China 7.00 2 

27/7/1976 Tangshan China 7.60 10 

15/10/1979 Imperial Valley USA 6.53 7 

9/6/1980 Victora (Mexicali) Mexico 6.33 5 

26/4/1981 Westmoreland USA 5.90 9 

26/5/1983 Nihonkai-Chubu Japan 7.70 2 

28/10/1983 Borah Peak USA 6.88 3 

2/3/1987 Edgecumbe New Zealand 6.60 23 

24/11/1987 Elmore Ranch USA 6.22 2 

24/11/1987 Superstition Hills USA 6.54 8 

18/10/1989 Loma Prieta USA 6.93 67 

17/1/1994 Northridge USA 6.69 3 

16/1/1995 Hyogoken-Nambu Japan 6.90 21 

17/8/1999 Kocaeli Turkey 7.51 16 

20/9/1999 Chi-Chi Taiwan 7.62 34 

8/6/2008 Achaia-Ilia Greece 6.40 2 

4/4/2010 Baja Mexico 7.20 3 

4/10/2010 Darfield New Zealand 7.10 5371 

22/2/2011 Christchurch New Zealand 6.20 4806 

11/3/2011 Tohoku Japan 9.00 7 

20/5/2012 Emilia Italy 6.10 46 

14/2/2016 Christchurch New Zealand 5.70 4771 

   Total 15,223 

3.3.1 Canterbury Earthquake Dataset 

Earthquakes occurring over the last decade in the Canterbury region of New Zealand have resulted 
in case-history data of unprecedented quantity and quality. A comprehensive summary of these 
earthquakes, to include tectonic and geologic settings, seismology, and effects, is provided by 
Quigley et al. [2016]. The present study compiles case-histories from the Mw7.1, 4 September 2010 
Darfield earthquake, the Mw6.2, 22 February 2011 Christchurch earthquake, and the Mw5.7, 14 
February 2016 Christchurch earthquake. This effort built upon a series of successive compilations 
[Maurer et al. 2014; 2015b; 2019], augmenting the largest of these by more than 50% and resulting 
in a total of 14,948 case histories. These consist of ground-motion IMs, geotechnical and 
hydrological data, readily available geospatial information, and classifications of liquefaction 
manifestations. These components are succinctly summarized as follows. 

3.3.1.1 Liquefaction Manifestations 

All liquefaction models will be evaluated on their ability to predict free-field surface 
manifestations on level ground—specifically liquefaction ejecta—rather than any other indicator, 
such as evidence from ground motions, foundation movements, or lateral spreading. Sites with 
these indicators were expressly removed from the study because the models to be evaluated are 
not intended to predict such indicators. Observations of the occurrence and severity of liquefaction 
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ejecta were compiled by the authors and classified as “none,” “minor,” “moderate,” and “severe” 
using criteria from Green et al. [2014] and a 15-m sampling radius centered on each CPT site. This 
was accomplished using ground-reconnaissance reports and high-resolution satellite imagery 
available in the New Zealand Geotechnical Database [CERA 2012]. Cases in which manifestations 
could not be reliably classified were not included herein. To facilitate model assessment, the cases 
are reclassified binomially as “No Manifestation” and “Manifestation,” where the latter are sites 
with at least “minor” manifestations per Green et al. [2014]. Of the resulting 14,948 case histories 
compiled from Canterbury, 65% are “No Manifestation” and 35% are “Manifestation.” 

3.3.1.2 Ground-Motion Intensity Measures 

The 23 liquefaction models use either PGA (all geotechnical models and some geospatial models) 
or peak ground velocity (PGV) (some geospatial models). For this study, PGAs were estimated 
with the Bradley [2013] procedure, which has been used in previous Canterbury earthquake 
research (e.g., van Ballegooy et al. [2015]), and which geostatistically merges PGAs recorded at 
strong-motion stations with PGAs estimated by ground-motion prediction equations. The PGVs 
were estimated using USGS ShakeMap [Worden and Wald 2016], consistent with the formulation 
of geospatial liquefaction models that use PGV. 

3.3.1.3 Geotechnical, Hydrological, and Geospatial Data 

This study analyzes CPT soundings available in the New Zealand Geotechnical Database [CERA 
2012] and performed at sites where liquefaction manifestations were classified as described above. 
In the process of compiling case histories, CPTs were rejected if: (1) the depth of “pre-drill” 
significantly exceeded the depth of the ground water table; and (2) were inferred to have 
prematurely terminated on shallow gravels from a geospatial autocorrelation analysis [Anselin 
1995]. Prior to processing, CPT tip- and sleeve-measurements were aligned using cross-correlation 
[Buck et al. 2002]. Extended coverage of CPT data and the exclusion criteria summarized above 
is provided in Maurer et al. [2014, 2015b]. Ground water table depths were sourced from the 
robust, event-specific regional models of van Ballegooy et al. [2014b]. Various geospatial 
parameters—to be identified subsequently in Section 3.4—were computed at each case-history 
location following the exact methods of Zhu et al. [2015; 2017] (i.e., the developers of the 
geospatial models to be evaluated). 

3.3.2 Global Earthquake Dataset 

To compare findings in Canterbury with regions worldwide, 275 case histories were compiled 
from 21 global earthquakes and assessed in parallel. These cases, sourced from the literature, 
included observations of manifestation severity, CPT soundings, and estimation of GWT depth 
and ground-motion IMs, as generally reported by original investigators. When available, recent 
refinements were adopted from the literature. Whereas liquefaction was intensively cataloged via 
reconnaissance and remote sensing in Canterbury, the global cases are often documented in less 
detail, occasionally with scant information about the nature or severity of manifestation. 
Accordingly, while the Green et al. [2014] criteria were again used to binomially classify 
manifestations based on ejecta (while excluding cases with other expressions of liquefaction), there 
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is inevitably some uncertainty. Of the 275 global cases, 58% are “Manifestation” and 42% are “No 
Manifestation.” To properly recognize all sources of data used to compile this dataset, a separate 
reference list parsed by earthquake appears near the end of this chapter; a table of data for each 
case history is also provided in Appendix A. In this regard, the case-history assemblages of Moss 
et al. [2003] and Boulanger and Idriss [2014] are acknowledged for greatly assisting the present 
study. Lastly, various geospatial parameters (identified in Section 3.4) were computed at each 
case-history location per Zhu et al. [2015; 2017]. 

3.4 METHODOLOGY 

The 23 liquefaction models to be evaluated in this study were identified in Table 3.1. Additional 
details are now presented, followed by methods that will be used to analyze model performance. 

3.4.1 Geotechnical Model Methodology 

The CPTs were analyzed using six triggering models, all of which compute factor-of-safety against 
liquefaction (FSliq) vs. depth. While the reader is referred to the model publications for complete 
details, nuances pertinent to this study are as follows. First, prior to using any of the six models, 
liquefaction-susceptible soils were inferred from the CPT soil-behavior-type index (Ic) [Robertson 
and Wride 1998], such that soils with Ic < 2.50 were assumed susceptible. This criterion was 
developed specifically for Christchurch soils from extensive lab and field testing [Maurer et al. 
2019]. However, because an Ic threshold of 2.50 is within the range of generic values commonly 
used in practice (e.g., 2.4–2.6), this criterion was also used in all analyses of the global dataset. 
Ultimately, the results of these analyses were found to be insensitive to this threshold. Second, for 
liquefaction-susceptible soils, the IB08, BI14, and Gea19 models compute liquefaction resistance 
as a function of fines-content (FC). Accordingly, the FC was estimated for the Canterbury dataset 
using a Christchurch-specific Ic–FC correlation [Maurer et al. 2019], and for the global dataset 
using a general Ic–FC correlation [Boulanger and Idriss 2014], with the former estimating FC to 
be approximately 10% higher for a given Ic.  

Next, the outputs from triggering analysis were input to the LPI, LSN, and LPIISH 
manifestation models. The Liquefaction Potential Index (LPI) is defined as [Iwasaki et al. 1978]: 

 
 20 m

liq0
LPI ( )F FS w z d z   (3.1) 

where F(FSliq) and w(z) are functions that weight the respective influences of FSliq and depth, z, 
on surface manifestation. Specifically, F(FSliq) = 1 – FSliq for FSliq ≤ 1 and F(FSliq) = 0; otherwise 
w(z) = 10. Thus, the LPI assumes that surface manifestation depends on the thickness of all 
liquefied strata in a profile’s upper 20 m, their proximity to the ground surface, and the amount by 
which FSliq in each stratum is less than 1.0. Given this definition, the LPI can range from zero to 
100. 

A modified LPI was proposed by Maurer et al. [2015a] and inspired by Ishihara [1985], 
who proposed limit-state curves for predicting manifestations as a function of the “crust” thickness 
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(H1), among other factors. Using these curves, Maurer et al. [2015a] modified the LPI to include 
the observed influence of H1. Given its provenance, the result was termed LPIISH and is defined 
by: 

    
1

20 m

ISH liqLPI  = 
H

F FS w z d z


  (3.2a) 

where 
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 (3.2c) 

In Equation (3.2a), F(FSliq) and w(z) have the same objective as in the LPI, but are 
functionally different, such that F(FSliq) accounts for the crust thickness via the parameter H1 and 
w(z) is defined by w(z) = 25.56 ∙ z-1. Maurer et al. [2015a] recommended a minimum H1 of 0.4 m 
be used, even if liquefiable soils are present at shallower depths. Given this constraint, LPIISH can 
range from zero to 100. 

The Liquefaction Severity Number (LSN) is an adaptation of methods for estimating post-
liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-
law depth weighting function (van Ballegooy et al. [2014a]: 

  
20m

0
LSN v w z d z   (3.3) 

where 𝜀௩ is volumetric strain (%), and w(z) = 10 ∙ z-1. For a given value of FSliq, εv is inversely 
related to the soil’s initial relative density (Dr). By corollary, surface manifestations should 
diminish as the Dr of liquefying soil increases. While there are several approaches to estimating 
𝜀௩ [Geyin and Maurer 2019; van Ballegooy et al. 2014a], we adopted that of Zhang et al. [2002]. 
The LSN values can far surpass 100 when liquefiable soils are present at the surface, but typically 
are between zero and 100. These values are not quantities of predicted settlement, but are index 
values á la LPI and LPIISH that correlate to the likelihood of surface manifestation. 

3.4.2 Geospatial Model Methodology 

The five geospatial models have the general form P(X) = (1 + e-X)-1 where X is a series of geospatial 
variables and model coefficients, and P(X) is the likelihood of surface manifestation. In 
conjunction with this equation, the three region-specific and two global geospatial models are 
defined in Table 3.3. The variables are as follows: 

 PGAM = magnitude-weighted peak ground acceleration (g) using the weighting of 
Youd et al. [2001] 

 PGV = peak ground velocity (cm/sec) 
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 dr3 = distance (km) to a stream of order three or greater [Strahler 1952] 

 Vs30 = shear-wave velocity of the upper 30 m (m/sec), inferred from surface 
topography [Wald and Allen 2007] 

 dr = shortest distance to a river (km) cataloged by Lehner et al. [2006] 

 CTI = compound topographic index [Beven and Kirkby 1979] 

 dc = distance to coast (km) 

 precip = mean annual precipitation (mm) [Fick and Hijmans 2017] 

 ND = dc divided by the distance from the coast to the edge of the sedimentary basin 

 wtd = water table depth (m) 

The GGM2 has variants for coastal and inland locations, the distinguishing threshold being dc = 
20 km. All variables were computed in accordance with Zhu et al. [2015; 2017], to which the 
reader is referred for additional information. Geospatial model predictions were generated at 30-
m resolution, commensurate with the sampling area over which liquefaction manifestations were 
classified. 

Table 3.3 Geospatial liquefaction model equations. 

Model Model Parameter X 

RGM1 2.053 + 1.267ꞏln(PGAM) – 0.239ꞏdr3 – 9.191 ꞏ ND 

RGM2 0.316 + 1.225ꞏln(PGAM) + 0.145ꞏCTI – 9.708 ꞏ ND 

RGM3 25.45 + 2.476ꞏln(PGAM) – 0.323ꞏdr3 – 4.241ꞏln(Vs30) 

GGM1 24.10 + 2.067ꞏln(PGAM) + 0.355ꞏCTI – 0.4784ꞏln(Vs30) 

GGM2 

(coastal) 
12.435 + 0.301ꞏln(PGV) – 2.615ꞏln(Vs30) + 5.556 x 10-4 ꞏ precip – 0.0287ꞏ(dc)0.5 + 0.0666ꞏdr – 0.0369 ꞏ dr 

ꞏ (dc)0.5 

GGM2 

(inland) 
8.801 + 0.334ꞏln(PGV) – 1.918ꞏln(Vs30) + 5.408 x 10-4 ꞏ precip – 0.2054ꞏdw – 0.0333ꞏwtd 

3.4.3 Performance-Evaluation Methodology 

Standardized and objective methods are needed to analyze model efficacy (i.e., the ability to 
predict whether sites have liquefaction manifestations). Receiver-operating-characteristic 
analyses, which are widely used in biostatistics and medical diagnostics (e.g., Fawcett [2006] and 
Zou [2007], were adopted herein. In any ROC analysis, the distributions of “positives” (e.g., 
manifestations are observed) and “negatives” (e.g., no manifestations are observed) overlap when 
the frequencies of the distributions are expressed as a function of a diagnostic test index (e.g., LPI, 
LSN, etc.). 

To demonstrate, two such distributions are shown in Figure 3.1(a), plotted as a function of 
LPI. The ROC curves plot the rates of true-positive predictions (RTP) (i.e., manifestations are 
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observed as predicted) and false-positive predictions (RFP) (i.e., manifestations are predicted but 
not observed) as a function of classification “thresholds.” These thresholds are used to predict 
outcomes, such that index values above and below a threshold respectively predict positives and 
negatives. Figure 3.1(b) illustrates the relationship among the positive and negative distributions, 
the threshold values, and the ROC curve. Low thresholds result in a high RFP, while high thresholds 
result in a low RTP, equivalent to a high rate of false-negative predictions (RFN), where RFN = 1 - 
RTP. In general, neither of these situations is desirable. 

 

(a) (b) 

Figure 3.1 ROC analyses: (a) frequency distributions of liquefaction manifestation 
and no liquefaction manifestation as a function of LPI; and (b) 
corresponding ROC curve, and illustration of how a ROC curve is used to 
assess the efficiency of a diagnostic test. 

The optimal threshold may be defined as that which minimizes the prediction cost: 

 Cost = CFP  RFP + CFN  RFN (3.4) 

where CFP and RFP are respectively the cost and rate of false-positive predictions, and CFN and RFN 
are respectively the cost and rate of false-negative predictions. Examples of false-positive costs 
include superfluous spending on design and construction (e.g., ground improvement costs), while 
false-negative costs are those resulting from liquefaction (e.g., property damage and lost 
productivity, among others). Normalizing by CFN, Equation (3.4) is alternatively expressed as: 

 Cost = Cost/CFN = RFP  CR + RFN (3.5) 

where CR = CFP/CFN and is the “cost ratio” representing different misprediction economies. Low-
CR scenarios with are those where the costs of liquefaction far outweigh the costs of mitigation 
(e.g., a critical facility), while high CR scenarios are those where the costs of mitigation far 
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outweigh the costs of liquefaction (e.g., a car park). It follows from Equations (3.4) and (3.5) that 
two points in ROC space, (RFP1, RTP1) and (RFP2, RTP2), have equivalent performance if: 

 TP1 TP2 FP

FP1 FP2 FN

R -R C
= = CR=

R -R C
m  (3.6) 

Equation (3.6) defines the slope, m, of an iso-performance line, such that all points defining the 
contour have equal Cost. Thus, each CR corresponds to a unique contour in ROC space. One such 
line is shown in Figure 3.1b. With 1:1 slope, it corresponds to the case where false positives and 
false negatives have equal costs. Points tangent to this line on the ROC curve correspond to 
threshold values at which Cost is minimized. 

To evaluate model efficacy, two different ROC-based methods were used. The first 
quantified comprehensive performance via the area under a ROC curve (AUC). While no single 
parameter fully characterizes performance, the AUC is commonly used for this purpose due to its 
statistical significance and objectivity (e.g., Fawcett [2006]). Here, AUC is the probability that 
sites with manifestations have higher computed index values (e.g., LPI) than sites without 
manifestations. Better prediction models thus have a higher AUC. As shown in Figure 3.1b, 
random guessing is depicted in ROC space by a 1:1 line through the origin, for which AUC = 0.5. 
A perfect model, for which AUC = 1.0, plots as a point at (0,1), indicating the existence of a 
threshold value that perfectly separates the two distributions. To account for finite sampling of 
case histories, bootstrap simulations were performed to quantify ROC uncertainty, and in turn, to 
compute confidence intervals on each model’s AUC. This illustrates the sensitivity of model 
performance to the case histories compiled for analysis. To assess whether differences in AUC 
could arise from chance (i.e., due to finite sampling), tests of statistical significance were 
performed per the method of DeLong et al. [1988], which is specific to ROC analyses. All models 
were compared to one another to determine which, if any, were statistically better.  

While AUC is widely used, it reflects overall performance across all misprediction 
economies. As a result, the model with highest AUC, the model with lowest misprediction rate 
(RFN + RFP), and the model most optimal when CFN ≠ CFP could conceivably all be different. This 
is shown in Figure 3.2(a), where models A and B have identical AUC. If CR = 1/5, iso-performance 
lines have slope of 1/5 and define points with equal prediction cost. What that cost is depends on 
the lines of the RTP intercepts and is given by Equation (3.6) (the greater the RTP intercept, the 
lower the cost). Since an iso-performance line tangent to curve B has a greater RTP intercept than 
one tangent to curve A, model B is more optimal. That is, B is better in the “conservative” region, 
where models correctly classify most positives, but at the expense of high RFP. Conversely, and by 
the same logic, A is optimal when CR = 5 and is better in the “liberal” region, where models 
correctly classify most negatives, but at the expense of low RTP. Lastly, when CR = 1, A and B 
perform equally well. By similar logic, a model with higher AUC could be less efficient in a 
specific region of ROC space than a model with lower AUC. This is shown in Figure 3.2(b): model 
A has higher AUC and is optimal when CR > 0.27, but model B is optimal for all other CR. Thus, 
AUC reflects overall performance, but not the nuances described above. Accordingly, a second 
ROC-based analysis will identify the optimal model as a function of CR. Cost will be computed 
by Equation (3.5) for each model over the domain 0 < CR < 2; that with lowest Cost at a given 
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CR is most optimal, which is equivalent to the graphical analysis shown in Figure 3.2. Together, 
these methods will assess model performance, both in a comprehensive sense, and for various 
misprediction economies of interest. 

 

   
Figure 3.2 The ROC analyses demonstrating that: (a) classifiers with equivalent AUC 

(i.e., equal overall efficiency) can perform very differently in specific 
regions of ROC space; and (b) classifiers with higher AUC can, in specific 
regions of ROC space, perform worse than classifiers with lower AUC. 

3.5 RESULTS AND DISCUSSION 

Utilizing the data and methodology above, 23 models were used to predict liquefaction 
manifestations for 15,223 case histories. To illustrate how ROC analyses and bootstrap simulations 
were used to study model-performance, results for one model were presented in detail; summary 
statistics from analyses of all 23 models were then provided. In Figure 3.3, ROC analyses of the 
BI14–LPI geotechnical model (i.e., the BI14 triggering model used with the LPI manifestation 
model) are presented for the Canterbury and global datasets, respectively. In each case, a total of 
10,000 bootstrap simulations were performed, from which 95%-confidence intervals (CIs) were 
computed. The 50th percentile ROC curve is equivalent to that resulting from an analysis of all 
case histories without resampling. 

Two observations are made from this figure: (1) the BI14-LPI model performs better on 
the Canterbury dataset than the global dataset, with respective median AUCs of 0.83 versus 0.77; 
and (2) finite-sample uncertainty is considerably larger for the global dataset. The 95% CI on AUC 
is 0.828 to 0.841 for the Canterbury dataset, and 0.709 to 0.826 for the global dataset. Each of 
these observations will be discussed further in the context all models. 

From replicate ROC analyses of all 23 prediction models, AUC summary statistics are 
compiled and presented in Figure 3.4 for the Canterbury and global datasets, respectively. Shown 
are each model’s median AUC and 95% CI, with results ordered by the year in which each model 
was proposed. In this regard, geotechnical models are dated in accordance with the triggering 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e 
P

os
it

iv
e 

R
at

e,
 R

T
P

False Positive Rate, RFP

(a)

A

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

ru
e 

P
os

it
iv

e 
R

at
e,

 R
T

P
False Positive Rate, RFP

(b)

A B



39 

model but are grouped/symbolized by manifestation model. Thus, Figure 3.4 allows for 
assessments to be made regarding the evolution of performance (i.e., prediction efficiency) through 
twenty years of model research and development. 

 
Figure 3.3 ROC analysis of BI14-LPI performance in predicting liquefaction surface 

manifestation for the: (a) Canterbury dataset; and (b) global dataset. 

 

  
Figure 3.4 Summary of liquefaction-model performance—quantified by AUC—or 23 

models, ordered by year proposed: (a) Canterbury dataset; and (b) global 
dataset. Markers = median AUC; bars = 95% confidence intervals on AUC; 
all model acronyms are identified in Table 2.1. Trendlines are developed 
from linear regression and do not include RGM or GGM data points. 
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With respect to Figure 3.4, several observations are made as follows: 

1. The two trends identified in Figure 3.3 for BI14-LPI are true of most geotechnical 
models. That is: their performance on the Canterbury dataset tends to be marginally 
better and much less uncertain, relative to the global dataset. Considering all 18 
geotechnical models, the average AUCs are 0.80 and 0.77, respectively, for the 
Canterbury and global datasets, indicating also that the models are nearer to 
perfection (AUC = 1.0) than to random guessing (AUC = 0.5). The average 95% 
CIs are respectively 0.015 and 0.118 for the Canterbury and global datasets. These 
differences may be attributable to the global dataset’s greater seismologic, 
geologic, and geomorphic diversity and/or because the global field-data (e.g., 
ground-motion IMs, CPTs) were collected over many decades using different 
means and methods. There are also far fewer global case-histories; all else being 
equal, greater finite-sample uncertainty is thus expected; 

2. As shown in Figure 3.4, trendlines were fit to the AUC values for all geotechnical 
models; these regressions did not include the regional or global geospatial models, 
as discussed below. Through 20 years of model research and development, the 
trendlines suggest improvements to AUC of 0.19% per year and -0.01% per year 
for the Canterbury and global datasets, respectively. When considering these 
trends, it should be noted that: (i) the BI14 and Gea19 triggering models, when 
developed, were trained on a case-history dataset in which 20% of data was from 
Canterbury, so their evaluation in Figure 3.4(a) is not completely unbiased, unlike 
the other models; and (ii) some of the global case-histories compiled to test 
performance in Figure 3.4b( )were also used to train triggering models during their 
respective developments. Specifically, of the 275 global test cases, the portion used 
in training ranges from 0% (RW98) to 75% (e.g., BI14). Nevertheless, successive 
models proposed over the last twenty years show little or no demonstrable 
improvement for the two datasets analyzed, as shown in Figure 3.4. This is despite: 
(i) ever-increasing data that can be used to train and validate models; and (ii) greater 
knowledge of liquefaction mechanics, embodied by new and revised model 
components (e.g., magnitude scaling; depth-stress reduction; overburden 
correction). Of course, greater performance variation might result if the models 
were tested on data outside the parameter space of that used to train them (e.g., 
liquefaction-susceptible soils with atypical density, depth, fines-content, age, etc.). 
However, liquefaction case histories tend to have much in common, so such data is 
not easily obtained; 

3. It can be seen in Figure 3.4(a) that the three regional geospatial models perform 
remarkably well for the Canterbury dataset, with average AUC of 0.77 (versus 0.80 
for all geotechnical models). One geospatial model—RGM3—outperforms 16 of 
the 18 geotechnical models, a provocative result given the relative costs and 
complexities of the required model inputs. While differences in model specificity 
must be acknowledged (RGM3 is region-specific, while the geotechnical models 
are not), it is nonetheless surprising that an empirical model based on surface 
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parameters could outperform a semi-mechanistic model based on subsurface 
measurements. However, as shown in Figure 3.4(b), geospatial models do not 
perform as well on the global dataset, with global models GGM1 and GGM2 having 
median AUCs of 0.54 and 0.55, respectively (the 95% CIs are 0.47 to 0.61 and 0.48 
to 0.62, respectively). Thus, while the geospatial models do tend to be useful (e.g., 
performing better than random guessing for the compiled test cases), the 
geotechnical models are significantly more efficient. This is unsurprising when 
considering: (i) the geomorphic, topographic, and climatic diversity of the global 
dataset; and (ii) the difficulty, given this diversity, of accurately inferring below-
ground conditions from above-ground parameters. Inherently, the geotechnical 
models—being based on direct measurements of the subsurface—should have 
better portability across environs. Nonetheless, the results from Canterbury in 
Figure 3.4(a) demonstrate the provocative potential of geospatial modeling. As 
more test data become available, and as better geospatial predictors are identified, 
improved global performance should result. In contrast, considering the 20-year 
trendlines in Figure 3.4, it appears less likely that geotechnical models will soon 
improve greatly should the status quo continue. Neither fine-tuning of model 
parameters nor incremental grown in training data are likely to inflect these trends 
upwards. Arguably, this would occur only with disruptive innovation (e.g., to the 
in situ characterization method, or to the fundamental modeling approach); and 

4. The top-performing models, as quantified via median AUC, are: (i) Canterbury 
dataset: BI14-LPIISH (AUC = 0.843), Gea19-LPIISH (AUC = 0.843), and RGM3 
(AUC = 0.841); and (ii) global dataset: Mea06-LPI (AUC = 0.788), AIJ01-LPI 
(AUC = 0.788), and AIJ01- LPIISH (AUC = 0.782). Thus, the top-performing 
models appear to be different for the two datasets. However, given the uncertainties 
of AUC values—particularly for the global dataset—it should be determined 
whether the measured differences in performance are statistically significant. 

Using the method of DeLong et al. [1988], P-values were computed to compare each of 
the 23 models to all others. These values are presented in Tables 3.4 and 3.5 for the Canterbury 
and global datasets, respectively, and are the probabilities that AUC samples for two models could 
have come from the same distribution (i.e., that the observed difference in performance arose from 
chance and not because one model is better). Large P-values can be expected when (i) differences 
between two AUC values are small; and (ii) the uncertainty of one or more of the AUC values is 
large. The popular significance level of 0.05 of adopted herein, such that P-values below 0.05 
denote that models have significantly different performance. Using this criterion, Tables 3.4 and 
3.5 compare all model pairs and identify which model, if any, is statistically better. 

As seen in Table 3.4, instances of large P-values are rare for the Canterbury dataset, which 
can be partly attributed to the large number of case histories. In fact, nearly every model performs 
statistically differently than all others. Notable observations from Table 3.4 are: (i) among all 23 
models evaluated, no model is statistically better than all others; but (ii) three models are either 
statistically better, or not statistically different, than all others. In other words, three models are 
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never bested. These are BI14-LPIISH, Gea19-LPIISH, and RGM3. Most striking is that no 
geotechnical model is statistically better than geospatial model RGM3. 

In contrast to the Canterbury dataset, few P-values are below 0.05 for the global dataset, 
indicating that performance-differences between models are typically not statistically significant. 
Notable observations from Table 3.5 are: (i) all geotechnical models are statistically better than 
both global geospatial models; and (ii) no model is statistically superior. The previously identified 
top-performing model globally – Mea06-LPI – is statistically better than nine other models, but is 
statistically indifferent from eight others, including the top-performing models in Canterbury 
(BI14-LPIISH and Gea19-LPIISH). Thus, once statistical significance is considered, the global 
results are largely inconclusive due to the large finite-sample uncertainties of AUC values. 
Consequently, the top-performing geotechnical models in Canterbury may also be the top-
performing models globally, but more global data would be needed to confirm this or to draw other 
conclusions about model performance.  
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Table 3.4 P-value matrix to compare model performance for the Canterbury dataset. 

 

  
Statistically 

better* ↑ LPI LPIISH LSN RGM 

←  RW98 AIJ01 Mea06 IB08 BI14 Gea19 RW98 AIJ01 Mea06 IB08 BI14 Gea19 RW98 AIJ01 Mea06 IB08 BI14 Gea19 1 2 3 

LPI 

RW98  0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

AIJ01   0.000 0.000 0.000 0.000 0.177 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mea06    0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

IB08     0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

BI14      0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.082 

Gea19       0.000 0.000 0.000 0.000 0.004 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.362 

LPIISH 

RW98        0.530 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

AIJ01         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mea06          0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.002 0.000 0.000 0.000 

IB08           0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

BI14            0.271 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.943 

Gea19             0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.823 

LSN 

RW98              0.000 0.000 0.000 0.043 0.399 0.000 0.000 0.000 

AIJ01               0.760 0.000 0.000 0.000 0.000 0.000 0.000 

Mea06                0.000 0.000 0.000 0.000 0.000 0.000 

IB08                 0.000 0.000 0.000 0.000 0.000 

BI14                  0.000 0.000 0.000 0.000 

Gea19                   0.000 0.000 0.000 

RGM 

1                    0.026 0.000 

2                     0.000 

3                      

*Cell values are the probabilities that AUC samples for two models could have come from the same distribution. Values less than 0.05 are 
deemed “significant”, in which case the model with significantly better performance is indicated via the cell shading. 
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Table 3.5 P-value matrix to compare modelperformance for the global dataset. 

 Statistically 
better* ↑ LPI LPIISH LSN GGM 

←  RW98 AIJ01 Mea06 IB08 BI14 Gea19 RW98 AIJ01 Mea06 IB08 BI14 Gea19 RW98 AIJ01 Mea06 IB08 BI14 Gea19 1 2 

LPI 

RW98   0.166 0.046 0.446 0.933 0.682 0.898 0.467 0.759 0.696 0.435 0.894 0.571 0.224 0.263 0.244 0.377 0.369 0.000 0.000 

AIJ01    0.978 0.105 0.211 0.255 0.245 0.439 0.368 0.137 0.500 0.248 0.092 0.004 0.031 0.032 0.051 0.052 0.000 0.000 

Mea06     0.040 0.135 0.162 0.120 0.657 0.135 0.066 0.441 0.186 0.026 0.020 0.004 0.009 0.021 0.021 0.000 0.000 

IB08      0.355 0.101 0.582 0.338 0.565 0.887 0.144 0.521 0.857 0.346 0.420 0.400 0.569 0.555 0.000 0.000 

BI14       0.358 0.975 0.525 0.824 0.678 0.379 0.944 0.596 0.259 0.290 0.231 0.328 0.329 0.000 0.000 

Gea19         0.870 0.598 0.931 0.466 0.511 0.855 0.461 0.205 0.220 0.140 0.224 0.224 0.000 0.000 

LPIISH 

RW98               0.458 0.759 0.490 0.472 0.973 0.544 0.181 0.240 0.245 0.380 0.367 0.000 0.000 

AIJ01            0.582 0.301 0.815 0.475 0.247 0.005 0.074 0.113 0.163 0.157 0.000 0.000 

Mea06             0.527 0.787 0.819 0.361 0.077 0.070 0.165 0.250 0.240 0.000 0.000 

IB08              0.053 0.353 0.790 0.285 0.368 0.354 0.521 0.504 0.000 0.000 

BI14               0.076 0.319 0.134 0.154 0.097 0.158 0.154 0.000 0.000 

Gea19                         0.557 0.206 0.256 0.215 0.325 0.313 0.000 0.000 

LSN 

RW98                          0.258 0.154 0.142 0.362 0.321 0.000 0.000 

AIJ01                   0.657 0.551 0.461 0.470 0.000 0.000 

Mea06                    0.678 0.493 0.510 0.000 0.000 

IB08                     0.451 0.498 0.000 0.000 

BI14                      0.792 0.000 0.000 

Gea19                                     0.000 0.000 

GGM 
1                         0.779 

2                                         

*Cell values are the probabilities that AUC samples for two models could have come from the same distribution. Values less than 
0.05 are deemed “significant”, in which case the model with significantly better performance is indicated via the cell shading.  
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As discussed, an AUC is widely used to study model behavior, but it reflects overall 
performance across all misprediction economies. To identify the most efficient model for 
particular economies, Cost is computed for each model at different CR values. The model with 
lowest Cost is identified in Figure 3.5 for CRs ranging from 0.01 to 2; results are presented for 
the Canterbury and global datasets in Figures 3.5(a) and 3.5(c), respectively. Also, because 
multiple models could have nearly equivalent Cost, and thus, be equally optimal, any model 
whose Cost is within 1% of minimum is identified as “optimal.” To assess the sensitivity of results 
to this criterion, analyses were repeated by relaxing the threshold to 10%, as shown in Figures 
3.5(b) and 3.5(d). 

While the models with highest AUC (see Figure 3.4) tend to appear in Figure 3.5 (i.e., they 
are optimal for some range of CR), the results convey more nuanced information than an AUC 
alone. For example, as seen in Figure 3.5(a) for the Canterbury dataset, geospatial model RGM3 
is optimal in both the conservative, or “northeast,” region of ROC space (low CR), and in the 
liberal, or “southwest”, portion of ROC space (high CR). Thus, for scenarios in which either false 
negatives or false positives are relatively inconsequential, model RGM3 outperforms all others. 
While this may sound abstract, it is exactly the misprediction economy for critical facilities (e.g., 
powerplants, hospitals, etc.) in which CFN tends to far exceed CFP, making avoidance of the former 
paramount. 

Conversely, geotechnical models BI14-LPIISH and Gea19-LPIISH are optimal in the range 
of 0.25 < CR < 1.75, or scenarios in which CFN and CFP are relatively more similar. It can also be 
seen that models with lower AUC are sometimes optimal in specific regions of ROC space. For 
example, most striking is that geospatial model GGM2 is the most optimal model for the global 
dataset at low CR. This is despite the fact that its AUC, or overall prediction efficiency, was 
significantly lower than all geotechnical models. Extending the threshold for identifying “optimal” 
models to 10%, it can be seen that each of the 23 models evaluated is “optimal” for some range of 
CR. Thus, Figure 3.5 provides additional performance insights and demonstrates how 
misprediction economies may be considered when assessing or selecting prediction models. 
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Figure 3.5 Optimal liquefaction model as a function of CR, as determined from ROC 

analyses of the Canterbury dataset, where “optimal” models are those 
within (a) 1% and (b) 10% of optimal; analogous analyses are presented in 
panels (c) and (d) for the global dataset. 

3.5.1 Lessons for Geotechnical and Geospatial Models 

Informed by the preceding analyses, four lessons for improving model performance are next 
highlighted. 

1. First, while obvious, it is worth contextualizing the importance of interevent model 
stability. Given imperfect models “A” and “B”, A may outperform B on all events 
individually, but B may outperform A when the data from all events is combined. 
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This is true of models tested here (e.g., BI14-LPI vs. RGM3). For the 2010 Darfield 
and 2011 Christchurch earthquakes, BI14-LPI has event-specific AUCs of 0.61 and 
0.73, respectively. The threshold LPI values that minimize mispredictions in these 
events are 2.82 and 8.67, respectively. In contrast, the RGM3 event specific AUCs 
and threshold values for these respective earthquakes are 0.53 and 0.68, and 11.7 
and 11.8. While BI14-LPI has better AUC in each individual event (i.e., better 
segregating sites with and without manifestations), the inter-event instability of its 
scaling, or the LPI value at which segregation is maximum, leads to it performing 
no better than RGM3 when the events are analyzed together. The relative success 
of geospatial models is due at least partly to this phenomenon. Thus, as 
demonstrated by BI14-LPI, identifying and addressing factors which cause inter-
event instability is central to improving model performance; 

2. Geospatial models have a difficult task: to accurately infer below-ground 
conditions from above-ground parameters. In this respect, the inability to predict 
soil type (and by corollary, liquefaction susceptibility) was a common cause of 
mispredictions for the models and cases studied herein. As seen in Table 3.3, these 
models generally expect ground to be susceptible to liquefaction if it is flat, 
saturated, and near rivers, streams, or coasts. However, as identified from global 
testing, such sites may consist predominately of soils less- or un-susceptible to 
liquefaction (e.g., clays, peats, or gravels). Moreover, we find in many of these 
cases that surface-geology maps accurately predict the predominance of such soils. 
Geospatial models could thus benefit from including mapped geologic data, when 
available, as well as other, yet unidentified proxies of soil type. In addition, the 
coarse resolution of some geospatial inputs (e.g., mapped rivers) hinders 
performance at the site-specific scale. Being central to their performance, more 
efficient and higher resolution predictors of subsurface properties must be 
identified for geospatial models to improve; and 

3. Geospatial models inherently merge liquefaction triggering and manifestation. This 
calls attention to the “simplified” framework for developing geotechnical triggering 
models [Seed and Idriss 1971; Whitman 1971]—specifically to the interdependent 
relationship between triggering and manifestation. While the six triggering models 
tested herein have several post-1971 improvements (e.g., new or modified terms 
that account for influential factors), the fundamental approach to developing these 
models has never changed. Using this approach, an in situ test is performed where 
liquefaction was observed to have triggered or inferred to have not triggered. An 
analyst interprets the test data and ties the observed response of the profile to a 
“critical” stratum. For “no” cases—where no manifestation is observed—the 
“critical” stratum is the most susceptible stratum which, if liquefied, is conjectured 
to manifest at the surface. This is repeated for many case histories, and for each, 
the cyclic-stress demand in the critical stratum is plotted vs. a measured proxy of 
soil density (e.g., CPT resistance). Lastly, a “triggering curve” is regressed to define 
the relationship between the cyclic demand imposed on a soil and its capacity to 
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resist liquefaction. Within this process, the use of surface observations is 
problematic, since such observations are a function both of factors influencing 
triggering and factors influencing manifestation. To select the critical stratum, the 
analyst must therefore use a manifestation model in reverse (i.e., a model relating 
surface observations to triggering at-depth). This selection must be made such that 
the critical stratum’s thickness, depth, density, fines content, plasticity, and strain-
potential, in addition to considering all properties of all overlying strata, is 
consistent with the surface observation. If this is not achieved, then embedded in 
the derivative triggering curve will be factors that relate not only to liquefaction 
triggering, but also to the post-triggering manifestation of liquefaction. Thus, the 
manifestation model used by all analysts to date when developing triggering models 
has been personal judgement, rather than a defined analytical model, which is 
inherently problematic. Meanwhile, and predicated on the accuracy and “purity” of 
triggering models, a different set of researchers has separately proposed 
manifestation models that predict surface expressions from triggering (e.g., LPI, 
LSN) by considering the cumulative response of a profile. By inputting the results 
from triggering analysis (i.e., FSliq vs depth) into manifestation models, the latter 
may be trained using case-history data (note that such data was also used to train 
triggering models, albeit using different, undefined manifestation models). Given 
that: (i) an effective manifestation model is required in order to formulate an 
effective triggering model, and (ii) an effective triggering model is required in order 
to formulate an effective manifestation model, it follows that (iii) these models 
should be developed harmoniously and iteratively within a consistent framework, 
just as required for inverse problems. Failure to do so potentially leads to the 
omission, double counting, and general obscuration of the mechanics controlling 
triggering and manifestation. While the effect on performance is unknown, the 
development of geotechnical triggering and manifestations models has been both 
historically and presently less than completely rational; and 

4. Within the broader shortcomings just described, the multi-scale interactions that 
influence surface manifestation must be understood and modeled more completely. 
For example, it is known that low-permeability soils within or atop a profile can 
influence the morphology of manifestations (e.g., by effecting pore-pressure 
development and transmission). This has been documented in laboratory, 
numerical, and field research (e.g., Fiegel and Kutter [1994]; Ozutsumi et al. 
[2002]; Brennan and Madabhushi [2005]; Juang et al. [2005]; Özener et al. [2008]; 
Maurer et al. [2015b]; and Cubrinovski et al. [2019]). Despite this, only one of the 
manifestation models tested, LPIISH, considers the influence of soils expected not 
to liquefy, and it does so in a way that is insufficient for capturing their total 
influence. Other factors likely pertinent to surface manifestation (e.g., strata 
thickness, depth, sequencing, and permeability, among others) are either modeled 
in a generally heuristic manner or are not considered by LPI, LSN, and LPIISH. 
Accordingly, the performance of geotechnical models would surely benefit from a 
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more rigorous understanding of the mechanics and interactions that drive a soil 
profile’s cumulative response. 

3.6 SUMMARY AND CONCLUSIONS 

Using 15,223 case-histories from 24 earthquakes, this study evaluated the performance of 23 
liquefaction models based on geotechnical or geospatial data. Case histories were parsed into the 
“Canterbury” and “global” datasets and finite-sample uncertainty was used to test for significance. 
The most salient findings are as follows: 

(i) For the Canterbury dataset, three models were either statistically better 
or not statistically different compared to all others: BI14-LPIISH, Gea19-
LPIISH, and RGM3; 

(ii) For the global dataset, the top-performing models were Mea06-LPI and 
AIJ01-LPI, yet finite-sample uncertainties yield these results inconclusive. 
The top-performing models in Canterbury may also be the top-performing 
models globally, but more global case-history data is needed to confirm this 
supposition or to draw other conclusions about performance; 

(iii) Successive “simplified” geotechnical models proposed over the last 20 
years show little or no demonstrable improvement. It is unlikely that fine-
tuning of model parameters or incremental grown in training data will 
inflect this trend upwards. More likely, this would occur only with 
disruptive innovation to the in situ test method or fundamental modeling 
approach; 

(iv) Geospatial models performed remarkably well for the Canterbury 
dataset, with one such model performing significantly better than most 
geotechnical models—a provocative result given the relative costs of model 
inputs; 

(v) For the global dataset, all geotechnical models performed significantly 
better than all geospatial models, with the latter performing only marginally 
better than random guessing. This highlights the difficulty of inferring 
below-ground conditions from above-ground parameters, especially across 
diverse geomorphic, topographic, and climatic environs; and 

(vi) Informed by the presented analyses, four paths to improving the 
performance of geotechnical or geospatial models were highlighted. These 
include: (a) identifying and addressing sources of interevent instability; (b) 
identifying better geospatial proxies of soil type, and by corollary, 
liquefaction susceptibility; (c) developing geotechnical triggering and 
manifestation models within a more rational and internally consistent 
framework; and (d) more rigorous investigation and modelling of the multi-
scale interactions which drive a soil profile’s cumulative response. 
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The findings of this study are tied to the data analyzed, which in effect is the present sum 
of CPT case histories. The applicability of these findings to other case-history data—particularly 
that with different parameter space (e.g., soils with unusual minerology, composition, age, etc.; 
earthquakes of large or small magnitude)—or to other models and methodologies, is unknown. In 
addition, the presented findings should be considered in the context of model regionality and 
potential bias. Ultimately, additional data will confirm or update the conclusions drawn above. 

3.7 DATA 

The global dataset was compiled from the following sources, parsed by event, and may soon be 
available in full or part from the Next-Generation Liquefaction project (e.g., Zimmaro et al. [2019]: 

Table 3.5 Sources of global dataset parsed by year and event. 

Year Event Sources 

1964 Mw 7.6 Niigata, JPN Ishihara and Koga [1981], Farrar [1990], Moss et al. [2003] 

1971 Mw6.6 San Fernando, USA Bennett et al., [1998], Toprak and Holzer [2003] 

1975 Mw7.0 Haicheng, CHN Arulandan et al. [1986], Shengcong and Tatsuoka [1984] 

1976 Mw7.6 Tangshan, CHN Shibata and Teparaska [1988], Moss et al. [2009; 2011] 

1979 Mw6.53 Imperial Valley, USA Diaz-Rodriguez [1984], Diaz-Rodriguez and Armijo-Palaio [1991], Moss et al. [2003] 

1981 Mw5.9 Westmoreland, USA Bennett et al. [1984], Seed et al. [1984], Cetin et al. [2000], Moss et al. [2005] 

1983 Mw 7.7 Nihonkai-Chubu, JPN Farrar [1990] 

1983 Mw6.88 Borah Peak, USA Andrus [1986], Andrus and Youd [1987], Moss et al. [2003] 

1987 Mw6.6 Edgecumbe, NZ Christensen [1995], Moss et al. [2003] 

1987 Mw6.54 Superstition Hills, USA Bennett et al. [1984], Cetin et al. [2000], Toprak and Holzer [2003], Moss et al. [2005], 
Holzer and Youd [2007] 

1989 Mw6.93 Loma Prieta, USA Mitchell et al. [1994], Pass [1994], Bennett and Tinsely [1995], Boulanger et al. [1995; 
1997], Kayen et al. [1998], Toprak and Holzer [2003], Youd and Carter [2005] 

1994 Mw6.69 Northridge, USA Abdel-Haq and Hryciw [1998], Bennett et al., 1998, Holzer et al. [1999], Moss et al. 
[2003] 

1995 Mw6.9 Hyogoken-Nambu, JPN Suzuki et al. [2003] 

1999 Mw7.51 Kocaeli, TUR PEER [2000a], Youd et al. [2009] 

1999 Mw7.62 Chi-Chi, TWN Lee et al. [2000], PEER [2000b] 

2008 Mw6.4 Achaia-Ilia, GRC Batilas et al. [2014] 

2008 Mw7.2 El Mayor-Cucapah, MEX Moss et al. [2005]; CESMD [2016], Turner et al. [2016] 

2011 Mw9 Tohoku, JPN Cox et al. [2013], Boulanger and Idriss [2014] 

2012 Mw6.1 Emilia, ITA Papathanassiou et al. [2015], Facciorusso et al. [2015], Servizio Geologico [2016] 
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4 Part Three: On the Extension of Geospatial 
Liquefaction Models to Predict Magnitude of 
Ground Failure, Infrastructure Damage, and 
Economic Loss 

While geospatial models have limitations that can and should be addressed via future research, 
their capacity for predicting liquefaction is promising, as demonstrated in Part Two. Accordingly, 
Part Three explores the extension of the Zhu et al. [2015; 2017] models to predict: 

 the severity of liquefaction ejecta 

 magnitude of ground settlement 

 infrastructure damage and loss 

With respect to infrastructure damage and loss, this study focused on structures built atop shallow 
foundation systems, which are common worldwide. These analyses focused on the Canterbury 
dataset, for which geospatial models performed well (i.e., the locations to be studied are those 
where geospatial models, in general, correctly predicted the occurrence and non-occurrence of 
liquefaction). These efforts represent a best-case scenario for predicting liquefaction consequences 
using geospatial models. Should this effort fail in Canterbury, it is unlikely that attempts elsewhere 
would prove successful. The formulation of damage and loss models is facilitated by 
unprecedented data resulting from the Canterbury earthquakes. In particular, 62,009 foundation-
damage surveys and 53,940 insurance loss assessments are utilized. Geospatial models were found 
to efficiently predict not only the occurrence of liquefaction manifestation, but also its severity. In 
addition, it was found that geospatial models were relatively useful for predicting some modes of 
damage (e.g., global settlement), but not for predicting other significant modes (e.g., stretching, 
twisting, and separation of foundations). These failure modes are presumably dependent on asset- 
and site-specific details that geospatial models do not consider. Owing to this limitation, geospatial 
models are found to be incapable of predicting monetary loss. In all cases where the developed 
models may be useful to forward predictions, compete model details are provided. 
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4.1 PREDICTING SEVERITY OF LIQUEFACTION MANIFESTATIONS 

While the binomial prediction of surficial liquefaction manifestation is important, the severity of 
such manifestation is likely a more useful predictor of damage to civil infrastructure. In other 
words, is minor, sporadic liquefaction predicted, or will it be severe and widespread? Clearly, the 
impact of these scenarios on civil infrastructure can be expected to differ greatly. Thus, the utility 
of geospatial models can be increased through the development of fragility functions that predict 
the specific severity of ground deformation. In this study, fragility functions were developed using 
the approach outlined below, similar to that described by Porter et al. [2006] for predicting damage 
to structural elements. 

The probability of the surface manifestation of liquefaction reaching or exceeding a 
manifestation severity, MS, given a computed geospatial liquefaction index (GLI) value, is herein 
denoted FMS(GLI) and idealized by a lognormal distribution, as is typical for fragility functions 
(e.g., Bradley, [2010]): 

 MS
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 (4.1) 

where Φ denotes the Gaussian cumulative distribution function; GLI is the probability (fractional 
form) of liquefaction manifestation computed by a geospatial model (i.e., the “geospatial 
liquefaction index”); xm is the distribution median, and β is the logarithmic standard deviation.  

While several approaches exist for fitting functions to data, this study utilized the 
maximum likelihood method described in Porter [2016], which identifies the model parameters 
with the highest likelihood of producing the observed data. Specifically, the case histories are 
grouped into m bins of similar GLI, where bins have index i, average value GLIi, and contain ni 
cases, of which fi are cases in which observed manifestations reached or exceeded MS. Assuming 
quantity fi can be estimated from a binomially distributed random variable, Fi, Equation (4.2) gives 
the probability of observing quantity fi among ni cases, if the probability of an individual case 
exceeding MS is given by Equation (4.1). 
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In Equation (4.2), pi is defined by Equation (4.1), evaluated at the GLIi. Lastly, the values 
of parameters xm and β that maximize the likelihood of producing the observed data are determined. 
This likelihood is given by the product of the probabilities in Equation (4.2), multiplied over all 
bins: 
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Using this approach and approximately 15,000 case-histories compiled from the 
Canterbury earthquakes, fragility functions were developed for two geospatial models: GGM2 and 
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RGM3. These models were chosen because they were the best-performing models for the global 
and Canterbury datasets, respectively, as determined from ROC analyses presented in Part 1 of 
this report. Also as described in Part Two, the severity of liquefaction manifestation was classified 
for each of the ~15,000 case-histories using the Green et al. [2014] criteria, which classifies the 
severity of liquefaction ejecta as either: “none”, “minor”, “moderate”, or “severe”. 

The resulting fragility functions are shown in Figure 4.1 for geospatial models GGM2 and 
RGM3, respectively. In addition, coefficients (i.e., Xm and  values) are provided in Table 4.1 for 
all functions graphed in Figure 4.1. These functions compute the probabilities of reaching or 
exceeding three manifestation severities (MS), where the MS is that classified per the Green et al. 
[2014] criteria. Using the coefficients provided in Table 4.1, analysts may extend the Zhu et al. 
[2015; 2017] geospatial models to predict MS. 

It can be seen in Figure 4.1 that each of these geospatial models are capable of predicting 
not only the binomial occurrence of liquefaction ejecta, but also its severity (i.e., extent and 
intensity), which should better relate to damage potential. In other words, as the GLI increases, so 
too does the probability of exceeding a given MS. It should be emphasized that these functions 
were developed from and apply to the Canterbury dataset. Discretion should be used when 
applying these functions to other locales (i.e., to earthquakes worldwide). 

 

   
Figure 4.1 Fragility functions for predicting the severity of ground failure using the: 

(a) GGM2 global geospatial model; and (b) RGM3 region-specific 
geospatial model. 

  

(a) (b) 
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Table 4.1 Fragility-function coefficients for geospatial models GGM2 and RGM3 
(plotted in Figure 4.1), which can be used to predict the probability of 
exceeding a given severity of liquefaction manifestation. 

  GGM2 RGM3 

Manifestation severity (MS) xm β xm β 

Minor 0.4924 0.1970 0.1231 1.0141 

Moderate 0.5659 0.1963 0.3467 1.3303 

Severe 0.8359 0.3121 0.7457 0.0694 

 

4.2 PREDICTING GROUND SETTLEMENT 

Vertical and horizontal ground deformation data was obtained from the New Zealand Geotechnical 
Database (NZGD, 2012) for the Mw6.2, 22 February 2011 Christchurch earthquake. These 
deformations were measured via airborne LIDAR following the earthquake and include local 
liquefaction-induced movements as well as regional tectonic movements associated with the event. 
To isolate liquefaction-induced deformations, tectonic movements [NZGD 2012] were first 
subtracted from LIDAR measurements. While airborne LIDAR enabled deformations to be 
efficiently measured across a very large area, it comes with the trade-off of a +/- 7-cm 
measurement accuracy [NZGD 2015]. Due to this uncertainty, many negative settlements (i.e., 
inferred ground heave) were observed across the study area that may not reflect actual conditions. 
Despite this relatively large measurement uncertainty, the LIDAR data allows for significantly 
more settlement case histories to be compiled than in all previous earthquakes combined. 

While settlement data is available from four major Canterbury earthquakes—the four 
September 2010 Mw7.1, 22 February 2011 Mw6.2, 13 June 2011 Mw5.9, and 23 December 2011, 
Mw5.9 earthquakes—we choose to focus only on the February 2011 earthquake for the following 
reasons. First, the 13 June and 23 December data are complicated by the fact that multiple, similar-
magnitude events occurred only minutes-to-hours apart. As a result, pore pressures were elevated 
at the time of latter events (complicating predictions), and LIDAR data captured the effects of 
multiple earthquakes, which complicated analysis of the measurements. Second, because pre-
earthquake reference LIDAR is of lower quality, the measurement uncertainty of settlements 
induced by the 4 September event (15 cm) is twice that of subsequent events (7 cm). Therefore, 
the settlement case histories compiled from the February 2011 event represent the highest quality 
data available. 

Using this data, observed settlements were plotted as a function of geospatial model values 
(i.e., the computed probability of liquefaction manifestation) in Figures 4.2 and 4.3 for models 
GGM2 and RGM3, respectively. It can be seen the correlation between observed settlement and 
geospatial model values is relatively weak; moreover, the settlements are predicted even for 
geospatial model values of zero. Thus, even though these same models performed well in 
predicting manifestations of liquefaction, they appear to be poor predictors of free-field ground 
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settlement. Note: popular geotechnical models developed specifically for predicting ground 
settlement have previously been shown to also perform very poorly on this dataset [Geyin and 
Maurer 2019a]. Accordingly, the poor correlation between settlement and geospatial model-
predictions could be due to the large (and potentially biased) uncertainty in “observed” settlements. 
Unfortunately, given the means of data collection and processing, it is not straightforward to 
evaluate whether the observed measurements are in fact biased; in the authors’ opinion, this is 
likely. Nonetheless, from this analysis of the Canterbury dataset, it must be tentatively concluded 
that while geospatial models can efficiently predict liquefaction ejecta (both its occurrence and 
severity), they are relatively incapable of predicting the magnitude of ground settlement. While 
functions for predicting settlement are defined in Figures 4.2 and 4.3, they are not recommended 
for use in forward analyses. 

 

 

Figure 4.2 GGM2 model value vs. measured ground settlement. 
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Figure 4.3 RGM3 model value vs. measured ground settlement. 

4.3 PREDICTING PHYSICAL DAMAGE TO INFRASTRUCTURE 

While predicting the manifestation of liquefaction in the free field (e.g., sand boils or ground 
settlement) is an important component of liquefaction hazard assessment, the ensuing physical 
damage and monetary loss are arguably of greatest importance. Accordingly, fragility functions 
were developed using post-earthquake performance data from the Canterbury earthquakes. In this 
regard, the present study focused on the performance of structures founded atop shallow 
foundation systems, which are common worldwide and particularly prone to liquefaction damage. 
The realization of these functions was facilitated by post-earthquake damage surveys of 62,000 
structures founded on several variants of shallow foundation and overlying potentially liquefiable 
soils. These surveys were performed under the auspices of the New Zealand Earthquake 
Commission (EQC) and were compiled by Taylor and Tonkin, Ltd. A team of more than 400 
engineers performed the surveys throughout the Canterbury earthquake sequence, documenting 
both the mechanism (i.e., mode) and magnitude of damage observed. 

The shallow foundations were categorized into four variants: 

 timber floors on shallow piles 

 timber floors on internal shallow piles with perimeter concrete footings 

 concrete slab-on-grade 

 mixed or unknown shallow foundations 

y = 0.061x + 0.0903
R² = 0.0058

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

S
et

tl
em

en
t (

m
)

RGM3 Model Value (or Index)

Settlement Linear (Settlement)



57 

Surveyors parsed damages into seven different modes, as depicted in Figure 4.4: 

 stretching 

 hogging 

 dishing 

 twisting 

 tilting 

 discontinuous foundation 

 global settlement 

Each mode of damage was also classified as “minor”, “moderate”, or “severe” based on the 
measured magnitude of deformation. As shown in Figure 4.4, global settlements were deemed 
“minor” if less than 5 cm; “moderate” if between 5 and 10 cm; and “major” if exceeding 10 cm. 
In some instances, multiple modes of damage were observed and recorded. In total, 62,000 unique 
sites were inspected for foundation damage. 

 

Figure 4.4 Foundation-damage mechanisms and severity classifications. 
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While many properties were inspected multiple times, most were not inspected after every 
individual earthquake comprising the Canterbury sequence. In the cases where inspections were 
repeated multiple times for a given foundation (e.g., an inspection was performed after the 
September 2010 event and after the February 2011 event), the results were compared to account 
for compounding damages. In other words, if a foundation was classified as having “moderate” 
damage after both the September and February earthquakes, it was assumed that the February 
earthquake did not contribute any new damage. Similarly, later inspections with a greater severity 
of classified damage than a previous inspection were reduced in accordance with the previous 
classification damage was “minor” after the September 2010 earthquake and “moderate” after the 
February 2011 earthquake, it was assumed that the latter was responsible for the difference. 
Additionally, some foundations were only inspected once, or were only inspected after 
experiencing multiple earthquakes, in which case the observe damage could have conceivably 
occurred in one of several earthquakes. In these cases, the observed damage severity was 
distributed among prior events using the computed geospatial model values: 

event GLI
Event severity = survey severity  

(previous event GLI  + survey event GLI)



 (4.4) 

where the GLI is the computed geospatial model value, or “geospatial liquefaction index,” which 
ranges from 0 to 1. Thus, Equation (4.4) assumes that events in which the GLI was greater were 
responsible for more damage, and vice-versa. While these assumptions are less than ideal, they 
allow for a significantly larger dataset to be analyzed. 

Using this dataset, a total of 240 fragility functions were developed using the same 
methodology previously described in this report. In particular, functions were formulated for the 
seven damage modes and three damage severities shown in Figure 4.4. In addition, functions were 
developed for predicting the severity of damage, independent of damage mode (i.e., the greatest 
severity of damage, regardless of which mode it was associated with). These efforts were repeated 
for the four types of shallow foundation system named previously, and for the case where all 
variants of shallow foundation were grouped together. These latter functions may be more 
desirable for general, large-scale analyses in which parcel-specific information is unavailable, but 
where it may be reasonably assumed that most structures are on some variant of shallow 
foundation. As was done previously for MS and ground settlement, two geospatial models were 
evaluated for predicting foundation damage: GGM2 and RGM3. These models were chosen 
because they were the best-performing models for the global and Canterbury datasets, respectively, 
as determined from ROC analyses; see Part 2. 

The resulting fragility functions for RGM3 are presented in Figure 4.5 for the case where 
all variants of shallow foundation are grouped together. In many ways, the findings to be discussed 
with respect to Figure 4.5 are also representative of those for the GGM2 model, and for specific 
foundation types. The coefficients for all fragility functions shown in Figure 4.5 are provided in 
Table 4.2, allowing analysts to use the developed functions in forward analyses. However, as can 
be seen in Figure 4.5, the utility of these functions is generally limited. For most damage modes, 
the functions indicate very low probabilities of exceedance, even when geospatial models predict 
severe liquefaction. In other words, the geospatial model is not well-correlated to the occurrence 
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or severity of foundation damage. In some cases, fragility functions could not be fit to the data 
using the lognormal CDF, which requires a positive correlation between the predictive index 
(geospatial model) and the outcome (foundation damage). In these cases, the data to be fit is shown, 
but fragility functions are not provided. 

This lack of correlation might be attributable to the fact that some failure modes strongly 
depend on “meso scale” details (e.g., asset- and site-specific features) that are inadequately 
predicted by relatively coarser, “macro scale” geospatial data. As an example, damage modes like 
stretching and dishing likely depend on the exact geometry of the foundation, the quality of its 
construction, and the spatial variability of the subsurface. If so, these factors are obviously not 
considered by the geospatial model; therefore, they should not be expected to accurately predict 
response. In contrast, some of the developed functions (e.g., global settlement) do appear useful. 
That is, the geospatial model demonstrates a capability to predict damage. This distinction may 
arise from the fact that some damage modes are less dependent on site- and asset-specific features. 
If the subsurface is relatively homogeneous and liquefiable (and we know geospatial models can 
predict liquefaction), then the models appear relatively more capable of predicting damage if it 
manifests in the form of global settlements or tilting (which tend to be strongly correlated). 

Provided in Appendix B of this report are the complete set of 240 fragility functions for 
specific foundation types and for the GGM2 model. Coefficients are also provided in Appendix B 
for each of the 240 functions, provided the data could be fit with the lognormal CDF. When this 
effort failed, it generally indicates that little-to-no correlation exists between the outcome and 
predictor. From the functions presented in Appendix B, findings for specific foundation types were 
generally the same as when all foundation variants were combined. This is somewhat surprising, 
given the expectation that different shallow foundation designs could be expected to perform 
differently (i.e., sustain lesser or greater damage when liquefaction occurs). Similarly, the 
functions for global model GGM2 were likewise mixed but generally limited in their success. As 
was the case with the regional model, damage modes that were less dependent on site- and asset-
specific features (e.g., structural geometry, construction quality, subsurface variability, ground 
slope) were apparently easier to predict via geospatial data. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 4.5 Fragility functions for predicting the probability of damage to shallow foundations (all variants) using regional 
geospatial model RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) global settlement 
failure; (e) twisting failure; (f) discontinuous foundation failure; (g) tilting failure; and (h) the greatest observed 
damage severity, independent of failure mode. 
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Table 4.2 Fragility-function coefficients for geospatial model RGM3 (plotted in Figure 4.5), which can be used to predict 
the probability of liquefaction-induced foundation damage exceeding a given severity, as defined in Figure 3.4). 

 

  
Stretching Hogging Dishing Twisting Tilting 

Discontinuous 
foundation 

Global 
settlement 

Worst 
(all) 

Timber floor on piles 
(Type A) 

Minor 
β  0.078 16.930 15.290 - 24.548 - 4.954 - 

xm  1.449 3579715134.903 1464296169.904 - 365609.132 - 17.761 - 

Moderate 
β  5.133 5.209 7.830 2.899 1.884 4.903 2.818 2.370 

xm  73527.350 7220.297 3529586.069 15.665 3.151 8470.387 38.399 3.084 

Severe 
β  6.846 0.117 0.117 6.754 7.110 0.117 8.984 3.630 

xm  34879262.158 16.153 16.153 2811468.136 4142715.733 16.153 2866924982.818 230.295 

             

Timber on internal 
piles with perimeter 

concrete footing 
(Type B) 

Minor 
β  10.877 12.375 12.237 - 10.348 11.452 3.451 - 

xm  60115066.790 8700668.925 17676579.826 - 179.343 16802492.747 5.717 - 

Moderate 
β  8.781 5.681 4.344 2.926 3.162 5.451 3.038 2.231 

xm  155216559.280 25013.577 1864.084 16.269 23.475 24604.890 58.448 2.560 

Severe 
β  8.305 6.676 8.399 9.131 7.449 11.491 6.037 2.615 

xm  596434178.231 19365811.836 1346455813.461 446729231.433 4123055.832 1232641633278.430 2067746.754 31.646 

             

Concrete Ssab on 
grade (Type C) 

Minor 
β  15.790 10.109 - - 16.962 10.422 3.895 - 

xm  284531612543.277 11115828.039 - - 13054.515 4562906.457 4.141 - 

Moderate 
β  3.659 3.500 2.013 2.755 3.569 4.339 2.193 2.397 

xm  757.466 653.472 13.199 18.869 45.746 2741.985 9.329 4.062 

Severe 
β  1.946 3.087 5.077 2.732 5.871 2.297 4.450 2.975 

xm  35.695 1576.805 143309.416 250.134 132947.483 127.870 20176.974 85.422 

             

Mixed foundations 
(Mixed foundations) 

Minor 
β  15.062 10.181 - - 8.452 11.966 3.677 - 

xm  5103886.446 88898.082 - - 1.419 178572.180 1.896 - 

Moderate 
β  13.861 11.181 5.656 7.154 3.366 6.183 5.249 2.469 

xm  75906344189.413 315569458.331 7939.727 3453.424 10.297 10804.985 1102.818 1.773 

Severe 
β  0.117 6.439 5.688 14.389 8.516 12.585 8.772 2.385 

xm  16.153 2401770.649 864209.823 389815492927.571 961245.538 289653696327.526 55254278.802 9.426 

             

All Foundations 

Minor 
β  12.013 11.999 14.918 - 17.147 13.108 3.219 - 

xm  546198426.962 26795894.400 2530161618.342 - 19932.695 291675689.965 2.810 - 

Moderate 
β  5.318 4.829 3.428 2.602 2.610 4.095 3.163 2.117 

xm  34125.943 5985.564 247.960 10.802 9.882 1075.954 65.977 2.385 

Severe 
β  6.514 4.972 5.670 6.946 6.632 8.743 6.132 2.688 

xm  5165746.808 302650.524 1232623.327 3420789.598 628953.677 1429244855.777 1299018.521 41.231 
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4.4 Predicting Monetary Loss 

Whereas insurance loss assessments are typically private and closely guarded, the unique role of 
the New Zealand government as a land insurer led to their assessment of losses for 53,940 
structures affected by liquefaction. To assist with processing insurance claims during the 
Canterbury sequence, assessors were sent to every insured property to assess the repair/rebuild 
cost. In conjunction with the replacement cost, the cost of liquefaction-induced damage can be 
computed as a fraction of replacement cost, defined herein as the building damage ratio (BDR). 
Accordingly, if the BDR equals 1, the cost of repairing damage is equal to the cost of replacing 
the structure. Larger BDRs therefore indicate greater losses. Accordingly, using methodology and 
reasoning similar to that presented in the previous section of this report, the development of 
functions for predicting BDR, conditioned on the RGM3 or GGM2 geospatial models, was 
explored. In performance-based earthquake engineering lexicon, these are often referred to as 
“vulnerability” functions; if successful, they allow losses from liquefaction to be rapidly estimated 
in near-real-time after an earthquake. 

Considering all variants of shallow foundation, BDR values were plotted versus RGM3 
and GGM2 geospatial model values in Figures 4.6 and 4.7, respectively. Using linear regression, 
functions were fit the medians of the binned data; the 16th and 84th percentile values from each 
BDR bin are also shown and indicate a large degree of uncertainty. As an example, at an RGM3 
value of 0.6, the 16th–84th percentile range of BDR is 0.05 to 0.53. Moreover, it can be seen in 
Figure 4.6 that the correlation between BDR and RGM3 is relatively weak and only slightly 
positive. As the geospatial model predicts increasingly more severe liquefaction, the expected 
monetary loss should likewise increase, but it does not. The situation is worse for global geospatial 
model GGM2, which is negatively correlated to BDR, meaning that as the expected severity of 
liquefaction increases, the expected monetary loss from liquefaction decreases. 

While these results are disappointing, they are unsurprising when considering the inability 
of the geospatial models to predict all modes of damage. It was previously shown that while 
geospatial models are relatively useful for predicting some modes (e.g., global settlement of 
foundations), they appear not to capture other significant and very costly modes (e.g., stretching, 
twisting, and separation of foundations), which are presumably dependent on asset- and site-
specific details that geospatial models do not consider. Given the inability of the RGM3 and GGM2 
models to predict all modes of damage, they cannot be expected to accurately predict loss, given 
that some component of loss is associated with damage modes that were poorly predicted. 
Accordingly, while functions are provided in Figures 4.6 and4.7 for extending geospatial models 
to predict loss, they are not recommended for use at the present time. 

  



63 

 
Figure 4.6 RGM3 model value vs. building damage ratio, which can be used to 

predict monetary loss resulting from liquefaction-induced damage. 

 
 
 

 
Figure 4.7 GGM2 model value vs. building damage ratio, which can be used to 

predict monetary loss resulting from liquefaction-induced damage. 
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4.5 Overall Project Conclusions and Recommendations 

The most salient conclusions of this study are summarized as follows: 

1. Geospatial models demonstrate provocative potential for predicting the occurrence 
and severity of surficial liquefaction manifestations in the free field. Moreover, 
these models outperform geotechnical models (which are far costlier and time-
consuming to implement) for large subsets of the data analyzed; 

2. Geospatial models were significantly less efficient on a global scale (i.e., when 
considering all case histories worldwide) and provided predictions much closer to 
random guessing than to perfection. This highlights the inherent difficulty of 
predicting what is below the ground using only information from above the ground. 
Efficient geospatial models may be developed for certain locales, but the 
development of a single model that efficiently predicts subsurface traits across 
various seismological, geological, geomorphic, and climatic settings is inherently 
challenging. Given these findings, the global “portability” of geospatial models 
must be improved and should be a future research priority. Results from the testing 
of geotechnical vs. geospatial models provide useful insights for improving the 
latter. Specific lessons and pathways for achieving this have been presented herein; 

3. Functions were developed to predict infrastructure damage and loss using 
geospatial models. These functions were developed for several specific types of 
shallow foundation and for several specific modes of foundation failure. In 
addition, functions combining all foundation types and all modes of failure were 
developed. These broadly applicable functions do not require asset-specific 
information (i.e., the specific type of foundation) and attempt to predict the severity 
of damage independent of the associated failure mode. These functions may be 
more desirable for general, large-scale analyses. However, the utilities of the 
developed functions are generally limited, regardless of whether asset-specific 
information is available. This may be attributable to the fact that some failure 
modes strongly depend on “meso-scale” details (e.g., building geometry, 
construction quality, subsurface variability) that are inadequately captured by 
“macro-scale” geospatial data; 

4. Lastly, considering (a) the relatively poorer performance of geospatial models 
globally; (b) the relative inability of the models to predict liquefaction 
consequences (even when the models efficiently predict liquefaction); (c) the 
primary applications of the models (e.g., post-earthquake reconnaissance and 
response; regional simulations); and (d) the seminal state of geospatial model-
development, it is the authors’ opinion that near-term investment should focus on 
model improvement, rather than model extension. Research that improves the 
capacity to predict liquefaction (e.g., via development of new models or 
modification of existing models) is likely to be more impactful than research that 
adapts existing models for prediction of downstream consequences. Geospatial 
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liquefaction models have demonstrated surprising and provocative potential, but 
also significant room for improvement. 

 

  



66 

  



67 

REFERENCES 

Abdel-Haq A., Hryciw R.D. [1998]. Ground settlement in Simi Valley following the Northridge earthquake, J. 

Geotech. Geoenviron. Eng., 124(1):80–89, https://doi.org/10.1061/(ASCE)1090-0241[1998]124:1(80). 

Abrahamson N.A., Youngs R.R. (1992). A stable algorithm for regression analyses using the random effects model, 

Bull. Seismol. Soc. Am. 82(1):505–510. 

Ahmadi M.M., Robertson P.K. [2005]. Thin-layer effects on the CPT qc measurement, Can. Geotech. J., 

42(5):1302–1317, https://doi.org/10.1139/t05-036. 

Allstadt K.E., Thompson E.M., Hearne M., Wald D.J., Fee J.M., Martinez E.M., Hunter E., Brown J.D. (2019). The 

new USGS near-real-time ground failure product and its performance for recent earthquakes. Seismological 

Society of America Annual Meeting, Seattle, WA. 

Andrus R.D., Youd T.L. (1987). Subsurface investigation of a liquefaction-induced lateral spread Thousand Springs 

Valley, Idaho, Misc. Paper GL-87-8, U.S. Army Corps of Engineers, Waterways Experiment Station, 

Vicksburg, MS. 

Andrus R.D., (1986). Subsurface Investigations on a Liquefaction Induced Lateral Spread, Thousand Springs 

Valley, Idaho: Liquefaction Recurrence and a Case History in Gravel, M.S. Thesis, Dept. of Civil Engineering, 

Brigham Young University, Provo, Utah. 

Anselin L. (1995). Local indicators of spatial association—LISA, Geogr. Anal., 27(2):93–115, 

https://doi.org/10.1111/j.1538-4632.1995.tb00338.x. 

Arango I., Lewis M.R., Kramer C. (2000). Updated liquefaction potential analysis eliminates foundation retrofitting 

of two critical structures, Soil Dyn. Earthq. Eng., 20:17–25, https://doi.org/10.1016/S0267-7261(00)00034-8. 

Architectural Institute of Japan (200). Recommendations for Design of Building Foundations, 486 pgs. 

Arulanandan K., Yogachandran C., Meegoda N.J., Ying L., Zhauji S. (1986). Comparison of the SPT, CPT, SV and 

electrical methods of evaluating earthquake induced liquefaction susceptibility in Ying Kou City during the 

Haicheng earthquake, Geotechnical Special Publication, 6:389–415, ASCE. 

Batilas A., Pelekis P., Vlachakis V., Athanasopoulos G. (2014). Soil liquefaction/nonliquefaction in the Achaia-Ilia 

(Greece) 2008 earthquake: Field evidence, site characterization and ground motion assessment, Inter. J. 

Geoeng. Case Hist., 2(4):270–287, https://doi.org/10.4417/IJGCH-02-04-03. 

Begg J., Jones K. (2012). 20,000 years of time in Christchurch, Presentation to New Zealand Geotechnical Society, 

Canterbury Branch, June 28, 2012, New Zealand Geotechnical Society, Wellington, NZ. 

Bennett M.J., Tinsley J.C. III (1995). Geotechnical data from surface and subsurface samples outside of and within 

liquefaction-related ground failures caused by the October 17, 1989, Loma Prieta earthquake, Santa Cruz and 

Monterey Counties, California, U.S. Geological Survey Open-File Report 95-663, Menlo Park, CA, 

https://doi.org/10.3133/ofr95663. 

Bennett M.J., McLaughlin P.V., Sarmiento J.S., Youd T.L. (1984). Geotechnical investigation of liquefaction sites, 

Imperial Valley, California, U.S. Geological Survey Open-File Report 84-252, 

https://doi.org/10.3133/ofr84252. 

Bennett M.J., Ponti D.J., Tinsley J.C., III, Holzer, T.L., and Conaway, C.H., [1998]. Subsurface geotechnical 

investigations near sites of ground deformations caused by the January 17, 1994, Northridge, California, 

earthquake, U.S. Geological Survey, Open-File Report 98-373, https://doi.org/10.3133/ofr98373. 

Beven K.J., Kirkby M.J. (1979). A physically based, variable contributing area model of basin hydrology, Hydrol. 

Sci. Bull., 24:43–69, https://doi.org/10.1080/02626667909491834. 

Boulanger R.W., DeJong J.T. (2018). Inverse filtering procedure to correct cone penetration data for thin-layer and 

transition effects, Proceedings, Cone Penetration Testing 2018, M.A. Hicks, F. Pisano, and J.P. Peuchen, eds., 

Delft University of Technology, The Netherlands, pp. 25–44. 



68 

Boulanger R.W., Idriss I.M. (2006). Liquefaction susceptibility criteria for silts and clays, J. Geotech. Geoenviro. 

Eng., 132(11):1413–1426, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413). 

Boulanger R.W., Idriss I.M. (2007). Evaluation of cyclic softening in silts and clays, J. Geotech. Geoenviro. Eng., 

133(6): 641–652, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(641). 

Boulanger R.W., Idriss I.M. (2014). CPT and SPT-based liquefaction triggering procedures, Report No. UCD/CGM-

14/01, Center for Geotechnical Modeling, University of California, Davis, CA. 

Boulanger R.W., Idriss I.M., Mejia L.H. (1995). Investigation and evaluation of liquefaction related ground 

displacements at Moss Landing during the 1989 Loma Prieta earthquake, Report No. UCD/CGM-95/02, Center 

for Geotechnical Modeling, University of California, Davis, 231 pgs. 

Boulanger R.W, Khosravi M., Cox B.R., DeJong J.T. (2019). Liquefaction evaluation for an interbedded soil 

deposit: St. Teresa's School, Christchurch, New Zealand, Proceedings, IACGE 2018: Geotechnical and Seismic 

Research and Practices for Sustainability, Chongqing, China, pp. 686–704. 

Boulanger R.W., Mejia L.H., Idriss I.M. (1997). Liquefaction at Moss Landing during Loma Prieta earthquake, J. 

Geotech. Geoenviro. Eng., 123(5):453–67, https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(453). 

Bradley B.A. (2012). Strong ground motion characteristics observed in the 4 September 2010 Darfield, New 

Zealand earthquake, Soil Dyn. Earthq. Eng., 42:32–46, https://doi.org/10.1016/j.soildyn.2012.06.004. 

Bradley B.A. (2013). A New Zealand-specific pseudo spectral acceleration ground-motion prediction equation for 

active shallow crustal earthquakes based on foreign models, Bull. Seismol. Soc. Am., 103(3):1801–1822. 

Bradley B.A. (2014). Site-specific and spatially-distributed ground motion intensity estimation in the 2010–2011 

Christchurch earthquakes, Soil Dyn. Earthq. Eng., 48:35–47, https://doi.org/10.1016/j.soildyn.2014.01.025. 

Bradley B.A. (2016). Strong ground motion characteristics observed in the 13 June 2011 Mw6.0 Christchurch, New 

Zealand earthquake, Soil Dyn. Earthq. Eng., 91:23–38, https://doi.org/10.1016/j.soildyn.2016.09.006. 

Bradley B.A., Cubrinovski M. (2011). Near-source strong ground motions observed in the 22 February 2011 

Christchurch earthquake, Seismol. Res. Lett., 82(6):853–865, https://doi.org/10.1785/gssrl.82.6.853. 

Bradley B.A., Razafindrakoto H., Maurer B.W., Motha J., Tarbali L., Lee, R. (2018). Simulation-based ground 

motion prediction of historical and future New Zealand earthquakes and consequent geohazard impacts, 

Geotechnical Special Publication, 291:29-42, https://doi.org/10.1061/9780784481462.004. 

Bradley B.A., Savarimuthu S., Lagrava D., Huang J., Motha J., Polak V., Bae S. (2017). SeisFinder: A web 

application for extraction of data from computationally-intensive earthquake resilience calculations, Poster 

Presentation, 2017 SCEC Annual Meeting. Palm Springs, CA. 

Brandenberg S.J., Zimmaro P., Stewart J.P., Kwak D.Y., Franke K.W., Moss R.E., Kramer S.L. (2020). Next-

generation liquefaction database. Earthq. Spectra, https://doi.org/10.1177/8755293020902477. 

Bray J., Cubrinovski M., Zupan J., Taylor M. (2014). Liquefaction effects on buildings in the central business 

district of Christchurch, Earthq. Spectra 30(1):85–109, https://doi.org/10.1193/022113EQS043M. 

Bray J.D., Macedo J. (2017). Simplified procedure for estimating liquefaction-induced building settlement, Soil 

Dyn. Earthq. Eng., 102:215–231, https://doi.org/10.1016/j.soildyn.2017.08.026. 

Bray J.D., Sancio R.B. (2006). Assessment of the liquefaction susceptibility of fine-grained soils, J. Geotech. 

Geoenviro. Eng., 132(9):1165–1177, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165). 

Brennan A.J., Madabhushi S.P. (2005). Liquefaction and drainage in stratified soil, J. Geotech. Geoenviro. Eng., 

131(7):876–885, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(876). 

Brown L.J. (1975). Water well data. Sheet 576/7-8, Belfast-Styx, New Zealand Geological Survey, Report 72. 

Brown L.J., Beetham R.D., Paterson B.R., Weeber J.H. (1995). Geology of Christchurch, New Zealand, Environ. 

Eng. Geosci., 1(4):427–488, nttps://doi.org/10.2113/gseegeosci.I.4.427. 

Brown L.J., Weeber J.H. (1992) Geology of the Christchurch urban area: Institute of Geological and Nuclear 

Sciences Geological Map 1, Institute of Geological and Nuclear Sciences Limited, Lower Hutt, New Zealand, 

scale, 1(25,000), 1. 



69 

Brown L.J., Beetham R.D., Paterson B.R., Weeber J.H. (1995). Geology of Christchurch, New Zealand, Environ. 

Eng. Geosci., 1(4):427–488, nttps://doi.org/10.2113/gseegeosci.I.4.427. 

Buck J.R., Daniel M.M, Singer A.C, (2002). Computer Explorations in Signals and Systems Using MATLAB®, 2nd 

Ed., Upper Saddle River, NJ: Prentice Hall. 

Bullock Z., Karimi Z., Dashti S., Porter K., Liel A.B., Franke K.W., (2018). A physics-informed semi-empirical 

probabilistic model for the settlement of shallow-founded structures on liquefiable ground. Géotechnique, 

https://doi.org/10.1680/jgeot.17.P.174. 

Byrne P.M., Park S.S., Beaty M., Sharp M.K., Gonzalez L., Abdoun T. (2004). Numerical modeling of liquefaction 

and comparison with centrifuge tests, Can. Geotech. J., 41(2):193–211, https://doi.org/10.1139/t03-088. 

CERA [2013]. Purpose and Scope of the Canterbury Geotechnical Database, Canterbury Earthquake Recovery 

Authority, Information Note, Revision D. Christchurch, New Zealand. 

CESMD (2016). U.S. Structural and Ground Response Data, Center for Engineering Strong Motion Data, 

www.strongmotioncenter.org/. 

Cetin K.O., Bilge H.T., Wu J, Kammerer A.M., Seed R.B., [2009]. Probabilistic model for the assessment of 

cyclically induced reconsolidation (volumetric) settlements, J. Geotech. Geoenviro. Eng., 135(3):387–398, 

https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(387). 

Cetin K.O., Seed R.B., Moss R.E.S., Der Kiureghian A.K., Tokimatsu K., Harder L.F., Kayen R.E. (2000). Field 

performance case histories for SPT-based evaluation of soil liquefaction triggering hazard, Geotechnical 

Engineering Research Report No. UCB/GT-2000/09, University of California, Berkeley, CA. 

Chalmers G., McLennan N., Barsanti L. (2013). Lyttelton port of Christchurch seismic resilience from an owners’ 

perspective, Proceedings of Ports 2013: Success Through Diversification, Seattle, WA, pp. 1405–1414. 

Christensen S.A. (1995). Liquefaction of Cohesionless Soils in the March 2, 1987 Edgecumbe Earthquake, Bay of 

Plenty, New Zealand, and other Earthquakes, Master of Engineering Thesis, Department of Civil Engineering, 

University of Canterbury, Christchurch, New Zealand. 

Cox B.R., Stolte A.C., Stokoe K.H., Wotherspoon L.M. (2018). A Direct-Push Crosshole (DPCH) test method for 

the in situ evaluation of high-resolution P-and S-wave velocities, Geotech. Test. J., 42(5):1101–1132, 

https://doi.org/10.1520/GTJ20170382. 

Cox B.R., Boulanger R.W., Tokimatsu K., Wood C., Abe A., Ashford S., Donahue J., Ishihara K., Kayen R., 

Katsumata K., Kishida T., Kokusho T., Mason B., Moss R., Stewart J., Tohyama K., Zekkos D., [2013]. 

Liquefaction at strong motion stations in Urayasu City during the 2011 Tohoku-Oki earthquake, Earthq. 

Spectra, 29(S1):S55–S80, https://doi.org/10.1193/1.4000110. 

Cubrinovski M., Bray J.D., Taylor M., Giorgini S., Bradley B.A., Wotherspoon L., Zupan J. (2011). Soil 

liquefaction effects in the central business district during the February 2011 Christchurch earthquake, Seismol. 

Res. Lett., 82:893–904, https://doi.org/10.1785/gssrl.82.6.893. 

Cubrinovski M., Ishihara K. (1998). State concept and modified elastoplasticity for sand modeling, Soils Found., 

38(4):213–225, https://doi.org/10.3208/sandf.38.4_213. 

Cubrinovski M., Winkley A., Haskell J., Palermo A., Wotherspoon L., Robinson K., Bradley B., Brabhaharan P., 

Hughes M. (2014). Spreading-induced damage to short-span bridges in Christchurch, New Zealand, Earthq. 

Spectra, 30(1):57–83, https://doi.org/10.1193/030513EQS063M. 

Cubrinovski M., Robinson K. (2016). Lateral spreading: Evidence and interpretation from the 2010–2011 

Christchurch earthquakes, Soil Dyn. Earthq. Eng., 91:187–201, https://doi.org/10.1016/j.soildyn.2016.09.045. 

Cubrinovski, M., Rhodes, A., Ntritsos, N., and van Ballegooy, S., (2019). System response of liquefiable deposits, 

Soil Dyn. Earthq. Eng., 124:212–229, 

Darby K.M., Bronner J.D., Parra Bastidas A.M., Boulanger R.W., DeJong J.T. (2016). Effect of shaking history on 

the cone penetration resistance and cyclic strength of saturated sand, Proceedings, Geotechnical and Structural 

Engineering Congress 2016, Phoenix, AZ, pp. 1460–1471. 



70 

de Magistris F.S., Lanzano G., Forte G., Fabbrocino G. (2013). A database for PGA threshold in liquefaction 

occurrence, Soil Dyn. Earthq. Eng., 54:17–19, https://doi.org/10.1016/j.soildyn.2013.07.011. 

DeLong E.R., DeLong D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated 

receiver operating characteristic curves: a nonparametric approach, Biometrics, 44:837–845, http://doi.org/ 

10.1111/aas.12728. 

Diaz-Rodriquez J.A. (1984). Liquefaction in the Mexicali Valley during the earthquake of June 9, 1980, 

Proceedings, Eighth World Conference on Earthquake Engineering, San Francisco, CA, pp. 223–230. 

Diaz-Rodriquez J.A., Armijo-Palacio G. (1991). Liquefaction potential of fine cohesionless soils using the CPT, 

Soils Found., 31(3):111-119, https://doi.org/10.3208/sandf1972.31.3_111. 

Dobry R., Ladd R.S., Yokel F.Y., Chung R.M., Powell D. (1982). Prediction of Pore Water Pressure Buildup and 

Liquefaction of Sands During Earthquakes by the Cyclic Strain Method, National Bureau of Standards, Vol. 

138, Gaithersburg, MD, https://doi.org/10.6028/NBS.BSS.138. 

Dobry R., Thevanayagam S., El-Sekelly W., Abdoun T., Huang Q (2019). Large-scale modeling of preshaking 

effect on liquefaction resistance, shear wave velocity, and CPT tip resistance of clean sand, J. Geotech. 

Geoenviro. Eng., 145(10):04019065, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002080. 

Facciorusso J., Madiai C., Vannucchi G. (2015). CPT-based liquefaction case history from the 2012 Emilia 

Earthquake in Italy, J. Geotech. Geoenviro. Eng., 141(12):05015002, https://doi.org/10.1061/(ASCE)GT.1943-

5606.0001349. 

Farrar J.A. (1990). Study of in situ testing for evaluation of liquefaction resistance, R-90-06, Geotechnical Services 

Branch, Bureau of Reclamation, U.S. Department of the Interior, Denver CO. 

Fawcett T. (2006). An introduction to ROC analysis, Pattern Recogn. Lett., 27(8):861–874, 

https://doi.org/10.1016/j.patrec.2005.10.010. 

FEMA (2013). Earthquake Model HAZUS-MH 2.1 Technical Manual, Federal Emergency Management Agency, 

Washington, D.C. 

Fick S.E., Hijmans R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas, 

Inter. J. Climatol., 37(12):4302–4315, https://doi.org/10.1002/joc.5086. 

Fiegel G.L., Kutter B.L. (1994). Liquefaction mechanism for layered soils, J. Geotech. Geoenviro. Eng., 

120(4):737–755, https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(737). 

Finno R.J., Gallant A.P., Sabatini P.J. (2016). Evaluating ground improvement after blast densification: performance 

at the Oakridge landfill, J. Geotech. Geoenviro. Eng., 142(1):04015054, 

https://doi.org/10.1061/(ASCE)GT.1943-5606.0001365. 

Geyin M., Baird A.J., Maurer B.W. (2020). Field assessment of liquefaction prediction models based on 

geotechnical vs. geospatial data, with lessons for each, Earthq. Spectra, 36(3):1386–1411, 

https://doi.org/10.1177/8755293019899951. 

Geyin M., Maurer B.W. (2019). An analysis of liquefaction-induced free-field ground settlement using 1,000+ case-

histories: observations vs. state-of-practice predictions, Proceedings, Geocongress 2019, C.L. Meehan, S. 

Kumar, M.A. Pando, and J.T. Coe, eds., Geotechnical Special Publication, 308:489–498. 

Geyin M., Maurer B.W. (2020). Horizon: CPT-Based Liquefaction Risk Assessment and Decision Software, 

DesignSafe-CI, https://doi.org/10.17603/ds2-2fky-tm46. 

Geyin M., Maurer B.W. (2021). Fragility functions for liquefaction induced ground failure, J. Geotech. Geoenviro. 

Eng., 146(12), https//doi.org/10.1061/(ASCE)GT.1943-5606.0002416. 

Geyin M., Maurer B.W. (2019). An analysis of liquefaction-induced free-field ground settlement using 1,000+ case-

histories: observations vs. state-of-practice predictions, Geotechnical Special Publication, 308:489–498, 

https://doi.org/10.1061/9780784482100.049. 

Goda K., Hong H.P. (2008). Spatial correlation of peak ground motions and response spectra, Bull. Seismol. Soc. 

Am., 98(1):354–365. 



71 

Green R.A., Ziotopoulou K. (2015). Overview of screening criteria for liquefaction triggering susceptibility. 

Proceedings, 10th Pacific Conference on Earthquake Engineering, Sydney, Australia, Paper No. 35. 2015. 

Green R.A., Allen A., Wotherspoon L., Cubrinovski M., Bradley B., Bradshaw A., Cox B., Algie T. (2011). 

Performance of levees (stopbanks) during the 4 September Mw7.1 Darfield and 22 February 2011 Mw6.2 

Christchurch, New Zealand, earthquakes, Seismological Research Letters 82(6): 939–949. 

Green R.A., Bommer J.J., Rodriguez-Marek A., Maurer B.W., Stafford P.J., Edwards B., Kruiver P.P., De Lange G., 

Van Elk J. (2019). Addressing limitations in existing ‘simplified’ liquefaction triggering evaluation procedures: 

application to induced seismicity in the Groningen gas field, Bulletin of Earthquake Engineering 17(8):4539–

4557, https://doi.org/10.1007/s10518-018-0489-3. 

Green R.A., Cubrinovski M., Cox B., Wood C., Wotherspoon L., Bradley B., Maurer B. (2014). Select liquefaction 

case histories from the 2010–2011 Canterbury earthquake sequence, Earthq. Spectra, 30(1):131–153, 

https://doi.org/10.1193/030713EQS066M. 

Green R.A., Maurer B.W., van Ballegooy S. (2018). The influence of the non-liquefied crust on the severity of 

surficial liquefaction manifestations: case history from the 2016 Valentine’s Day earthquake in New 

Zealand. Geotechnical Earthquake Engineering and Soil Dynamics V: Liquefaction Triggering, Consequences, 

and Mitigation (S.J. Brandenberg and M.T. Manzari, eds.), Geotechnical Special Publication, 290:21–32, 

https://doi.org/10.1061/9780784481455.002. 

Green R.A., Upadhyaya S., Wood C., Maurer B.W., Cox B.R., Wotherspoon L., Bradley B.A., Cubrinovski M. 

(2017). Relative efficacy of CPT- versus Vs – based simplified liquefaction evaluation procedures, 

Proceedings,19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 

pp. 1521–1524. 

Green R.A., Bommer J.J., Rodriguez-Marek A., Maurer B.W., Stafford P.J., Edwards B., Kruiver P.P., De Lange G., 

Van Elk J. (2019). Addressing limitations in existing ‘simplified’ liquefaction triggering evaluation procedures: 

application to induced seismicity in the Groningen gas field, Bull. Earthq. Eng., 17(8):4539–4557, 

https://doi.org/10.1007/s10518-018-0489-3. 

Ha I.S., Olson S.M., Seo M.W., Kim M.M. (2011). Evaluation of reliquefaction resistance using shaking table tests, 

Soil Dyn. Earthq. Eng., 31(4):682–691, https://doi.org/10.1016/j.soildyn.2010.12.008. 

Hayati H., Andrus R.D. (2009). Updated liquefaction resistance correction factors for aged sands, J. Geotech. 

Geoenviro. Eng., 135(11):1683–1692, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000118. 

Holzer T.L., Youd T.L. (2007). Liquefaction, ground oscillation, and soil deformation at the wildlife array, 

California, Bull. Seismol. Soc. Am., 97(3):961–976. 

Holzer T.L., Bennett M.J., Ponti D.J., Tinsley J.C., (1999). Liquefaction and soil failure during 1994 Northridge 

earthquake, J. Geotech. Geoenviro. Eng., 125(6):438–452, https://doi.org/10.1061/(ASCE)1090-

0241(1999)125:6(438). 

Hossain A.M., Andrus R.D., Camp W.M. III (2013). Correcting liquefaction resistance of unsaturated soil using 

wave velocity, J. Geotech. Geoenviro. Eng., 139(2):277–287, https://doi.org/10.1061/(ASCE)GT.1943-

5606.0000770. 

Idriss I.M., Boulanger R.W. (2008). Soil Liquefaction during Earthquakes, Earthquake Engineering Research 

Institute, Oakland, CA, 261 pgs. 

Ishihara K. (1985). Stability of natural deposits during earthquakes, Proceedings, 11th International Conference on 

Soil Mechanics and Foundation Engineering, San Francisco, CA, 1:321–376. 

Ishihara K., Koga Y. (1981). Case studies of liquefaction in the 1964 Niigata earthquake, Soils Found., 21(3):35–52, 

https://doi.org/10.3208/sandf1972.21.3_35. 

Ishihara K., Tsukamoto Y. (2004). Cyclic strength of imperfectly saturated sands and analysis of liquefaction, 

Proceedings, Japan Academy, Series B, 80(8):372–391, https://doi.org/10.2183/pjab.80.372. 



72 

Iwasaki T., Tatsuoka F., Tokida K., Yasuda S. (1978). A practical method for assessing soil liquefaction potential 

based on case studies at various sites in Japan, Proceedings, 2nd International Conference on Microzonation, 

San Francisco, CA. 

Jeffries M.G., Davies M.P. (1993). Use of CPTu to estimate equivalent SPT N60, Geotech. Test. J., 16(4):458–468, 

https://doi.org/10.1520/GTJ10286J. 

Johnson R.A., Wichern D.W. (2007). Applied Multivariate Statistical Analysis, Pearson Prentice Hall, Upper Saddle 

River, NJ. 

Juang C.H., Yang S.H., Yuan H., Fang S.Y., (2005). Liquefaction in the Chi-Chi earthquake-effect of fines and 

capping non-liquefiable layers, Soils Found., 45(6):89–101, https://doi.org/10.3208/sandf.45.89. 

Kayen R.E., Mitchell J.K., Seed R.B., Nishio S. (1998). Soil liquefaction in the east bay during the earthquake, The 

Loma Prieta, California, Earthquake of October 17, 1989 – Liquefaction. Thomas L. Holzer, ed., United States 

Geological Survey, USGS Professional Paper 1551-B, pp. B61–B86, Menlo Park, CA. 

Kayen R.E., Moss R.E.S., Thompson E.M., Seed R.B., Cetin O.K., Der Kiureghian A., Tanaka Y., Tokimatsu T. 

(2013). Shear wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction 

potential, J. Geotech. Geoenviro. Eng., 139(3):407–419, https://doi.org/10.1061/(ASCE)GT.1943-

5606.0000743. 

Kramer S.L., Sideras S.S., Greenfield M.W. (2016). The timing of liquefaction and its utility in liquefaction hazard 

evaluation, Soil Dyn. Earthq. Eng., 91:133–146, https://doi.org/10.1016/j.soildyn.2016.07.025. 

Kramer S.L. (2008). Evaluation of liquefaction hazards in Washington State, Report No. WA-RD 668.1, Washington 

State Transportation Center, Seattle, WA. 

Kulhawy F.H., Mayne P.W. (1990). Manual on estimating soil properties for foundation design, Final Report 1493-

6, EL-6800, Electric Power Research Institute, Palo Alto, Calif 

Kwasinski A., Eidinger J., Tang A., Tudo-Bornarel C. (2014). Performance of electric power systems in the 2010–

2011 Christchurch, New Zealand, earthquake sequence, Earthq. Spectra, 30(1):205–230, 

https://doi.org/10.1193/022813EQS056M. 

Lee D.H., Ku C.S., Juang C.H. [2000]. Preliminary investigation of soil liquefaction in the 1999 Chi-Chi, Taiwan, 

earthquake, Proceedings, International Workshop on Annual Commemoration of Chi-Chi Earthquake, Vol. 

III—Geotechnical Aspect, C.H. Loh and W.I. Liao, eds., National Center for Research on Earthquake 

Engineering, Taipei, Taiwan, pp. 140–151. 

Lees J., Ballagh R.H., Orense R.P., van Ballegooy S. (2015b). CPT-based analysis of liquefaction and re-

liquefaction following the Canterbury earthquake sequence, Soil Dyn. Earthq. Eng., 79:304–314, 

https://doi.org/10.1016/j.soildyn.2015.02.004. 

Lees J., van Ballegooy S., Wentz F.J. (2015a). Liquefaction susceptibility and fines content correlations of the 

Christchurch soils, Proceedings, 6th International Conference on Earthquake Geotechnical Engineering, 

Christchurch, New Zealand, Paper No. 491. 

Lehner B., Verdin K., Jarvis A. (2006). HydroSHEDS Technical Documentation, U.S. World Wildlife Fund, 

Washington, D.C 

Leon E., Gassman S.L. Talwani P. (2006). Accounting for soil aging when assessing liquefaction potential, J. 

Geotech. Geoenviro. Eng., 132(3):363–377, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(363). 

Li D.K., Juang C.H., Andrus R.D., Camp W.M. (2007). Index properties-based criteria for liquefaction susceptibility 

of clayey soils: a critical assessment, J. Geotech. Geoenviro. Eng., 133(1):110–115, 

https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(110). 

Lunne T., Robertson P.K., Powell J.M. (1997). Cone Penetration Testing in Geotechnical Practice. Blackie 

Academic and Professional, London, U.K. 



73 

Maurer B.W., Green R.A., Cubrinovski M., Bradley B.A. (2014). Evaluation of the liquefaction potential index for 

assessing liquefaction hazard in Christchurch, New Zealand, J. Geotech. Geoenviro. Eng., 140(7):04014032, 

https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117. 

Maurer B.W., Green R.A., Taylor O.D.S. (2015a). Moving towards an improved index for assessing liquefaction 

hazard: lessons from historical data, Soils Found., 55(4):778–787, https://doi.org/10.1016/j.sandf.2015.06.010. 

Maurer B.W., Green R.A., Cubrinovski M. Bradley B.A. (2015b). Fines-content effects on liquefaction hazard 

evaluation for infrastructure during the 2010-2011 Canterbury, New Zealand earthquake sequence, Soil Dyn. 

Earthq. Eng., 76:58–68, https://doi.org/10.1016/j.soildyn.2014.10.028. 

Maurer B.W., Green R.A., Cubrinovski M., Bradley B.A. (2015c). Assessment of CPT-based methods for 

liquefaction evaluation in a liquefaction potential index framework, Géotechnique, 65(5):328–336, 

https://doi.org/10.1680/geot.SIP.15.P.007. 

Maurer B.W., Green R.A., Cubrinovski M., Bradley B.A. (2015d). Calibrating the liquefaction severity number 

(LSN) for varying misprediction economies: a case study in Christchurch, New Zealand, Proceedings, 6th 

International Conference on Earthquake Geotechnical Engineering, Christchurch, NZ., Paper No. 491. 

Maurer B.W., Green R.A., van Ballegooy S., Wotherspoon L. (2019). Development of region-specific soil behavior 

type index correlations for evaluating liquefaction hazard in Christchurch, New Zealand, Soil Dyn. Earthq. 

Eng., 117:96–105, https://doi.org/10.1016/j.soildyn.2018.04.059. 

Maurer B.W., van Ballegooy, S., Bradley B.A. (2017). Fragility functions for performance-based damage 

assessment of soil liquefaction, Proceedings, 3rd International Conference on Performance-Based Design in 

Earthquake Geotechnical Engineering, Vancouver, Canada. 

Mayne P.W., Peuchen J., Bouwmeester D. (2010). Soil unit weight estimation from CPTs, Proceedings, 2nd 

International Symposium on Cone Penetration Testing, Huntington Beach, CA, 8 pgs. 

McLaughlin K. (2017). Investigation of False-Positive Liquefaction Case History Sites in Christchurch, New 

Zealand, M.S. Thesis. The University of Texas at Austin, Austin, TX. 

Mesri G., Feng T., Benak J.M. (1990). Postdensification penetration resistance of clean sands, J. Geotech. Eng., 

116(7): 1095–1115, https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1095). 

Mitchell J.K., Lodge A.L., Coutinho R.Q., Kayen R.E., Seed R.B., Nishio S., Stokoe K.H., II (1994). In situ test 

results from four Loma Prieta earthquake liquefaction sites: SPT, CPT, DMT and shear wave velocity, Report 

No. UCB/EERC-94/04, Earthquake Engineering Research Center, University of California, Berkeley, CA. 

Moss R.E.S., Seed R.B., Kayen R.E., Stewart J.P., Der Kiureghian A., Cetin KO (2006). CPT-based probabilistic 

and deterministic assessment of in situ seismic soil liquefaction potential, J. Geotech. Geoenviro. Eng., 132(8): 

1032–1051, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032). 

Moss R.E.S., Collins B.D., Whang D.H. (2005). Retesting of liquefaction/nonliquefaction case histories in the 

Imperial Valley, Earthq. Spectra, 21(1):179–196, https://doi.org/10.1193/1.1852562. 

Moss R.E.S., Kayen R.E., Tong L.-Y., Liu S.-Y., Cai G.-J., Wu, J., (2009). Re-investigation of liquefaction and 

nonliquefaction case histories from the 1976 Tangshan earthquake, PEER Report No. 2009/102, Pacific 

Earthquake Engineering Research Center, University of California, Berkeley, CA. 

Moss R.E.S., Kayen R.E., Tong L.-Y., Liu S.-Y., Cai G.-J., Wu, J. (2011). Retesting of liquefaction and 

nonliquefaction case histories from the 1976 Tangshan earthquake, J. Geotech Geoenviro. Eng., 137(4)334–

343, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000406. 

Moss R.E.S., Seed R.B., Kayen R.E., Stewart J.P., Youd T.L., Tokimatsu, K. (2003). Field case histories for CPT-

based in situ liquefaction potential evaluation, Geoengineering Research Report UCB/GE-2003/04, University 

of California, Berkeley, CA. 

Nakata T., Shimazaki K. (1997). Geo-slicer, a newly invented soil sampler, for high-resolution active fault studies, 

J. Geogr., 106(1):59–69 (in Japanese), https://doi.org/ 10.5026/jgeography.106.59. 



74 

NRC (2016). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and its 

Consequences, National Research Council, Committee on Earthquake Induced Soil Liquefaction Assessment 

(Edward Kavazanjian, Jr., Chair, Jose E. Andrade, Kandian “Arul” Arulmoli, Brian F. Atwater, John T. 

Christian, Russell A. Green, Steven L. Kramer, Lelio Mejia, James K. Mitchell, Ellen Rathje, James R. Rice, 

and Yumie Wang), The National Academies Press, Washington, DC. 

Ntritsos N., Cubrinovski M. (2010). A CPT based effective stress analysis procedure for liquefaction assessment, 

Soil Dyn. Earthq. Eng., 131:106063. 

NZGD (2020). New Zealand Geotechnical Database. New Zealand Earthquake Commission. 

<https://www.nzgd.org.nz/>, (Accessed Jan 01, 2020). 

O'Rourke T, Jeon S.S., Toprak S., Cubrinovski M., Hughes M., van Ballegooy S. Bouziou D. (2014). Earthquake 

response of underground pipeline networks in Christchurch, NZ, Earthq. Spectra 30(1):183–204, 

https://doi.org/10.1193/030413EQS062M. 

Özener P., Özaydin K., Berilgen, M. (2008). Numerical and physical modeling of liquefaction mechanisms in 

layered sands, Proceedings, Geotech. Earthq. Eng. Soil Dyn. IV, Sacramento, CA, pp. 1–12. 

Ozutsumi O., Sawada S., Iai S., Takeshima Y., Sugiyama W., Shimazu T. (2002). Effective stress analyses of 

liquefaction-induced deformation in river dikes, Soil Dyn. Earthq. Eng., 22(9):1075–1082, 

https://doi.org/10.1016/S0267-7261(02)00133-1. 

Papathanassiou G., Mantovani A., Tarabusi G., Rapti D., Caputo R. (2015). Assessment of liquefaction potential for 

two liquefaction prone areas considering the May 20, 2012 Emilia (Italy) earthquake, Eng. Geol., 189:1–16, 

https://doi.org/10.1016/j.enggeo.2015.02.002. 

Pass D.G. (1994). Soil Characterization of the Deep Accelerometer site at Treasure Island, San Francisco, 

California, MS Thesis, University of New Hampshire, Durham, NH. 

Pease J.W. (2010). Misclassification in CPT liquefaction evaluation, Proceedings, 2nd International Symposium on 

Cone Penetration Testing. Huntington Beach, CA, Paper # 3–23. 

PEER (2000a). Documenting incidents of ground failure resulting from the 1999 Kocaeli, Turkey Earthquake, 

Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 

https://tinyurl.com/ujtpwrk. 

PEER (2000b). Documentation of soil conditions at liquefaction sites from 1999 Chi-Chi, Taiwan, earthquake, 

Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 

https://tinyurl.com/sbh9cpg. 

Pinheiro J., Bates D.M., DebRoy S., Sarkar D., R Core Team. (2008). NLME: Linear and nonlinear mixed effects 

models, R Corepackage, Ver. 3.1, http://www.r-project.org (Mar. 26, 2014). 

Polito C. (2001). Plasticity based liquefaction criteria, Proceedings, 4th International Conference on Recent 

Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, Paper No. 25. 

Quigley M.C., Bastin S., Bradley B.A. (2013). Recurrent liquefaction in Christchurch, New Zealand, during the 

Canterbury earthquake sequence, Geol., 41:419–422, https://doi.org/10.1130/G33944.1 

Quigley M.C., Hughes M.W., Bradley B.A., van Ballegooy S., Reid C., Morgenroth J., Horton T., Duffy B., 

Pettinga J. (2016). The 2010–2011 Canterbury earthquake sequence: Environmental effects, seismic triggering 

thresholds, geologic legacy, Tectonophys., 672-673:228–274, https://doi.org/10.1016/j.tecto.2016.01.044. 

Raschke S.A., Hryciw R.D. (1997). Vision cone penetrometer for direct subsurface soil observation, J. Geotech 

Geoenvrion. Eng., 123(11):1074–1076, https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1074). 

Rashidian V., Gillins D.T. (2018). Modification of the liquefaction potential index to consider the topography in 

Christchurch, New Zealand., Eng. Geol., 232:68–81, https://doi.org/10.1016/j.enggeo.2017.11.010. 

Robertson P.K. (2011). Automated detection of CPT transition zones, Geotech. News, June, pp. 35–38. 

Robertson P.K., Cabal K.L. (2010). Estimating soil unit weight from CPT, Proceedings, 2nd International 

Symposium on Cone Penetration Testing, Huntington Beach, CA, 8 pgs. 



75 

Robertson P.K., Wride C.E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test, Can. 

Geotech. J., 35(3):442–459, https://doi.org/10.1139/t98-017. 

Saftner D.A., Green R.A., Hryciw R.D. (2015). Use of explosives to investigate liquefaction resistance of aged sand 

deposits, Eng. Geol., 199:140–147, https://doi.org/10.1016/j.enggeo.2015.11.002. 

Seed R.B., Cetin K.O., Moss R.E.S., Kammerer A.M., Wu J., Pestana J.M., Riemer M.F., Sancio R.B., Bray J.D., 

Kayen R.E., Faris A. (2003). Recent advances in soil liquefaction engineering: a unified and consistent 

framework, Proceedings, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Long Beach, CA. 

Seed H.B., Tokimatsu K., Harder L.F. Jr., Chung R. (1984). The influence of SPT procedures in soil liquefaction 

resistance evaluations, Report No. UCB/EERC-84/15, Earthquake Engineering Research Center, University of 

California, Berkeley, CA. 

Seed H.B., Idriss I.M. (1971). Simplified procedure for evaluating soil liquefaction potential, J. Soil Mech. Found. 

Div., 97(9):1249–1273, https://doi.org/10.1061/JSFEAQ.0001662. 

Seisfinder (2020). A web application to enable the extraction of high-fidelity outputs from computationally intensive 

earthquake resilience calculations. Accessed 1 August 2020 <https://quakecoresoft. 

canterbury.ac.nz/seisfinder/> 

Servizio Geologico, [2016]. Database of the Emilia-Romagna region: geological, seismic, and soil survey, 

http://ambiente.regione.emiliaromagna.it/geologia/cartografia/webgis-banchedati/. 

Shengcong F., Tatsuoka, F. [1984]. Soil liquefaction during Haicheng and Tangshan earthquake in China; a review, 

Soils Found. 24(4):11–29, https://doi.org/10.3208/sandf1972.24.4_11. 

Shibata T., Teparaska W. [1988]. Evaluation of liquefaction potential of soils using cone penetration testing, Soils 

Found., 28(2):49–60, https://doi.org/10.3208/sandf1972.28.2_49. 

Sideras S.S. (2019). Evolutionary Intensity Measures for More Accurate and Informative Evaluation of Liquefaction 

Triggering, PhD Thesis, University of Washington, Seattle, WA. 

Strahler A.N., (1952). Hypsometric (area-altitude) analysis of erosional topology, Geol. Soc. Am. Bull., 

63(11):1117–1142, https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 

Suzuki Y., Tokimatsu K., Moss R.E.S., Seed R.B., Kayen R.E., [2003]. CPT-based liquefaction case histories from 

the 1995 Hyogoken-Nambu (Kobe) earthquake, Japan, Geotechnical Engineering Research Report No. 

UCB/GE-2003/03, University of California, Berkeley, CA. 

Takada K, Atwater B.F., (2004). Evidence for liquefaction identified in peeled slices of Holocene deposits along the 

lower Columbia River, Washington, Bull. Seismol. Soc., Am., 94(2):550–575, 

https://doi.org/10.1785/0120020152. 

Tang A., Kwasinski A., Eidinger J., Foster C., Anderson P. [2014]. Telecommunication systems' performance: 

Christchurch earthquakes, Earthq. Spectra, 30(1):231–252, https://doi.org/10.1193/022213EQS046M. 

Toprak S., Holzer T.L. [2003]. Liquefaction potential index: field assessment, J. Geotech. Geoenviro. Eng., 

129(4):315–322, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(315). 

Townsend D., Lee J.M., Strong D.T., Jongens R., Smith Lyttle B., Ashraf S., Taylor M.L. [2016]. Mapping surface 

liquefaction caused by the September 2010 and February 2011 Canterbury earthquakes: A digital dataset, N.Z. 

J. Geol. Geophys., 59(4):496–513, https://doi.org/10.1080/00288306.2016.1182929. 

Treadwell D.D. (1976). The Influence of Gravity, Prestress, Compressibility, and Layering on Soil Resistance to 

Static Penetration, PhD Thesis, University of California, Berkeley, CA. 

Turner B., Brandenberg S.J., Stewart J.P. (2016). Case study of parallel bridges affected by liquefaction and lateral 

spreading, J. Geotech. Geoenviro. Eng., 142(7), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001480. 

Upadhyaya S., Green R.A., Rodriguez-Marek A., Maurer B.W., Wotherspoon L.M., Bradley B.A., Cubrinovski M. 

(2019). Influence of corrections to recorded peak ground accelerations due to liquefaction on predicted 

liquefaction response during the 2010–2011 Canterbury, New Zealand, earthquake sequence, Proceedings, 13th 

Australia New Zealand Conference on Geomechanics. 



76 

Upadhyaya S., Maurer B.W., Green R.A., Rodriguez-Marek A. (2020). Selecting the optimal factor of safety or 

probability of liquefaction triggering for engineering projects based on misprediction costs, J. Geotech. 

Geoenviro. Eng., 147(6), https://doi.org/10.1061/(ASCE)GT.1943-5606.0002511. 

van Ballegooy S, Malan P, Lacrosse V, Jacka ME, Cubrinovski M, Bray JD, O’Rourke TD, Crawford S.A., Cowan 

H. (2014a). Assessment of liquefaction-induced land damage for residential Christchurch, Earthq. Spectra, 

30(1):31–55, https://doi.org/10.1193/031813EQS070M. 

van Ballegooy S., Cox S.C., Thurlow C., Rutter H.K., Reynolds T., Harrington G., Fraser J., Smith T. (2014b). 

Median water table elevation in Christchurch and surrounding area after the 4 September 2010 Darfield 

earthquake: Version 2, GNS Science Report 2014/18, 79 pgs. 

van Ballegooy S., Green R.A., Lees J., Wentz F., Maurer B.W. (2015a). Assessment of various CPT based 

liquefaction severity index frameworks relative to the Ishihara (1985). H1–H2 boundary curves, Soils Dyn. 

Earthq. Eng., 79:347–364, https://doi.org/10.1016/j.soildyn.2015.08.015. 

van der Linden T.I., De Lange D.A., Korff M. (2018). Cone penetration testing in thinly inter-layered soils. 

Proceedings, Institution of Civil Engineers-Geotechnical Engineering, 171(3):215–231. 

Wald D.J., Allen T.I. (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bull. 

Seismol. Soc. Am., 97(5):1379–1395, https://doi.org/10.1785/0120060267. 

Wang S., Yang J., Onyejekwe S. [2013]. Effect of previous cyclic shearing on liquefaction resistance of Mississippi 

River Valley silt, J. Mat.Civil Eng., 25(10):1415–1423, https://doi.org/10.1061/(ASCE)MT.1943-

5533.0000698. 

Whitman R.V. (1971). Resistance of soil to liquefaction and settlement, Soils Found., 11(4):59–68, 

https://doi.org/10.3208/sandf1960.11.4_59. 

Worden C.B., Wald D.J. [2016]. ShakeMap: Technical Manual, User’s Guide, and software guide, U.S. Geological 

Survey, usgs.github.io/shakemap. https://doi.org/10.5066/F7D21VPQ. 

Wotherspoon L.M., Bradshaw A., Green R.A., Wood C., Palermo A., Cubrinovski M., Bradley B.A. (2011). 

Performance of bridges during the 2010 Darfield and 2011 Christchurch earthquakes, Seismol. Res. Lett., 

82(6):950–964, https://doi.org/10.1785/gssrl.82.6.950. 

Wotherspoon L.M., Orense R.P., Green R.A., Bradley B.A., Cox B.R., Wood C.M. [2015]. Assessment of 

liquefaction evaluation procedures and severity index frameworks at Christchurch strong motion stations, Soil 

Dyn. Earthq. Eng., 79(Part B):335–346, https://doi.org/10.1016/j.soildyn.2015.03.022. 

Yost K.M., Cox B.R., Wotherspoon L., Boulanger R.W., van Ballegooy S., Cubrinovski M. (2019). In Situ 

Investigation of False-Positive Liquefaction Sites in Christchurch, New Zealand: Palinurus Road Case History. 

Geo-Congress 2019: Earthquake Engineering and Soil Dynamics, pp. 436–451. 

Yost K.M., Green R.A., Upadhyaya S., Maurer B.W., Yerro-Colom A., Martin E. (2020). Assessment of the 

efficacies of correction procedures for multiple thin layer effects on cone penetration tests, Soil Dyn. Earthq. 

Eng., 144, https://doi.org/10.1016/j.soildyn.2021.106677. 

Youd T.L., Carter B.L. [2005]. Influence of soil softening and liquefaction on spectral acceleration, J. Geotech. 

Geoenviron. Eng., 131(7):811–825, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(811). 

Youd T.L., DeDen D.W., Bray J.D., Sancio R., Cetin K.O., Gerber T.M. (2009). Zero-displacement lateral spreads, 

1999 Kocaeli, Turkey, earthquake, J. Geotech. Geoenviron. Eng., https://doi.org/0.1061/(ASCE)1090-

0241(2009)135:1(46). 

Youd T.L., Hoose S.N. (1977). Liquefaction susceptibility and geologic setting, Proceedings, 6th World Conference 

on Earthquake Engineering, 3:2189–2194, New Delhi, India. 

Youd T.L., Idriss I.M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 

NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng., 

127:817–833, https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297). 



77 

Zhang G., Robertson P.K., Brachman R.W.I. (2002). Estimating liquefaction-induced ground settlements from CPT 

for level ground. Can. Geotech. J., 39(5):1168–1180, https://doi.org/10.1139/t02-047. 

Zhang G., Robertson P.K., Brachman R.W.I. (2004). Estimating liquefaction-induced lateral displacements using the 

standard penetration test or cone penetration test. J. Geotech. Geoenviron. Eng., 130(8):861–871, 

https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(861). 

Zhu J., Baise L.G., Thompson E.M. (2017). An updated geospatial liquefaction model for global application, Bull. 

Seismol. Soc. Am., 107(3):1365–1385, https://doi.org/10.1785/0120160198. 

Zhu J., Daley D., Baise L.G., Thompson E.M., Wald D.J., Knudsen K.L. [2015]. A geospatial liquefaction model for 

rapid response and loss estimation, Earthq. Spectra, 31(3):1813–1837, 

https://doi.org/10.1193/121912EQS353M. 

Zimmaro P., Brandenberg S.J., Bozorgnia Y., Stewart J.P., Kwak D.Y., Cetin K.O., Can G., Ilgac M., Franke K.W., 

Moss R.E.S., Kramer K.L., Stamatakos J., Juckett M., Weaver T. (2019). Quality control for next-generation 

liquefaction case histories, Proceedings, 7th Int. Conference on Earthquake Geotechnical Engineering (VII 

ICEGE), pp. 5905–5912, Rome, Italy. 

Ziotopoulou K., Boulanger R.W. [2016]. Plasticity modeling of liquefaction effects under sloping ground and 

irregular cyclic loading conditions, Soil Dyn. Earthq. Eng., 84:269–283, 

https://doi.org/10.1016/j.soildyn.2016.02.013. 

Zou K.H., (2007). Receiver operating characteristic (ROC) literature research. On-line bibliography, 

http://www.spl.harvard.edu/archive/spl-pre2007/pages/ppl/zou/roc.html. 
  



78 

 

 



79 

 

APPENDIX A Global Case-History Data 

Provided on the following pages is a table of relevant metadata for each global liquefaction case-
history compiled and analyzed in this study (i.e., the “global dataset”). This information would be 
needed to replicate the results presented herein. Additional methodology and commentary 
pertaining to this data is provided in Part Two of the report. 
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Table A.1 Global liquefaction case-history metadata. 

 

No. CPT ID Date Event Country Mag (Mw) 
PGA 
(g) 

GWT 
(mbg) 

Y/N References 

1 D - Kawagisho-cho 16-Jun-64 Niigata Japan 7.6 0.162 1.1 Y Ishihara and Koga [1981]; Farrar [1990]; Moss et al. [2003] 

2 
E - Showa Bridge (Left 

Bank) 
16-Jun-64 Niigata Japan 7.6 0.162 1.4 Y Ishihara and Koga [1981]; Farrar [1990]; Moss et al. [2003] 

3 
F - Showa Bridge (Right 

Bank) 
16-Jun-64 Niigata Japan 7.6 0.162 1.7 N Ishihara and Koga [1981]; Farrar [1990]; Moss et al. [2003] 

4 Balboa Boulevard (BAL-10) 9-Feb-71 San Fernando United States 6.6 0.45 7.2 N Bennett et al., 1998; Toprak and Holzer [2003] 

5 Balboa Boulevard (BAL-11) 9-Feb-71 San Fernando United States 6.6 0.45 7.6 N Bennett et al., 1998; Toprak and Holzer [2003] 

6 17th Middle School 4-Feb-75 Haicheng China 7 0.3 1 N Arulandan et al. (1986); Shengcong and Tatsuoka [1984] 

7 Paper Mill 4-Feb-75 Haicheng China 7 0.3 1.52 Y Arulandan et al. (1986); Shengcong and Tatsuoka [1984] 

8 Tangshan (T1) 27-Jul-76 Tangshan China 7.6 0.64 3.7 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

9 Tangshan (T4) 27-Jul-76 Tangshan China 7.6 0.64 1.1 N Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

10 Tangshan (T6) 27-Jul-76 Tangshan China 7.6 0.64 1.5 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

11 Tangshan (T7) 27-Jul-76 Tangshan China 7.6 0.64 3 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

12 Tangshan (T8) 27-Jul-76 Tangshan China 7.6 0.64 2.2 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

13 Tangshan (T9-2) 27-Jul-76 Tangshan China 7.6 0.64 1.1 N Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

14 Tangshan (T10) 27-Jul-76 Tangshan China 7.6 0.64 1.5 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

15 Tangshan (T11) 27-Jul-76 Tangshan China 7.6 0.61 0.9 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

16 Tangshan (T13) 27-Jul-76 Tangshan China 7.6 0.58 1.1 Y Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

17 Tangshan (T16) 27-Jul-76 Tangshan China 7.6 0.26 3.5 N Shibata and Teparaska [1988]; Moss et al. [2009: 2011] 

18 Kornbloom (KOR4) 15-Oct-79 Imperial Valley United States 6.53 0.13 2.7 N Bennett et al. [1984]; Moss et al. [2003] 

19 Kornbloom (KOR5) 15-Oct-79 Imperial Valley United States 6.53 0.13 2.7 N Bennett et al. [1984]; Moss et al. [2003] 

20 McKim Ranch (MCK4) 15-Oct-79 Imperial Valley United States 6.53 0.51 1.5 N Bennett et al. [1984]; Seed et al. [1984] 

21 McKim Ranch (MCK7) 15-Oct-79 Imperial Valley United States 6.53 0.51 1.5 Y Bennett et al. [1984]; Seed et al. [1984] 

22 Radio Tower (Rad2) 15-Oct-79 Imperial Valley United States 6.53 0.2 2.1 Y Bennett et al. [1984]; Seed et al. [1984] 

23 Radio Tower (Rad4) 15-Oct-79 Imperial Valley United States 6.53 0.2 2.1 N Bennett et al. [1984]; Seed et al. [1984] 

24 River Park (RVP002) 15-Oct-79 Imperial Valley United States 6.53 0.16 0.3 Y Moss et al. [2005] 

25 Delta Site 1 9-Jun-80 Victoria (Mexicali) Mexico 6.33 0.19 2.3 N 
Diaz-Rodriguez [1984]; Diaz-Rodriguez and Armijo-Palaio [1991]; 

Moss et al. [2003] 

26 Delta Site 2 9-Jun-80 Victoria (Mexicali) Mexico 6.33 0.19 2.2 Y 
Diaz-Rodriguez [1984]; Diaz-Rodriguez and Armijo-Palaio [1991]; 

Moss et al. [2003] 

27 Delta Site 3 9-Jun-80 Victoria (Mexicali) Mexico 6.33 0.19 2 Y 
Diaz-Rodriguez [1984]; Diaz-Rodriguez and Armijo-Palaio [1991]; 

Moss et al. [2003] 
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No. CPT ID Date Event Country Mag (Mw) 
PGA 
(g) 

GWT 
(mbg) 

Y/N References 

28 Delta Site 3' 9-Jun-80 Victoria (Mexicali) Mexico 6.33 0.19 2.2 Y 
Diaz-Rodriguez [1984]; Diaz-Rodriguez and Armijo-Palaio [1991]; 

Moss et al. [2003] 

29 Delta Site 4 9-Jun-80 Victoria (Mexicali) Mexico 6.33 0.19 2 Y 
Diaz-Rodriguez [1984]; Diaz-Rodriguez and Armijo-Palaio [1991]; 

Moss et al. [2003] 

30 Wildlife B (3Cgb) 26-Apr-81 Elmore Ranch United States 6.22 0.133 1.2 N Bennett et al. [1984]; Cetin et al. [2000] 

31 Wildlife B (3Cgc) 26-Apr-81 Westmorland United States 5.9 0.26 1.2 Y Bennett et al. [1984]; Cetin et al. [2000] 

32 Herber Road (HEB001) 26-Apr-81 Westmorland United States 5.9 0.17 1.8 N Moss et al. [2005] 

33 Kornbloom (KOR4) 26-Apr-81 Westmoreland United States 5.9 0.32 2.7 Y Bennett et al. [1984]; Seed et al. [1984] 

34 Kornbloom (KOR5) 26-Apr-81 Westmoreland United States 5.9 0.32 2.7 Y Bennett et al. [1984]; Seed et al. [1984] 

35 McKim Ranch (MCK4) 26-Apr-81 Westmorland United States 5.9 0.09 1.5 N Bennett et al. [1984]; Seed et al. [1984] 

36 McKim Ranch (MCK7) 26-Apr-81 Westmorland United States 5.9 0.09 1.5 N Bennett et al. [1984]; Seed et al. [1984] 

37 Radio Tower (Rad2) 26-Apr-81 Elmore Ranch United States 6.22 0.09 2.1 N Bennett et al. [1984] 

38 Radio Tower (Rad2) 26-Apr-81 Westmorland United States 5.9 0.2 2.1 Y Bennett et al. [1984]; Seed et al. [1984] 

39 Radio Tower (Rad4) 26-Apr-81 Westmorland United States 5.9 0.2 2.1 N Bennett et al. [1984]; Seed et al. [1984] 

40 River Park (RVP002) 26-Apr-81 Westmorland United States 5.9 0.17 0.3 N Moss et al. [2005] 

41 Akita B 26-May-83 Nihonkai-Chubu Japan 7.7 0.17 1 Y Farrar [1990] 

42 Akita C 26-May-83 Nihonkai-Chubu Japan 7.7 0.17 2.4 N Farrar [1990] 

43 
Whiskey Springs Site 1 

(CPT-1a) 
28-Oct-83 Borah Peak United States 6.88 0.5 0.8 Y Andrus and Youd (1987), Moss et al. [2003] 

44 
Whiskey Springs Site 2 

(CPT-2) 
28-Oct-83 Borah Peak United States 6.88 0.5 2.4 Y Andrus and Youd (1987), Moss et al. [2003] 

45 
Whiskey Springs Site 3 

(CPT-3) 
28-Oct-83 Borah Peak United States 6.88 0.5 6.8 Y Andrus and Youd (1987), Moss et al. [2003] 

46 Awaroa Farm (AWA004) 2-Mar-87 Edgecumbe New Zealand 6.6 0.37 1.1 Y Christensen [1995] 

47 Brady Farm (BDY001) 2-Mar-87 Edgecumbe New Zealand 6.6 0.4 1.65 Y Christensen [1995], Moss et al. [2003] 

48 Brady Farm (BDY004) 2-Mar-87 Edgecumbe New Zealand 6.6 0.4 1.53 N Christensen [1995], Moss et al. [2003] 

49 
Edgecumbe Pipe Breaks 

(EPB001) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.39 3.5 Y Christensen [1995], Moss et al. [2003] 

50 Gordon Farm (GDN001) 2-Mar-87 Edgecumbe New Zealand 6.6 0.43 0.5 Y Christensen [1995], Moss et al. [2003] 

51 Gordon Farm (GDN002) 2-Mar-87 Edgecumbe New Zealand 6.6 0.43 0.9 N Christensen [1995], Moss et al. [2003] 

52 
Whakatane Hospital 

(HSP001) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.26 4.4 N Christensen [1995], Moss et al. [2003] 

53 
James Street Loop 

(JSL006) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.28 2 Y Christensen [1995], Moss et al. [2003] 

54 Keir Farm (KER001) 2-Mar-87 Edgecumbe New Zealand 6.6 0.31 2.5 Y Christensen [1995], Moss et al. [2003] 

55 
Landing Road Bridge 

LRB007) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.27 1.2 Y Christensen [1995], Moss et al. [2003] 
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56 Morris Farm (MRS001) 2-Mar-87 Edgecumbe New Zealand 6.6 0.42 1.6 Y Christensen [1995], Moss et al. [2003] 

57 Morris Farm (MRS002) 2-Mar-87 Edgecumbe New Zealand 6.6 0.42 1.89 N Christensen [1995] 

58 Morris Farm (MRS003) 2-Mar-87 Edgecumbe New Zealand 6.6 0.41 2.08 N Christensen [1995], Moss et al. [2003] 

59 Robinson Farm (RBN001) 2-Mar-87 Edgecumbe New Zealand 6.6 0.44 0.8 Y Christensen [1995], Moss et al. [2003] 

60 Robinson Farm (RBN002) 2-Mar-87 Edgecumbe New Zealand 6.6 0.44 0.7 N Christensen [1995] 

61 Robinson Farm (RBN003) 2-Mar-87 Edgecumbe New Zealand 6.6 0.44 0.9 N Christensen [1995] 

62 Robinson Farm (RBN004) 2-Mar-87 Edgecumbe New Zealand 6.6 0.44 0.61 Y Christensen [1995], Moss et al. [2003] 

63 
Sewage Pumping Station 

(SPS001) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.26 1.3 Y Christensen [1995], Moss et al. [2003] 

64 
Whakatane Board Mill 

(WBM001) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.27 1.44 N Christensen [1995], Moss et al. [2003] 

65 
Whakatane Board Mill 

(WBM002) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.27 1.44 N Christensen [1995], Moss et al. [2003] 

66 
Whakatane Pony Club 

(WPC001) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.27 2.35 Y Christensen [1995], Moss et al. [2003] 

67 
Whakatane Pony Club 

(WPC002) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.27 2.2 Y Christensen [1995] 

68 
Whakatane Pony Club 

(WPC003) 
2-Mar-87 Edgecumbe New Zealand 6.6 0.27 2.2 N Christensen [1995] 

69 Wildlife B (3Cg) 24-Nov-87 Superstition Hills United States 6.54 0.206 1.2 Y Bennett et al. [1984]; Holzer and Youd (2007); Cetin et al. [2000] 

70 Herber Road (HEB001) 24-Nov-87 Superstition Hills United States 6.6 0.16 1.8 N Moss et al. [2005] 

71 Kornbloom (KOR4) 24-Nov-87 Superstition Hills United States 6.54 0.174 2.7 N Bennett et al. [1984]; Cetin et al. [2000] 

72 Kornbloom (KOR5) 24-Nov-87 Superstition Hills United States 6.54 0.174 2.7 N Bennett et al. [1984]; Cetin et al. [2000] 

73 McKim Ranch (MCK4) 24-Nov-87 Superstition Hills United States 6.54 0.2 1.5 N Bennett et al. [1984]; Toprak and Holzer [2003] 

74 Radio Tower (Rad2) 24-Nov-87 Superstition Hills United States 6.54 0.2 2.1 N Bennett et al. [1984]; Cetin et al. [2000] 

75 Radio Tower (Rad4) 24-Nov-87 Superstition Hills United States 6.54 0.18 2.1 N Bennett et al. [1984]; Cetin et al. [2000] 

76 River Park (RVP002) 24-Nov-87 Superstition Hills United States 6.6 0.19 0.3 N Moss et al. [2005] 

77 
Alameda Bay Farm Island 

(Dike) 
18-Oct-89 Loma Prieta United States 6.93 0.24 5.5 N Mitchell et al. [1994] 

78 Model Airport (AIR-18) 18-Oct-89 Loma Prieta United States 6.93 0.26 2.4 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

79 Model Airport (AIR-21) 18-Oct-89 Loma Prieta United States 6.93 0.26 2.4 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

80 Marine Lab (C4) 18-Oct-89 Loma Prieta United States 6.93 0.28 2.8 Y Boulanger et al. [1995; 1997] 

81 Miller Farm (CMF-3) 18-Oct-89 Loma Prieta United States 6.93 0.36 4.9 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

82 Miller Farm (CMF-5) 18-Oct-89 Loma Prieta United States 6.93 0.36 4.9 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

83 Miller Farm (CMF-8) 18-Oct-89 Loma Prieta United States 6.93 0.36 4.9 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

84 Miller Farm (CMF-10) 18-Oct-89 Loma Prieta United States 6.93 0.36 3 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 
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85 MBARI 4 (CPT-1) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.9 N Boulanger et al. [1995; 1997] 

86 General Fish (CPT-6) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.7 N Boulanger et al. [1995; 1997] 

87 Farris Farm (FAR-58) 18-Oct-89 Loma Prieta United States 6.93 0.36 4.8 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

88 Farris Farm (FAR-59) 18-Oct-89 Loma Prieta United States 6.93 0.36 4.8 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

89 Farris Farm (FAR-61) 18-Oct-89 Loma Prieta United States 6.93 0.36 4.2 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

90 
Granite Construction (GRA-

123) 
18-Oct-89 Loma Prieta United States 6.93 0.34 5 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

91 
Alameda Bay Farm Island 

(HBI-P6)) 
18-Oct-89 Loma Prieta United States 6.93 0.24 3 Y Mitchell et al. [1994] 

92 Jefferson Ranch (JRR-141) 18-Oct-89 Loma Prieta United States 6.93 0.21 2.1 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

93 Jefferson Ranch (JRR-148) 18-Oct-89 Loma Prieta United States 6.93 0.21 3 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

94 KETT (KET-74) 18-Oct-89 Loma Prieta United States 6.93 0.47 1.5 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

95 Leonardini (LEN-37) 18-Oct-89 Loma Prieta United States 6.93 0.22 2.5 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

96 Leonardini (LEN-39) 18-Oct-89 Loma Prieta United States 6.93 0.22 1.9 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

97 Leonardini (LEN-51) 18-Oct-89 Loma Prieta United States 6.93 0.22 1.8 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

98 Leonardini (LEN-52a) 18-Oct-89 Loma Prieta United States 6.93 0.22 2.7 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

99 Leonardini (LEN-53) 18-Oct-89 Loma Prieta United States 6.93 0.22 2.1 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

100 Martella (MAR-110) 18-Oct-89 Loma Prieta United States 6.93 0.13 1.8 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

101 Martella (MAR-111) 18-Oct-89 Loma Prieta United States 6.93 0.13 1.7 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

102 McGowan Farm (MCG-136) 18-Oct-89 Loma Prieta United States 6.93 0.26 2.4 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

103 McGowan Farm (MCG-138) 18-Oct-89 Loma Prieta United States 6.93 0.26 1.8 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

104 Woodward Marine (14-A) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.2 Y Boulanger et al. [1995; 1997] 

105 Woodward Marine (15-A) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.3 Y Boulanger et al. [1995; 1997] 

106 Marinovich (MRR-65) 18-Oct-89 Loma Prieta United States 6.93 0.4 5.6 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

107 Marinovich (MRR-67) 18-Oct-89 Loma Prieta United States 6.93 0.4 6.2 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

108 Port of Oakland (POO7-2) 18-Oct-89 Loma Prieta United States 6.93 0.28 3 Y Mitchell et al. [1994]; Kayen et al. [1998] 

109 Port of Oakland (POO7-3) 18-Oct-89 Loma Prieta United States 6.93 0.28 3 N Mitchell et al. [1994]; Kayen et al. [1998] 

110 Pajaro Dunes (PD1-44) 18-Oct-89 Loma Prieta United States 6.93 0.22 3.4 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

111 Port of Richmond (POR-2) 18-Oct-89 Loma Prieta United States 6.93 0.18 2.4 Y Mitchell et al. [1994]; Kayen et al. [1998] 

112 Port of Richmond (POR-3) 18-Oct-89 Loma Prieta United States 6.93 0.18 2.4 Y Mitchell et al. [1994]; Kayen et al. [1998] 

113 Port of Richmond (POR-4) 18-Oct-89 Loma Prieta United States 6.93 0.18 2.4 Y Mitchell et al. [1994]; Kayen et al. [1998] 

114 Radovich (RAD-98) 18-Oct-89 Loma Prieta United States 6.93 0.38 3.5 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

115 Radovich (RAD-99) 18-Oct-89 Loma Prieta United States 6.93 0.38 4.1 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 
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116 MBARI 3 (RC-6) 18-Oct-89 Loma Prieta United States 6.93 0.28 2.6 N Boulanger et al. [1995; 1997] 

117 MBARI 3 (RC-7) 18-Oct-89 Loma Prieta United States 6.93 0.28 3.7 N Boulanger et al. [1995; 1997] 

118 Sea Mist (SEA-31) 18-Oct-89 Loma Prieta United States 6.93 0.22 0.8 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

119 SFO Bay Bridge (SFOBB-1) 18-Oct-89 Loma Prieta United States 6.93 0.28 3 Y Mitchell et al. [1994]; Kayen et al. [1998] 

120 SFO Bay Bridge (SFOBB-2) 18-Oct-89 Loma Prieta United States 6.93 0.28 3 Y Mitchell et al. [1994]; Kayen et al. [1998] 

121 Silliman (SIL-68) 18-Oct-89 Loma Prieta United States 6.93 0.38 3.5 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

122 
Southern Pacific Bridge 

(SPR-48) 
18-Oct-89 Loma Prieta United States 6.93 0.33 5.3 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

123 
Salinas River Bridge (SRB-

116) 
18-Oct-89 Loma Prieta United States 6.93 0.12 6.4 N Bennett and Tinsely [1995]; Moss et al. (2006) 

124 
Salinas River Bridge (SRB-

117) 
18-Oct-89 Loma Prieta United States 6.93 0.12 6.4 N Bennett and Tinsely [1995]; Moss et al. (2006) 

125 Tanimura (TAN-103) 18-Oct-89 Loma Prieta United States 6.93 0.13 5 Y Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

126 Tanimura (TAN-105) 18-Oct-89 Loma Prieta United States 6.93 0.13 4.2 N Bennett and Tinsely [1995]; Toprak and Holzer [2003] 

127 
Treasure Island Fire Station 

(CPTU1) 
18-Oct-89 Loma Prieta United States 6.93 0.16 1.5 N Pass [1994], Youd and Carter [2005] 

128 Marine Lab (UC-1) 18-Oct-89 Loma Prieta United States 6.93 0.28 2.4 Y Boulanger et al. [1995; 1997] 

129 Sandhold Road (UC-2) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.7 N Boulanger et al. [1995; 1997] 

130 Sandhold Road (UC-3) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.7 N Boulanger et al. [1995; 1997] 

131 Sandhold Road (UC-6) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.7 N Boulanger et al. [1995; 1997] 

132 Marine Lab (UC-7) 18-Oct-89 Loma Prieta United States 6.93 0.28 2.4 Y Boulanger et al. [1995; 1997] 

133 Woodward Marine (UC-8) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.3 Y Boulanger et al. [1995; 1997] 

134 Woodward Marine (UC-9) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.2 Y Boulanger et al. [1995; 1997] 

135 Woodward Marine (UC-10) 18-Oct-89 Loma Prieta United States 6.93 0.28 1 Y Boulanger et al. [1995; 1997] 

136 Woodward Marine (UC-11) 18-Oct-89 Loma Prieta United States 6.93 0.28 1 Y Boulanger et al. [1995; 1997] 

137 Harbor Office (UC-12) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.9 Y Boulanger et al. [1995; 1997] 

138 Harbor Office (UC-13) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.9 Y Boulanger et al. [1995; 1997] 

139 State Beach Kiosk (UC-14) 18-Oct-89 Loma Prieta United States 6.93 0.28 1.8 Y Boulanger et al. [1995; 1997] 

140 State Beach Path (UC-16) 18-Oct-89 Loma Prieta United States 6.93 0.28 2.5 Y Boulanger et al. [1995; 1997] 

141 State Beach (UC-18) 18-Oct-89 Loma Prieta United States 6.93 0.28 3.4 N Boulanger et al. [1995; 1997] 

142 Harbor Office (UC-20) 18-Oct-89 Loma Prieta United States 6.93 0.28 3 Y Boulanger et al. [1995; 1997] 

143 Harbor Office (UC-21) 18-Oct-89 Loma Prieta United States 6.93 0.28 2.7 Y Boulanger et al. [1995; 1997] 

144 Balboa Boulevard (BAL-10) 17-Jan-94 Northridge United States 6.69 0.84 7.2 Y Bennett et al., 1998; Holzer et al. [1999]; Moss et al. [2003] 

145 Balboa Boulevard (BAL-11) 17-Jan-94 Northridge United States 6.69 0.84 7.6 Y Bennett et al., 1998; Holzer et al. [1999]; Moss et al. [2003] 
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146 Rory Lane (M-27) 17-Jan-94 Northridge United States 6.69 0.8 3.4 Y Abdel-Haq and Hryciw [1998] 

147 
Dust Management Facility 

(DMC) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.37 2 Y Suzuki et al. [2003] 

148 Fukuzumi Park (FUP-1) 16-Jan-95 Hyogoken-Nambu Japan 6.9 0.65 3.1 N Suzuki et al. [2003] 

149 
Hamakoshienn Housing 

Area (HAH-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.5 2 Y Suzuki et al. [2003] 

150 
Honjyo Central Park (HCP-

1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.7 2.5 N Suzuki et al. [2003] 

151 
Imazu Elementary School 

(IES-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 1.4 Y Suzuki et al. [2003] 

152 Kobe Art Institute (KAI-1) 16-Jan-95 Hyogoken-Nambu Japan 6.9 0.5 3 N Suzuki et al. [2003] 

153 
Kobe Customs Maya Office 

A (KMO-A) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 1.8 Y Suzuki et al. [2003] 

154 
Kobe Customs Maya Office 

A (KMO-B) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 1.8 Y Suzuki et al. [2003] 

155 
Kobe Port Construction 

Office (KOP-2) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 2.5 Y Suzuki et al. [2003] 

156 Kobe Pump Station (KPS-1) 16-Jan-95 Hyogoken-Nambu Japan 6.9 0.45 2.6 Y Suzuki et al. [2003] 

157 Mikuska Park (MIP-1) 16-Jan-95 Hyogoken-Nambu Japan 6.9 0.65 2 Y Suzuki et al. [2003] 

158 Nagashi Park (NAP-1) 16-Jan-95 Hyogoken-Nambu Japan 6.9 0.65 1 N Suzuki et al. [2003] 

159 
Nisseki Kobe Oil Tank A 

(NKO-2) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 2.4 Y Suzuki et al. [2003] 

160 
Nisseki Kobe Oil Tank B 

(NKO-3) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 2.4 Y Suzuki et al. [2003] 

161 
New Port No. 6 Pier (NPP-

1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 2.5 Y Suzuki et al. [2003] 

162 
New Wharf Construction 

Offices (NWC-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.45 2.6 Y Suzuki et al. [2003] 

163 
Sumiyoshi Elementary 

(SES-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.6 1.9 N Suzuki et al. [2003] 

164 
Shimonakajima Park (SHP-

2) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.65 2 N Suzuki et al. [2003] 

165 
Shiporex Kogyo Osaka 

Factory (SKF-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.4 1.5 Y Suzuki et al. [2003] 

166 
Tokuyama Concrete 

Factory (TCF-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.5 2 Y Suzuki et al. [2003] 

167 
Yoshida Kogyo Factory 

(YKF-1) 
16-Jan-95 Hyogoken-Nambu Japan 6.9 0.5 3 N Suzuki et al. [2003] 

168 
Adapazari Site C2 (CPT-

C4) 
17-Aug-99 Kocaeli Turkey 7.51 0.4 0.4 Y PEER [2000a] 
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169 Adapazari Site K (CPT-K1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 0.8 Y PEER [2000a] 

170 Adapazari Site B 17-Aug-99 Kocaeli Turkey 7.51 0.4 3.3 Y PEER [2000a] 

171 Adapazari Site D (CPT-D1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 1.5 Y PEER [2000a] 

172 Degirmendere DN-1 17-Aug-99 Kocaeli Turkey 7.51 0.4 1.7 Y Youd et al. [2009] 

173 Degirmendere DN-2 17-Aug-99 Kocaeli Turkey 7.51 0.4 2.5 N Youd et al. [2009] 

174 Adapazari Site E (CPT-E1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 0.5 Y PEER [2000a] 

175 Adapazari Site F (CPT-F1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 0.5 Y PEER [2000a] 

176 Adapazari Site G (CPT-G1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 0.5 Y PEER [2000a] 

177 Adapazari Site H (CPT-H1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 1.7 Y PEER [2000a] 

178 Adapazari Site J (CPT-J2) 17-Aug-99 Kocaeli Turkey 7.51 0.4 0.6 Y PEER [2000a] 

179 Adapazari Site L (CPT-L1) 17-Aug-99 Kocaeli Turkey 7.51 0.4 1.72 Y PEER [2000a] 

180 Police Station PS-1 17-Aug-99 Kocaeli Turkey 7.51 0.4 1 Y PEER [2000a] 

181 Soccer Field SF-5 17-Aug-99 Kocaeli Turkey 7.51 0.37 1 Y PEER [2000a] 

182 Hotel Spanca SH-4 17-Aug-99 Kocaeli Turkey 7.51 0.37 0.5 Y PEER [2000a] 

183 Yalova Harbor YH-3 17-Aug-99 Kocaeli Turkey 7.51 0.37 1 Y PEER [2000a] 

184 Nantou Site C (CPT-1) 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 1 Y PEER (2000b) 

185 Nantou Site C2  20-Sep-99 Chi-Chi Taiwan 7.62 0.38 5 Y PEER (2000b) 

186 Nantou Site C3 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 1.5 Y PEER (2000b) 

187 Nantou Site C7 (CPT-7) 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 1 Y PEER (2000b) 

188 Nantou Site C8 (CPT-8) 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 1 Y PEER (2000b) 

189 Nantou Site C13 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 2 N PEER (2000b) 

190 Nantou Site C16 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 5.3 N PEER (2000b) 

191 Nantou Site K1 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 2.5 Y PEER (2000b) 

192 Nantou Site K5 20-Sep-99 Chi-Chi Taiwan 7.62 0.38 2.5 Y PEER (2000b) 

193 WuFeng Site C7 NCREE  20-Sep-99 Chi-Chi Taiwan 7.62 0.6 3.2 Y PEER (2000b) 

194 WuFeng Site C8 NCREE  20-Sep-99 Chi-Chi Taiwan 7.62 0.6 3.2 N PEER (2000b) 

195 WuFeng Site C10 NCREE  20-Sep-99 Chi-Chi Taiwan 7.62 0.6 1.4 Y PEER (2000b) 

196 WuFeng Site C15 NCREE  20-Sep-99 Chi-Chi Taiwan 7.62 0.6 2.5 Y PEER (2000b) 

197 WuFeng Site B (WBC-1) 20-Sep-99 Chi-Chi Taiwan 7.62 0.6 1.1 Y PEER (2000b) 

198 WuFeng Site C (WCC-6) 20-Sep-99 Chi-Chi Taiwan 7.62 0.6 1.2 Y PEER (2000b) 

199 WuFeng Site K5 20-Sep-99 Chi-Chi Taiwan 7.62 0.6 1 Y Lee et al. [2000] 

200 Yanlin Site C2  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 0.56 Y PEER (2000b) 
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201 Yanlin Site C4  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 0.7 Y PEER (2000b) 

202 Yanlin Site C5 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 2.4 N PEER (2000b) 

203 Yanlin Site C7 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.7 N PEER (2000b) 

204 Yanlin Site C8 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.3 N PEER (2000b) 

205 Yanlin Site C9 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.2 N PEER (2000b) 

206 Yanlin Site C10 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.9 N PEER (2000b) 

207 Yanlin Site C11 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 2.9 N PEER (2000b) 

208 Yanlin Site C13 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.1 N PEER (2000b) 

209 Yanlin Site C15 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.5 N PEER (2000b) 

210 Yanlin Site C16 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 2.5 N PEER (2000b) 

211 Yanlin Site C19  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 0.6 Y PEER (2000b) 

212 Yanlin Site C22  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.1 Y PEER (2000b) 

213 Yanlin Site C24  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.2 Y PEER (2000b) 

214 Yanlin Site C25  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 3.5 Y PEER (2000b) 

215 Yanlin Site C32  20-Sep-99 Chi-Chi Taiwan 7.62 0.25 0.7 Y PEER (2000b) 

216 Yanlin Site 44 20-Sep-99 Chi-Chi Taiwan 7.62 0.25 1.4 N PEER (2000b) 

217 Site I (CPT-2) 8-Jun-08 Achaia-Ilia Greece 6.4 0.18 0.4 Y Batilas et al. [2014] 

218 Site II (CPT-5) 8-Jun-08 Achaia-Ilia Greece 6.4 0.18 0.4 N Batilas et al. [2014] 

219 
San Felipito Bridges (CPT-

1) 
4-Apr-10 El Mayor-Cucapah Mexico 7.2 0.265 2 Y Turner et al. [2016] 

220 
Hinode Minami Elementary 

School 
11-Mar-11 Tohoku Japan 9 0.17 1.1 N Cox et al. [2013], Boulanger and Idriss [2014] 

221 Hosoyama Nekki 11-Mar-11 Tohoku Japan 9 0.18 2.5 N Cox et al. [2013], Boulanger and Idriss [2014] 

222 Takasu Chuou Park 11-Mar-11 Tohoku Japan 9 0.21 1.1 Y Cox et al. [2013], Boulanger and Idriss [2014] 

223 Takasu Kaihin Park 11-Mar-11 Tohoku Japan 9 0.22 1.3 Y Cox et al. [2013], Boulanger and Idriss [2014] 

224 Akemi Elementary School 11-Mar-11 Tohoku Japan 9 0.169 1.2 N Cox et al. [2013], Boulanger and Idriss [2014] 

225 Hinode Elementary School 11-Mar-11 Tohoku Japan 9 0.199 1.2 Y Cox et al. [2013], Boulanger and Idriss [2014] 

226 Irifune Nursery School 11-Mar-11 Tohoku Japan 9 0.256 1.6 Y Cox et al. [2013], Boulanger and Idriss [2014] 

227 184050U015 20-May-12 Emilia Italy 6.1 0.22 4.2 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

228 184050U016 20-May-12 Emilia Italy 6.1 0.22 4.2 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

229 184050U017 20-May-12 Emilia Italy 6.1 0.22 2.65 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

230 184050U018 20-May-12 Emilia Italy 6.1 0.22 3.45 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

231 184060U001 20-May-12 Emilia Italy 6.1 0.31 3.8 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 
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No. CPT ID Date Event Country Mag (Mw) 
PGA 
(g) 

GWT 
(mbg) 

Y/N References 

232 184090U047 20-May-12 Emilia Italy 6.1 0.27 4.2 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

233 184090U048 20-May-12 Emilia Italy 6.1 0.27 3.7 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

234 184090U049 20-May-12 Emilia Italy 6.1 0.27 3.25 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

235 184090U050 20-May-12 Emilia Italy 6.1 0.27 3.2 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

236 184090U051 20-May-12 Emilia Italy 6.1 0.25 2.5 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

237 184090U052 20-May-12 Emilia Italy 6.1 0.25 2.5 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

238 184090U053 20-May-12 Emilia Italy 6.1 0.19 4.9 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

239 184090U054 20-May-12 Emilia Italy 6.1 0.19 4.9 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

240 184090U055 20-May-12 Emilia Italy 6.1 0.23 3.4 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

241 185130B501 20-May-12 Emilia Italy 6.1 0.59 3 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

242 185130B502 20-May-12 Emilia Italy 6.1 0.6 3 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

243 185130B503 20-May-12 Emilia Italy 6.1 0.59 3 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

244 185130B504 20-May-12 Emilia Italy 6.1 0.59 3 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

245 185130U006 20-May-12 Emilia Italy 6.1 0.73 3 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

246 185130U022 20-May-12 Emilia Italy 6.1 0.58 1.8 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

247 185130U505 20-May-12 Emilia Italy 6.1 0.6 5 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

248 185130U506 20-May-12 Emilia Italy 6.1 0.6 4.84 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

249 185130U507 20-May-12 Emilia Italy 6.1 0.6 5.16 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

250 185130U508 20-May-12 Emilia Italy 6.1 0.59 4.22 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

251 185130U509 20-May-12 Emilia Italy 6.1 0.59 2.37 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

252 185130U510 20-May-12 Emilia Italy 6.1 0.59 5.23 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

253 185130U511 20-May-12 Emilia Italy 6.1 0.59 4.65 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

254 185130U512 20-May-12 Emilia Italy 6.1 0.58 4.4 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

255 185130U513 20-May-12 Emilia Italy 6.1 0.58 4.18 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

256 185130U514 20-May-12 Emilia Italy 6.1 0.58 4.55 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

257 185140B001 20-May-12 Emilia Italy 6.1 0.54 2 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

258 185140U002 20-May-12 Emilia Italy 6.1 0.53 2.3 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

259 185140U003 20-May-12 Emilia Italy 6.1 0.54 3.6 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

260 185140U004 20-May-12 Emilia Italy 6.1 0.54 3.3 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

261 185140U005 20-May-12 Emilia Italy 6.1 0.56 4.9 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

262 203010U001 20-May-12 Emilia Italy 6.1 0.65 4 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

263 203010U002 20-May-12 Emilia Italy 6.1 0.65 4.9 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 
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Y/N References 

264 203010U005 20-May-12 Emilia Italy 6.1 0.66 2.4 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

265 203010U006 20-May-12 Emilia Italy 6.1 0.65 2.4 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

266 203010U509 20-May-12 Emilia Italy 6.1 0.72 1.9 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

267 203020U095 20-May-12 Emilia Italy 6.1 0.48 4.5 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

268 203020U096 20-May-12 Emilia Italy 6.1 0.48 1.6 Y Papathanassiou et al. [2015]; Servizio Geologico [2016] 

269 203020U097 20-May-12 Emilia Italy 6.1 0.5 2.05 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

270 203020U098 20-May-12 Emilia Italy 6.1 0.5 1.9 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

271 203020U099 20-May-12 Emilia Italy 6.1 0.51 1.8 N Papathanassiou et al. [2015]; Servizio Geologico [2016] 

272 CPTU1 20-May-12 Emilia Italy 6.1 0.31 1.4 Y 
Papathanassiou et al. [2015]; Servizio Geologico [2016]; 

Facciorusso et al. [2015] 

273 Wildlife B (3Cgd)  Mexicali  7.2 0.094 1.2 N Bennett et al. [1984]; Holzer and Youd (2007); NEES [2016] 

274 Herber Road (HEB001)  Mexicali  7.2 0.23 1.8 N Moss et al. [2005]; CESMD [2016] 
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APPENDIX B Fragility Functions 

Provided on the following pages are 240 fragility functions for predicting the severity of 
foundation damage using the RGM3 and GGM2 geospatial models. These functions are for 
specific severities of damage, specific modes of damage, and for specific types of shallow-
foundation system. Function coefficients (for implementing the functions in forward analyses) are 
provided in Tables B.1 and B.2. Additional details and discussion are provided within the text of 
this report. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.1 Fragility functions for predicting the probability of damage to timber floor on pile foundations using global 
geospatial model GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) 
tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; and (h) the failure mode with 
greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.2 Fragility functions for predicting the probability of damage to timber on internal piles with perimeter concrete 
footing foundations using global geospatial model GGM2: (a) stretching failure; (b) hogging failure; (c) dishing 
failure; (d) twisting failure; (e) tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; 
and (h) the failure mode with greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.3 Fragility functions for predicting the probability of damage to concrete slab on grade foundations using global 
geospatial model GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) 
tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; and (h) the failure mode with 
greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.4 Fragility functions for predicting the probability of damage to Mixed foundations using global geospatial model 
GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 
discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed 
severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.5 Fragility functions for predicting the probability of damage to shallow foundations (all variants) using global 
geospatial model GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) 
tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; and (h) the failure mode with 
greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.6 Fragility functions for predicting the probability of damage to timber floor on pile foundations using regional 
geospatial model RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) 
tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; and (h) the failure mode with 
greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.7 Fragility functions for predicting the probability of damage to timber on internal piles with perimeter concrete 
footing foundations using regional geospatial model RGM3: (a) stretching failure; (b) hogging failure; (c) 
dishing failure; (d) twisting failure; (e) tilting failure; (f) discontinuous foundation failure; and (g) global 
settlement failure; (h) the failure mode with greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.8 Fragility functions for predicting the probability of damage to concrete slab on grade foundations using 
regional geospatial model RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting 
failure; (e) tilting failure; (f) discontinuous foundation failure; and (g) global settlement failure; and (h) the failure 
mode with greatest observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.9 Fragility functions for predicting the probability of damage to mixed foundations using regional geospatial 
model RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; 
(f) discontinuous foundation failure; (g) global settlement failure; and (h) the failure mode with greatest 
observed severity. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B.10 Fragility functions for predicting the probability of damage to shallow foundations (all variants) using regional 
geospatial model RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) 
tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; and (h) the failure mode with 
greatest observed severity. 
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Table B.1 Fragility-function coefficients for geospatial model RGM3, which can be used to predict the probability of 
liquefaction-induced foundation damage exceeding a given severity, as defined in Figure 4.4. 

 

  
Stretching Hogging Dishing Twisting Tilting 

Discontinuous 
foundation 

Global 
settlement 

Worst 
(all) 

Timber floor on 
piles (Type A) 

Minor 
β  0.078 16.930 15.290 - 24.548 - 4.954 - 

xm  1.449 3579715134.903 1464296169.904 - 365609.132 - 17.761 - 

Moderate 
β  5.133 5.209 7.830 2.899 1.884 4.903 2.818 2.370 

xm  73527.350 7220.297 3529586.069 15.665 3.151 8470.387 38.399 3.084 

Severe 
β  6.846 0.117 0.117 6.754 7.110 0.117 8.984 3.630 

xm  34879262.158 16.153 16.153 2811468.136 4142715.733 16.153 2866924982.818 230.295 

             

Timber on internal 
piles with perimeter 

concrete footing 
(Type B) 

Minor 
β  10.877 12.375 12.237 - 10.348 11.452 3.451 - 

xm  60115066.790 8700668.925 17676579.826 - 179.343 16802492.747 5.717 - 

Moderate 
β  8.781 5.681 4.344 2.926 3.162 5.451 3.038 2.231 

xm  155216559.280 25013.577 1864.084 16.269 23.475 24604.890 58.448 2.560 

Severe 
β  8.305 6.676 8.399 9.131 7.449 11.491 6.037 2.615 

xm  596434178.231 19365811.836 1346455813.461 446729231.433 4123055.832 1232641633278.430 2067746.754 31.646 

             

Concrete slab on 
grade (Type C) 

Minor 
β  15.790 10.109 - - 16.962 10.422 3.895 - 

xm  284531612543.277 11115828.039 - - 13054.515 4562906.457 4.141 - 

Moderate 
β  3.659 3.500 2.013 2.755 3.569 4.339 2.193 2.397 

xm  757.466 653.472 13.199 18.869 45.746 2741.985 9.329 4.062 

Severe 
β  1.946 3.087 5.077 2.732 5.871 2.297 4.450 2.975 

xm  35.695 1576.805 143309.416 250.134 132947.483 127.870 20176.974 85.422 

             

Mixed Foundations  

Minor 
β  15.062 10.181 - - 8.452 11.966 3.677 - 

xm  5103886.446 88898.082 - - 1.419 178572.180 1.896 - 

Moderate 
β  13.861 11.181 5.656 7.154 3.366 6.183 5.249 2.469 

xm  75906344189.413 315569458.331 7939.727 3453.424 10.297 10804.985 1102.818 1.773 

Severe 
β  0.117 6.439 5.688 14.389 8.516 12.585 8.772 2.385 

xm  16.153 2401770.649 864209.823 389815492927.571 961245.538 289653696327.526 55254278.802 9.426 

             

All foundations 

Minor 
β  12.013 11.999 14.918 - 17.147 13.108 3.219 - 

xm  546198426.962 26795894.400 2530161618.342 - 19932.695 291675689.965 2.810 - 

Moderate 
β  5.318 4.829 3.428 2.602 2.610 4.095 3.163 2.117 

xm  34125.943 5985.564 247.960 10.802 9.882 1075.954 65.977 2.385 

Severe 
β  6.514 4.972 5.670 6.946 6.632 8.743 6.132 2.688 

xm  5165746.808 302650.524 1232623.327 3420789.598 628953.677 1429244855.777 1299018.521 41.231 
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Table B.2 Fragility-function coefficients for geospatial model GGM2, which can be used to predict the probability of 
liquefaction-induced foundation damage exceeding a given severity, as defined in Figure 3.4. 

 

      Stretching Hogging Dishing Twisting Tilting 
Discontinuous 

foundation 
Global 

settlement 
Worst 
(all) 

Timber floor on 
piles (Type A) 

Minor 
β  0.7901 1.209 2.0588 - 2.0991 - 0.9511 - 

xm  2.1703 2.7396 10.4178 - 1.6448 - 1.2535 - 

Moderate 
β  1.4845 0.6947 1.5133 0.976 0.6246 1.1016 1.0347 4.7003 

xm  18.5092 2.1864 13.9522 2.4952 1.3086 5.9454 3.2863 89.053 

Severe 
β  1.8459 1.4639 1.7405 2.0264 1.1891 1.234 2.0041 0.6732 

xm  75.9703 32.8245 82.8354 80.3083 7.5253 15.5452 101.7372 2.136 

             

Timber on 
internal piles 

with perimeter 
concrete footing 

(Type B) 

Minor 
β  2.5306 4.9707 3.3833 - 1.8677 4.0606 0.756 - 

xm  46.3306 632.6935 81.5739 - 1.5787 322.1766 1.0373 - 

Moderate 
β  0.8688 0.9265 0.9591 0.9218 0.7801 2.3117 0.6051 1.788 

xm  3.8051 3.7801 4.2493 2.4073 1.8478 82.4018 1.6359 4.1193 

Severe 
β  1.2189 1.2478 1.0026 1.1596 1.2617 1.3506 1.5441 0.3978 

xm  13.0783 15.7803 8.3003 9.4004 10.9058 19.4781 38.9964 1.2235 

     

Concrete slab on 
grade (Type C) 

Minor 
β  4.9323 2.7124 - - 1.48 1.7033 0.8614 - 

xm  3784.9445 73.4465 - - 1.3417 8.2174 1.0012 - 

Moderate 
β  1.083 1.6463 1.077 1.8323 0.9146 2.9712 0.8295 3.0567 

xm  6.069 27.1361 5.5422 15.8071 2.2015 433.9911 2.2798 20.3189 

Severe 
β  1.7043 0.9952 1.5914 1.0331 0.8444 1.3204 0.7737 0.8071 

xm  57.5255 9.8321 43.1447 7.5061 3.5708 21.8156 3.9792 2.9769 

             

Mixed 
Foundations  

Minor 
β  5.8007 1.3798 - - 2.8556 4.5756 2.996 - 

xm  439.7579 2.8744 - - 1.1209 80.3509 3.9953 - 

Moderate 
β  2.1195 1.1434 0.5146 3.3448 1.5117 2.8706 3.0141 5.1622 

xm  14.3638 4.3518 1.4423 42.4222 3.5288 39.5498 41.3093 33.4292 

Severe 
β  7.8593 0.9874 0.5718 0.8472 0.9755 0.8495 0.7358 1.1692 

xm  78780584.93 6.3835 2.3045 4.0094 4.3797 4.3029 3.1512 4.7525 

             

All foundations 

Minor 
β  2.3919 3.4041 1.7818 - 1.6945 3.7489 0.9286 - 

xm  34.738 100.4902 7.8953 - 1.4452 193.077 1.1241 - 

Moderate 
β  1.2652 1.0368 1.0379 1.2388 1.0038 3.5636 0.6751 2.2756 

xm  9.0177 5.0013 4.9768 4.2592 2.4919 1238.7445 1.8053 7.1787 

Severe 
β  2.0039 1.4974 1.4601 2.1879 1.9102 1.4331 0.8027 0.542 

xm  111.9411 32.42 28.1578 131.1824 43.7671 26.2218 4.3299 1.6212 
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