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ABSTRACT 

Evaluating the seismic performance of concrete dams requires nonlinear dynamic analysis of 

two- or three-dimensional dam–water–foundation rock systems that include all the factors known 

to be significant in the earthquake response of dams. Such analyses are greatly complicated by 

interaction between the structure, the impounded reservoir and the deformable foundation rock 

that supports it, and the fact that the fluid and foundation domains extend to large distances. 

Presented in this report is the development of a direct finite-element (FE) method for nonlinear 

earthquake analysis of two- and three-dimensional dam–water–foundation rock systems. The 

analysis procedure applies standard viscous-damper absorbing boundaries to model the semi-

unbounded fluid and foundation domains, and specifies at these boundaries effective earthquake 

forces determined from a ground motion defined at a control point on the ground surface. 

This report is organized in three parts, with a common notation list, references, and 

appendices at the end of the report. Part I develops the direct FE method for 2D dam–water–

foundation rock systems. The underlying analytical framework of treating dam–water–

foundation rock interaction as a scattering problem, wherein the dam perturbs an assumed "free-

field" state of the system, is presented, and by applying these concepts to a bounded FE model 

with viscous-damper boundaries to truncate the semi-unbounded domains, the analysis procedure 

is derived. Step-by-step procedures for computing effective earthquake forces from analysis of 

two 1D free-field systems are presented, and the procedure is validated by computing frequency 

response functions and transient response of an idealized dam–water–foundation rock system 

and comparing against independent benchmark results. 

This direct FE method is generalized to 3D systems in Part II of this report. While the 

fundamental concepts of treating interaction as a scattering problem are similar for 2D and 3D 

systems, the derivation and implementation of the method for 3D systems is much more 

involved. Effective earthquake forces must now be computed by analyzing a set of 1D and 2D 

systems derived from the boundaries of the free-field systems, which requires extensive book-

keeping and data transfer for large 3D models. To reduce these requirements and facilitate 

implementation of the direct FE method for 3D systems, convenient simplifications of the 

procedure are proposed and their effectiveness demonstrated. 
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Part III of the report proposes to use the direct FE method for conducting the large 

number of nonlinear response history analyses (RHAs) required for performance-based 

earthquake engineering (PBEE) of concrete dams, and discusses practical modeling 

considerations for two of the most influential aspects of these analyses: nonlinear mechanisms 

and energy dissipation (damping). The findings have broad implications for modeling of energy 

dissipation and calibration of damping values for concrete dam analyses. At the end of Part III, 

the direct FE method is implemented with a commercial FE program and used to compute the 

nonlinear response of an actual arch dam. These nonlinear results, although limited in their 

scope, demonstrate the capabilities and effectiveness of the direct FE method to compute the 

types of nonlinear engineering response quantities required for PBEE of concrete dams. 
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1 Introduction 

Evaluating the seismic performance of concrete gravity dams requires dynamic analysis of two- 

or three-dimensional (2D and 3D, respectively) dam–water–foundation rock systems that include 

all significant factors in the earthquake response of concrete dams [Chopra 2012a]: dam–

foundation rock interaction including inertia effects of the rock [Fenves and Chopra 1985; Tan 

and Chopra 1996]; dam–water interaction, including water compressibility and energy 

absorption at the reservoir bottom [Hall and Chopra 1982; Hall and Chopra 1983; and Fenves 

and Chopra 1983]; radiation damping due to the semi-unbounded sizes of the reservoir and 

foundation domains[Tan and Chopra 1996; Zhang et al. 2009] and nonlinear behavior of the dam 

and foundation rock [Mlaker 1987; Dowling and Hall 1989; Vargas-Loli and Fenves 1989; El-

Aidi and Hall 1989; Chopra and Zhang 1991; Fenves et al. 1992; Bhattacharjee and Leger 1993; 

Cervera et al. 1995; and Chávez and Fenves 1995a]. 

Analysis procedures based on the substructure method have been available since 1984 for 

2D frequency-domain analysis of dam–water–foundation rock systems [Fenves and Chopra 

1984c]. This method models the semi-unbounded domains rigorously and specifies the ground 

motion directly at the dam–foundation rock interface; however, it is restricted to homogeneous 

material properties and simple geometry of the reservoir and foundation domains. More 

importantly, the substructure method is restricted to linear behavior of the entire system. Thus, 

nonlinear effects such as cracking of concrete and separation and sliding at joints and interfaces 

cannot be modeled. 

The direct method of analysis, on the other hand, models the entire system directly in the 

time-domain using finite elements. Such analyses are often conducted using commercial 

software that ignores one or several of the above factors to facilitate nonlinear dynamic analysis. 

For many years, the dam engineering profession used a finite-element (FE) model that included a 

limited extent of foundation rock, assumed to have no mass, and approximated hydrodynamic 
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effects by an added mass of water moving with the dam. The design ground motion–typically 

defined at a control point on the free surface–was applied at the bottom fixed boundary of the 

foundation domain without modification. These approximations are attractive because they 

simplify the analysis greatly; however, such a model solves a problem that is very different from 

the real problem on two counts: (1) the assumptions of massless rock and incompressible water–

implied by the added mass water model–are unrealistic [Chopra 2012a]; and (2) applying ground 

motion specified at a control point on the free surface to the bottom boundary of the FE model 

contradicts recorded evidence that motions at depth generally differ significantly from surface 

motions. In recent years, some engineers have shifted away from this approach. 

To eliminate these unrealistic assumptions, the FE model of the dam must be extended to 

comprise a foundation domain that includes mass, stiffness, and material damping appropriate 

for rock, and a fluid domain that includes water compressibility and reservoir bottom absorption. 

The semi-unbounded foundation and fluid domains must be reduced to bounded sizes with 

appropriate radiation conditions at the domain boundaries to allow propagation of outgoing 

waves. Development of such absorbing boundaries is a vast field with rich literature [Lysmer and 

Kuhlemeyer 1969; Smith 1974; Clayton and Engquist 1977; Engquist and Majda 1977; White et 

al. 1977; Kausel and Tassoulas 1981; Underwood and Geers 1981; Liao and Wong 1984; Higdon 

1986; Higdon 1987; Wolf 1988; Wolf and Song 1995; Wolf and Song 1996; Kellezi 2000; Basu 

and Chopra 2003; Basu and Chopra 2004; and Basu 2009]. The earthquake motion cannot be 

specified directly at the model truncations as this would render any absorbing boundary 

ineffective. Instead, effective earthquake forces are computed from the earthquake motion and 

applied either directly at the absorbing boundaries [Zienkiewicz et al. 1989; Lemos 1999; and 

Saouma et al. 2011] or via a layer of elements interior of the boundaries [Bielak and Christiano 

1984; Aydinoglu 1993; and Bielak et al. 2003]. 

Utilizing these concepts, Basu [2004] developed a direct FE procedure for nonlinear 

analysis of dam–water–foundation rock systems. Here, the high-performing perfectly matched 

layer (PML) [Basu and Chopra 2004] was used as the absorbing boundary, and the effective 

seismic input (ESI) method [Bielak and Christiano 1984], also known as the domain reduction 

method (DRM) [Bielak et al. 2003] was used to apply the effective earthquake forces. Although 

the procedure rigorously incorporates all the above factors significant in the earthquake response 
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of dams, the PML boundary and DRM procedure are currently not available in most commercial 

FE codes; the only exception is LS-DYNA [Hallquist 2016]. Thus, this procedure is not 

accessible to researchers and practicing engineers who prefer other FE codes. These limitations 

can be overcome by modeling the absorbing boundaries by viscous dampers [Lysmer and 

Kuhlemeyer 1969] and specifying the effective earthquake forces directly at these boundaries. 

Both of these features are available in almost every commercial FE code and are therefore 

chosen herein. A variation of such a procedure initiated by the U.S. Bureau of Reclamation, 

wherein effective earthquake forces on the side boundaries are ignored, is often used in the dam 

engineering profession [Noble and Nuss 2004a; Mills-Bria et al. 2008; and Bureau of 

Reclamation 2013]. 

The following chapters develop the formulation for a direct FE method for nonlinear 

earthquake analysis of semi-unbounded dam–water–foundation rock systems that incorporates 

all significant factors for the earthquake response of dams, while ensuring broad applicability by 

using the well-known viscous damper as the absorbing boundaries. Derivation of the analysis 

method is founded on the idea of treating interaction as a scattering problem [Herrera and Bielak 

1977; Bielak and Christiano 1984] and follows a similar outline as the procedure developed by 

Basu [2004] using PML-boundaries and DRM for seismic input. In Chapter 2, the system and 

ground motion is defined, and the governing equations for each of three subdomains are 

presented. In Chapters 3 and 4, the direct FE method is developed for dam–foundation rock and 

dam–water systems, respectively, by utilizing the concept of treating interaction as a scattering 

problem and formulating the radiation condition for viscous-damper boundaries in a convenient 

way. These two procedures are integrated to formulate the analysis procedure for the combined 

dam–water–foundation rock system in Chapter 5. At the end of Chapters 3–5, the analysis 

method is validated by computing the response of idealized dam–foundation rock (Chapter 3), 

dam–water (Chapter 4), and dam–water–foundation rock (Chapter 5) systems and comparing 

against results obtained using the substructure method. In Chapter 5, the importance of including 

water–foundation rock interaction is also discussed. 
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2 System and Ground Motion 

2.1 SEMI-UNBOUNDED DAM–WATER–FOUNDATION ROCK SYSTEM 

The idealized, 2D dam–water–foundation rock system (Figure 2.1) is composed of three parts: 

(1) the gravity dam with nonlinear properties; (2) the foundation rock, consisting of a bounded 

region adjacent to the dam that can be nonlinear and inhomogeneous, and a semi-unbounded 

region that is restricted to be linear; and (3) the fluid domain, consisting of a bounded region of 

arbitrary geometry adjacent to the dam that may be nonlinear, and a uniform channel, unbounded 

in the upstream direction, that is restricted to be linear. Thus, nonlinear effects such as concrete 

cracking, sliding and separation at construction joints, lift joints, and concrete-rock interfaces, 

and cavitation in the fluid may be considered in the analysis. 

 

Figure 2.1 Semi-unbounded dam–water–foundation rock system: (1) the dam itself; (2) 

the foundation rock, consisting of a bounded, nonlinear region and a semi-

unbounded, linear region; and (3) the fluid domain, consisting of an 

irregular, nonlinear, region, and a semi-unbounded prismatic channel with 

linear fluid. Figure adapted from Basu [2004]. 
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The earthquake excitation is defined at a control point at the surface of the foundation 

rock by two components of free-field ground acceleration (Figure 2.1): the horizontal component 

( )x
ga t  transverse to the dam axis, and the vertical component ( )y

ga t . The surface of the foundation 

rock is assumed to be at the same elevation in the far upstream and downstream directions; this 

geometric restriction is introduced to define a convenient free-field state of the foundation rock 

in Section 3.1. 

2.2 MODELING OF SEMI-UNBOUNDED DOMAINS 

The dam–water–foundation rock system in Figure 2.1 is modeled by a FE discretization of a 

bounded system with viscous-damper boundaries to represent the semi-unbounded foundation 

and fluid domains. The earthquake motion cannot be specified directly at these model truncations 

as this would render any absorbing boundary ineffective. Instead, effective earthquake forces are 

computed from the earthquake excitation and applied at the absorbing boundaries. 

The size of the foundation and fluid domains included in the FE model is determined by 

the ability of the absorbing boundaries to absorb outgoing (scattered) waves from the dam. If an 

advanced boundary such as the PML [Basu and Chopra 2004] is used, a small domain is 

sufficient to model the fluid and foundation domains [Figure 2.2(a)]. In contrast, the simple 

viscous-damper boundary applied in this formulation requires much larger domains [Figure 

2.2(b)]. 

 

Figure 2.2 Dam–water–foundation rock system with truncated foundation and fluid 

domains: (a) small domain sizes with advanced absorbing boundary; and 

(b) large domain sizes with simple absorbing boundary. 

Advanced absorbing 

boundary, e.g. PML
Simple absorbing boundary,

 e.g. viscous dampers

(a) (b)
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2.3 GOVERNING EQUATIONS 

2.3.1 Dam and Foundation Domain 

The equations of motion governing the vector of total displacements tr  in the FE model of the 

dam with a truncated foundation domain and absorbing boundary f  (Figure 2.3) are 

st( )t t t t t t
h b f     mr cr f r R R R R   (2.1) 

where m and c are the mass and damping matrices, respectively; ( )tf r  is the vector of internal 

forces, which may be nonlinear in the dam and adjacent part of the foundation rock; t
hR  and t

bR  

are the vectors of hydrodynamic forces acting at the dam–water interface h  and water–

foundation interface b , respectively; stR  is the vector of static forces, including self-weight, 

hydrostatic pressures, and static foundation reactions at f ; and t
fR  are the forces associated 

with the absorbing boundary f , which include the effect of the excitation caused by seismic 

waves propagating from a distant earthquake source to the dam site, and the radiation condition 

at the boundary. Expressions for the forces t
hR , t

bR , and t
fR  will be derived later. 

 

Figure 2.3 Schematic FE model of the dam and foundation rock, with absorbing 

boundary f  to truncate the semi-unbounded foundation domain. 

2.3.2 Fluid Domain 

The water is modeled as a linear inviscid, irrotational, and compressible fluid with hydrodynamic 

pressures p governed by the acoustic wave equation: 

2
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p p

C
    (2.2) 

Dam and nonlinear 

foundation rock

Linear and homogeneous 

foundation rock

Absorbing boundary,  �f

Water
 �b

 �h



 

10 

where C  is the speed of pressure waves in water. 

Hydrodynamic pressures are caused by acceleration of the boundaries in contact with the 

reservoir: the upstream dam face h  and the reservoir bottom b  (Figure 2.4). These pressures 

are related to the total accelerations rt  at the fluid–solid interface by the boundary conditions: 

, att
h h h hp      n n r  (2.3a) 

, att
b b b bp qp       n n r  (2.3b) 

where hn  and bn  are the outward normal vectors to the fluid at h  and b , respectively; and   

is the density of water. The second term on the left hand side of Equation (2.3b) is associated 

with the absorption of hydrodynamic pressure waves in sediments deposited at the reservoir 

bottom. This wave absorption is modeled in an approximate way by a boundary condition that 

allows partial absorption of incident hydrodynamic waves, where the damping coefficient q is 

given by 

1

1
qC








 (2.4) 

where   is the reservoir bottom reflection coefficient [Fenves and Chopra 1983; Fenves and 

Chopra 1984c]. This simplified model is chosen herein to allow for a meaningful comparison 

with the substructure method [Fenves and Chopra 1984c] in the numerical validations presented 

at the end of Chapters 3–5. The effects of reservoir bottom sediments can alternatively be 

included using more sophisticated methods by directly modeling the thickness and extent of 

sediments discretized by finite elements with a viscoelastic [Lofti et al. 1981; Medina et al. 

1990] or poroelastic [Bougacha and Tassoulas 1991; Dominguez et al. 1997] material model. 

At the free-water surface, the boundary condition is simply p = 0; effects of surface 

waves are not included as these have little influence on the dynamic response of concrete dams 

[Chopra 1967]. Lastly, an appropriate radiation condition must hold at the absorbing boundary 

r . 

Discretizing the fluid domain using finite elements and defining tp  as the vector of total 

hydrodynamic pressures–where the superscript t has been added for consistency with the 

notation for the total displacements tr –the standard discretization process results in 

T Tt t t t t
h b r       sp bp hp Q Q r H    (2.5) 
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where s, b, and h are the corresponding “mass,” “damping,” and “stiffness” matrices of the fluid 

[Zienkiewicz and Bettess 1978], and t
rH  is the vector of forces associated with the absorbing 

boundary r . In contrast to the “standard” formulation [Zienkiewicz and Bettess 1978], the 

damping matrix b  does here not include the effects of the radiation condition because these are 

represented by the forces t
rH . Also included in this term are the forces exerted on the absorbing 

boundary due to excitation of the part of the fluid domain upstream of r  that has been 

eliminated; an expression for these forces will be derived in Chapter 4. 

The matrix hQ  relates hydrodynamic pressures in the fluid to accelerations in the dam at 

the dam–water interface h  according to the boundary condition of Equation (2.3a): 

T

h

h h h hd


 Q N n N  (2.6) 

where hN  and hN  are the shape functions of the dam and fluid nodes, respectively, on the 

interface h . The matrix bQ  is constructed the same way, but integrated over b . 

 

Figure 2.4 Schematic FE model of the fluid domain highlighting the various boundary 

conditions at the reservoir boundaries. 

2.3.3 Dam–Water–Foundation Rock System 

The hydrodynamic forces t
hR  and t

bR  in Equation (2.1) that act on the dam and foundation rock, 

respectively, can be expressed in terms of the hydrodynamic pressures tp  as [Zienkiewicz and 

Bettess 1978] 

t t t t
h h h b b b R Q p R Q p  (2.7) 

Dam

Foundation rock

Sediments
�n r��h h

t

�n r��b b
t

 �r

Absorbing 

boundary, 

 �b

 �h

p = 0
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Substituting this equation into Equation (2.1) and combining with Equation (2.5) gives the 

equations of motion for the dam–water–foundation rock system with truncated foundation and 

fluid domains: 

T T

st

( )

( )( )

t t

t t
h b

t tt
h b f

t t
r


      

             
        

        
      

m 0 c 0r r

Q Q s 0 bp p

0 Q Q r R Rf r

0 h p H0

 
 

 (2.8) 

where the coupling matrices hQ  and bQ  have non-zero entries only on the interfaces h  and ,b  

respectively. Expressions for the unknown forces t
fR  and t

rH  associated with the absorbing 

boundaries f  and r  will be derived in the subsequent chapters. 
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3 Dam–Foundation Rock System 

3.1 DAM–FOUNDATION ROCK INTERACTION AS A SCATTERING PROBLEM 

Dam–foundation rock interaction may be treated as a scattering problem in which the dam 

perturbs the free-field motion in the foundation rock. Procedures based on this idea have been 

developed for analysis of soil–structure interaction systems [Bielak and Christiano 1984; 

Aydinoglu 1993; and Bielak et al. 2003], and of dam–water–foundation rock systems using PML 

absorbing boundaries and the DRM for seismic input [Basu 2004]. In this chapter, these ideas 

will be utilized to formulate an analysis procedure for the dam–foundation rock subsystem with 

absorbing boundaries modeled by viscous dampers. 

Consider the linear foundation rock in its free-field state, i.e., before the dam was 

constructed or excavation had started [Figure 3.1(a)]. This domain is separated into two 

subdomains: 0  denotes the region interior of the future absorbing boundary f , and   is the 

semi-unbounded exterior region. The vector of free-field displacements at nodes in both 

subdomains is denoted by r0 [Figure 3.1(a)]; a procedure to determine this motion will be 

presented in Section 3.4. 

The dam–foundation rock system is also separated into two subdomains [Figure 3.1(b)]: 

  denotes the dam and foundation region interior of the absorbing boundary f , and   is the 

semi-unbounded exterior region, with the latter identical to the exterior region in the free-field 

system. Following the approach first proposed by Herrera and Bielak [1977], the displacement 

field in the dam–foundation rock system is defined by the variables: 

tr ,        in the interior region   (3.1a) 
0t r r ,  in the exterior region   (3.1b) 

where tr  is the vector of total displacements governed by Equation (2.1), and 0t r r  represents 

the scattered motion in the exterior region  , i.e., the perturbation of the free-field motion 
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caused by the presence of the dam. This substitution of variables in   will subsequently allow 

formulation of the governing equations for the absorbing boundary in a way that the forces t
fR  

in Equation (2.1) can be determined from the free-field motion 0r . 

 

Figure 3.1 Illustration of dam–foundation rock interaction as a scattering problem: (a) 

foundation rock in its free-field state with displacement field defined by 0r  

in 0   ; and (b) dam–foundation rock system with displacement field 

defined by the total motion tr  in   and the scattered motion 0t r r  in 
 . 

3.2 VISCOUS-DAMPER ABSORBING BOUNDARIES 

A set of continuously distributed viscous dampers enforces the one-dimensional (1D) radiation 

condition [Lysmer and Kuhlemeyer 1969]. Assuming that incident waves impinge perpendicular 

to the boundary, this radiation condition is 

0f pV u    (3.2a) 

0f sV w    (3.2b) 

where ( )t  and ( )t  are the normal and tangential tractions; ( )u t  and ( )w t  are the normal and 

tangential displacements† (Figure 3.2); f  is the density of the foundation medium; and Vp and 

Vs its pressure-wave velocity and shear-wave velocity. The viscous damper is a perfect absorber 

of body waves that arrive normal to the boundary, but only a partial absorber for body wave 

impinging at an arbitrary angle and for surface waves; however, the accuracy is generally 

                                                 
† Temporarily (for convenience of notation), u and w is used instead of tr  for displacements. 
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acceptable provided the boundary is placed at sufficient distance from the wave source [Wolf 

1988]. 

The viscous-damper boundary simulates the semi-unbounded foundation region   

where the displacements were defined by the scattered motion [Equation (3.1b)], i.e., 0tu u u   

and 0tw w w  . Because the foundation rock in   is assumed to be linear, it follows that the 

boundary tractions associated with the scattered motion are 0t     and 0t    . 

Substituting for the scattered motion and the corresponding tractions in Equation (3.2) and 

rearranging terms, one obtains: 

0 0t t
f pv u u          (3.3a) 

0 0t t
f sv w w          (3.3b) 

Thus, the total tractions on the absorbing boundary consist of two parts: (1) the free-field 

tractions and (2) the product of a damper coefficient and the scattered motion. 

In a discretized model, the distributed dampers can be lumped at the boundary nodes, 

resulting in discrete viscous dampers with coefficients (Figure 3.2): 

p f pc A V , normal to the boundary (3.4a) 

s f sc A V , tangential to the boundary (3.4b) 

where A is the tributary area (tributary length in a 2D model) for the boundary node. In FE 

notation, Equation (3.3) can be written for the boundary f  as 

0 0t t
f f f f f    R R c r r   (3.5) 

where 0
fR  is the vector of nodal forces consistent with the free-field tractions, and fc  is the 

matrix of damper coefficients pc  and sc . The vectors t
fR , 0

fR , and matrix fc  contain non-zero 

entries only for nodes on f . 
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Figure 3.2 Definition of damper coefficients pc  and sc  for lumped viscous damper on 

f . 

3.3 EQUATIONS OF MOTION 

Substituting Equation (3.5) in Equation (2.1) and rearranging the terms—note that t t
h b R R 0  in 

the absence of water in the reservoir—the final equations of motion for the dam–foundation rock 

subsystem with truncated foundation domain are obtained: 

st 0( )t t t
f f      m r c c r f r R P   (3.6) 

where the effective earthquake forces acting on the boundary f  are 

0 0 0
f f f f P R c r  (3.7) 

Observe: by comparing Equations (3.6) and (2.1), the unknown forces t
fR  associated 

with the absorbing boundary f  have now been expressed in terms of the viscous-damper forces 
t

fc r  and the effective earthquake forces 0
fP . The latter consists of two parts: (1) 0

fR , the forces 

consistent with the free-field tractions at f , and (2) the damper forces 0
f fc r  determined from the 

spatially varying free-field motion at f . Working with the scattered displacements in   has 

thus enabled derivation of Equation (3.7) for the effective earthquake forces in terms of the free-

field displacements and tractions. 

3.4 FREE-FIELD EARTHQUAKE MOTION 

The free-field motion 0
fr  required to compute the effective earthquake forces 0

fP  can be 

determined by various methods. The standard procedure is to define the ground motion at the 

control point (Figure 2.1) to be consistent with a design spectrum. This target spectrum may be 

 �f

cpA

cs

Absorbing 

boundary, 

�, u

� , w

Foundation rock



 

17 

the uniform hazard spectrum (UHS) determined by probabilistic seismic hazard analysis (PSHA) 

[McGuire 2004], or a conditional mean spectrum (CMS) [Baker 2011]. Recorded ground 

motions are selected, scaled, and modified to “match” in some sense the target spectrum; 

alternatively, synthetic motions may be developed for an earthquake scenario. These methods are 

well developed for a single component of ground motion; work on extending these methods to 

two or three components acting simultaneously is in progress. 

To determine the required free-field motion at the boundary f  from the ground motion 

at the control point, it is necessary to introduce assumptions on the type of seismic waves and 

their incidence angle. The simplest assumption, often used for site response analyses and soil–

structure interaction analyses, is vertically propagating SH-waves and P-waves [Schnabel et al 

1972; Wolf 1985]. This is clearly a major simplification of the actual seismic wave field, that 

generally consists of a superposition of vertically and horizontally propagating SH-, SV- and P-

waves, and horizontally propagating surface waves. This assumption is often justified on the 

basis that most sites are located relatively far away from the earthquake source, and that the 

gradual softening of rock and soil towards the Earth's surface leads to diffraction of seismic 

waves towards vertical incidence [Kramer 1996]. It is not obvious that this assumption is 

appropriate for concrete dams sited on competent bedrock, but at the present time it seems to be 

the only pragmatic choice. 

Under the assumption of vertically propagating waves and homogeneous or layered rock, 

the free-field motion 0
fr  at f  can be obtained by deconvolution of the ground motion ( )k

ga t  at 

the control point using standard frequency-domain procedures [Schnabel et al. 1972]; software 

such as SHAKE [Ordóñez 2000] or DEEPSOIL [Hashash et al. 2011] can be utilized for this 

purpose. In principle, the deconvolution analysis can provide directly the motion at every nodal 

point on f ; however, such an implementation may become cumbersome if output from the 

deconvolution analysis is required at a large number of elevations. An alternative method that 

overcomes this problem is presented in the next section. 
  



 

18 

3.5 COMPUTING EFFECTIVE EARTHQUAKE FORCES 

3.5.1 Bottom Boundary 

It was assumed in Section 3.4 that the earthquake motion is caused by vertically incident seismic 

waves propagating up from an underlying elastic medium. Because the free-field foundation–

rock system [Figure 3.1(a)] is assumed to be linear and homogenous or horizontally layered, the 

boundary tractions at the bottom of the truncated foundation domain can be expressed as the sum 

of tractions due to the incident and reflected seismic waves: 

0 0 0
I R     (3.8) 

where 0
I  and 0

R  are the normal tractions due to the incident (upward propagating) and reflected 

(downward propagating) seismic waves, respectively. At the boundary, the radiation condition 

must be satisfied for both the incident and reflected waves: 

0 0 0 00 0I f p I R f p RV u V u         (3.9) 

where 0
Iu  and 0

Ru  are the displacements at the boundary in the normal direction corresponding to 

the incident and reflected seismic waves. The free-field velocity 0u  at the boundary is the sum of 

the incident and reflected waves, i.e., 0 0 0
I Ru u u    . Substituting for 0Ru  in Equation (3.9), and 

inserting the result in Equation (3.8), a new expression for the free-field boundary tractions 0  is 

obtained: 

0 0 02f p IV u u        (3.10a) 

It follows that a similar expression can be derived for the tangential tractions 0 : 

0 0 02f s IV w w        (3.10b) 

Such expressions were first derived by Joyner and Chen [1975]. 

Expressing Equation (3.10) in FE notation to obtain 0 0 02f f I f   R c r r  , and substituting 

the results into Equation (3.7) and cancelling terms, the final expression for the effective 

earthquake forces at the bottom of the foundation domain is obtained: 

0 02f f IP c r  (3.11) 

where 0
Ir  is the motion at f  due to the incident (upward propagating) seismic waves. 

This equation has the advantage that it requires only the motion 0
Ir  of the incident wave, 

thus avoiding computation of the free-field tractions required if directly using Equation (3.7). 
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Furthermore, the incident motion 0
Ir  is easily computed as one-half the outcrop motion† at the 

bottom boundary, which is extracted directly from the deconvolution analysis. The procedure to 

compute 0
fP  from Equation (3.11) is summarized in Box 3.1. 

Box 3.1 Computing 0
fP  at bottom boundary of foundation rock. 

1. Determine the outcrop motion at the bottom foundation-rock boundary by 1D 

deconvolution of each component of the surface control motion ( )k
ga t , , .k x y  

2. Compute the incident motion 0
Ir  as 1/2 the outcrop motion at the bottom boundary 

determined in Step 1 and obtain 0
Ir  by taking the time derivative of 0.Ir  

3. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Equation 

(3.11) using 0
Ir  from Step 2. 

3.5.2 Side Boundaries 

The free-field motion 0
fr  (and its time derivatives) required to compute the effective earthquake 

forces 0
fP  at the side boundaries can be obtained directly from the deconvolution analysis; free-

field tractions can then be computed from 1D stress–strain relations and these stresses converted 

to forces. Alternatively, both quantities can be computed by an auxiliary analysis of the 

foundation rock in its free-field state; see Figure 3.1(a). Analysis of this system reduces to a 

single column of foundation–rock elements with a viscous damper at its base that is subjected to 

the forces of Equation (3.11) and analyzed to determine 0
fr  and 0

fR  at each nodal point along the 

height. The procedure is summarized in Box 3.2 and illustrated in Figure 3.3(a). 

Although straightforward, both of these approaches requires the force histories 0
fP  at all 

nodal points on the side boundaries to be stored for later use in setting up Equation (3.7). Clearly, 

such “book-keeping” may become cumbersome to implement for large models, especially for a 

3D system [Saouma et al. 2011]. These difficulties can be avoided by introducing free-field 

boundary elements in the form of 1D foundation–rock columns at the side boundaries that are 

solved in parallel with the main FE model [Figure 3.3(b)] [Nielsen 2006]; however, such 

elements are currently not available in most commercial FE or finite difference codes, and the 

                                                 
† The reflected motion must equal the incident motion at every rock outcrop (stress-free boundary), hence the 
incident motion is exactly equal to 1/2 the outcrop motion. 
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only exceptions are FLAC [Itasca Consulting Group 2012] and PLAXIS [Brinkgreve et al. 

2016]. 
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Box 3.2 Computing 0
fP  at side boundaries of foundation rock. 

1. Determine the outcrop motion at the bottom foundation-rock boundary by 1D 

deconvolution of each component of the surface control motion ( )k
ga t , , .k x y  

2. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Equation 

(3.11), with the motion 0
Ir  due to the incident (upward propagating) seismic wave 

computed as one-half the outcrop motion extracted from the deconvolution 

analysis. 

3. Develop a FE model for the free-field foundation-rock system: a single column of 

elements that has the same mesh density as the main FE model at the side 

boundaries, with viscous dampers applied at the base in the x- and y-directions 

[Figure 3.3(a)]. 

4. Compute the free-field velocities 0
fr  and forces 0

fR  at each node over the height by 

analyzing the foundation–rock column subjected to forces given by Equation (3.11) 

at its base. 

5. Calculate the effective earthquake forces 0
fP  at the side boundaries from Equation 

(3.7) using 0
fr  and 0

fR  from Step 4. 
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Figure 3.3 Two methods for application of effective earthquake forces to side 

boundaries of foundation domain: (a) auxiliary analysis of 1D column to 

compute 
0
fr  and 0

fR  followed by direct application of 0 ;fP  and (b) use of 

free-field boundary elements. 

3.5.3 Relation to the Domain Reduction Method 

The domain reduction method (DRM) [Bielak et al. 2003] is a two-step methodology for 

modeling earthquake response where large contrasts exist between the physical scales of a 

“background model” (e.g., a regional fault simulation model) and a smaller structure or 

topographic feature that is the primary interest of the analysis. The method overcomes the issues 
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of scale difference by subdividing the original problem into two simpler ones where a local 

feature (e.g., a structure) perturbs the free-field motion in a larger regional domain. This same 

idea was utilized in deriving the equations of motion for the dam–foundation rock system, 

Equations (3.6) and (3.7), earlier in this chapter. 

Although initially developed for large-scale regional simulations of earthquake motion, 

the DRM has also been successfully applied to specify the seismic input in soil–structure 

interaction problems in a layer of FEs interior of the absorbing boundary [Basu 2004; Kontoe et 

al. 2009]. This has the advantage that the seismic input can be specified independently of the 

boundary condition used in the numerical model, unlike the direct FE method developed above 

where the effective earthquake forces were derived assuming viscous-damper boundaries. Thus, 

the DRM can be used with any advanced boundary condition and the domain sizes reduced 

accordingly; see Figure 2.2. 

When developing a general procedure for earthquake analysis of concrete dams, this 

benefit is outweighed by two disadvantages of using DRM: (1) the only commercial FE code  

where DRM has been implemented is LS-DYNA [Hallquist 2016]; and (2) specifying seismic 

input for a dam–water–foundation rock system with small domain sizes (which is the main 

attractiveness of using DRM) is impractical because it requires auxiliary analysis of a complex 

water–foundation rock system and extensive data management and transfer to set up and store 

the seismic input forces [Basu 2004]. 

To ensure implementation of the direct FE method in all commercial FE codes, it was 

therefore decided to use simple viscous dampers as the absorbing boundaries and specify 

effective earthquake forces directly at these boundaries. Appendix B provides a more 

comprehensive discussion on this topic, as well as a general introduction to DRM and a 

comparison between the DRM and direct FE method. 

3.6 NUMERICAL VALIDATION 

The analysis method developed in the preceding sections is validated by computing the dynamic 

response of the idealized dam–foundation rock system shown in Figure 3.4. All the direct FE 

method analyses are implemented in the open source FE program OpenSees [McKenna 2011] 
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using implicit time integration by the HHT-  method [Hilber et al. 1977] to solve the dynamic 

equilibrium equations [Equation (3.6)]. 

The idealized, triangular, dam has a vertical upstream face, a downstream slope of 0.8 to 

1, and height H = 120 m. The dam concrete and foundation rock is assumed to be isotropic, 

homogeneous, linearly elastic, and in generalized plane stress. This assumption, while strictly 

speaking not appropriate for the foundation, is dictated by the expected individual vibration of 

monoliths during intense ground motions. Material properties for the concrete are: modulus of 

elasticity sE  = 22.4 GPa, density s  = 2483 kg/m3, and Poisson's ratio s  = 0.20; for the 

foundation rock: fE  = 22.4 GPa (i.e., /f sE E  = 1), f  = 2643 kg/m3, and f  = 0.33. Material 

damping is modeled by Rayleigh damping with 2%s   and 2%f   viscous damping specified 

for the dam and foundation rock separately, with the damping matrix for the complete system 

constructed by assembling the individual Rayleigh damping matrices for the two subdomains 

[Chopra 2012b]. 

The FE models for the dam and foundation rock both consist of quadrilateral four-node 

elements [Cook et al. 2007]. The FE mesh for the dam has 15 elements across the width and 29 

elements over the height; see Figure 3.4(a). The maximum element size in the foundation rock is 

limited to less than one-tenth of the shortest wavelength considered in the analysis to ensure 

satisfactory wave propagation in the mesh [Lysmer and Waas 1972]. The width (on either side of 

the dam) and depth of the foundation domain is selected as 4H and 2.5H, respectively. These 

dimensions are sufficiently large to minimize wave reflections from the viscous dampers for the 

selected system parameters, and were selected based on a parametric study for determining the 

required size of the foundation domain when using viscous-damper boundaries; see Appendix A. 

The ground motion is specified by the ground acceleration ( )k
ga t  at the foundation 

surface; the free-field motion at depth in the model is obtained by deconvolution of this motion. 

Then, effective earthquake forces at the bottom and sides of the foundation domain are computed 

from Equations (3.11) and (3.7), respectively, using the procedures outlined in Boxes 3.1 and 

3.2. 
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Figure 3.4 (a) Geometry and FE mesh for triangular dam cross section; and (b) 

dimensions of FE model for dam–foundation rock system with viscous-

damper boundaries to truncate the semi-unbounded foundation domain. 

Frequency response functions are computed by time-domain analysis of the FE system 

with free-field surface motions ( )x
ga t  and ( )y

ga t  defined by a harmonic function of unit 

amplitude. The response of the dam for a single excitation frequency is computed by solving the 

equations of motion for long enough time to reach steady state; this is then repeated at a 

sufficient number of frequencies to produce a smooth plot; see Appendix C for additional details 

on this procedure. The semi-analytical benchmark solution, to which the results of the direct FE 

method is compared, is obtained directly in the frequency domain by the substructure method 

[Fenves and Chopra 1984c] using the computer program EAGD84 [Fenves and Chopra 1984b] 

with a set of pre- and post-processing modules in MATLAB [The Math Works Inc. 2012] that 

the author has previously developed [Løkke 2013]. In the substructure method, the foundation 

rock is modeled as a viscoelastic half-space, the fluid domain is treated as an infinitely long 

continuum, and the earthquake excitation is specified directly at the dam–foundation interface, 

thus avoiding the need for artificial model truncations, absorbing boundaries, and deconvolution 

of the ground motion. 

Material damping in EAGD84 is modeled by constant hysteretic damping specified by 

the hysteretic damping factors s  = 0.04 and f  = 0.04 for the dam and foundation rock; this 

corresponds to viscous damping ratios of s  = 2% and f  = 2%. For time-domain analysis in 

the direct FE method, the Rayleigh coefficients are determined by specifying s  and f  at the 

excitation frequency / 2f   , where   is the angular frequency of the harmonic excitation 
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and at f = 1 Hz. This unconventional choice defines frequency-dependent Rayleigh damping to 

be as consistent as possible with frequency-independent hysteretic damping, thus ensuring a 

meaningful comparison of the frequency response functions from the direct FE and substructure 

methods. For the response history analyses to earthquake excitation presented later in Section 

5.4.2, s  and f  are specified at the first two natural frequencies of the dam–water–foundation 

rock system. 

3.6.1 Dam on Rigid Foundation Rock 

The frequency response function for the amplitude of the relative horizontal acceleration at the 

crest of the dam on rigid foundation is computed by OpenSees and EAGD84 and compared in 

Figure 3.5. The near identical results for both horizontal and vertical excitation confirm the 

equivalency of the two FE models, and validate that the procedure for selecting Rayleigh 

coefficients provides material damping that is consistent with the constant hysteretic damping 

model at a given excitation frequency. 

 

 

Figure 3.5 Comparison of frequency response functions from OpenSees and EAGD84 

for the amplitude of relative horizontal acceleration at the crest of dam on 

rigid foundation due to horizontal and vertical ground motion. Results are 

plotted against normalized frequency 1/   where 1  is the fundamental 

frequency of the dam on rigid foundation;   = 5%. 
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3.6.2 Dam–Foundation Rock System 

The dynamic response of the dam on flexible foundation rock is presented in Figure 3.6 for 

several values of /f sE E , the ratio of modulus of elasticity for the foundation rock to the dam. 

The results obtained by the direct FE method with viscous-damper boundaries and truncated 

foundation domain are generally close to the results from the substructure analysis, thus 

validating the ability of the direct FE method to model the semi-unbounded dam–foundation 

rock system. 

The small discrepancies observable at some frequencies are due to the inability of the 

viscous-damper boundary to perfectly absorb outgoing (scattered) waves from the dam. Such 

discrepancies will generally decrease as the size of the foundation domain included in the FE 

model increases; see Appendix A. 
  



 

28 

 

 

Figure 3.6 Comparison of frequency response functions from direct FE and 

substructure methods for the amplitude of relative horizontal acceleration 

at the crest of dam on flexible foundation rock due to horizontal and 

vertical ground motion. 2%s f   ; / 1f sE E  . 
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3.6.3 Ignoring Effective Earthquake Forces at Side Boundaries 

The dam engineering profession has been using a variation of the rigorous procedure 

summarized in Boxes 3.1 and 3.2, wherein the effective earthquake forces 0
fP  are applied only at 

the bottom boundary but ignored at the side boundaries. Initiated by the U.S. Bureau of 

Reclamation and applied to actual projects [Noble and Nuss 2004a; Mills-Bria et al. 2008], 

variations of the method have also been used by other dam engineering professionals [Curtis et 

al. 2014]. 

Figure 3.7 presents frequency response functions for the dam on flexible foundation rock 

obtained using such an analysis procedure where forces are only applied at the bottom 

foundation boundary. The significant discrepancies observable in the results for both horizontal 

and vertical ground motion arise from the inability of this model to reproduce free-field 

conditions. Attempts have been made to correct for this shortcoming by modifying the amplitude 

and/or frequency content of the input ground motion [Bureau of Reclamation 2013]; however, it 

is not clear whether such modifications will lead to acceptable results, and neither version of 

these approximate methods has been validated against the substructure method. 

 

Figure 3.7 Comparison of frequency response functions from the USBR direct method 

and substructure method for the amplitude of relative horizontal 

acceleration at the crest of dam on flexible foundation rock due to 

horizontal and vertical ground motion. 2%s f   ; / 1.f sE E   
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3.6.4 Can Foundation Mass Be Ignored? 

The massless foundation model [Clough 1980] is attractive in its simplicity as it only considers 

the flexibility of the foundation rock, but neglects the inertia and damping effects. The 

foundation rock can then be modeled by a small bounded-sized foundation model without 

absorbing boundaries as part of a standard FE analysis. Despite its well documented deficiencies 

[Chopra 2012a], the massless foundation model is still being used in dam engineering practice. 

Presented in Figure 3.8 are frequency response functions for the dam–foundation rock 

system computed massless foundation approach and compared to the substructure method 

including foundation mass. Neglecting the foundation mass—and thereby also radiation damping 

—greatly overestimates the response of the dam; the results are in significant error. Clearly, such 

a model is unable to capture the dynamic properties associated with dam–foundation interaction 

and should not be used in earthquake analysis of concrete dams. 

 

 

Figure 3.8 Comparison of frequency response functions from the massless 

foundation model and substructure method for the amplitude of relative 

horizontal acceleration at the crest of dam on flexible foundation rock due 

to horizontal and vertical ground motion. 2%s f   ; / 1f sE E  . 
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4 Dam–Water System 

4.1 DAM–WATER INTERACTION AS A SCATTERING PROBLEM 

In this chapter, dam–water interaction is again treated as a scattering problem—in which the dam 

perturbs a “free-field” state of the system—to derive the effective earthquake forces for the fluid 

domain at the absorbing boundary r . 

Consider the fluid in its “free-field” state, consisting only of the semi-unbounded 

prismatic channel   upstream of the future absorbing boundary r  [Figure 4.1(a)]. This system 

is not representative of any physical state of the fluid, but it facilitates formulation of the analysis 

procedure. Because the bottom boundary of the prismatic channel is horizontal, the free-field 

hydrodynamic pressures 0p  in   will be zero if the ground motion is purely horizontal, but 

they will be nonzero for vertical ground motion. A procedure for determining these pressures 

will be presented in Section 4.4. 

The dam–water system is separated into two subdomains:   denotes the dam and 

irregular fluid region between the dam and the absorbing boundary r  and   is the semi-

unbounded prismatic channel [Figure 4.1(b)]; the latter is identical to the free-field system. 

Following the same approach as for the dam–foundation rock system (Chapter 3), the 

hydrodynamic pressure field in the dam–water system is defined by the variables 

, in the interior regiont p  (4.1a) 

0 , in the exterior regiont  p p  (4.1b) 

where tp  is the vector of total hydrodynamic pressures governed by Equation (2.5), and 0t p p  

represents the scattered hydrodynamic pressures in the exterior region  , i.e., the perturbation 

of the free-field pressures caused by the existence of the dam and the irregular fluid region. This 

choice of variables in   will subsequently allow formulation of the governing equations for the 

viscous-damper boundary in a way that the unknown forces t
rH  associated with the absorbing 
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boundary r , which first appeared in Equation (2.5), can be determined from the free-field 

pressures. 
 

 

Figure 4.1 Illustration of dam–water interaction as a scattering problem: (a) fluid 

domain in its “free-field” state with hydrodynamic pressures defined by 0p  

in  ; (b) dam–water system with hydrodynamic pressures defined by tp  

in  and the scattered pressures 0t p p  in  . 

4.2 VISCOUS-DAMPER ABSORBING BOUNDARY 

A set of continuously distributed viscous dampers enforces the 1D radiation condition for a fluid 

[Zienkiewicz and Bettess 1978]. For incident waves perpendicular to the boundary, this 

condition is 

1
0

p
p

n C


 


  (4.2) 

where n denotes the outward normal to the fluid boundary. This boundary condition is also 

known as the plane wave approximation. 
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The viscous-damper boundary models the unbounded prismatic fluid channel   where 

the scattered pressure 0tp p  was chosen as the variable to define hydrodynamic pressures 

[Equation (4.1b)]. Because the fluid in   is assumed linear, Equation (4.2) becomes 

 
0

0( ) 1
0

t
tp p

p p
n C

 
  


   (4.3a) 

which can be rewritten as 

 
0

01t
tp p

p p
n n C

 
  

 
   (4.3b) 

The distributed dampers are lumped to the boundary nodes in the discretized model, 

resulting in discrete viscous dampers with coefficient: 

/rc A C  (4.4) 

where A is the tributary area (tributary length in a 2D model) for the node. Equation (4.3) written 

in FE notation for nodes on the boundary r  is 

0 0t t
r r r r r    H H c p p   (4.5 

where 0
rH  is the vector of nodal forces consistent with the free-field pressure gradient 0 /p n  , 

and rc  is the matrix of damping coefficients rc . The vectors t
rH , 0

rH  and matrix rc  have non-

zero entries only for nodes on r . 

Working with the scattered pressures in   has enabled the derivation of Equation (4.5) 

for the unknown forces t
rH  in Equation (2.1) associated with the absorbing boundary r  in terms 

of the free-field pressures. 

4.3 EQUATIONS OF MOTION 

Equation (2.1) that governs the dam–foundation rock subsystem is specialized for the dam alone: 

st( )t t t t
h   mr cr f r R R   (4.6) 

where stR  now includes only gravity loads and hydrostatic forces on the dam, and the 

hydrodynamic forces are t t
h hR Q p , where hQ  was defined in Equation (2.6). Combining 

Equation (4.6) with Equation (2.5) for the truncated fluid domain and rearranging terms: 
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T

st

T

( )

t t

t t
h

tt
h

t tt
r b b





      
      
      

                        

m 0 c 0r r

Q s 0 bp p

0 Q Rrf r

0 h H Q rp0

 
 



 (4.7) 

where t
br  denotes the prescribed accelerations of the rigid foundation rock at the water–

foundation rock interface b , and the matrix bQ  is computed similarly to Equation (2.6) but 

integrated over b . 

Substituting Equation (4.5) for the unknown forces t
rH  leads to the final equations of 

motion for the dam–water system with truncated fluid domain: 

T

st

0 T

( )

t t

h r

t t
h

t
r b b





      
            

                       

m 0 c 0r r

Q s 0 b cp p

0 Q Rf r r

0 h P Q r0 p

 
 



 (4.8) 

where the effective earthquake forces at r  are 

( ) ( )

( ) T( )
DOFS: Mass: Stiffness: 

t e e
h h

et e
hh


      
    
      

0 0r 0 Q

Q 0p 0 0
 (4.9) 

The forces 0
rH  are zero for both horizontal and vertical ground motion because the pressure 

gradient 0 /p n   at r  is zero when the foundation rock is rigid and the reservoir bottom is 

horizontal. The second term 0
r rc p  represents the contribution from earthquake-induced pressures 

in the fluid upstream of r  that has been eliminated. 

The earthquake excitation enters in Equation (4.8) through two quantities: (1) the forces 
T t
b b Q r  acting on b  due to the prescribed accelerations t

br , and (2) the effective earthquake 

forces 0
rP  acting on r . Because the foundation rock is rigid, t

br  is defined directly by the free-

field ground accelerations ( )k
ga t  (Figure 2.1); these accelerations are also applied to the base of 

the dam. Thus, the only information required to specify the earthquake excitation is the free-field 

ground accelerations ( )k
ga t  and the free-field pressures 0

rp . 

Accelerations t
hr  are coupled with the hydrodynamic pressures t

hp  at the upstream face of 

the dam ( h ) through the matrix hQ  defined in Equation (2.6). In some FE programs, these 

conditions can be enforced by specification of tie constraints at the interfaces [Dassault System 

2013]. Alternatively, interface elements can be introduced to perform this coupling, These 
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interface element will have three DOFs, two displacements and one pressure, and are defined by 

the mass and stiffness matrices [Basu 2004]: 

( ) ( )

( )T( )
DOFs: Mass: Stiffne   ss:

t e e
h h

et e
hh 

      
    
      

0 0r 0 Q

Q 0p 0 0
 (4.10) 

Because these matrices are unsymmetric, they lead to an unsymmetric system of global 

equations in the numerical model. Note: this rarely causes problems in modern FE programs 

because these normally have efficient and robust solvers for sparse, unsymmetric systems of 

equations. 

4.4 COMPUTING EFFECTIVE EARTHQUAKE FORCES AT r  

The effective earthquake forces 0
rP  at r  are to be computed by analysis of the free-field fluid 

system, which is a prismatic channel of uniform depth [Figure 4.1(a)]. Because the reservoir 

bottom is horizontal, horizontal ground motion will not generate any hydrodynamic pressures 

and 0
r P 0 . Analysis of the prismatic channel for vertical ground motion reduces to a single 

column of fluid elements of unit width subjected to forces y
ga  at its base [Figure 4.2(a)]. This 

analysis provides the pressures 0
rp  (and its time derivatives) that are required in Equation (4.9). 

The procedure is summarized in Box 4.1 and illustrated in Figure 4.2. 

Box 4.1 Computing 0
rP  at upstream fluid boundary. 

1 Develop a FE model for the free-field fluid [Figure 4.2(a)]: a single column of 

elements of unit width with the same mesh density as the fluid adjacent to the 

boundary r . Apply a single line element to model reservoir bottom sediments. 

2. Calculate 0
rp  at every nodal point along the height by analyzing the fluid column 

subjected to forces y
ga  at its base for vertical ground motion; 0 0r p for horizontal 

ground motion. 

3 Compute the effective earthquake forces 0
rP  at the fluid boundary r  from 

Equation (4.9) using 0
rp  from Step 2. 
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Figure 4.2 Summary of analysis procedure for dam–water subsystem: (a) auxiliary 

analysis of single column of fluid elements to determine 0
rp  for vertical 

ground motion; (b) application of earthquake excitation and effective 

earthquake forces to truncated FE model.  

4.5 NUMERICAL VALIDATION 

The analysis procedure developed in the proceeding sections is validated by computing the 

dynamic response of the idealized dam–water system shown in Figure 4.3 subjected to horizontal 

and vertical ground motion. The idealized dam has the same cross section, FE discretization, and 

material properties as the ones used in Section 3.6. Standard solid and acoustic elements [Cook 

et al. 2007] are used in the dam and fluid, respectively; interface elements are applied at the 

dam–water interface; and line elements are applied to model sediments at the reservoir bottom 

using the approximate 1D sediment model [Equation (2.4)]. Material damping in the dam is 

modeled by Rayleigh damping implemented using the procedure described in Section 3.6 

specialized for the dam alone, but with s  = 5% viscous damping selected for the dam concrete 

to provide reasonable overall energy dissipation in the system with rigid foundation rock. The 

impounded water has the same depth as the height of the dam, density   = 1000 kg/m3, and 

pressure-wave velocity C  = 1440 m/sec. The ground motion is specified by the ground 
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acceleration ( )k
ga t  of the rigid foundation at the dam base. Effective earthquake forces at the 

boundary of the fluid domain are computed from Equation (4.9) using the procedure outlined in 

Box 4.1. 

 

Figure 4.3 Dimensions of FE model for dam–water system with viscous damper 

boundary to truncate the semi-unbounded fluid domain. 

4.5.1 Hydrodynamic Forces on Rigid Dam 

To determine the influence of the length of the bounded fluid domain on the accuracy of the 

results, the hydrodynamic forces on a rigid dam are computed first. The frequency response 

functions for the hydrodynamic forces 0| ( |xF   and 0| ( |yF   on the upstream face of a rigid dam 

due to horizontal and vertical ground motion, respectively, are determined by computing the 

steady-state response of the system at many excitation frequencies. These forces are compared 

with analytical results for an unbounded fluid domain [Fenves and Chopra 1984c] in Figure 4.4, 

where the results are normalized with respect to the hydrostatic force 2
st 1 / 2F gH . 

For horizontal excitation, the viscous-damper boundary is inadequate when using very 

small domain lengths (L = H), and results are unacceptable for all values of  . Increasing the 

length to L = 4H significantly improves the accuracy, and results are generally acceptable; 

however, some scatter is still observable for  = 0.90. This occurs for high values of   because 

radiation damping is then effectively the only source of energy dissipation in the system, and the 

response becomes sensitive for even small wave reflections at the viscous-damper boundary. 

This effect is much less prominent for low  -values because wave absorption at the reservoir 

bottom then contributes more to the overall energy dissipation. 
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Figure 4.4 Influence of length of bounded fluid domain on hydrodynamic forces on a 

rigid dam. Results are plotted against the normalized frequency 1
r  , 

where 1 / 2r C H   is the fundamental vibration frequency of the fluid 

domain. “Exact” results are from Fenves and Chopra [1984c]. 

For vertical excitation, the numerical results match the analytical solution for all lengths 

of the bounded domain, because the simple fluid geometry and uniform excitation at the 

reservoir bottom leads to a 1D pressure distribution in the fluid. Thus, when the effective 

earthquake forces 0
rP —representing the contribution from earthquake-induced pressures in the 

part of the fluid that has been eliminated—are applied at r , these 1D conditions are exactly 

Exact

L =   H 
L = 4H 
L = 8H 

Any L
Exact

Horizontal ground motion Vertical ground motion

= 0.50� = 0.50�

0
st

(
/



�

x
g

F
F

0
st

(
/



�

y
g

F
F

= 0.75� = 0.75�

1
r
 
� 1

r
 
�

= 0.90� = 0.90�

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

0

1

2

3

0 1 2 3 4 5

0

1

2

3

0
st

(
/



�

x
g

F
F

0
st

(
/



�

y
g

F
F

0
st

(
/



�

x
g

F
F

0
st

(
/



�

y
g

F
F



 

39 

reproduced in the model; however, for a flexible dam, this simple 1D behavior is no longer 

maintained, and larger domain lengths are required to obtain acceptable results. 

 

 

Figure 4.5 Comparison of frequency response functions from direct FE and 

substructure methods for the amplitude of relative horizontal acceleration 

at the crest of dam on rigid foundation with full reservoir due to horizontal 

and vertical ground motion. s = 5%. 

  

0 1 2 3 4 5 0 1 2 3 4 5
0

5

10

15

20

25

30

0 1 2 3 4 5 0 1 2 3 4 5
0

5

10

15

20

25

30

0 1 2 3 4 5 0 1 2 3 4 5
0

5

10

15

20

25

30

A
b
so

lu
te

 v
al

u
e 

o
f 

h
o
ri

zo
n
ta

l 
ac

ce
le

ra
ti

o
n
 a

t 
d
am

 c
re

st

1

 
�  

1

 
�

= 0.90� = 0.90�

= 0.75� = 0.75�

Horizontal ground motion Vertical ground motion

Substructure method

Direct FE method, L = 4H
= 0.50� = 0.50�



 

40 

4.5.2 Dam–Water System 

Frequency response functions for the amplitude of the relative horizontal acceleration at the crest 

of the dam–water system (Figure 4.3) subjected to ( )x
ga t  and ( )y

ga t  defined by a harmonic 

function of unit amplitude are computed. These are compared in Figure 4.5 to results obtained 

directly in the frequency domain by the substructure method [Fenves and Chopra 1984a] that 

models the reservoir rigorously using semi-analytical solutions. Results are computed for 

different values of   and length L = 4H for the truncated fluid domain. 

The results computed by the direct FE method are generally close to the results from the 

substructure method for both vertical and horizontal ground motion, thus validating its ability to 

model the semi-unbounded dam–water system even with the moderately sized fluid domain of 

length L = 4H. 

4.5.3 Ignoring Effective Earthquake Forces on Fluid Boundary  r  

Implementation of Equation (4.8) may be simplified by ignoring the effective earthquake forces 
0
rP  at r , which eliminates the need for auxiliary analysis of the 1D fluid column (Section 4.4) 

for vertical ground motion. This approximation implies that the vertical excitation extends only 

over the dam and truncated part of the fluid domain, thus neglecting the effect of hydrodynamic 

pressures caused by excitation of the fluid that has been eliminated upstream of r . 

Presented in Figure 4.6 are frequency response functions for the amplitude of the relative 

horizontal acceleration at the dam crest due to vertical ground motion for  = 0.50 and  = 0.75, 

and different lengths of the bounded fluid domain. Results are computed by the direct FE method 

for two cases: including and excluding effective earthquake forces 0
rP . Ignoring 0

rP  leads to 

considerable differences in the response for higher  -values unless the bounded fluid domain is 

very long (L = 8H) because the excitation is now applied only to the base of the dam and 

truncated part of the fluid domain, and not to the complete semi-unbounded system. For analysis 

of an actual dam with a reasonable length for the fluid domain (e.g., L = 4H), this discrepancy 

should be of little concern because uniform ground motion obviously cannot extend to infinity in 

the upstream direction in a real system. 
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Figure 4.6 Influence of ignoring effective earthquake forces 0
rP  on the frequency 

response function for the amplitude of relative horizontal acceleration at 

the crest of flexible dam with full reservoir due to vertical ground motion. 

s = 5%. 
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5 Dam–Water–Foundation Rock System 

5.1 DAM–WATER–FOUNDATION ROCK INTERACTION AS A SCATTERING 
PROBLEM 

Procedures for computing the earthquake response of a dam–foundation rock system (with empty 

reservoir) or dam–water system (supported on rigid rock) were developed in the previous 

chapters. Utilizing the same principle of viewing interaction as a scattering problem, wherein the 

dam perturbs a free-field state, these procedures are combined and extended to the entire dam–

water–foundation rock interacting system. 

The auxiliary system is now defined as shown in Figure 5.1(a) as the combination of the 

two free-field systems introduced in Figures 3.1(a) and 4.1(a). It consists of three subdomains: 
a  denotes the foundation region interior of the future absorbing boundary f ; f

  is the semi-

unbounded foundation region exterior to f ; and f
  is the prismatic fluid channel upstream of 

the future absorbing boundary r . This auxiliary system does not correspond to any physical 

state, but facilitates formulation of the analysis procedure. The displacements and hydrodynamic 

pressures in the auxiliary system are defined as ar  and ap , respectively.  

The dam–water–foundation rock system is also separated into three subdomains [Figure 

5.1(b)]:   denotes the dam and adjacent foundation and fluid regions interior of f  and r , and 

f
  and r

  are the semi-unbounded foundation and fluid domains exterior to f  and r ; these 

are identical to the exterior regions of the auxiliary system. In order to subsequently formulate 

the governing equations for the absorbing boundaries in terms of free-field quantities—following 

Chapters 3 and 4—the displacements and hydrodynamic pressures are defined by the variables: 

and in the interior region t t r p  (5.1a) 

and in the exterior regions  and t a t a
f r
    r r p p  (5.1b) 

The variables chosen in f
  and r

  represent the scattered motion and scattered hydrodynamic 

pressures, i.e., the perturbation of the free-field motion (Chapter 2) and pressures (Chapter 3) due 
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to the presence of the dam and the bounded, irregular fluid region. This choice of variables in the 

exterior domains will subsequently allow reformulation of the governing equations for the 

absorbing boundaries in a way that the unknown forces t
fR  and t

rH  associated with f  and r  

[Equation (2.8)] can be determined from ar  and ap . 

 

Figure 5.1 Illustration of dam–water–foundation rock interaction as a scattering 

problem: (a) auxiliary water–foundation rock system in its "free-field" state 

with variables defined by ap  in r
  and ar  in a

f
  ; and (b) dam–

water–foundation rock system with variables defined by tp  and tr  in   

and the scattered variables t ap p  in r
  and t ar r  in f

 . 

5.2 EQUATIONS OF MOTION 

The equations of motion for the dam–water–foundation rock system contained within the domain 

  are given by Equation (2.8). The unknown forces t
fR  and t

rH  associated with the absorbing 
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boundaries  f  and r  are given by Equations (3.5) and (4.5), respectively, with an obvious 

change of notation: 

t a t a
f f f f f    R R c r r   (5.2a) 

t a t a
r r r r r    H H c p p   (5.2b) 

where variables with superscript a are for the auxiliary water–foundation rock system; a
fR  are 

the forces consistent with the boundary tractions at f ; and a
rH  are the forces consistent with the 

hydrodynamic pressure gradient at r . 

Included in Equation (2.8) are various interaction effects: dam–foundation rock 

interaction is included directly in the system matrices, dam–water and water–foundation rock 

interaction is represented by the coupling matrices hQ  and bQ , respectively, and reservoir 

bottom absorption is represented through the damping matrix b . Water–foundation rock 

interaction is also considered in the exterior domain f r
     through the variables entering 

Equation (5.2): (1) the displacements a
fr  and forces a

fR  at f  include the effects of 

hydrodynamic pressures; and (2) the hydrodynamic pressures a
rp  and forces a

rH  at r  include 

the effects of foundation-rock flexibility. 

5.2.1 Approximating Water–Foundation Rock Interaction 

These quantities are to be determined by analysis of the auxiliary water–foundation rock system 

[Figure 5.1(a)]. This complicated analysis can be avoided by ignoring the effects of water–

foundation rock interaction in f r
   : 

0a
f fr r  and 0a

f fR R  in the foundation domain a
f
   (5.3a) 

0a
r rp p  and 0a

r r H H 0 † in the fluid domain r
  (5.3b) 

where the free-field motion 0
fr  and forces 0

fR  at the boundary f  are computed from analysis of 

the free-field foundation-rock system [Figure 3.1(a)], thus ignoring the effects of hydrodynamic 

pressures in r
  on the foundation-rock motions; and the free-field hydrodynamic pressures 0

rp  

are computed from analysis of the fluid in its “free-field” state [Figure 4.1(a)] with rigid 

                                                 
† Recall from Section 4.3 that the forces 0H r  associated with the free-field pressure gradient 0 / p n  at r  are zero 

for both horizontal and vertical ground motion. 
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foundation rock, thus ignoring the effects of foundation-rock flexibility on the hydrodynamic 

pressures in r
 . 

Numerical results have demonstrated that the response of gravity dams to horizontal 

ground motion is essentially unaffected by the above approximation of water–foundation rock 

interaction, and that the response to vertical ground motion is only noticeably affected for large 

values of the wave-reflection coefficient  , where the approximate results tends to overestimate 

the response [Basu 2004]. These conclusions were based on analyses using very small domain 

sizes; the errors will be much smaller when using larger domain sizes that are required by the 

viscous-damper boundaries; see Figure 2.2. 

Although the secondary effects of water–foundation rock interaction in f r
    are 

ignored, the dominant effects within the truncated FE domain   are still rigorously represented 

by the coupling matrix bQ . Alternatively, water–foundation rock interaction can be neglected 

altogether by setting b Q 0 ; however, because this approximation can lead to significant error, it 

is not introduced here; see Appendix F. 

5.2.2 Dam–Water–Foundation Rock System 

With the preceding approximations in modeling water–foundation rock interaction, the forces 
t
fR  and t

rH  can be determined independently of each other by considering the free-field systems 

of Figure 3.1(a) and Figure 4.1(a), respectively. Substituting Equations (3.5) and (4.5) into 

Equation (2.8), the final equations of motion for the dam–water–foundation rock system are 

obtained: 

T T

0st

0

( )

( )( )

t t
f

t t
h b r

t t
h b f

t
r


      

             
         

           
        

m 0 c c 0r r

Q Q s 0 b cp p

0 Q Q Pf r r R

0 h P0 p 0

 
 

 (5.4) 

The earthquake excitation is specified in Equation (5.4) by the effective earthquake 

forces 0
fP  at f  defined by Equations (3.11) and (3.7) for the bottom and side boundaries of the 

foundation domain, respectively; and the effective earthquake forces 0
rP  at r  defined by 

Equation (4.9). These forces are easily obtained using the procedures developed in Sections 3.5 

and 4.4. 
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5.3 SUMMARY OF PROCEDURE 

Analysis of the dam–water–foundation rock system subjected to the free-field ground 

acceleration ( )k
ga t , ,k x y , defined at a control point at the surface of the foundation rock 

(Figure 2.1), is organized in three parts: static analysis, linear analyses of the free-field 

foundation-rock and fluid systems, and nonlinear dynamic analysis of the dam–water–foundation 

rock system. 

Static analysis: 

1. Develop a FE model for static analysis of the dam–foundation rock system with a 

suitable material model for the dam concrete and a suitable (static) model for the 

foundation rock. 

2. Determine the static response of this system to gravity loads on the dam and 

hydrostatic forces on the dam and foundation rock. 

3. Record the static state of the dam–foundation rock system, including reactions from 

the foundation rock at the boundary f . 

Linear analysis of free-field foundation-rock system [Figure 5.2(a)]: 

4. Obtain the free-field motion at the base of the foundation model by deconvolution of 

the surface ground motion ( )k
ga t . 

5. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Equation 

(3.11), with the motion 0
Ir  due to the incident (upward propagating) seismic wave 

taken as one-half the outcrop motion extracted from the deconvolution analysis. 

6. Develop a FE model for the free-field foundation-rock system: a single column of 

elements that has the same mesh density as the main FE model adjacent to the side 

boundaries, with viscous dampers applied at the base in the x- and y-directions.  

7. Compute 0
fr  and 0

fR  at each node along the height by analyzing the foundation-rock 

column subjected to forces given by Equation (3.11) at its base. 

8. Calculate the effective earthquake forces 0
fP  at the side boundaries of the foundation 

domain from Equation (3.7) using 0
fr  and 0

fR  from Step 7. 
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Steps 6–8 may be avoided if free-field boundary elements are applied along the side boundaries; 

see Figure 3.3(b). 

Linear analysis of free-field fluid system [Figure 5.2(b)]: 

9. Develop a FE model for the free-field fluid: a single column of elements of unit width 

with the same mesh density as the fluid adjacent to the boundary r , add a single line 

element to model reservoir bottom sediments. 

10. Calculate 0
rp  at every node along the height by analyzing the fluid column subjected 

to forces y
ga  at its base for vertical ground motion; 0

r p 0  for horizontal motion. 

11. Compute the effective earthquake forces 0
rP  at the fluid boundary r  from Equation 

(4.9) using 0
rp  from Step 10. 

Nonlinear dynamic analysis of dam–water–foundation rock system [Figure 5.2(c)]: 

12. Develop a FE model of the dam–water–foundation rock system with viscous-damper 

boundaries to truncate the semi-unbounded foundation and fluid domains at f  and 

r , respectively. Use standard solid and fluid elements for the dam, foundation rock, 

and fluid, and apply interface elements (or tie constraints) at the upstream dam face 

and at the water–foundation rock interface. Reservoir bottom sediments can be 

approximately modeled using line elements based on the 1D absorption model, or by 

using one of several more sophisticated methods; see Section 2.3.2. 

13. Calculate the response of the FE model of the dam–water–foundation rock system 

subjected to effective earthquake forces 0
fP  at the boundary f  calculated in Steps 5 

and 8, 0
rP  at the boundary r  calculated in Step 11, plus static loads and foundation 

reactions at f . The static state of the dam (Step 3) is taken as the initial state in the 

nonlinear dynamic analysis. 
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Figure 5.2 Summary of analysis procedure for dam–water–foundation rock system: 

(a) auxiliary analysis of single column of foundation-rock elements to 

compute 0
fr  and 0

fR ; (b) analysis of 1D column of fluid elements to 

calculate 0p r  for vertical ground motion; and (c) application of effective 

earthquake forces to truncated FE model. 

5.4 NUMERICAL VALIDATION 

The direct FE method developed in the preceding sections is validated by computing the 

dynamic response of the dam–water–foundation rock system shown in Figure 5.3 to horizontal 

and vertical ground motion. The idealized dam–water–foundation rock system has the same 

geometry, FE mesh, and material parameters as the systems used in Sections 3.6 and 4.5, but is 
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combined to form the complete dam–water–foundation rock system. Material damping in the 

dam and foundation rock is modeled by Rayleigh damping with 2%s   and 2%f   viscous 

damping specified for the dam and foundation rock separately, implemented using the procedure 

described in Section 3.6. 

The ground motion is specified by the ground acceleration ( )k
ga t  at the foundation 

surface. The free-field motion at depth in the model is obtained by deconvolution of this motion; 

then effective earthquake forces at the bottom and side boundaries of the foundation rock are 

then computed from Equations (3.11) and (3.7), respectively. For vertical ground motion, the 

effective earthquake forces at the fluid boundary r  are computed from Equation (4.9). 

 

Figure 5.3 Dimensions of FE model for idealized dam–water–foundation rock system 

with viscous-damper boundaries to truncate semi-unbounded foundation 

and fluid domains. 

5.4.1 Frequency Response Functions for Dam Response 

Frequency response functions for the amplitude of the relative horizontal acceleration at the crest 

of the dam are computed and shown in Figure 5.4 for three values of  . The results are 

compared to results obtained by the substructure method [Fenves and Chopra 1984a] where the 

foundation rock is modeled as a viscoelastic half-space, hydrodynamic pressures are modeled by 
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ignores water–foundation rock interaction, this interaction is also ignored in the direct FE 

method for these validation analyses. 

 

Figure 5.4 Comparison of frequency response functions from direct and substructure 

methods for the amplitude of relative horizontal acceleration at the crest of 

dam on flexible foundation rock with full reservoir due to horizontal and 

vertical ground motion. 2%;s f    /f sE E  = 1.0. 
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The results computed by the direct FE method are very close to the results from the 

substructure analysis for both vertical and horizontal ground motion, thus validating its ability to 

model the semi-unbounded dam–water–foundation rock system. The slight differences at some 

frequencies are attributable to the approximate nature of the viscous-damper boundary, which is 

unable to perfectly absorb all outgoing waves. As previously mentioned, these discrepancies will 

generally decrease as the sizes of the foundation and fluid domains included in the FE model 

increases. 

5.4.2 Response to Transient Motion 

To demonstrate the ability of the direct FE method to accurately compute the response of the 

dam–water–foundation rock system to earthquake excitation, the system is analyzed for ( )x
ga t  

and ( )y
ga t  specified as the S69E and vertical components, respectively, of the motion recorded at 

Taft Lincoln School Tunnel during the 1952 Kern County earthquake. The response was also 

computed by the substructure method. The relative horizontal displacements and accelerations at 

the dam crest are presented in Figure 5.5, and the envelope values of the maximum principal 

stresses in Figure 5.6. Note: the results from the direct FE method closely match the substructure 

method results, as expected to by the close agreement observed earlier for the frequency 

response functions. 

 

Figure 5.5 Horizontal displacements and accelerations at the crest of the dam on 

flexible foundation rock with full reservoir due to the S69E and vertical 

components, separately, of Taft ground motion. s f   = 2%; /f sE E  = 

1.0;  = 0.75. 
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Figure 5.6 Envelope values of maximum principal stresses (in MPa) in dam on flexible 

foundation rock with full reservoir due to S69E component of Taft ground 

motion; initial static stresses are excluded. s f   = 2%; /f sE E  = 1.0; 
= 0.75. 
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6 Conclusions 

A direct FE method for earthquake analysis of concrete dams interacting with fluid and 

foundation rock, which may comprise semi-unbounded domains, has been developed. The 

analysis procedure uses viscous-damper boundaries to truncate these semi-unbounded domains 

and specifies the seismic input as effective earthquake forces directly at the model truncations. 

The analysis procedure is formulated by treating dam–water–foundation rock interaction as a 

scattering problem [Basu 2004] where the dam perturbs an assumed “free-field” state of the 

system. The FE model of the fluid includes water compressibility and reservoir bottom 

absorption, and the FE model of the foundation rock includes mass, stiffness, and material 

damping appropriate for rock. Thus, the unrealistic assumptions of massless rock and 

incompressible water, sometimes used in engineering practice, are eliminated. 

The seismic input to the procedure is defined by a ground motion specified at a control 

point on the foundation surface. The free-field motion at the bottom of the foundation rock is 

determined by deconvolution of this motion. Effective earthquake forces at the boundaries of the 

foundation and fluid domains are then computed from analysis of two individual 1D free-field 

systems. Implementation of these analyses is straightforward, and does not require modification 

of the source code of a commercial FE program. 

The analysis procedure is validated numerically by computing the dynamic response of 

an idealized dam–water–foundation rock system and comparing against results obtained using 

the substructure method [Fenves and Chopra 1984a]. The excellent agreement demonstrates that: 

(1) the truncated foundation and fluid models with viscous-damper boundaries are able to model 

the semi-unbounded domains; and (2) the earthquake excitation is properly defined by the 

effective earthquake forces determined from the free-field variables. 

Because the direct FE method is applicable to nonlinear systems, it allows for modeling 

of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at 
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concrete–rock interfaces. Implementation of the procedure is facilitated by commercial FE 

software, with their nonlinear material models, that permit modeling of viscous-damper 

boundaries and specification of effective earthquake forces at these boundaries. 
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PART II 

Direct Finite-Element Method for 

Nonlinear Earthquake Analysis of Three-

Dimensional Dam–Water–Foundation 

Rock System 
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1 Introduction 

Earthquake analysis of arch dams requires three-dimensional (3D) dam–water–foundation rock 

systems that recognize all factors known to significantly influence their earthquake response 

[Chopra 2012a]: dam–water interaction including water compressibility and wave absorption at 

the reservoir bottom [Hall and Chopra 1982; Fok and Chopra 1986]; dam–foundation rock 

interaction including inertia effects of the rock [Tan and Chopra 1996]; radiation damping due to 

the semi-unbounded sizes of the reservoir and foundation domains [Tan and Chopra 1996; Zhang 

et al. 2009]; spatial variation of ground motion at the dam–canyon interface [Alves and Hall 

2006; Chopra and Wang 2009]; and nonlinear behavior of the dam and foundation rock [El-Aidi 

and Hall 1989; Bhattacharjee and Léger 1993; and Zhang et al. 2009]. 

Most dam engineers prefer to work with the direct method of analysis—implemented in 

commercial finite-element (FE) software with their user-friendly interfaces—that models the 

entire system using FEs and analyzes it directly in the time-domain. While these programs are 

able to model nonlinear mechanisms, they often neglect or use simplistic models for dam–water–

foundation rock interaction and the semi-unbounded domains. Furthermore, spatial variation of 

earthquake motions at the dam–canyon interface is typically ignored in dam engineering 

practice, even though there is substantial evidence that such variations can significantly influence 

the response of arch dams [Maeso et al. 2002; Proulx et al. 2004; Alves and Hall 2006; and 

Chopra and Wang 2009]. 

Accurate modeling of dam–water–foundation rock systems requires a FE model that 

includes mass, stiffness, and material damping properties of the foundation rock, the 

compressibility of water, and the effects of energy dissipation at the reservoir bottom. The semi-

unbounded foundation and fluid domains must be reduced to bounded sizes using absorbing 

boundaries [Wolf 1988; Kellezi 2000], and the seismic input specified by effective earthquake 

forces applied either directly to these boundaries [Wolf 1988; Zienkiewicz et al. 1989], or via a 
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single layer of elements interior of the boundaries [Bielak and Christiano 1984; Bielak et al. 

2003]. 

Utilizing the former of these approaches, a direct FE method for nonlinear earthquake 

analysis of two-dimensional (2D) dam–water–foundation rock systems was developed in Part I 

of this report. Standard viscous-damper boundaries [Lysmer and Kuhlemeyer 1969] were 

selected to model the semi-unbounded domains and the seismic input was specified as tractions 

directly at these boundaries. These are standard features in FE analyses, thus ensuring that this 

direct FE method can be implemented with any commercial FE software without modification of 

the source code. 

The objective of the work presented here is to generalize the direct FE method to 3D 

dam–water–foundation rock systems. After defining the components of the 3D dam–water–

foundation rock system in Chapter 2, the analysis procedure is developed in Chapter 3, and step-

by-step procedures for computing effective earthquake forces at the foundation and fluid 

boundaries are outlined in Chapter 4. Several examples are presented in Chapter 5 to validate the 

accuracy of the direct FE method. First, the method is used to compute the free-field motion at 

the surface of a flat foundation box and at a semi-cylindrical canyon and compared to classical 

solutions. The dynamic response of an arch dam system is computed next and compared against 

results from the substructure method. To facilitate implementation of the direct FE method for 

3D systems, several simplifications of the procedure are proposed in Chapter 6, and their 

efficacy is evaluated. Finally, in Chapter 7, the analysis procedure is summarized in step-by-step 

form. 
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2 System and Ground Motion 

2.1 SEMI-UNBOUNDED DAM–WATER–FOUNDATION ROCK SYSTEM 

The idealized, 3D dam–water–foundation rock system considered consists of three subsystems 

(Figure 2.1): (1) the concrete dam with nonlinear properties; (2) the foundation rock, consisting 

of a bounded region adjacent to the dam that may be nonlinear, inhomogeneous, and irregular in 

geometry; and the exterior, semi-unbounded, region with “regular” geometry that has linear 

constitutive properties and is homogeneous or horizontally layered; and (3) the fluid domain, 

consisting of a bounded region of arbitrary geometry adjacent to the dam that may be nonlinear; 

and a uniform channel, unbounded in the upstream direction, that is restricted to be linear. 

“Regular” geometry of the semi-unbounded foundation region is defined as the canyon 

upstream of the bounded region has a uniform cross section, and, similarly, the canyon 

downstream of the bounded region has a uniform cross section; that said, the two cross sections 

may be different. The assumption of homogeneous or horizontally layered properties in the 

exterior foundation region is introduced to permit use of a 1D deconvolution method—based on 

the assumption of vertically propagating waves—to define the seismic input for the system 

starting from ground motion specified at the surface of the foundation rock; see Section 2.2. 

The semi-unbounded system in Figure 2.1 is modeled by a 3D FE discretization of a 

bounded system with viscous-damper boundaries at the bottom and side boundaries of the 

foundation domain to model its semi-unbounded geometry, and at the upstream end of the fluid 

domain to model its essentially “unbounded length; see Figure 2.2. Many absorbing boundaries 

have been proposed in the literature, e.g., Lysmer and Kuhlemeyer [1969]; Smith [1974]; White 

and Lee [1977]; Clayton and Engquist [1977]; Engquist and Majda [1977]; Underwood and 

Geers [1981]; Kausel and Tassoulas [1981]; Liao and Wong [1984]; Higdon [1986; 1987]; Wolf 

[1988], Wolf and Song [1995; 1996], Kellezi [2000], Basu and Chopra [2003; 2004]; and Basu 

[2009]. The well-known viscous damper model of Lysmer and Kuhlemeyer [1969] has been 



 

62 

chosen herein because of its availability in every commercial FE code, acceptable accuracy, and 

ease of implementation. 

The linear, regular parts of the foundation and fluid domains included in the FE model 

provide a transition from the irregular geometry and nonlinear behavior adjacent to the dam to 

the regular geometry and linear behavior required at the absorbing boundaries. The minimum 

sizes for these domains are determined by the ability of the viscous-damper boundaries to absorb 

outgoing scattered waves from the system. Because the viscous damper is a “simple” absorbing 

boundary, larger domain sizes are required than if an “advanced” boundary such as PML was 

used; however, as will be seen in Section 6, the use of larger domains has the advantage that it 

enables introduction of two simplifications that significantly reduce the complexity of 

implementing the analysis method. 

The use of FEs for the entire system permits modeling of arbitrary geometry and 

inhomogeneous material properties of the dam, canyon, foundation, and fluid domains adjacent 

to the dam. Furthermore, it allows for modeling of nonlinear mechanisms (Figure 2.3) such as 

cracking of the dam concrete [Lee and Fenves 1982; Vargas-Loli and Fenves 1989; 

Bhattacharjee and Léger 1993; and Zhang et al. 2009], sliding and separation at construction 

joints, lift joints, and at concrete-rock interfaces [Niwa and Clough 1982; Léger and Katsouli 

1989; Fenves et al. 1992; Lau et al. 1998]; and Zhang et al. 2009], discontinuities in the rock due 

to local cracks and fissures [Lemos 1999; Lemos 2008], and cavitation in the fluid [Zienkiewicz 

et al. 1983]. 
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Figure 2.1 Semi-unbounded dam–water–foundation rock system showing main parts: 

(1) the nonlinear dam; (2) the foundation rock, consisting of an irregular, 

nonlinear region and a semi-unbounded region that is linear and has 

regular geometry and homogeneous properties; and (3) the fluid domain, 

consisting of an irregular nonlinear region, and a semi-unbounded uniform 

channel with linear fluid. 

 

Figure 2.2 Dam–water–foundation rock system with truncated foundation and fluid 

domains; (a) 3D perspective view. 
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Figure 2.3 Dam–water–foundation rock system with truncated foundation and fluid 

domains: (b) section view through center of canyon; and (c) plan view. 
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Figure 2.3 Nonlinear mechanisms for concrete arch dams. Figure adapted from Priscu 

et al. [1985]. 

2.2 EARTHQUAKE EXCITATION 

Equations governing the motion of the system shown in Figure 2.2 subjected to earthquake 

excitation defined by the free-field ground motion—the motion that would occur in the 

foundation rock without the dam and water present—will be formulated in Chapter 3. These 

equations require that the spatially varying free-field motions at all future boundaries of the FE 

model are known. Specifying such motions remains a challenging problem. 

The most general approach is to perform large-scale simulation of seismic wave 

propagation from an earthquake source to the dam site [Bao et al. 1998; Graves 1996; and 

Moczo et al. 2007], shown schematically in Figure 2.4(a). Here, physics-based FE or finite 

difference models of large regions subjected to a fault slip are analyzed. Although such regional 

simulations have been reported in the research literature, they seem impractical for concrete-dam 

analysis for two reasons: (1) information regarding the details of the earthquake fault rupture and 

the properties of the geological materials is lacking; and (2) simulation models are currently 

limited to lower frequencies compared to the vibration properties of concrete dams. 

Another approach would be to use boundary element methods (BEM) to compute the 

free-field motions resulting from incident plane waves propagating from infinity to the dam site 

at predefined angles, shown schematically in Figure 2.4(b). Such methods have been used to 

compute the free-field motions at the surface of canyons [Maeso et al. 1982; Zhang and Chopra 
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1991], and to investigate the influence of assumed incident angles on the dam response [Garcia 

et al. 2016]; however, due to the obvious difficulty in selecting a combination of wave types and 

their incidence angles for an actual situation, these methods are rarely applied to solve practical 

problems. 

 

Figure 2.4 Illustration of methods to obtain free-field earthquake motion: (a) large 

scale fault-rupture simulation; (b) boundary element method with incident 

plane waves propagating from infinity at predefined angles; and (c) 

deconvolution analysis starting with a free-field surface control motion 

( )k
ga t . 

Presently, the standard approach is to define the earthquake excitation by three 

components of free-field acceleration specified at a control point on the foundation surface 

[Figure 2.4(c)]: the stream component, ( )x
ga t , the cross-stream component ( )y

ga t , and the 

vertical component ( )z
ga t . Because the ground motion cannot be defined uniquely, an ensemble 

of motions is required. These motions should, in some sense, be consistent with a target design 

spectrum that represents the seismic hazard at the site, e.g., the uniform hazard spectrum (UHS) 

or some variation of the conditional mean spectrum (CMS). Several methods have been 
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developed to select and scale ground motion records to “match” a target spectrum [Kwong et al. 

2015; Haselton 2009; and Katsanos et al. 2010]. The UHS (and CMS) applies to an outcrop 

location on level ground; this control point is chosen at the elevation of the dam abutments in the 

linear, regular part of the foundation rock; see Figure 2.4(c). It could also be at other locations; 

for example, if the purpose is to perform analysis using earthquake input motions recorded at 

specific locations near the dam. 

The free-field motion at the bottom and side boundaries of the foundation domain can be 

determined from the surface control motion ( )k
ga t  using a deconvolution-type analysis; see 

Figure 2.4(c). For this analysis, it will be assumed that the incident wave field consists solely of 

plane SH-, SV- and P-waves propagating vertically upwards from the underlying semi-

unbounded foundation rock. Although clearly a major simplification, at the present time it seems 

to be a reasonably pragmatic choice. 

When specifying the earthquake excitation this way, spatial variation of the ground 

motion—both amplitude and phase—is automatically considered in the analysis, albeit 

predominantly in the vertical direction. To demonstrate this, such free-field motions are 

computed by the direct FE method to be developed in Chapters 3 and 4 applied to analyze the FE 

model in Figure 2.5 consisting of a canyon without a dam or reservoir. In these analyses, the 

control motion at the surface of the foundation rock was defined in the stream direction by the 

S69E component of the motion recorded at Taft Lincoln School Tunnel during the 1952 Kern 

County earthquake. 

Observe from the results in Figure 2.6 that the amplitude and phase of the motion varies 

greatly with height, and by comparing the motions at two locations at the same elevation (e.g., at 

z = 0 m), it is evident that scattering and diffraction of waves from the canyon cause variation of 

the motion also in the horizontal direction. Because of the assumption of vertically incident 

waves however, this spatial variation is significant in the vertical direction but less so in the 

horizontal direction. Thus, this method of applying the seismic input is only able to represent 

parts of the very complex spatially varying wave fields that have been observed at actual dams 

subjected to earthquakes [Chopra and Wang 2009]. 
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Figure 2.5 Finite-element model of canyon showing location of two vertical node 

arrays: array 1-1 at the center of the model, and array 2-2 at the side 

boundary of the model. 

 
 

 

Figure 2.6 Stream component of free-field earthquake motion computed by the direct 

FE method at six different elevations at the two arrays. A specific peak in 

the acceleration history is identified and connected by a dashed line to 

demonstrate the amplitude change and time shift in the motions at higher 

elevations. 
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3 Equations of Motion 

3.1 GOVERNING EQUATIONS 

The governing equations for a 2D gravity dam–water–foundation rock system idealized as an 

ensemble of FEs with viscous-damper boundaries were derived in Part I. These equations are 

repeated here and generalized for 3D dam–water–foundation rock systems; see Figure 3.1: 

T T

st

( )

( )( )

t t

t t
h b

t tt
h b f

t t
r


      

             
        

        
      

m 0 c 0r r

Q Q s 0 bp p

0 Q Q r R Rf r

0 h p H0

 
 

 (3.1) 

where tr  is the vector of total displacements in the dam and foundation rock; tp  is the vector of 

total hydrodynamic pressures in the fluid, idealized as a linear (for convenience of notation), 

inviscid, irrotational, and compressible Eulerian fluid† [52]; m and c are the standard mass and 

damping matrices, respectively, for the dam–foundation rock system; ( )tf r  is the vector of 

internal forces due to (nonlinear) material response; s, b, and h are the “mass,” “damping,” and 

“stiffness” matrices, respectively, for the fluid [Zienkiewicz and Bettess 1978];   is the density 

of water; hQ  and bQ  are matrices that couple accelerations to hydrodynamic pressures at the 

dam–water interface h  and water–foundation rock interface b , respectively; stR  is the vector 

of static forces, including self-weight, hydrostatic pressures, and static foundation reactions at f  

(see Chapter 7 for details); t
fR  is the vector of dynamic forces associated with the absorbing 

foundation boundary f ; and t
rH  is the vector of dynamic forces associated with the absorbing 

fluid boundary r . Expressions for the unknown forces t
fR  and t

rH  will be derived later in this 

chapter. 

                                                 
† The analysis procedure is also applicable to a Lagrangian fluid formulation with appropriate modifications of 
Equation (3.1)  
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Hydrodynamic wave energy is lost at b —the bottom and side boundaries of the 

reservoir—by means of two mechanisms. The first is wave absorption in sediments invariably 

deposited at the reservoir bottom. To allow for comparison against results from the substructure 

method in Chapter 5, this mechanism is approximately modeled by the reservoir bottom 

reflection coefficient   [Fenves and Chopra 1983], and its effects are included in Equation (3.1) 

through the damping matrix b. The second mechanism, associated with water–foundation rock 

interaction, is explicitly considered in the FE model through the coupling matrix bQ . Because 

this mechanism automatically accounts for some radiation of hydrodynamic waves, care should 

be taken not to overestimate the total amount of energy lost at these boundaries when also 

including sediment absorption in the FE model. For example, if the foundation consists of 

sandstone or granite, including water–foundation rock interaction has approximately the same 

amount of energy dissipation as a 1D absorption model with 0.50   or 0.75  , respectively. 

The wave-absorbing boundaries that enforce the radiation condition at the foundation and 

fluid boundaries are modeled by viscous dampers (dashpots) lumped at the boundary nodes of 

the FE model; see Figure 3.2. Their governing equations can be written in FE notation as 

f f f R c r 0 ,   at the foundation boundaries f  (3.2a) 

r r r H c p 0 ,   at the upstream fluid boundary r  (3.2b) 

In Equation (3.2a), fc  is the matrix of normal and tangential damper coefficients p f pc A V  and 

f ssc A V , respectively, where A is the tributary area of the node, and f , sV , and pV  are the 

density, shear-wave velocity, and pressure-wave velocity, respectively, of the rock. In Equation 

(3.2b), rc  is the matrix of damper coefficients /rc A C , where C is the speed of pressure waves 

in water. In the next section, these equations will be reformulated in terms of the total variables 

that enter into Equation (3.1). 
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Figure 3.1 Schematic FE model of (a) dam and foundation domain, and (b) fluid 

domain. Absorbing boundaries f  and r at the truncation of the 

foundation and fluid domains, and interfaces h  at the upstream dam face 

and b  at the reservoir bottom and sides are highlighted.  

3.2 INTERACTION AS A SCATTERING PROBLEM 

Dam–water–foundation interaction may be interpreted as a scattering problem, in which the dam 

perturbs a “free-field” state of the system. Utilizing this idea, the procedure developed for 2D 

gravity dam systems in Part I is extended next for 3D dam–water–foundation rock systems. 

Consider the auxiliary water–foundation rock system defined in Figure 3.3(a), which 

consists of three subdomains: a  denotes the foundation region with an irregular canyon interior 

to the future absorbing boundary f ; f
  is the semi-unbounded, regular foundation region 

exterior to f ; and f
  is the semi-unbounded, uniform fluid channel upstream of the future 

absorbing boundary r . The displacements and hydrodynamic pressures in this auxiliary water–

foundation rock system are defined as ar  and ap , respectively. This auxiliary system does not 

correspond to any physical state, but it is introduced to facilitate formulation of the analysis 

procedure. 

The dam–water–foundation rock system is also separated into three subdomains; Figure 

3.3(b):   denotes the dam and adjacent parts of the foundation and fluid domains interior to f  

and r ; and f
  and r

  are the semi-unbounded foundation and fluid domains exterior to f  

and r ; these are identical to the exterior regions of the auxiliary system. In order to formulate 

the governing equations for the absorbing boundaries in terms of free-field quantities, the 

displacements and hydrodynamic pressures are defined by the variables 
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tr  and tp , in the interior region   (3.3a) 

t ar r  and t ap p , in the exterior regions f
  and r

  (3.3b) 

 

Figure 3.2 Viscous-damper boundary f  for foundation rock. 
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Figure 3.3 Illustration of dam–water–foundation rock interaction as a scattering 

problem: (a) semi-unbounded auxiliary water–foundation rock system in its 

“free-field” state with variables defined by ap  in r
  and ar  in a

f
  ; 

and (b) dam–water–foundation rock system with variables defined by pt  

and r t  in   and the scattered variables t ap p  in r
  and t ar r  in f

 . 

The variables chosen in the exterior regions f
  and r

  represent the scattered motion 

and scattered hydrodynamic pressures, i.e., the perturbation of the motion and pressures in the 

auxiliary water–foundation rock system due to the presence of the dam and irregular fluid region. 

The viscous-damper boundaries f  and r  are intended to simulate these semi-unbounded 

regions. Because linear material behavior was assumed in these exterior domains, the boundary 

forces (tractions) corresponding to the scattered variables are t a
f f f R R R  at f  and 
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t a
r r r H H H  at r . Substituting these expressions into the radiation conditions for the viscous-

damper boundaries [Equation (3.2)], one obtains: 

t a t a
f f f f f    R R c r r            t a t a

r r r r r    H H c p p   (3.4) 

The total forces on the viscous-damper boundaries can be seen to consist of two parts: the 

forces a
fR  and a

rH  consistent with the boundary tractions in the auxiliary system at f  and r , 

respectively, and the product of damper coefficients and the scattered motion and scattered 

hydrodynamic pressure. 

 

Figure 3.4 Illustration of dam–water–foundation rock interaction as a scattering 

problem, section through center of canyon: (a) semi-unbounded auxiliary 

water–foundation rock system in its “free-field” state; and (b) dam–water–

foundation rock system. 
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3.3 APPROXIMATING WATER–FOUNDATION ROCK INTERACTION 

The quantities a
fR , a

fr , a
rH  and a

rp  that enter into Equation (3.4) are to be determined by 

dynamic analysis of the auxiliary water–foundation rock system; Figure 3.3(a). This very 

complex analysis may be simplified by ignoring the effects of water–foundation rock interaction 

in r f
   , as was done in Part I for the 2D system. This simplification implies the following 

approximations: 

0a
f fr r  and 0a

f fR R  in the foundation domain a
f
   (3.5a) 

0a
r rp p  and 0a

r r H H 0 † in the fluid domain r
  (3.5b) 

where the free-field motion 0
fr  and forces 0

fR  at the boundary f  are computed from analysis of 

the foundation domain alone [Figure 3.5(a)], thus ignoring the effects of hydrodynamic pressures 

in r
  on the foundation-rock motions; and the free-field hydrodynamic pressures 0

rp  are 

computed from analysis of the fluid part alone [Figure 3.5(b] with rigid foundation rock, thus 

ignoring the effects of foundation-rock flexibility on the hydrodynamic pressures in r
 .  

Although the secondary effects of water–foundation rock interaction in the exterior 

domain f r
    distant from the dam are ignored, the dominant effects within the FE domain 

  that contains the dam are still rigorously represented by the coupling matrix bQ  

 

Figure 3.5 (a) Free-field foundation-rock system with displacements defined by 0r ; 

and (b) “free-field” fluid channel upstream of r  with pressures defined by 
0p . 

3.4 FINAL EQUATIONS OF MOTION 

                                                 
† The forces 0H r  are zero for all components of ground motion because the pressure gradient at r  is zero when the 

foundation rock is rigid and the semi-unbounded channel has a uniform cross section. 
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Substituting the above expressions for the viscous-damper boundaries [Equation (3.4)] with the 

approximations in Equation (3.5) into Equation (3.1), the final equations of motion for the 3D 

dam–water–foundation rock system are obtained: 
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 (3.6) 

where the last term on the right hand side represents the effective earthquake forces: 

0 0 0
f f f f P R c r  at the foundation boundaries f  (3.7a) 

0 0
r r rP c p  at the upstream fluid boundary r  (3.7b) 

Working with the scattered variables in f
  and r , and approximating water–

foundation rock interaction, has enabled Equation (3.7) to be derived for the effective earthquake 

forces in terms of free-field variables only. These free-field variables represent the minimal set 

of seismic input data required for determining the response of the dam–water–foundation rock 

system to earthquake excitation. 
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4 Computing Effective Earthquake Forces 

4.1 FORCES AT BOTTOM BOUNDARY  

Similarly as for the 2D system in Part I, the equation for the effective earthquake forces at the 

bottom boundary [Equation (3.7a)] is reformulated as: 

0 02f f IP c r  (4.1) 

where 0
Ir  is the motion at the bottom boundary due to the incident (upward propagating) seismic 

waves. The incident motion 0
Ir  is obtained by 1D deconvolution of the surface motion ( )ga t  

assuming vertically propagating seismic waves and homogeneous (or horizontally layered) rock. 

Deconvolution is an inverse procedure to determine the amplitude and frequency content of an 

input signal to be consistent with the observed output signal. It is most conveniently 

implemented in the frequency domain, either directly by computing the inverse of the transfer 

function for a 1D half-space [Kramer 1996], or by utilizing available 1D site response analysis 

software such as SHAKE [Schnabel et al. 1972] of DEEPSOIL [Hashash et al. 2011]. 

Although rather straightforward, deconvolution is often subject to considerable confusion 

because 1D wave-propagation software typically operates with two possible motions at every 

depth [Mejia and Dawson 2006]: an outcrop motion and a within motion. By definition, the 

within motion is the superposition of the incident and reflected waves, i.e., it is the total (or 

“actual”) motion at any given depth in the half-space. In contrast, the outcrop motion is the 

motion that would occur at a theoretical outcrop location at the same depth; this is equal to twice 

the amplitude of the incident motion. Thus, the incident motion 0rI  needed in Equation (4.1) is 

one-half the outcrop motion at the bottom boundary determined in the deconvolution analysis. 

The procedure to compute effective earthquake forces 0
fP  from Equation (4.1) is summarized in 

Box 4.1. 

Some researchers have avoided deconvolution of the surface motion by idealizing the 

foundation rock as a homogeneous, undamped half-space [Zhang et al. 2009; Robbe et al. 2017]. 
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While this simplification may be appropriate for the simple case of a homogeneous, undamped 

half-space, it can cause significant error in dam response for foundations with damping and for 

layered foundations, as will be demonstrated later in Section 6.3. 

Box 4.1 Computing 0
fP  at bottom boundary of foundation rock. 

1. Determine the outcrop motion at the bottom foundation-rock boundary by 1D 

deconvolution of each component of the surface control motion ( )k
ga t , , ,k x y z . 

2. Compute the incident motion 0
Ir  as one-half the outcrop motion at the bottom 

boundary determined in Step 1 and obtain 0
Ir  as the time derivative of 0

Ir . 

3. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Equation 

(4.1) using 0
Ir  from Step 2. 

4.2 FORCES AT SIDE BOUNDARIES 

The computation and application of effective earthquake forces at the four side boundaries of the 

foundation domain [Equation (3.7a)] can be done automatically within the FE code using a 

special class of so-called free-field boundary elements [Zienkiewicz et al. 1989; Nielsen 2014]. 

Such elements solve the radiation condition for 1D wave propagation and apply a form of 

effective earthquake forces at the boundaries at every time step as the analysis progresses in 

time. Because very few commercial FE programs have such elements available, an alternative 

procedure will be presented wherein the effective earthquake forces are computed in a separate 

auxiliary analysis of the free-field system before the actual dam–water–foundation rock system is 

analyzed. This approach has the advantage that it does not require modification of the FE source 

code, but it has the disadvantage that it requires major data transfer. 

4.2.1 Computing Forces at Side Boundaries: Uniform Canyon 

The free-field motion 0
fr  and boundary forces 0

fR  required to compute the effective earthquake 

forces 0
fP  at the four side boundaries [Equation (3.7a)] are determined from dynamic analysis of 

the foundation rock in its free-field state; see Figure 3.4(a). Before presenting the general 

procedure, a special case is considered where two additional geometric restrictions are imposed: 

(1) the canyon cross section is assumed to be uniform in the stream direction, and (2) the surface 
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of the foundation rock is horizontal. Under these assumptions, the free-field foundation-rock 

system is an infinitely-long canyon of arbitrary, but uniform cross section cut in a homogeneous 

or horizontally layered half-space; see Figure 4.1(a). Analysis of this 3D system subjected to 

vertically propagating seismic waves reduces to a 2D analysis [Figure 4.1(b]) where incident SH-

waves cause the stream (out-of-plane) component of ground motion, and incident SV- and P-

waves cause the cross-stream and vertical components. 

For this special system, the quantities 0
fr  and 0

fR  that enter into Equation (3.7a) can be 

determined by two simpler analyses: (1) analysis of a single column of foundation-rock elements 

subjected to forces of Equation (4.1) at the base [Figure 4.1(c)], which suffices for the two 

boundaries oriented in the stream direction; and (2) analysis of the 2D system of Figure 4.1(d) 

subjected to forces of Equation (4.1) at the base, where forces 0
fP  on the sides determined from 

the first analysis (these latter forces are required because the domain has been truncated) 

provides the desired results for the boundaries oriented in the cross-canyon direction at the 

upstream and downstream ends of the foundation domain. The procedure is summarized in Box 

4.2. 
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Box 4.2 Computing 0
fP  at side boundaries of foundation domain: uniform canyon. 

Analysis of 1D column 

1. Develop a FE model for the 1D foundation-rock column that has the same mesh 

density as the boundary of the 2D system. 

2. For each component of ground motion, , ,k x y z , add a viscous damper at the base 

in the k-direction and constrain DOFs in other directions to permit only shear (

,k x y ) or axial ( k z ) deformation of the 1D column. 

3. Apply effective earthquake forces [Equation (4.1)] to the base in k-direction and 

compute 0
fr  and 0

fR  at every node along the height. 

Analysis of 2D system 

4. Develop a FE model for the 2D foundation-rock system, with the same mesh 

density as the main FE model at the upstream/downstream boundary. 

5. For each component of ground motion, , ,k x y z , add viscous dampers at the 

bottom and side boundaries, and constrain the DOFs at the faces to model the 

“infinite length” in the direction normal to the model boundary (e.g., if the x-axis is 

parallel to the upstream direction, two nodes with the same y-, and z-coordinates 

should be constrained to move identically). 

6 Apply effective earthquake forces from Equation (4.1) to the bottom boundary and 

from Equation (3.7a) to the side boundaries using 0
fr  and 0

fR  from the 1D analysis, 

and compute 0
fr  and 0

fR  at every node in the 2D system. 

Computing effective earthquake forces for main model 

7. Compute the effective earthquake forces 0
fP  at every node along the side boundaries 

of the foundation domain from Equation (3.7a) using 0
fr  and 0

fR  from Step 3 at the 

along-canyon boundaries and from Step 6 at the cross-canyon boundaries at the 

upstream and downstream ends of the domain. 
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Figure 4.1 Computing 0
fP  for uniform canyon: (a) 3D free-field system with uniform 

canyon cut in foundation-rock half space; (b) “two-dimensional” free-field 

system with corresponding 1D corner columns; (c) analysis of 1D 

foundation-rock column to compute 0r f  and 0R f  at side boundaries, and (c) 

analysis of 2D system to compute 0r f  and 0R f  at upstream and 

downstream boundaries. 

4.2.2 Computing Forces at Side Boundaries: Arbitrary Canyon Geometry 

Next, the geometric restrictions of a uniform canyon and horizontal foundation surface that were 

introduced in the preceding section are removed, implying that the free-field system becomes 

much more complicated. Although a system with arbitrary canyon geometry [Figure 4.2(a)] is 

not amenable to 2D analyses, the same type of analysis methodology can be extended to the 

system provided that it satisfies the general constraints described in Section 2.1. 

For such a system, the quantities 0
fr  and 0

fR  that enter in Equation (3.7a) can be 

determined by two sets of four simpler analyses: (1) analysis of four 1D corner columns of 

foundation-rock elements subjected to forces of Equation (4.1) at the base; and (2) analyses of 

the four 2D systems in Figure 4.2(b) subjected to forces of Equation (4.1) at the base and forces 
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0
fP  on the sides determined from the first set of 1D analyses. The latter set of analyses provide 0

fr  

and 0
fR  for nodes on all four side boundaries. The procedure is illustrated in Figure 4.2 and 

summarized in Box 4.3. 

 

Figure 4.2 Computing 0
fP  for arbitrary canyon geometry: (a) 3D free-field system with 

canyon of arbitrary geometry cut in foundation-rock half-space; (b) free-

field system with corresponding 1D corner columns and 2D systems; and 

(c) analysis of 1D corner columns to compute 0
fr  and 0

fR  at corners, (d) 

analysis of 2D systems to compute 0
fr  and 0

fR  at the four side 

boundaries.  

 

This procedure for computing 0
fP  at the boundaries of a system with arbitrary geometry is 

based on the assumption that the motion in each of the four 2D systems [Figure 4.2(b)] can be 

determined independently of the other 2D systems. This assumption seems reasonable as long as 

the foundation domain is large enough, which is normally the case in the direct FE method 
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because viscous-damper boundaries generally require large domains to ensure acceptable 

modeling of the semi-unbounded domains. 

Implementation of the procedure in Box 4.3 means that eight auxiliary analyses are 

required for each of the three components of ground motion. The computational effort required 

for each of these linear dynamic analyses is minimal, and the procedure can be automated in a 

pre-processing script that is set up and executed before the nonlinear dynamic analysis of the 

dam–water–foundation rock system takes place. For example, in this work MATLAB [The Math 

Works Inc. 2012] is used to compute and store effective earthquake forces used with the FE code 

OpenSees [McKenna 2011] to analyze the complete system; a similar method has been 

implemented by Saouma et al. [2011] in the FE code MERLIN [Saouma et al. 2013]. 

The disadvantage of this approach is that substantial amounts of data management and 

transfers are required for analyzing 3D models, which may easily have tens of thousands of 

boundary nodes. In Section 6.1, it will be demonstrated that that under certain conditions it is 

possible to drastically reduce these requirements by replace the actual 3D free-field system by a 

much simpler system. 
  



 

84 

Box 4.3 Computing 0
fP  at side boundaries of foundation domain: arbitrary canyon 

geometry. 

Analysis of four 1D corner columns 

1. Develop FE models for each of the four 1D corner columns of the foundation rock 

that have the same mesh density as the corners of the main FE model. 

2. For each component of ground motion, , ,k x y z , add a viscous damper at the base 

in the k-direction and constrain DOFs in other directions to permit only shear 

( , )k x y  or axial ( )k z  deformation of the 1D column. 

3. Apply effective earthquake forces [Equation (4.1)] to the base in the k-direction and 

compute 0
fr  and 0

fR  at every node along the height. 

Analysis of four 2D systems 

4. Develop FE models for each of the four 2D systems of the foundation rock, with the 

same mesh density as the main FE model at the boundaries. 

5. For each component of ground motion, , ,k x y z , add viscous dampers at the 

bottom and side boundaries and constrain DOFs at the faces to model the “infinite-

length” conditions in the direction normal to the boundary. 

6 Apply effective earthquake forces from Equation (4.1) to the bottom boundary and 

from Equation (3.7a) to the side boundaries using 0
fr  and 0

fR  from the 1D analyses, 

and compute 0
fr  and 0

fR  at every node in the 2D system. 

Computing effective earthquake forces for main model 

7. Compute effective earthquake forces 0
fP  at every node at the four sides of the 

foundation domain from Equation (3.7a) using 0
fr  and 0

fR  from Step 6. 

 

4.3 FORCES AT UPSTREAM FLUID BOUNDARY 

The free-field pressures 0
rp  required to compute   at r  are to be determined by dynamic 

analysis of the fluid in its free-field state [Figure 4.3(a)]: a fluid channel of uniform cross section 

unbounded in the upstream direction. Because this system is uniform in the upstream direction, 

the analysis reduces to two dimensions. For cross-stream and vertical components of ground 
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motion, the free-field pressures 0
rp  on the boundary r  can be computed from an analysis of the 

2D fluid domain cross section with rigid foundation rock; see Figure 4.3(b). The stream 

component of ground motion will not generate any hydrodynamic pressures, thus implying 
0
r P 0 . The procedure is summarized in Box 4.4. 

 

Figure 4.3 Computing 0
rP  at upstream fluid boundary: (a) 3D “free-field” fluid channel 

upstream of r ; and (b) analysis of 2D fluid cross section subjected to 

vertical and cross-stream excitation to compute 0
rp . 

 

Box 4.4 Computing 0
rP  at upstream fluid boundary. 

Analysis of 2D fluid section 

1. Develop a FE model of the 2D fluid cross section with the same mesh density as 

the main model at the upstream fluid boundary r , add surface elements at the 

reservoir bottom and sides to model sediments. 

2. For cross-stream and vertical components of ground motion, ,k y z , calculate 0
rp  

at every node by analyzing the 2D model subjected to accelerations 0
br  at the base, 

where 0
br  is the foundation-rock accelerations at the interface b r    [Figure 

3.1(b)]; these can be extracted from the relevant 2D analysis described in Section 

4.2. 

Computing effective earthquake forces 

3. Compute the effective earthquake forces 0
rP  for every node at the fluid boundary 

from Equation (3.7b) using 0
rp  from Step 2. 
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The forces 0
rP  are associated with earthquake-induced pressures due to vertical and cross-

stream excitation of the part of the fluid domain that has been eliminated upstream of r . These 

forces are required because of the system idealization (Figure 2.1), where the excitation is 

implicitly assumed to extend along the entire length of the unbounded fluid channel. Later in 

Section 6.4, it will be demonstrated that these forces are inconsequential to the dam response and 

may be dropped from the analysis. 
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5 Numerical Validation of the Direct Finite-
Element Method 

In this chapter several examples are documented to validate the accuracy of the direct FE method 

that was developed in Chapters 3 and 4 and implemented with the FE program OpenSees 

[McKenna 2011]. First, the ability of the method to reproduce free-field motions at the surface of 

a flat foundation box is documented. The free-field response of a uniform, semi-cylindrical 

canyon cut in a foundation half-space is determined next and compared with classical solutions. 

Lastly, the dynamic response of Morrow Point Dam is computed for a wide range of conditions 

and compared with results obtained from the substructure method. 

5.1 REPRODUCING FREE-FIELD MOTION IN FOUNDATION ROCK 

5.1.1 Free-Field Motion at Flat Box Surface (the Flat Box Test) 

The flat box model shown in Figure 5.1 has a domain size and mesh density that is representative 

of an actual dam–water–foundation rock system with viscous dampers employed at the bottom 

and side boundaries. The free-field control motion ( )k
ga t  is defined at the surface in the two 

horizontal and vertical directions by the S69E, S21W and vertical components of the Taft ground 

motion, respectively. Each component of ground motion is deconvolved, effective earthquake 

forces 0
fP  are computed from the procedures summarized in Box 4.1 and Box 4.3 and applied to 

the bottom and side boundaries of the foundation box, respectively, and the response of the 

system is computed. 

The results presented in Figure 5.2 show a near perfect match between the specified free-

field control motion and the computed surface motions at every node on the surface of the flat 

box, thus demonstrating that the direct FE method is able to exactly reproduce free-field 

conditions for this simple system to within FE discretization error. This is achieved without 
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iterative procedures to adjust the amplitude and/or frequency content of the input motion, which 

is sometimes used to overcome deficiencies in FE models [Bureau of Reclamation 2013; 

Cvijanovic et al. 2014]. 

 

Figure 5.1 Finite-element model of flat foundation box. 

 

Figure 5.2 Comparison of 5% damped pseudo-acceleration response spectra for 

control motion and computed motion at nodes on flax box surface. 

5.1.2 Free-Field Motion at Canyon Surface 

Next, the ability of the direct FE method to accurately compute the free-field earthquake motion 

at the surface of a semi-cylindrical canyon is evaluated; this is the motion that in turn will excite 

a dam supported in the canyon. Available analytical and numerical solutions for this classical 

problem [Trifunac 1972; Wong 1982] serve as the benchmark for the evaluation. 
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Figure 5.3 Finite-element model of semi-cylindrical canyon cut in half-space. 

The semi-cylindrical canyon with radius R discretized as a FE system with viscous-

damper boundaries (Figure 5.3) is subjected to effective earthquake forces 0
fP  computed from 

the procedures summarized in Boxes 4.1 and 4.3 with the vertically incident seismic motion 0
Ir  

specified as a plane wave of unit amplitude and frequency f. The forces 0
fP  are applied to the 

bottom and side boundaries of the FE model, and the displacement response along the canyon 

and top surface of the foundation is computed. Results are presented for Poisson's ratio s  = 1/3 

and different values of 2 / sfR V  , where sV  is the shear-wave velocity of the foundation 

medium. The dimensionless frequency   may be interpreted as the ratio of the canyon width to 

the wavelength of the incident waves. When plotted in this form, results are independent of the 

actual material properties as long as the ratio / sR V  is maintained. 

The displacement amplitude, defined as the ratio of the Fourier transform of the 

computed displacements to the unit amplitude input motion, are presented in Figure 5.4 for 

incident SH-, SV- and P-waves; these correspond to excitation in the canyon, cross-canyon and 

vertical directions, respectively. The results obtained by the direct FE method closely match the 

analytical results by Trifunac [1972] for incident SH-waves, and the numerical results by Wong 

[1982] using boundary integral methods for incident SV-waves and P-waves. The small 

discrepancies are due to the inability of viscous-damper boundaries to perfectly absorb all 

scattered and diffracted waves from the canyon. This is most prominent in the response to 

incident SV-waves and P-waves because these excitations generate surface waves that are not 
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effectively absorbed by the viscous dampers; but even for these excitations, the discrepancies are 

small. The excellent agreement demonstrates the ability of the direct FE method to accurately 

predict free-field motions at the surface of a canyon. 

 

Figure 5.4 Displacement amplitudes at canyon surface computed by the direct FE 

method and compared with results by Trifunac [1972] and Wong [1982]. 

Responses to incident SH-, SV-, and P-waves are plotted against 

dimensionless distance /Y R , where Y is the transverse distance from the 

center and R the radius. 
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5.2 DYNAMIC RESPONSE OF MORROW POINT DAM 

5.2.1 System Analyzed 

The ability of the direct FE method to accurately compute the dynamic response of concrete 

dams is validated numerically by analyzing Morrow Point Dam, a 142-m-high, approximately 

symmetric, single-centered arch dam located on the Gunnison River in Colorado. The linear 

material properties and damping values selected for the dam concrete and foundation rock are 

based on the results from forced vibration tests of the dam and subsequent numerical studies 

performed to match the experimental results [Duron and Hall 1988; Nuss 2001]. The concrete 

and foundation rock is assumed to be homogeneous, isotropic, and linearly elastic. The concrete 

has a modulus of elasticity sE  = 34.5 GPa, density s  = 2403 kg/m3, and Poisson's ratio s  = 

0.20. The foundation rock has a modulus of elasticity fE  = 24.1 GPa (i.e., /f sE E  = 0.70), 

density f  = 2723 kg/m3 and Poisson's ratio f  = 0.20. The impounded water has the same 

depth as the height of the dam, density   = 1000 kg/m3, and pressure-wave velocity C  = 1440 

m/sec. The reservoir-bottom reflection coefficient is selected as   = 0.80. 

Material damping in the dam and foundation rock is modeled in the direct FE method by 

Rayleigh damping with 1%s   and 2%f   viscous damping specified for the dam concrete 

and foundation rock, respectively, at two frequencies: 1f  = 5 Hz, the fundamental resonance 

frequency of the dam alone on rigid rock, and at three times this frequency. The damping matrix 

for the complete system is then constructed using standard procedures for assembling damping 

matrices for two subdomains [Chopra 2012b]. Determined by the half-power bandwidth method 

applied to the resonance curve, the overall damping in the dam–water–foundation rock system is 

3–5% for the first few modes of vibration, which is consistent with the range of measured 

damping values at the dam [Duron and Hall 1988]. 

The FE mesh shown in Figure 5.5 is assembled using standard 8-node brick elements, 

with 800 solid elements for the dam, 42,000 solid elements for the foundation rock, and 9200 

acoustic fluid elements for the water in the reservoir. Interface elements couple accelerations 

with hydrodynamic pressures at the fluid–solid interfaces, surface elements at the bottom and 

sides of the reservoir model the 1D wave absorption due to sediments, and viscous dampers 

(dashpots) at the foundation domain boundaries and at the upstream end of the fluid domain 

model the semi-unbounded domains. The combined FE model consists of approx. 63,000 
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elements and 150,000 DOFs, and the overall dimensions are 700 m  700 m  400 m, 

corresponding to approx. 5H  5H  3H, where H  is the height of the dam. These dimensions 

are sufficiently large to minimize reflections from the viscous-damper boundaries and were 

selected based on an initial study of the influence of domain size on the arch dam response (not 

included here). Interestingly, the response of the 3D arch dam system was found to be less 

sensitive to the size of the foundation domain than was the case for 2D gravity dam systems, 

which may be explained by the observation that dam–foundation interaction generally has less 

influence on arch dam response than on gravity dam response [Tan and Chopra 1995a]. 

 

Figure 5.5 Finite-element model of Morrow Point Dam: (a) dam; (b) fluid domain; and 

(c) foundation domain. 
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5.2.2 EACD3D-08 Model for Substructure Method 

The dynamic response of this FE model—computed by the direct FE method—will be compared 

against independent results obtained using the substructure method Wang and Chopra [2010]. 

Analyzed using the computer program EACD3D-08 [Wang and Chopra 2008], wherein the 

foundation rock is treated as a semi-unbounded half-space, the fluid domain as unbounded in the 

upstream direction, and the earthquake excitation is specified directly at the dam–canyon 

interface, this method avoids artificial model truncations and absorbing boundaries. 

In order to effectively work with this computer program—which does not have a user 

interface or any pre- or post-processing capabilities—a set of MATLAB modules were 

developed to perform pre-processing of the input and post-processing the analysis output. These 

modules significantly increase the accessibility of EACD3D-08 by providing the user with a 

rational way to set up the analysis model, run the analysis, and gain easy access to the output 

data in the user-friendly MATLAB interface. The resulting EACD3D-08 model, shown in Figure 

5.6, includes 800 solid elements for the dam, the FE mesh for the irregular part of the fluid 

domain, and the boundary element mesh at the dam–foundation rock interface. 

Material damping in the substructure method is modeled by rate-independent, constant 

hysteretic damping [Chopra 2012b] defined by the damping factors 0.02s   and 0.04f   

specified for the dam and foundation rock separately; these correspond to viscous damping ratios 

of s  = 1% and f  = 2% at all frequencies. A numerical investigation confirmed that the 

damping in the direct FE method, as defined earlier, is adequately consistent with this rate-

independent damping over the frequency range of interest. Because EACD3D-08 does not 

consider water–foundation rock interaction, this is also excluded in the direct FE method for 

these validation analyses to allow for a meaningful comparison. 
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Figure 5.6 EACD3D-08 model for Morrow Point Dam: (a) FE model for dam; (b) FE 

model for semi-unbounded fluid domain; and (c) boundary element mesh 

for foundation rock at dam–canyon interface. 

5.2.3 Frequency Response Functions for Dam Response 

Results for the dam response are presented in the form of dimensionless frequency response 

functions that represent the amplitude of radial acceleration at the crest of the dam due to unit 

harmonic, free-field motion; the actual location at the dam crest is selected at node 34 (which is 

the center node) for upstream and vertical ground motions, and at node 47 for cross-stream 

motion. These frequency response functions are determined in the direct FE method from time-

domain analysis of the FE model (Figure 5.5) subjected to effective earthquake forces 0
fP  and 

0
rP  computed from the procedures summarized in Boxes 4.1 and 4.3 at the bottom and side 

boundaries of the foundation rock and Box 4.4 at the upstream fluid boundary, respectively. The 

free-field control motion, ( )k
ga t , is specified at the control point at the foundation surface as a 

long sequence of unit harmonics with gradually increasing frequency. Details of this procedure 

are provided in Appendix C.  

Implemented in the frequency domain, the substructure method directly provides 

frequency response functions. The earthquake excitation is here defined by the free-field motion 

at the dam–canyon interface. To determine this motion consistent with the specified control 

motion ( )k
ga t , a direct FE analysis is implemented of the foundation domain without the dam or 

impounded water (Figure 5.7) subjected to the same boundary forces 0
fP  as described in the 

preceding paragraph. The motion recorded at the dam–canyon interface is then used as the 

spatially varying input excitation to the EACD3D-08 analysis. 
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Frequency response functions obtained by the direct FE and substructure methods for the 

dam on flexible foundation rock are compared for two cases: empty reservoir and full reservoir 

in Figures 5.8 and 5.9, respectively. Results for a full reservoir (Figure 5.9) are presented here 

only for the upstream component of ground motion because limitations in the EACD3D-08 

computer program do not allow for a meaningful comparison with the direct FE method for 

cross-stream and vertical ground motions† 

The response results obtained by the direct FE method are very close to those from the 

substructure method. The small discrepancies near some of the resonant peaks (Figure 5.8), and 

at frequencies higher than approx. 15 Hz (Figure 5.9), are primarily caused by reflections from 

the viscous-damper boundaries, which are incapable of perfectly absorbing all scattered waves. 

Such errors will generally decrease with larger domain sizes. The good agreement demonstrates 

the ability of the direct FE method to model the factors important for earthquake analysis of arch 

dams: dam–water–foundation rock interaction including water compressibility and wave 

absorption at the reservoir boundaries, radiation damping in the semi-unbounded foundation and 

fluid domains, and the earthquake excitation defined by the control motion at the surface of the 

foundation rock. 

 

Figure 5.7 Finite-element model of foundation domain to compute free-field motion at 

dam–canyon interface used as input to EACD3D-08 analysis. 

                                                 
† EACD3D-08 requires the user to specify the earthquake excitation to the fluid domain directly at the reservoir 
boundaries, but restricts this motion to be uniform in the upstream direction [Wang and Chopra 2008]. These 
assumptions cannot be reproduced exactly in the direct FE method. For stream ground motion, however, the issue is 
avoided when the reservoir boundaries are uniform in the upstream direction [Figure 5.5(b)], thus implying that no 
hydrodynamic pressures are generated at these boundaries by the stream component of ground motion. 

Motion recorded at nodes 

on dam-canyon interface 

Viscous damper boundaries 
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Figure 5.8 Frequency response functions for the amplitude of radial acceleration at 

the crest of Morrow Point dam including dam–foundation rock interaction 

(empty reservoir) due to stream, cross-stream and vertical ground motions. 

Results are computed by direct FE method and substructure method. 

 

Figure 5.9 Frequency response functions for the amplitude of radial acceleration at 

the crest of Morrow Point dam including dam–water–foundation rock 

interaction (full reservoir) due to stream ground motion. Results are 

computed by direct FE method and substructure method. 

5.2.4 Response to Transient Motion 

To demonstrate the ability of the direct FE method to accurately compute the response of the 

arch dam–water–foundation rock system to earthquake excitation, the system is analyzed with 

the free-field control motion in the stream direction, ( )x
ga t , defined by the S69E component of 

the Taft ground motion. The radial displacements and accelerations at the crest of the dam 
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relative to the base of the dam (node 40) are presented in Figure 5.10 and envelope values of 

maximum tensile arch and cantilever stresses on the upstream face of the dam in Figure 5.11. 

The results from the direct FE method closely match those from the substructure method: the 

displacements and accelerations at the crest show a near perfect match, and the envelope stress 

values are also close. The small discrepancies in the stress contour plots were found to be caused 

by differences in the FE stress recovery algorithms in the two computer programs. The 

effectiveness of the direct FE method is apparent from the fact that these excellent results 

(Figures 5.8–5.11) are achieved even with relatively moderate domain sizes: the overall 

dimensions of the FE model are approx. 5H  5H  3H, where H is the height of the dam. It is 

noted that larger domains were required to ensure similar levels of accuracy for 2D analysis of 

gravity dams; see Appendix A. 

 

Figure 5.10 Relative radial displacement and acceleration histories at crest of Morrow 

Point Dam including dam–water–foundation rock interaction due to S69E 

component of Taft ground motion applied in the stream direction; static 

displacements are excluded. Results are computed by direct FE and 

substructure methods. 
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Figure 5.11 Envelope values of maximum tensile stresses, in MPa, on upstream face of 

Morrow Point Dam including dam–water–foundation rock interaction due to 

S69E component of Taft ground motion applied in the stream direction; 

static stresses are excluded. Results are computed by direct FE and 

substructure methods. 

The direct FE analyses were implemented in OpenSees on a local workstation (without 

parallel processing capabilities) using a set of MATLAB scripts to perform the data management 

for computing and applying effective earthquake forces. The CPU time required to determine the 

dynamic response of the FE model in Figure 5.5 with roughly 150 000 DOFs was 68 minutes; 

approximately 13 minutes were required for the auxiliary analyses to set up the effective 

earthquake forces and 55 minutes for the (linear) dynamic analysis of the dam–water–foundation 

rock system. The computational effort required to determine the effective earthquake forces for 

the system is small compared to the time required for dynamic analysis of the overall system. 

Clearly, it is negligible compared to the time required to perform a more sophisticated nonlinear 

dynamic analysis of such systems. 

5.3 FREQUENCY RESPONSE FUNCTIONS FOR SPATIALLY UNIFORM MOTION 

Now that the direct FE method has been validated for the “actual” Morrow Point dam model, it is 

tested over a wide range of parameters that characterize the properties of the dam, foundation 

rock, and reservoir bottom materials: sE , /f sE E , and  . For each of the analysis cases in 

Table 5.1, frequency response functions for the radial acceleration at the crest of the dam 
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earthquake motion is spatially uniform at the dam–foundation and water–foundation interfaces. 

This assumption is introduced for two reasons: (1) it facilitates a focused evaluation of the ability 

of the viscous-damper boundaries to model the semi-unbounded domains; and (2) it circumvents 

the aforementioned limitation in EACD3D-08 when specifying spatially varying motion in the 

substructure method (see footnote in Section 5.2.3). 

The spatially uniform ground motion at the dam–foundation and water–foundation 

interfaces is directly input in the substructure method. In the direct FE method, an alternative 

procedure for seismic input is implemented to achieve such uniform ground motion wherein a 

different set of effective earthquake forces are computed directly from the uniform ground 

motion and applied to the dam nodes and to the dam–water and water–foundation interfaces; see 

Appendix D for details. 

Table 5.1 Cases of dam–water–foundation rock system analyzed. 

Case 
Dam concrete Foundation rock Impounded water 

sE  (GPa) s  Condition /f sE E  f  Condition   

1 any† 3% rigid ∞ - empty - 
2 34.5 1% flexible 1/2 2% empty - 
3 34.5 1% flexible 1 2% empty - 
4 34.5 1% flexible 2 2% empty - 
5 any† 3% rigid ∞ - full 0.50 
6 any† 3% rigid ∞ - full 0.80 
7 34.5 1% flexible 1 2% full 0.50 
8 34.5 1% flexible 1 2% full 0.80 

5.3.1 Dam on Rigid Foundation 

Computed by the two methods, frequency response functions for the dam supported on rigid 

foundation with empty reservoir (Case 1 in Table 5.1) are presented in Figure 5.12. Results are 

plotted against the dimensionless frequency 1/  , where 1  is the fundamental frequency of 

the dam alone on rigid foundation. The close agreement between the two set of results 

demonstrates the equivalency of the computational models employed in the direct FE 

(OPENSEES) and substructure (EACD3D-08) methods are equivalent, and validates the time-

domain procedure for computing frequency response functions in the direct FE method. 

                                                 
† When plotted against the normalized frequency 1/  , these results are valid for all values of sE . 
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Figure 5.12 Frequency response functions for the amplitude of relative radial 

acceleration at the crest of Morrow Point Dam supported on rigid 

foundation with empty reservoir due to uniform stream, cross-stream and 

vertical ground motions (Case 1 in Table 5.1). Results are computed by 

direct FE and substructure methods. 

5.3.2 Dam–Foundation Rock System 

The frequency response functions for the dam on flexible foundation rock with empty reservoir 

obtained by the direct FE and substructure methods are compared in Figure 5.13 for several 

values of /f sE E  (Cases 2 to 4 in Table 5.1). The close agreement between the two set of results 

demonstrates the ability of the direct FE method to model the semi-unbounded foundation 

domain including radiation damping. The discrepancies observed near some of the resonance 

peaks are caused by reflections from the viscous-damper boundaries, which are unable to 

perfectly absorb all scattered waves. Because the accuracy of these boundaries generally 

improves for higher values of the ratio /r  , where r is the distance from the dam to the 

boundary and   the wavelength of the scattered waves [Wolf 1988], such errors are more 

prominent for stiff foundations (longer wavelengths) than soft foundations. 
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Figure 5.13 Frequency response functions for the amplitude of relative radial 

acceleration at the crest of Morrow Point Dam supported on flexible 

foundation rock with empty reservoir due to uniform stream, cross-stream 

and vertical ground motions. Results computed by direct FE and 

substructure methods are presented for three values of the moduli ratio 

/f sE E  (Cases 2 to 4 in Table 5.1). 
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5.3.3 Dam–Water System 

The frequency response functions for the dam on rigid foundation with full reservoir obtained by 

the two methods are presented in Figure 5.14 for two values of the wave-reflection coefficient   

(Cases 5 and 6 in Table 5.1). In the direct FE method, effective earthquake forces 0
rP  are 

computed by the procedure summarized in Box 4.4 and applied to the fluid boundary r . The 

results from the direct FE method closely match those from the substructure method for both 

values of  , thus validating the ability of the direct FE method to model the semi-unbounded 

fluid domain and water compressibility, reservoir bottom absorption, and radiation damping in 

the fluid. 

 

Figure 5.14 Frequency response functions for the amplitude of relative radial 

acceleration at the crest of Morrow Point Dam supported on rigid 

foundation with full reservoir due to uniform stream, cross-stream, and 

vertical ground motions. Results computed by direct FE and substructure 

methods are presented for two values of the wave-reflection coefficient   

(Cases 5 and 6 in Table 5.1). 
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5.3.4 Dam–Water–Foundation Rock System 

The frequency response functions for the dam on flexible foundation rock with full reservoir 

obtained by the two methods are compared in Figure 5.15 for two values of the wave-reflection 

coefficient   (Cases 7 and 8 in Table 5.1). The close agreement demonstrates that the direct FE 

method with viscous-damper boundaries is able to accurately model the dam–water–foundation 

rock system with semi-unbounded subdomains and all its interaction effects. As mentioned 

previously, the small discrepancies are due to the approximate nature of the viscous dampers, 

and will generally decrease with larger domain sizes. 

 

Figure 5.15 Frequency response functions for the amplitude of relative radial 

acceleration at the crest of Morrow Point Dam supported on flexible 

foundation rock with full reservoir due to uniform stream, cross-stream, 

and vertical ground motions. Results computed by direct FE and 

substructure methods are presented for two values of the wave-reflection 

coefficient   (Cases 7 and 8 in Table 5.1). 
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6 Simplifications of the Direct-Finite Method 

The procedures summarized in Boxes 4.1–4.4 for computing effective earthquake forces are 

conceptually straightforward; however, they require up to 24 auxiliary analyses for the 

foundation rock (eight analyses for each component of ground motion), and two auxiliary 

analyses for the fluid domain (one analysis each for vertical and cross-stream components). 

Substantial amounts of data management and “book-keeping” is required when using these 

procedures to analyze 3D models, which may have tens of thousands of boundary nodes. The 

next section presents simplifications to the direct FE method that drastically reduces these 

requirements, with the goal of simplifying the practical implementation of the analysis 

procedure. 

6.1 USING ONE-DIMENSIONAL ANALYSIS TO COMPUTE EFFECTIVE 
EARTHQUAKE FORCES AT SIDE FOUNDATION BOUNDARIES 

The use of a combination of 1D and 2D analyses to compute effective earthquake forces 0
fP  at 

the side boundaries of the foundation domain is necessary to satisfy the general requirement in 

soil–structure interaction analyses that any admissible free-field system must be identical to the 

actual system in the region exterior to the absorbing boundaries [Wolf 1988; Bielak et al. 2003]  

Given this requirement, it is reasonable to expect that even a much simpler system that 

technically violates this requirement could give accurate results provided the foundation domain 

is sufficiently large. This is normally the situation in the direct FE method with viscous-damper 

boundaries, because these always require large domain sizes to ensure acceptable modeling of 

the semi-unbounded foundation rock. 

To test this hypothesis, the actual free-field foundation-rock system shown in Figure 

4.2(a) is replaced by a much simpler system shown in Figure 6.1(a): a flat foundation box with 

homogeneous (or horizontally layered) material properties, implying that the effects of the 
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canyon are ignored in the free-field analysis. This simplification is especially attractive because 

analysis of this 3D flat box to vertically propagating seismic waves reduces to analysis of the 

simple 1D column of foundation-rock elements shown in Figure 6.1(b). 

Analysis of the 1D system of Figure 6.1(b), discretized to match the elevations of the 

boundary nodes in the main model, subjected to the forces of Equation (4.1) at the base provides 

the motion 0
fr  at every node along the height. Alternatively, 0

fr  may be extracted at every 

elevation directly from the deconvolution analysis. Boundary tractions are computed from 0
fr  

using stress-strain relationships for a 1D system (see Appendix E) and converted to nodal forces 

for the FE model by multiplying by the tributary area of each node. The analysis is repeated for 

each component of ground motion (x, y, z) considered in the analysis. Step-by-step instructions 

for implementation of the procedure are presented in Box 6.1. 

Such a 1D free-field analysis is drastically simpler compared to the rigorous procedure 

developed in Section 4.2.2 that required 24 auxiliary analyses and extensive data transfer; 

however, because the assumed system in Figure 6.1(a) is not identical to the actual system in the 

region exterior to the absorbing boundary, it will introduce errors in the solution. The resulting 

errors in the free-field response at the center of the semi-cylindrical canyon (Figure 5.3) are 

shown in Figure 6.2, where results obtained by the direct FE method using 1D and 3D free-field 

analyses to compute effective earthquake at the side boundaries are compared. 

The displacements at the canyon surface computed by the two methods (Figure 6.2) are 

reasonably close for all types of incident waves and for a wide range of dimensionless 

frequencies  , thus suggesting that using 1D analysis to compute effective earthquake forces 

may be an acceptable approximation for this system. Later in this section, this approximation 

will be examined in the context of dam response. In part, the good agreement in Figure 6.2 is 

achieved because the foundation domain is sufficiently large: typical dimensions for a dam 

model (700 m  700 m  400 m) was used relative to a canyon radius of R = 100 m, thus 

ensuring sufficient distance from the center of the model to the side boundaries where the 

effective earthquake forces are applied. For a much smaller domain (200 m  400 m  400 m), 

the resulting errors are considerably larger, as shown in Figure 6.3. 
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Figure 6.1 (a) Free-field foundation-rock system without canyon; and (b) analysis of 

single column of foundation-rock elements to compute 0
fr . 

The accuracy of using the simplified 1D free-field analysis when determining the 

dynamic response of concrete dams by the direct FE method is investigated by analyzing 

Morrow Point Dam (Figure 5.5). Frequency response functions for the amplitude of radial 

acceleration at the crest of the dam supported on flexible rock with empty reservoir are presented 

in Figure 6.4, where results obtained using 1D and 3D free-field analysis to compute effective 

earthquake forces are compared. The closeness of the two sets of results justifies the use of 1D 

free-field analysis to compute effective earthquake forces for this system. 
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Box 6.1 Computing effective earthquake forces 0
fP  at side boundaries by 1D 

free-field analysis. 

Determining 0
fr  by analysis of single foundation-rock column 

1. Develop a FE model of the simplified free-field foundation-rock system: a single 

column of foundation-rock elements with discretization to match the elevations of 

the boundary nodes in the main model [Figure 6.1(b)]. 

2. For each direction of ground motion, , ,k x y z  add a viscous damper at the base in 

the k-direction and constrain DOFs in the other directions to allow only shear (

,k x y ) or axial ( k z ) deformation of the column. 

3. Apply effective earthquake forces from Equation (4.1) to the base in the k-

direction, and compute the motion 0
fr  at each node along the height. 

As an alternative to Steps 1–3, the motion 0
fr  may be extracted at every elevation 

directly from a 1D deconvolution analysis. 

Compute effective earthquake forces 0
fP  

4. Compute 0
fr  as the time derivative of 0

fr . 

5. Compute boundary tractions from 0
fr  using 1D stress-strain relations (Appendix E) 

and multiply them by the tributary area of each node to determine 0
fR . 

6. Calculate effective earthquake forces 0
fP  at the side foundation boundaries from 

Equation (3.7a) using 0
fr  from Step 4 and 0

fR  from Step 5. 
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Figure 6.2 Displacement amplitudes at semi-cylindrical canyon subjected to incident 

SH-, SV-, and P-waves. Results are computed by the direct FE method with 

effective earthquake forces 0
fP  on the side boundaries determined from 1D 

and 3D free-field analyses. 

These results demonstrate that the loss of accuracy from using 1D free-field analysis is 

insignificant as long as the foundation domain is sufficiently large. As previously mentioned, this 

requirement is normally satisfied in the direct FE method when employing viscous-damper 

boundaries because these always require large domain sizes to ensure acceptable modeling of the 

semi-unbounded foundation domain. Thus, the use of 1D free-field analysis is appropriate for 

practical analyses in the direct FE method. 
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This conclusion puts the direct FE method at a significant advantage over previous 

analysis procedures [Basu 2004] where high-performing PML boundaries were used together 

with DRM to apply the seismic input. Because the attractiveness of such advanced methods lies 

in their ability to use very small domain sizes, they are not amenable for using such simplified 

1D free-field analysis, and therefore require analysis of complicated 3D systems and extensive 

data transfer to determine the seismic input. 

 

Figure 6.3 Influence of domain size on the errors in displacement amplitudes at semi-

cylindrical canyon subjected to incident SH-waves when using 1D free-field 

analysis to compute effective earthquake forces 0
fP  on the side 

boundaries. 

 

Figure 6.4 Influence of using 1D free-field analysis to determine effective earthquake 

forces 0
fP  on the side boundaries on the response of Morrow Point dam on 

flexible foundation rock with empty reservoir. 
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6.2 IGNORING EFFECTIVE EARTHQUAKE FORCES AT SIDE FOUNDATION 
BOUNDARIES 

The dam engineering profession has been using a variation of the direct FE method wherein 

effective earthquake forces 0
fP  are applied only to the bottom boundary, and not to the side 

boundaries [Bureau of Reclamation 2013; Curtis et al. 2013; and Cvijanovic et al. 2014]. This 

approximation is attractive because it eliminates the need for analysis of the free-field 

foundation-rock system altogether; however, as will be demonstrated, the resulting errors in the 

dam response can be large. 

First observed are the large errors in the free-field motion at the surface of the semi-

cylindrical canyon of Figure 5.3 computed by the direct FE method with and without effective 

earthquake forces applied to the side boundaries. The results are unacceptable for all three types 

of excitation over a wide range of  -values (Figure 6.5) because, without effective earthquake 

forces applied to the side boundaries, the viscous dampers boundaries attenuate seismic waves as 

they propagate up through the model. Some researchers have referred to this effect as leakage 

[Nielsen 2014]. Because this leakage is frequency dependent, it affects the motion at some 

frequencies ( -values) more than others. 

The errors can be reduced by increasing the domain size, i.e., by moving the absorbing 

boundaries further away from the center of the model. This is demonstrated in Figure 6.6, where 

results are presented for two domain sizes: the “regular” domain size (700 m  700 m  400 m) 

used in the preceding analyses, and a large domain size, 1400 m  1400 m  400 m. Increasing 

the horizontal dimensions of the foundation domain improves the results, but the errors remain 

significant even for this large domain. 

Frequency response functions for the amplitude of radial acceleration at the crest of 

Morrow Point Dam supported on flexible foundation rock with empty reservoir are shown in 

Figure 6.7. Results are computed by the direct FE method with and without effective earthquake 

forces applied to the side boundaries. As anticipated by the poor agreement in the free-field 

response at the canyon surface, excluding 0
fP  at the side boundaries cause significant error in the 

dam response to all components of ground motion. 

In light of these results, there seems to be no justification in ignoring the effective 

earthquake forces on the side boundaries. Computing these forces using the simple 1D free-field 
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analysis (Box 6.1) requires very little effort, with minimal loss of accuracy compared to the more 

rigorous 3D free-field analysis summarized in Box 4.3. 

 

 

Figure 6.5 Displacement amplitudes at semi-cylindrical canyon subjected to incident 

SH-, SV-, and P-waves. Results are computed from two analyses: excluding 

and including effective earthquake forces 0
fP  on the side boundaries. 
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Figure 6.6 Influence of domain size on the errors in displacement amplitudes at semi-

cylindrical canyon subjected to incident SH-waves when excluding 

effective earthquake forces 0
fP  on the side boundaries. 

 

Figure 6.7 Influence of excluding effective earthquake forces 0
fP  on the side 

boundaries on the response of Morrow Point dam on flexible foundation 

rock with empty reservoir. 

6.3 AVOIDING DECONVOLUTION OF THE SURFACE CONTROL MOTION 

Some researchers have avoided deconvolution of the specified surface control motion ( )k
ga t  by 

idealizing the foundation as a homogeneous, undamped, half-space [Zhang et al. 2009; Robbe et 

al. 2017]. In this special case, a vertically propagating plane wave does not attenuate, implying 

that the incident earthquake motion at the bottom boundary, 0
Ir , is equal to one-half the specified 

0

1

2

3

4

-2 -1 0 1 2 -2 -1 0 1 2-2 -1 0 1 2

= 0.25� = 0.50� = 1.0�

D
is

p
la

ce
m

en
t 

am
p
li

tu
d
e

Y / R Y / R Y / R

Excluded, large domain size

on side boundaries

Excluded, regular domain size

Included

 0

fP

Included

       on side boundaries

Excluded

 0

fP

A
b
so

lu
te

 v
al

u
e 

o
f 

ra
d
ia

l

 a
cc

el
er

at
io

n
 a

t 
d
am

 c
re

st

0

5

10

15

20

25

30

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

 f , Hz  f , Hz  f , Hz

Stream ground motion Cross-stream ground motion Vertical ground motion



 

114 

surface motion, except for a time shift. The validity of this assumption for different foundation 

idealizations is investigated next. 

A flat foundation box (Figure 5.1) is first analyzed by the direct FE method and the 

computed surface motions are compared against the specified control motion. Effective 

earthquake forces at the bottom and side boundaries are computed using two methods for 

obtaining the incident motion 0
Ir  at the bottom boundary: “rigorous” deconvolution of the 

surface control motion and one-half the surface control motion. Such comparison is presented in 

Figure 6.8 for three different foundation idealizations†: (a) homogeneous foundation with zero 

material damping; (b) homogeneous foundation with 4% material damping; and (c) horizontally 

layered foundation with zero material damping. For all three cases, the free-field control motion 

( )k
ga t  is defined at the surface in the two horizontal and vertical directions by the S69E, S21W, 

and vertical component of the Taft ground motion, respectively. 

Observe from the results in Figure 6.8 that when the incident motion 0
Ir  is determined by 

deconvolution of the surface control motion, the computed surface motion is essentially identical 

(to within FE discretization error) to the specified control motion for all three foundation 

idealizations. In contrast, specifying 0
Ir  as one-half the surface control motion gives essentially 

the exact results if the foundation is homogeneous and undamped [Figure 6.89a)], but leads to 

significant underestimation of the surface motion for a damped foundation [Figure 6.8(b)] and 

overestimation for a layered foundation [Figure 6.8(c)]. These results suggests that dam response 

would be accurately computed with 0
Ir  taken as one-half the surface control motion only if the 

foundation domain is homogeneous and undamped, but that errors will be introduced for other 

cases. 

Frequency response functions for the amplitude of radial acceleration at the crest of 

Morrow Point Dam including dam–foundation interaction (empty reservoir) are presented in 

Figure 6.9 for two cases: (a) homogeneous foundation with zero material damping; and (b) 

homogeneous foundation with 4% material damping. For both cases, results obtained with 0
Ir  

computed by deconvolution and as one-half the surface control motion are compared. As 

                                                 
† The material properties for the foundation are: density = 2723 kg/m3 and Poisson's ratio = 0.20. The homogeneous 
foundation (Cases a and b) has shear wave velocity sV  = 2000 m/sec. The layered foundation (Case c) consists of 

three layers of equal thickness 133 m on top of homogenous bedrock, with shear-wave velocities that increase with 
depth: ,1sV = 1500 m/sec, ,2sV = 2000 m/s, ,3sV = 2500 m/sed, and ,s bedrockV = 3000 m/sec. 
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expected by the results shown in Figure 6.8, specifying 0
Ir  as one-half the surface control motion 

does not introduce error in dam response when the foundation is undamped [Figure 6.9(a)], but 

causes significant underestimation of the response for foundations with damping [Figure 6.9(b)]. 

To eliminate such errors, the incident motion 0
Ir  at the bottom foundation boundary 

should be computed by 1D deconvolution analysis. There is little justification in bypassing such 

analysis, especially because it is straightforward and requires very little computational effort 

compared to 3D analysis of the dam–water–foundation system. 
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Figure 6.8 Comparison of 5% damped pseudo-acceleration response spectra for 

specified free-field control motion and motion computed at the surface of 

flat foundation box for three foundation idealizations. Results obtained 

with 0
Ir  computed from deconvolution and as one-half the surface control 

motion are compared. 
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Figure 6.9 Discrepancies introduced by approximating 0
Ir  as one-half the surface 

control motion on the response of Morrow Point Dam including dam–

foundation interaction (reservoir is empty) for two foundation idealizations. 

6.4 IGNORING EFFECTIVE EARTHQUAKE FORCES ON UPSTREAM FLUID 
DOMAIN BOUNDARY 

Implementation of the direct FE method may be simplified by excluding effective earthquake 

forces 0
rP  at the upstream fluid boundary r , which are the forces associated with earthquake-

induced hydrodynamic pressures in the semi-unbounded fluid channel upstream of r . This is 

attractive because it eliminates the need for the 2D auxiliary analysis of the fluid cross section 

(Section 4.3) for vertical and cross-stream components of ground motion 

Presented in Figure 6.10 are frequency response functions for the radial acceleration at 

the crest of Morrow Point Dam on rigid foundation with full reservoir subjected to ground 

motions that are uniform at the dam–foundation and water–foundation interfaces for two values 

1/2 control motion
Deconvolution

Incident motion      obtained from:0

Ir
A

b
so

lu
te

 v
al

u
e 

o
f 

ra
d
ia

l 
ac

ce
le

ra
ti

o
n
 a

t 
d
am

 c
re

st

0

5

10

15

20

25

30

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Stream ground motion Cross-stream ground motion Vertical ground motion

0

5

10

15

20

25

30

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

 f , Hz  f , Hz f , Hz

(a) Homogeneous foundation with zero material damping

(b) Homogeneous foundation with 4% material damping



 

118 

of the wave reflection coefficient characterizing sediment absorption†:   = 0.50 and  = 0.80. 

Results from three analyses are presented for each -value: (1) fluid domain length of L = 2.5H 

including 
0
rP  on the upstream fluid boundary; (2) L = 2.5H excluding 

0
rP ; and (3) L = 5H 

excluding 0
rP . Excluding 0

rP  for cross-stream and vertical ground motions has little influence on 

the response for   = 0.50, but leads to errors for higher  –values ( = 0.80) and short fluid 

domains (L = 2.5H). For the stream component of ground motion, 0
r P 0  (Section 4.3), so all 

three cases give essentially identical results. 

 

 

Figure 6.10 Influence of excluding effective earthquake forces 0
rP  on the upstream fluid 

boundary on the response of Morrow Point dam on rigid foundation with 

full reservoir. Results are presented for two values of the wave-reflection 

coefficient:   = 0.50 and   = 0.80. s = 3% damping is specified for the 

dam alone. 

  

                                                 
† Sediments are included herein only for the purpose of introducing some energy absorption at the reservoir 
boundaries in the absence of dam–foundation and water–foundation interaction mechanisms in this system with 
rigid foundation. 
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These discrepancies occur because of the idealization of the system analyzed (Figure 

2.1): the uniform fluid channel is unbounded in the upstream direction and the excitation is 

implicitly assumed to extend along the entire length of this channel. In reality, neither the 

uniform fluid channel nor the ground motion could extend to infinity in the upstream direction, 

so excluding 0
rP  from the analysis, which implies that the excitation stops at the boundary ,r

seems to be a more appropriate idealization. Thus, it can be concluded that the errors observed in 

Figure 6.10 are inconsequential for analysis of actual dams, and that 0
rP  can be left out of the 

analysis without loss of accuracy as long as the fluid domain is large enough to accurately model 

dam–water interaction and radiation damping using the viscous-damper boundaries; see Section 

5.3.3. 
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7 Summary of Procedure 

The earthquake input for the three-dimensional dam–water–foundation rock system is defined by 

the free-field ground acceleration ( )k
ga t , , ,k x y z , specified at a control point on the 

foundation surface at the level of the dam abutments; see Figure 2.4(c). This motion may for 

example be from an ensemble of recorded ground motions selected and scaled to “match” a 

target spectrum, or synthetic motions developed for an earthquake scenario. 

By using the recommended simplifications presented in Sections 6.1 and 6.4, analysis of 

3D dam–water–foundation rock systems by the direct FE method is organized in three parts: 

static analysis, linear analyses of the free-field foundation-rock system, and nonlinear dynamic 

analysis of the dam–water–foundation rock system. 

Static analysis:  

1. Develop a FE model for static analysis of the dam–foundation rock system with an 

appropriate material model for the dam concrete and an appropriate (static) model for 

the semi-unbounded foundation rock. 

2. Compute the response of this system to self-weight and hydrostatic forces; for arch 

dams this may include effects of a staged construction sequence.  

3. Record the static state of the dam and foundation rock, including reactions from the 

foundation rock at the boundary f . 

Linear analysis of the free-field foundation-rock system (using 1D free-field analysis): 

4. Obtain the outcrop motion at the base of the foundation-rock model by deconvolution 

of the surface control motion ( )k
ga t . 

5. Calculate the effective earthquake forces 0
fP  at the bottom boundary of the foundation 

domain from the procedure in Box 4.1.  
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6. Compute the effective earthquake forces 0
fP  at the side boundaries of the foundation 

domain from the procedure in Box 6.1. 

Step 6 may be avoided if free-field boundary elements [Nielsen 2014] are employed at the side 

boundaries of the truncated foundation domain. 

Nonlinear dynamic analysis of dam–water–foundation rock system: 

7. Develop a FE model of the dam–water–foundation rock system with viscous-damper 

boundaries to truncate the semi-unbounded foundation and fluid domains at f  and 

r , respectively. Use solid elements for the dam and foundation rock, fluid elements 

for the water, and interface elements (or tie constraints) at the dam–water and water–

foundation rock interfaces. Sediments at the reservoir bottom can be modelled 

approximately by surface elements based on the 1D absorption model, or by using 

more sophisticated viscoelastic or poroelastic material models. 

8. Calculate the response of this FE model subjected to effective earthquake forces 0
fP  

computed in Step 5 at the bottom foundation boundary and in Step 6 at the side 

boundaries, as well as self-weight, hydrostatic forces and static foundation reactions 

at f . The static state of the dam (Step 3) is taken as the initial state in the nonlinear 

dynamic analysis. 
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8 Conclusions 

The direct FE method developed in Part I of this report for nonlinear earthquake analysis of 2D 

dam–water–foundation rock systems has been generalized for 3D systems. Formulated by 

interpreting dam–water–foundation rock interaction as a scattering problem where the dam 

perturbs a free-field state of the system, the direct FE method considers all the factors important 

in the earthquake response of arch dams: dam–water interaction including water compressibility 

and wave absorption at the reservoir boundaries; dam–foundation rock interaction including 

mass, stiffness and damping in the rock; radiation damping due to the semi-unbounded sizes of 

the foundation rock and reservoir domains; spatial variation of the ground motions around the 

dam–canyon interface; and nonlinear behavior in the dam and adjacent parts of the foundation 

and fluid domains. 

The seismic input to the procedure is specified by a ground motion at a control point on 

the foundation surface. The free-field motion at depth in the foundation rock is determined by 

deconvolution of this control motion. Then, effective earthquake forces are computed from a set 

of 1D and 2D analysis and applied to the boundaries of the FE model. Each of these analyses 

requires very little computational effort and can be implemented without modifying the FE 

source code, the main challenge is management and transfer of large amounts of data. 

Several examples are presented to validate the accuracy of the direct FE method applied 

to 3D problems. One of these examples compares the dynamic response of Morrow Point Dam 

computed by the direct FE method with independent benchmark solutions obtained by the 

substructure method. The excellent agreement achieved for a wide range of analysis cases 

demonstrates that: (1) the effects of dam–water–foundation rock interaction are accurately 

modeled; (2) the bounded foundation and fluid models with viscous-damper boundaries are able 

to simulate the semi-unbounded extent of these domains; and (3) the earthquake excitation is 
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properly defined by specifying—at the boundaries of the FE model—effective earthquake forces 

determined from a surface control motion. 

To facilitate implementation of the direct FE method, several simplifications of the 

analysis procedure are proposed and their efficacy evaluated. The presented results led to the 

following conclusions:  

1. Using 1D free-field analysis to compute effective earthquake forces 0
fP  at the side 

boundaries of the foundation rock, which drastically reduces the amount of data 

transfer and data management, is an appropriate approximation provided that the 

foundation domain is sufficiently large. This is normally the case when using 

viscous-damper boundaries because these already require large domain sizes to 

model the semi-unbounded foundation domain. 

2. In contrast, ignoring the effective earthquake forces 0
fP  at the side boundaries—a 

popular simplification in the dam engineering profession—can lead to large errors 

in the dam response. There seems to be no justification in ignoring these forces 

when they can be included with minimal effort using the simplified 1D free-field 

analysis.  

3. Specifying the incident motion 0
Ir  at the bottom foundation boundary as one-half 

the surface motion—thereby avoiding 1D deconvolution analysis—can cause 

significant error in dam response for foundations with damping and for layered 

foundations. To eliminate such errors, the incident motion at the bottom 

foundation boundary should be computed by 1D deconvolution of the surface 

control motion. 

4. Ignoring the effective earthquake forces 0
rP  at the upstream fluid boundary—

implying that the earthquake excitation stops at the fluid boundary—is 

appropriate for practical analysis as long as the fluid domain is long enough. This 

is normally the case in the direct FE method because large domains are already 

required to accurately model dam–water interaction. 

The direct FE method is applicable to nonlinear systems, thus allowing for modeling of 

concrete cracking, as well as sliding and separation at construction joints, lift joints, and at 
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concrete-rock interfaces. The procedure can be implemented with any commercial FE program 

that permits modeling of viscous-damper boundaries and specification of effective earthquake 

forces at these boundaries. 
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PART III 

Modeling and Practical Implementation of 

the Direct Finite-Element Method for 

Performance-Based Earthquake 

Engineering of Concrete Dams 
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1 Introduction 

Performance-based earthquake engineering (PBEE), a framework for seismic design and safety 

assessments of structures, has been the subject of much research and development since 2000 

[Cornell and Krawinkler 2000], and PBEE has been applied to evaluate structures such as 

buildings, nuclear power plants, and bridges [Porter 2003; Moehle and Deierlein 2004; Goulet et 

al. 2007; and Zhang et al. 2008]. Much less work has been done on PBEE in the context of 

concrete dams (with a few notable exceptions, e.g., Hariri-Ardebili [2015]), and most of the 

conducted research have been focused investigations on developing seismic fragility curves for 

2D gravity dam systems [Tekie and Ellingwood 2003; Ghanaat et al. 2012; and Hariri-Ardebili 

and Saouma 2016a]. 

One obstacle for the adaption of PBEE by the dam engineering community is the lack of 

accurate and efficient analysis procedures for conducting the large number of nonlinear response 

history analyses (RHA) required to quantify the uncertainties in earthquake ground motions and 

material properties of the system. For years, nonlinear RHA of concrete dams were limited by 

major deficiencies: overly simplistic models for dam–water–foundation rock interaction, not 

accounting for radiation damping in the semi-unbounded foundation and fluid domains, and 

ignoring spatial variation of ground motions along the dam–canyon interface. These limitations 

were overcome in the direct FE method developed in Parts I and II of this report. Because this 

direct FE method was developed in a form that can be implemented with any commercial FE 

program, it is readily available for researchers and engineers who may be committed to using a 

particular program. 

Presented in this part of the report is an introduction to modeling and practical 

implementation of the direct FE method within the framework of PBEE of concrete dams. In 

Chapter 2, an introduction to PBEE of concrete dams is presented. The basic principles of PBEE 

are described, key equations are explained, and the current state of knowledge for PBEE of 
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concrete dams is contrasted to that for buildings. Chapter 3 presents a discussion on nonlinear 

modeling of concrete dams by the direct FE method. First, the most significant nonlinear 

mechanisms that can develop in concrete dams are reviewed, and suitable modeling alternatives 

presented. In the second part of Chapter 3, the discussion focuses on the various types of linear 

energy dissipation (damping) that takes place within a dam–water–foundation rock system. 

Practical suggestions on how to model energy dissipation at the reservoir boundaries are 

presented, and recommendations are given for how to ensure consistency between damping in 

the numerical model and the damping measured at actual dams. Finally, in Chapter 4, the 

capabilities of the direct FE method when implemented with a commercial FE code is 

demonstrated by performing a nonlinear earthquake analysis of an actual arch dam using the 

commercial FE program ABAQUS [Dassault Systems 2013]. 
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2 Performance-Based Earthquake Engineering 
of Dams 

Performance-based earthquake engineering (PBEE) is a probabilistic framework for seismic 

design and safety assessments of structures that considers all the inherent uncertainties in 

earthquake performance assessments. In contrast to traditional load-and-resistance-factor design 

procedures, which typically result in a “binary” fail or safe conclusion, PBEE offers a complete 

framework for performance evaluations that considers and quantifies the various sources of 

uncertainty along the way. Performance-based earthquake engineering is well developed and has 

been used for performance evaluations of buildings, bridges, and nuclear power plants; but it has 

yet to be adapted to a comprehensive degree by the dam engineering community. 

2.1 THE PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PBEE 
FRAMEWORK 

Several variations of PBEE have been proposed after the introduction of the first generation of 

PBEE and design procedures for buildings in the United States [ATC 1996; FEMA 1997]. 

Today, the most commonly used “version” of PBEE is the framework developed by the Pacific 

Earthquake Engineering Research Center (PEER). First proposed by Cornell and Krawinkler 

[2003], The PEER PBEE framework provides a general tool to determine the probability 

distribution and rate of exceedance for various system-level performance measures for a given 

structure at a given site. From this information, and the information obtained in intermediate 

steps, a wide range of useful performance metrics (e.g., risk of collapse, annualized repair costs, 

expected number of casualties, etc.) can be extracted and used to make risk-informed decisions 

regarding the design of new dams or safety evaluations of an existing dam.  

The PEER framework can be summarized in the following equation [Cornell and 

Krawinkler 2000]: 
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         | | |
IM EDP DM

DV G DV DM dG DM EDP dG EDP IM d IM      (2.1) 

where  |G X Y  is the probability that X exceeds a specified value (also known as the 

complimentary cumulative distribution function) for a given Y;  X  is the mean annual rate of 

exceedance of X; and DV = decision variable, DM = damage measure, EDP = engineering 

demand parameter, and IM = intensity measure.  

Recognizing the complexity and multi-disciplinary nature of problem, the PEER 

framework can be separated into four phases, each of which can be solved using appropriate 

techniques and tools (Figure 2.1): (1) seismic hazard analysis, (2) structural analysis, (3) damage 

analysis, and (4) loss analysis. The output from each phase is quantified using the four variables 

IM, EDP, DM, and DV. This convenient decomposition is based on the assumption that, 

conditioned on EDP, DM is independent of IM, and, conditioned on DM, DV is independent of 

EDP and IM [Der Kiureghian 2005]. Each of the four phases provides valuable information 

about the seismic hazard, structural response, and uncertainties in the analysis. 

From Equation (2.1), several analogous formulas can be written out for intermediate 

measures. For example, the annual rate of exceedance of a given DM is 

       | |
IM EDP

DM G DM EDP dG EDP IM d IM     (2.2) 

and the annual rate of exceedance of a given EDP is given by 

     |
IM

EDP G EDP IM d IM    (2.3) 

Equation (2.3) is often referred to as the seismic demand hazard curve (SDHC) [Kwong 

et al. 2015]. Evaluation of the SDHCs directly provides the rate of the EDP exceeding a given 

structural capacity, or the seismic demand associated with a specified return period. 
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Figure 2.1 Pacific Earthquake Engineering Research Center PBEE framework applied 

to concrete dams. Figure adapted from Porter [2003]. 

Another metric, the so-called fragility function or fragility curve† is obtained by isolating 

the integrand in Equation (2.2): 

     | | |
EDP

G DM IM G DM EDP dG EDP IM   (2.4) 

The fragility function describes the probability of exceeding a certain damage state (or limit 

state) in the structure as a function of the IM, for example, the probability of exceeding a certain 

crest displacement at different levels of peak ground acceleration (PGA). In the following 

sections, each phase of the PBEE framework is described in more detail and put into context of 

concrete dam analysis. 

2.2 SEISMIC HAZARD ANALYSIS 

Probabilistic seismic hazard analysis (PSHA) [McGuire 2004; Baker 2011] of the dam site 

results in the intensity measure hazard curve (IMHC),  |IM D , which quantifies the annual 

rate of exceedance for an IM given the site characteristics D. Probabilistic seismic hazard 

analysis is based on ground-motion prediction models (GMPMs) that consider the seismic 

                                                 
† The "fragility function" is here defined as the probability of exceeding a DM given an IM,  |G DM IM . The 
same terminology is sometimes used to describe other metrics such as the probability of exceeding an EDP given an 
IM,  |G EDP IM , or the probability of exceeding a DM given an EDP,  |G DM EDP . 

DV
1
 OK? 

DV
2
 OK? 

DV
3
 OK? 

Project 

information

Decision

making

Seismic hazard

analysis

IM: intensity measure

e.g.,                   

EDP: engineering

demand parameter 

e.g., crest displace-

ment., crack length, 

joint opening

DM: damage measure

e.g., damage in

concrete, damage to

drains, damage to 

gates

DV: decision variable

e.g., monetary loss 

(repairs, downtime), 

fatalities

Struct’l model Fragility model Loss model

Structural

analysis

Damage

analysis

Loss

analysis

D: Location

and design of

dam structure

D

� �|G IM D � �|G EDP IM

� �EDP� � �DM�

� �|G DM EDP � �|G DV DM

� �DV�

1 1( ), ( ,.., )a a nS T S T T

� �|IM D�

, ,PGA ASI

Hazard model



 

134 

environment such as nearby faults, recurrence rates, site conditions, etc. Several online tools and 

open-source computer programs are available for this purpose [Field et al. 2003; USGS 2018]. 

The IM in the PSHA may be defined as a scalar or a vector. Most often, the spectral 

acceleration 1( )aS T  at the fundamental period 1T  of the structural system is chosen. Several other 

IMs are also possible, for example, peak ground acceleration (PGA), acceleration spectrum 

intensity (ASI), or multiple-period intensity 1 2( , ,..., )a NS T T T . 

From the IMHC, the next step is to develop a target spectrum for a given hazard level (or 

return period). This can for example be the uniform hazard spectrum (UHS) or some variation of 

the conditional mean spectrum (CMS) [Baker 2011]. Finally, an ensemble of ground motions 

whose IM matches the target spectrum at T1 (or closely matches the target spectrum over a period 

range of interest) is selected for the structural analysis. Because it is unlikely to find a sufficient 

number of unscaled records that matches the target spectrum, this process requires scaling and 

modification of existing ground motions [Haselton 2009] or, alternatively, development of 

synthetic motions [Douglas and Aochi 2008]. 

Methods for selecting a target spectrum and one component of horizontal ground motion 

conditioned on a single vibration period are well developed. These methods must be extended to 

consider three simultaneous components of ground motion (two horizontal and one vertical) over 

multiple vibration periods for application to concrete dam analysis; such work is in progress 

[Kwong and Chopra 2017; 2018]. 

2.3 STRUCTURAL ANALYSIS 

In the structural analysis phase, a large number of nonlinear response history analyses (RHA) of 

the dam are conducted to determine  |G EDP IM , the response of an EDP given an IM. 

Relevant EDPs for concrete dams can be maximum displacements or accelerations at the dam 

crest (for operability of appurtenant structures); maximum opening at contraction joints or 

sliding at lift joints; extent of tensile cracking in the dam concrete; or relative movement of rock 

wedges and dam abutments. These EDPs are highly sensitive to the choice of modeling 

assumptions and selection of material parameters in the analysis. Thus, the sensitivity of the 

results to the choice of modeling assumptions should be checked as part of the analysis. 
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The results of the nonlinear RHA can be integrated with the IMHC  IM  from the 

seismic hazard analysis to form the SDHC [Equation (2.3)]. Construction of the seismic demand 

hazard curve is illustrated in Figure 2.2. First, the IMHC is discretized at different intensity 

levels [Figure 2.2(a)] and ground motions are selected and scaled to match the IM [Figure 2.2(b)] 

at a given intensity level 0im . Nonlinear RHA of the system to the selected ensemble of ground 

motions provide the data to determine the probability distribution  |G EDP IM , often by fitting 

a lognormal distribution to the individual data points [Figure 2.2(c)]. Numerical evaluation of 

Equation (2.3) at discrete levels gives annual rate of exceeding 0edp  [Figure 2.2(d)]. Repeating 

the process at multiple intensity levels 0im  provides the complete SDHC. This curve can be used 

to determine the annual rate of exceedance for a specific structural capacity (e.g., the exceedance 

rate of a certain crest displacement value), or to determine the structural demand for a given 

return period (e.g., the maximum joint opening expected for a 10,000 year return period). 

Implementation of these nonlinear RHA requires accurate and efficient analysis 

procedures. Accuracy is obviously needed to ensure meaningful results. Efficiency is also 

essential for two reasons: (1) nonlinear RHA of the large FE models required to model dam–

water–foundation rock systems is computationally demanding, even by modern standards; and 

(2) a large number of nonlinear RHAs are required to quantify the uncertainties in earthquake 

ground motions and material properties of the system. The direct FE method developed in Parts I 

and II of this report meets both of these requirements. 

Significant resources have been spent developing and validating (through experimental 

programs) nonlinear models for the behavior of the various structural components that make up 

multi-story buildings. The state of research for concrete dams is much less mature because it is 

difficult to perform meaningful experimental tests on dams, and there is little field data since 

very few concrete dams have been subjected to damaging earthquakes. Much research is 

necessary to reduce the substantial uncertainties involved in estimating nonlinear dam response. 
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Figure 2.2 Construction of the SDHC when 1( )aIM S T : (a) discretization of the 

IMHC,  IM ; (b) selection and scaling of ground motions so that 

0IM IM ; (c) nonlinear RHA of the dam to estimate  |G EDP IM ; and 

(d) resulting SDHC,  EDP . Figure adapted from Kwong et al. [2015]. 

2.4 DAMAGE ANALYSIS 

The damage analysis seeks to determine the level of physical damage DM given an EDP, 

 |G DM EDP . For buildings, this damage analysis is usually performed on a component level 

using available data on the expected damage given various deformations, force levels, etc., 

compiled from laboratory experiments and field experience. Unfortunately, such data is not 

available for concrete dams because laboratory data is lacking, and very few dams have been 

subjected to damaging earthquakes. Thus, it is often more useful to define damage states (or limit 

states) for the dam directly on the structural level, and use damage measures to quantify the 

 

(a) (b)

Vibration period T (log scale)

Individual

RHA result

(c)

E
n
g
in

ee
ri

n
g
 d

em
an

d
p
ar

am
et

er
 E

D
P

(d)

Engineering demand
parameter EDP (log scale)

A
n
n
u
al

 r
at

e 
o
f

ex
ce

ed
an

ce
 

(l
o
g
 s

ca
le

)�

Spectral acceleration (log scale)1( )aS T

Spectral acceleration 1( )aS T

S
p
ec

tr
al

 a
cc

el
er

at
io

n
 (

lo
g
 s

ca
le

)
(

)
aS

T

1T

� �|G EDP IM

A
n
n
u
al

 r
at

e 
o
f  

ex
ce

ed
an

ce
 

(l
o
g
 s

ca
le

)�

0im
0

edp

0
edp

0( ) |IM im�|� 	

0im

0im



 

137 

damage in each of these states. Defining such meaningful damage states requires identification of 

the potential failure modes of the dam [Hariri-Ardebili et al. 2016]. 

The resulting output can be visualized in the form of fragility curves for the dam, 

 |G DM IM , defined by Equation (2.4). Construction of the fragility curve is illustrated in 

Figure 2.3(a): first, outputs from a large number of nonlinear RHA at several intensity levels are 

used to determine the fraction of analyses exceeding a certain damage threshold. A fragility 

function is then fitted to the data set, usually in the form of a lognormal cumulative distribution 

Baker 2015]. Examples of fragility curves for relevant damage states in concrete dams are shown 

in Figure 2.3(b). If an important objective for the dam is to ensure operability of flood gates at 

the crest, a useful damage measure can for example be the maximum crest displacement. Such 

curves should be computed not only for extreme damage states (e.g., uncontrolled release of the 

reservoir), but rather at multiple intermediate stages to give a complete description of the gate 

performance at different hazard levels. 

Researchers have successfully applied the concepts of seismic fragility analysis to study 

the influence of modeling assumptions on the seismic performance of gravity dams at different 

intensity levels [Tekie and Ellingwood 2003; Ghanaat et al. 2012; and Hariri-Ardebili and 

Saouma 2016a]. 

 

Figure 2.3 Illustration of fragility curve: (a) fitting of fragility curve to output from 

nonlinear RHA; and (b) examples of fragility curves relevant for concrete 

dams. 
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2.5 LOSS ANALYSIS 

The last phase in the PBEE framework is loss analysis, which seeks to determine  DV , the 

rate of exceedance of a certain decision variable. For concrete dams, these can be system-level 

measures such as repair costs, loss of power generation or loss of life downstream of the dam, or 

local measures such as gate operability. 

Information about the rate of exceedance of these DVs—as well as other performance 

metrics derivable from  DV  [Moehle and Deierlein 2004] —is useful for making risk-

informed decisions for a broad range of problems. For example, we may wish to determine 

whether the expected future earthquake repair cost of a dam is acceptable, or to assess the 

effectiveness of a planned retrofit of a dam to reduce the expected loss of power generation due 

to earthquakes. Detailed loss models have been developed and made available to researchers and 

engineers to systematically estimate repair costs, downtime, number of casualties, etc. in 

buildings at different damage levels [Porter 2003]. Such models are currently not available for 

concrete dams. As for the damage analysis phase, more research on this topic is needed before 

PBEE can become a routine part of dam safety assessments. 

2.6 MODELING OF UNCERTAINTY 

Uncertainty is present at every step of the analysis process. The integration of conditional 

probabilities in Equation (2.1) ensures that this uncertainty is allowed to propagate from one step 

of the analysis to the next in the PBEE framework, thus achieving in the end a probabilistic 

overall prediction of the dam performance. 

The resulting total uncertainty can be separated into two categories: aleatory and 

epistemic. The aleatory uncertainty is associated with the inherent randomness of processes, such 

as future earthquake events, and cannot (at least as of now) be completely eliminated. This form 

of uncertainty is accounted for in the PSHA, which considers a range of earthquake events and 

aggregates their contribution to the overall seismic risk, and in the structural analysis by 

considering an ensemble of different ground motions. In contrast, epistemic uncertainty is that 

caused by lack of knowledge about modeling assumptions, material parameters, etc., which can 

be reduced by gathering more information. 
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The epistemic uncertainty in the analysis can be quantified by treating each input 

parameter as a random variable and applying statistical sampling techniques (e.g., Monte Carlo 

simulations or Latin Hypercube Sampling) to estimate the variance of the analysis outputs (EDP, 

DM, DV, etc.) to changes in the input; however, these methods require very large number (tens 

of thousands) of nonlinear RHAs of 3D dam–water–foundation rock systems. 

A more practical alternative is to quantify the influence of epistemic uncertainty using a 

so-called tornado-diagram-analysis [Porter et al. 2002; Hariri-Ardebili and Saouma 2016b], 

wherein the change in output is measured for each uncertain input by varying it from a lower 

limit to an upper limit while keeping all other parameters constant. As shown in Figure 2.4, a 

tornado diagram is developed from these results: the parameters that produce the greatest 

uncertainties in the overall response can be identified, and those that have insignificant influence 

on the results can be identified and treated as deterministic in subsequent analyses. 

 

 

Figure 2.4 Illustration of tornado diagram. Figure adapted from Porter [2003]. 
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3 Modeling of Concrete Dams by the Direct 
Finite-Element Method 

Having accurate and reliable analysis procedures for predicting the nonlinear earthquake 

response of concrete dams is essential for successful application of the PBEE framework. To 

avoid introducing unnecessary error in the results, the nonlinear FE model must consider all the 

significant factors in the earthquake response of concrete dams (see Part II). Implementation of 

the large number of RHA required for PBEE also requires that the analysis procedure is efficient, 

robust, and capable of being implemented into various commercial FE programs preferred by 

dam engineers. The direct FE method developed in Parts I and II of this report meets all these 

requirements. In this chapter, recommendations for practical modeling of concrete dams by the 

direct FE method are presented, with emphasis on modeling of nonlinear mechanisms and energy 

dissipation (damping). 

3.1 MODELING OF NONLINEAR MECHANISMS 

Linear analyses cannot predict the performance of dams during ground motions intense enough 

to cause extensive cracking in concrete or initiate other mechanisms of nonlinear behavior. 

Examples of such nonlinear mechanisms are: cracking in the dam concrete [Bhattacharjee and 

Léger 1993; Lee and Fenves 1998; and Pan et al. 2011]; opening, closing and sliding of vertical 

contraction joints [Niwa and Clough 1982; Lau et al. 1998; and He et al. 2016]; sliding and 

separation at lift joints and at concrete–rock interfaces [Léger and Katsouli 1989; Fronteddu et 

al. 1998; Chávez and Fenves 1995b]; relative movement of discontinuous rock wedges in the 

foundation [Lemos 1999; 2008]; and possibly, separation of water from the upstream face of the 

dam causing cavitation [Zienkiewicz et al. 1983]. 

The study of these mechanisms and their influence on dam response is a vast field with 

extensive literature. In this section, the discussion is limited to a brief introduction to how the 
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most influential mechanisms can be practically modeled in the direct FE method using 

commercial FE programs. These findings will then be utilized in the example nonlinear analysis 

of an actual arch dam presented in Chapter 4. 

3.1.1 Cracking of Concrete 

Concrete dams are designed to resist static loads primarily through compressive stress fields that 

are much below the compressive strength of concrete. Intense ground motions are likely to 

induce tensile stresses in the dam that exceed the low tensile resistance of the unreinforced mass 

concrete used in dam construction, typically around 10% of the compressive strength. Thus, 

cracking of concrete is an important mechanism to consider when evaluating the seismic safety 

of concrete dams. 

The two most common methods for modeling crack propagation in concrete dams are the 

discrete crack model and the smeared crack model; see Figure 3.1. Both of these models are 

briefly presented below; the reader is referred to the review by Bhattacharjee and Léger [1992] 

for a more comprehensive discussion. 

 

Figure 3.1 Two approaches to modeling crack propagation in FE models of concrete 

dams: (a) discrete crack model based on the Extended Finite Element 

Method (XFEM); and (b) smeared crack model. 

3.1.1.1 The discrete crack model 

Since the late 1960s, numerous models have been proposed for modeling crack propagation in 

concrete. Early studies for concrete dams employed linear fracture mechanics theory and the 

discrete crack model to study concrete cracking in 2D gravity dam models [Ayari and Saouma 

1990; Pekau et al. 1991]. Modeling of discrete cracks would appear to be a physically realistic 

(a) (b) 
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approach that can explicitly consider penetration of water in the crack, uplift pressure on crack-

open surfaces, aggregate interlock at rough-crack surfaces, opening and closing of cracks, and 

impact and sliding of sections of the dam after extensive cracking. However, the approach is 

computationally challenging because the FE mesh is redefined at each time step, and the crack 

propagation is strongly dependent on the size, shape, orientation, and order of FEs in the mesh; 

thus the results are not unique. 

The preferred way to model discrete crack propagation today is to use the extended FE 

method (XFEM) [Belytschlo and Black 1999], which allows cracks to propagate through the FEs 

and hence does not require modification of the FE mesh. This is achieved by adding enrichment 

functions to the FE approximation to account for the presence of a crack that can propagate 

arbitrarily through the elements. The XFEM has been employed to study the nonlinear 

earthquake response of both gravity dams and arch dams [Pan et al. 2011; Zhang et al. 2013; and 

Goldgruber 2015]; however, most current implementations of XFEM do not allow for multiple 

cracks to form within any single region, which is a significant limitation for practical analysis of 

concrete dams. 

3.1.1.2 The smeared crack model 

To overcome the aforementioned difficulties encountered in the discrete crack model, the 

fracture can instead be idealized as “smeared” over the FEs or over a certain bandwidth of the 

element. The smeared crack model employs a suitable constitutive model to describe the crack 

initiation and the softening response of concrete during crack propagation. This way, the 

constitutive relation is updated as the dynamic analysis progresses in time, but the FE mesh 

remains unchanged. 

The smeared crack model has its share of disadvantages. First, the numerical results are 

not necessarily objective with respect to the FE mesh; as the element size decreases, the fracture 

zone becomes smaller, and the force required to propagate the crack can decrease to a very small 

value. Second, this approach is not amenable to model impact and sliding of sections after 

extensive cracking because the discontinuous displacements across the interacting surfaces are 

not well approximated. Third, the diffuse crack pattern computed by this model does not provide 

any information about the physical dimensions of cracks or their locations within elements. 
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The plastic damage model for cyclic loading of concrete proposed by Lee and Fenves 

[1998] is a variation of the smeared crack model. Several features of this model have made it 

attractive for earthquake analysis of concrete dams. By keeping track of tensile damage and 

compressive damage through two damage variables, td  and cd , stiffness change in concrete 

during cycling loading [Figure 3.2(a)]—where the stiffness in compression is recovered when a 

crack closes, but the stiffness in tension is not—can be simulated. The model also allows for the 

conceptual separation of the behavior in tension into two parts: linear stress–strain relation 

before the tensile strength, tf , is exceeded [Figure 3.2(b)]; and softening behavior after crack 

initiation described by fracture mechanics theory relating stresses to crack opening 

displacements [Figure 3.2(c)]. This approach to defining the behavior after crack initiation offers 

two important advantages. First, the dissipated fracture energy per unit length of crack remains 

independent of the FE mesh, thus ensuring that the results are less sensitive to mesh size. 

Second, this approach introduces the concept of specific fracture energy for concrete, FG , 

defined as the area under the tensile stress–crack width curve [Figure 3.2(c)]. The two significant 

material parameters for this model, the tensile strength tf  and the specific fracture energy FG , 

can both be determined experimentally: tf  from a splitting-tensile or direct-tensile test [Raphael 

1984], and FG  from a wedge-splitting test [Brühwiler and Wittmann 1990a]. 

Various implementations of the smeared crack model have been used to study crack 

propagation in 2D analysis of gravity dam monoliths [Bhattacharjee and Léger 1993; El-Aidi and 

Hall 1989; and Lee and Fenves 1998] and in 3D analysis of arch dams [Pan et al. 2011; Wang et 

al. 2013]. Most commercial FE programs (e.g., ABAQUS, LS-DYNA, DIANA, and ANSYS) 

used for concrete dam analyses have one or more variations of the smeared crack model 

available. 

Experimental tests have shown that the strength of mass concrete increases at higher 

strain rates, which can be modeled by increasing the static fracture parameters [Raphael 1984; 

Bhattacharjee and Leger 1992]; however, there is no clear consensus in the literature on what is 

an appropriate value. Because of the high uncertainty in specifying material parameters for 

cracking models, the sensitivity of the results to the selected values should always be checked. 
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Figure 3.2 (a) Softening response of concrete under uniaxial cyclic loading; (b) linear 

stress–strain curve for pre-failure response; and (c) post-failure stress–

crack opening displacement curve, where the area under the curve is the 

fracture energy FG . Figure adapted from Brühwiler [1990]. 

3.1.2 Opening and Closing of Vertical Contraction Joints 

Vertical contraction joints between cantilevers, which are grouted possibly with shear keys, are 

unable to resist any significant net tension in the arch direction and are therefore likely to open 

and close during intense ground motions. This nonlinear response mechanism affects the dam 

response in two ways: (1) opening of a joint temporarily reduces the resistance in the arch 

direction, causing an increase in flexural stress and possibly horizontal cracking of cantilevers; 

and (2) repeated opening-closing may cause compression failure of the joint. Model tests have 
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demonstrated that these effects can have significant influence on the dynamic response of arch 

dams [Niwa and Clough 1982]. 

Several numerical formulations are available to model contraction joints; frequently used 

are discrete joint elements [Dowling and Hall 1989; Fenves et al. 1992; and Lau et al. 1998] or a 

contact formulation at the surfaces between cantilevers [Zhang et al. 2009; Goldgruber 2015; and 

Wang et al. 2012]. Opening and closing of the joint in the normal direction may be specified by a 

zero-tensile strength master-slave contact relation with a pressure-overclosure relationship 

[Figure 3.39a)] to prevent node penetration to prevent node penetration [Dassault System 2013]. 

Alternatively, the joint failure under combined normal and shear forces can be modeled by a 

traction separation law based on nonlinear fracture mechanics theory. In the tangential directions, 

shear keys can be modeled by very stiff linear springs (excluding the possibility of shear key 

failure) or more accurately by a traction separation law; if shear keys are not present, frictional 

sliding can be modeled by the Mohr–Coulomb friction criterion [Figure 3.3(b)]: tan c    , 

where   is the shear stress,   the normal stress, and the material parameters   and c  

represents the fiction angle and cohesion of the joint, respectively. At least one of these models is 

available in most commercial FE programs. 

 

Figure 3.3 (a) Exponential pressure-overclosure relation for normal contact in 

contraction joint, where 0c  is the clearance at zero pressure and 0p  the 

pressure at zero opening; and (b) Mohr–Coulomb friction criterion. Figure 

adapted from Dassault Systems [2013]. 
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3.1.3 Sliding and Separation at Lift Joints and Concrete–Rock Interfaces 

The properties of lift joints and concrete–rock interfaces are greatly influenced by how the 

surface was prepared before pouring the next concrete lift. Even with good preparation, the 

strength and fracture properties at these joints are usually much lower than values for mass 

concrete [Saouma et al. 1991; Fronteddu et al. 1998; and Tinawi et al. 1998]. Thus, cracks are 

likely to form along these joints rather than through the mass concrete. 

Lift joints and concrete–rock interfaces can be modeled by joint interface elements 

[Goodman et al. 1968; Léger and Katsouli 1989] or by a contact formulation. The failure of the 

joint can be defined by a traction-separation law, with the residual strength described by the 

Mohr–Coulomb friction criterion. That said, the high degree of uncertainty regarding the 

properties of lift joints and concrete–rock interfaces—such as tensile strength, fracture energy 

and roughness—makes it difficult to specify material parameters for these models with 

confidence. Thus, sensitivity analyses should always be conducted. 

3.1.4 Discontinuities in the Foundation Rock 

The foundation near a dam behaves nonlinearly because it is often fractured and discontinuous, 

with weak planes permitting sliding and separation of rock masses at these surfaces. During an 

earthquake, the increase in forces transmitted to the foundation from the dam may initiate shear 

failure along these weak planes. Planes of weakness in the foundation can be modeled using 

nonlinear joint elements [Goodman et al. 1968; Léger and Katsouli 1989] or assemblages of rock 

wedges can be modeled using the discrete element method (DEM) [Lemos 2008]. Such modeling 

is a very challenging problem, particularly because detailed information about the subsurface 

rock conditions is usually limited. Consequently, such detailed modeling is often excluded from 

the dynamic analysis of the dam–water–foundation system; however, the potential for 

instabilities in the foundation should always be evaluated by supplemental analyses. 

3.2 MODELING OF ENERGY DISSIPATING MECHANISMS 

The FE model of the dam–water–foundation rock system includes three main sources of energy 

dissipation that combine to form the total (linear) damping in the system: (1) material damping in 



 

148 

the concrete and rock; (2) radiation damping in the semi-unbounded foundation and fluid 

domains; and (3) dissipation of hydrodynamic wave energy at the reservoir boundaries. 

3.2.1 Material Damping 

Modeling of material damping in dam concrete and foundation rock is highly uncertain, even 

when restricted to the linear range of behavior. Phenomenological modeling of these 

mechanisms is not practical due to the lack of experimental data on the energy-dissipating 

behavior of mass concrete and rock under seismic loading conditions [Bhattacharjee and Léger 

1993]. As a substitute, highly idealized linear viscous damping models, such as modal damping 

or Rayleigh damping, are used for their mathematical convenience. 

3.2.1.1 Modification of Rayleigh damping for nonlinear modeling 

For linear systems, the standard damping matrix, c , is constructed by assembling damping 

submatrices cc  and rc  for the dam and foundation rock, respectively [Chopra 2012b]. Although 

Rayleigh damping and modal damping are commonly used for several classes of structures, 

including buildings and bridges, they do not seem to be appropriate for continua of mass 

concrete and rock. 

Mass-proportional damping is inappropriate in the presence of sliding of the dam along 

the dam–foundation interface or cracks that extends through the dam thickness because it causes 

spurious damping forces that prohibit sliding and overturning of sections above an open crack 

[El-Aidi and Hall 1989; Hall 2006]. Stiffness proportional damping is intuitively more appealing 

because the element damping forces are proportional to deformation rates in the element. 

Stiffness proportional damping matrices for the dam and foundation subsystems are defined as: 

1c c cac k  and 1r r rac k , where ck  and rk are the elastic stiffness matrices and the coefficients 

1ca  and 1ra  are determined from viscous damping ratios specified for the dam alone and 

foundation domain, separately, at a selected frequency. Usually, this frequency is selected as the 

fundamental natural frequency of the dam–foundation or dam–water–foundation system. The 

damping ratios for these two substructures should be selected to be small enough to ensure that 

the overall damping in the dam–water–foundation system does not exceed the range of measured 

values; see Section 3.2.4. 
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The damping matrix, so constructed, should be modified to recognize that damping forces 

cannot exist in a FE across an open crack [Bhattacharjee and Léger 1993; El-Aidi and Hall 1989; 

and Hall 2006]. To achieve this goal, several solutions have been proposed: (1) setting the 

element damping to zero upon initial cracking of an element [El-Aidi and Hall 1989]; (2) using 

the tangent stiffness matrix instead of the initial stiffness matrix [Bhattacharjee and Léger 1993]; 

(3) capping the damping forces at a maximum value for each element [Hall 2006]; or (4) using 

the degraded elastic stiffness matrix ( )el tk [Lee and Fenves 1998], which is a function of the 

damage variables td  and cd ; see Section 3.1.1.2. The latter of these approaches has the 

advantage that it eliminates transfer of tensile damping forces when a crack is open (d = 1) but 

allows for recovery of compressive damping forces upon closing of the crack (d < 1). Most 

commercial FE software has one or several of these options available; however, they are not 

always activated in the default settings. 

3.2.2 Radiation Damping 

Seismic waves reflected off the dam will generally not return unless there is a sharp impedance 

difference in the foundation. This mechanism for energy dissipation, called radiation damping, 

can be significant for seismic waves in the foundation domain, but less so for hydrodynamic 

waves in the fluid domain, except at high frequencies [Fenves and Chopra 1985]. 

Figure 3.4 shows the added damping due to dam–foundation rock interaction—which is 

primarily attributable to radiation damping—for 2D gravity dams and 3D arch dams supported 

on homogeneous foundations. Observe that radiation damping is a major source of energy 

dissipation for 2D gravity dam models unless the rock is much stiffer than concrete; however, for 

3D arch dam models the effect is less significant. The large added damping in the 2D system is 

caused by the assumption of homogeneous rock, which implies no wave reflections in the 

foundation domain. For other foundation idealizations (e.g., a layered half-space) the radiation 

damping effects will be smaller due to multiple reflections and refractions of waves in the 

layered system. 
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Figure 3.4 Additional damping in the fundamental mode of vibration due to dam–

foundation interaction for 2D gravity dams and 3D arch dams supported on 

foundation modeled as a homogeneous half-space. Data for gravity dams 

are from Fenves and Chopra [1984a] and for arch dams from Tan and 

Chopra [1995]. 

3.2.3 Energy Dissipation at the Reservoir Boundaries 

The bottom of a reservoir upstream of the dam may consist of highly variable layers of exposed 

bedrock, alluvium, silt, and other sedimentary materials. Hydrodynamic wave energy is 

dissipated at these boundaries by two mechanisms (Figure 3.5): (1) water–foundation rock 

interaction causing radiation of wave energy to the underlying semi-unbounded foundation 

domain; and (2) energy absorption in the sediments deposited at the reservoir boundaries. Most 

of the past investigations of the effects of sediments deposited at reservoir boundaries have been 

based on results from the substructure method, wherein water–foundation interaction is ignored 

and sediments modeled implicitly by a 1D wave reflection coefficient  [Fenves and Chopra 

1985; Tan and Chopra 1995b]. The effects of sediments on dam response are re-investigated here 

by the direct FE method, where water–foundation interaction is included automatically, and the 

sediments (thickness and extent) can be explicitly modeled by FEs. 
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Figure 3.5 Conceptual overview of two mechanisms for energy dissipation at 

reservoir boundaries: (1) water–foundation rock interaction, and (2) 

absorption in sediments deposited at the reservoir bottom. 

Researchers have primarily investigated two types of material models for sediments: (1) a 

two-phase fluid saturated poroelastic model, and (2) a viscoelastic model. The most sophisticated 

of these is the two-phase fluid-saturated poroelastic material [Domínguez et al. 1997]. As 

demonstrated, sediments modeled in this manner have little influence on the response of concrete 

dams if the sediments are fully saturated, but show great influence if they are partially saturated, 

even for very small variations in the degree of saturation [Domínguez et al. 1997; Maeso et al. 

2004]. This two-phase poroelastic model is presently not ready for practical application for two 

reasons: (1) the dam response is extremely sensitive to the degree to which sediments are 

saturated, a quantity that cannot be determined precisely; and (2) the model requires detailed 

information on sediment properties, such as grain size, porosity and hydraulic conductivity, for 

which data is not available for reservoirs impounded behind dams. 

A simpler model for sediments is a viscoelastic material [Lofti et al. 1987; Medina et al. 

1990], characterized by familiar parameters: modulus of elasticity Esed, Poisson's ratio sed, 

material density sed, and material damping ratio. These properties have rarely been measured at 

dam sites, but data exists in the literature for river delta deposits and marine underwater 

sediments (e.g., see Hamilton [1971]). Thus, the viscoelastic material model appears to be a 

pragmatic choice for modeling sediments in the direct FE method. As demonstrated next, 

sediments modeled in this manner may have very little influence on dam response. 

3.2.3.1 Gravity dams 
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The effect of sediments on the dynamic response of a gravity dam is investigated first. 

Determined by the direct FE method, frequency response functions for the idealized 2D gravity 

dam on flexible foundation with full reservoir defined in Section 5.4 of Part I are presented in 

Figure 3.6 for three values of the moduli ratio /f sE E . For each moduli ratio, two cases are 

compared: (1) no sediments at the reservoir bottom; and (2) sediment layer modeled as a 

viscoelastic material. The viscoelastic sediments have uniform thickness Hsed = 0.1H, where H = 

120 m is the height of the dam, sed = 1600 kg/m3, sed = 0.46, viscous damping = 10%, and 

pressure-wave velocity = 1700 m/sec (Esed = 1.0 GPa). These properties are based on typical 

values for saturated underwater sediments [Hamilton 1971]. 

The results shown in Figure 3.6 demonstrate that sediments have little influence on 

gravity dam response to horizontal ground motion; the first resonant peak—which is the most 

significant in earthquake response of dams—is unaffected, but the response at higher frequencies 

is more noticeably affected. However, the influence of sediments on the earthquake response of 

the gravity dam is not significant, as confirmed by the two sets of response histories presented in 

Figure 3.7(a), which are essentially identical. Similar results have been reported by other 

researchers [Medina et al. 1990; Hatami 1997; and Zhang et al. 2001]. 

Relatively speaking, sediments have more influence on the frequency response functions 

for vertical ground motion. The discrepancy in response at the first two resonant frequencies 

(Figure 3.6) is noticeable, although it is small, and the response at higher resonant frequencies is 

greatly influenced by sediments with the resonance peaks almost completely eliminated. Note 

that the earthquake response of the dam is again essentially unaffected, as demonstrated by the 

closeness of the results in Figure 3.7(b). 
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Figure 3.6 Influence of sediments on the response of idealized gravity dam on flexible 

foundation rock with full reservoir due to horizontal and vertical ground 

motion. Results are plotted against normalized frequency 1/   where 1  

is the fundamental frequency of the dam on rigid foundation.  

0 1 2 3 4 5
0

5

10

15

20

25

30

0 1 2 3 4 5

0 1 2 3 4 5
0

5

10

15

20

25

30

0 1 2 3 4 5

0 1 2 3 4 5
0

5

10

15

20

25

30

0 1 2 3 4 5

A
b
so

lu
te

 v
al

u
e 

o
f 

h
o
ri

zo
n
ta

l 
ac

ce
le

ra
ti

o
n
 a

t 
d
am

 c
re

st

Horizontal ground motion Vertical ground motion

1

 
�

1

 
�

Ef / Es = 1 Ef / Es = 1

Ef / Es = 1/2 Ef / Es = 1/2

Ef / Es = 2 Ef / Es = 2

No sediments

Viscoelastic sediments, 

Vp = 1700m/s



 

154 

 

Figure 3.7 Influence of sediments on the displacement response of idealized gravity 

dam on flexible foundation rock with full reservoir due to the S69E and 

vertical components, separately, of the Taft ground motion; /f sE E  = 1.0. 

3.2.3.2 Arch dams 

Determined by the direct FE method, frequency response functions for Morrow Point Dam 

(properties defined in Section 5.2.1 of Part II) are presented in Figure 3.8 for two cases: (1) no 

sediments at the reservoir boundaries; and (2) sediment layer modeled as a viscoelastic material. 

The sediments have uniform thickness Hsed = 0.1H, where H = 142 m is the dam height, sed = 

1600 kg/m3, sed = 0.46, and viscous damping = 10%; two values for the pressure-wave velocity 

are considered, 1400 m/sec (Esed = 0.68 GPa) and 1800 m/sec (Esed = 1.12 GPa). 

The results demonstrate that, just as in the case of gravity dams, sediments have small 

influence on the dam response: the first two resonant peaks due to ground motions in the stream 

and cross-stream directions, and the first resonant peak due to vertical ground motion are 

essentially unaffected. Although the responses at higher resonant frequencies are more 

noticeably affected, the overall influence of sediments on earthquake response is not significant, 

as demonstrated by the two sets of displacement and acceleration response histories presented in 

Figure 3.9, which are nearly identical. 
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Figure 3.8 Influence of sediments on the response of Morrow Point Dam on flexible 

foundation rock with full reservoir subjected to stream, cross-stream, and 

vertical ground motions. 

 

Figure 3.9 Influence of sediments on the earthquake response of Morrow Point Dam 

on flexible foundation rock with full reservoir subjected to the S69E, S21W, 

and vertical components, applied simultaneously, of the Taft ground 

motion. 
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3.2.3.3 Can sediments be ignored? 

The preceding results indicate that the influence of sediments at the reservoir boundaries—

modeled as a viscoelastic material—has negligible influence on the response of gravity dams as 

well as arch dams. Because water–foundation rock interaction and the associated radiation 

damping are included in the analysis, the additional loss of vibration energy due to sediments is 

apparently of little consequence. Thus, at the present time, it seems reasonable to ignore 

sediments in analysis of dam–water–foundation rock systems by the direct FE method. 

This conclusion may seem to contradict earlier results obtained by the substructure 

method, which found that sediments may influence dam response significantly [Fenves and 

Chopra 1985; Tan and Chopra 1995b]; however, water–foundation rock interaction (and the 

associated radiation damping) are ignored in the substructure method, the loss of vibration 

energy associated with wave absorption in the  -model apparently becomes significant. These 

findings also have implications for analysis of dam–water–foundation rock systems modeled by 

the substructure method. Water–foundation rock interaction, which is neglected in this method, 

can be approximately modeled by the 1D  -model with the value of   based on rock properties 

alone. With water–foundation rock interaction modeled in this manner, reservoir bottom 

sediments can be ignored in the substructure method just as in the direct FE method; see 

Appendix F for detailed discussion of this topic and numerical results. 

3.2.4 Calibration of Damping Values 

Damping in the numerical model for the dam–water–foundation rock system should be 

consistent with measured values at the dam determined from low-amplitude motions (i.e., within 

the linear range of response) recorded during forced vibration tests, ambient vibrations, or small 

earthquakes. Obviously, these measured values represent the overall damping in the system, 

including material damping, radiation damping, and energy loss at the reservoir boundaries; 

experimental data on the contributions of individual sources is generally not available. 

Summarized in Figure 3.10 are data for damping “measured” at 32 concrete dams during 

forced vibration tests and estimated based on ambient vibration measurements [Hall 1988; 

Proulx and Paultre 1997; and Proulx et al. 2004]. Both gravity dams and arch dams covering a 

wide range of system parameters are included. The overall damping values measured at these 
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dams are all in the range of approximately 1–5%. These comprehensive data lead to an important 

conclusion: overall damping in the numerical model should not exceed 5% unless a larger value 

was “measured” at the particular dam. In contrast, the current practice of specifying a viscous 

damping ratio of 5% for the concrete dam alone and a similar value for the foundation domain is 

likely to lead to damping in the range of 10–15% in the overall dam–water–foundation system 

for “common” system parameters [Fenves and Chopra 1984a; Tan and Chopra 1995a]; a wider 

range of 6–30% overall damping was identified by Bybordiani et. al. [2017] for 2D and 3D 

idealizations of a gravity dam–water–foundation system covering several values for the 

foundation stiffness and different ratios of the canyon width to the height of the dam. Thus, the 

current practice of choosing damping values should be abandoned because it will likely 

underestimate the earthquake response of dams. 

Material damping in the numerical model is usually specified separately for the two 

substructures: dam and foundation. Because the contributions from energy loss at the reservoir 

boundaries and radiation damping are not known prior to the earthquake analysis of the dam, it is 

therefore not possible to know in advance the damping values that should be specified for the 

two substructures to achieve a target value of, say, 5% overall damping. Thus, material damping 

in the two substructures must be determined by trial and error to achieve an overall damping 

consistent with the target value. The overall damping in the numerical model can be determined 

from frequency response functions or system identification techniques applied to the response 

histories. 

Researchers have demonstrated that damping in the range of 1–2% for the dam concrete 

and 1–4% for the foundation is likely to lead to overall damping in 3D numerical models that is 

consistent with the range of measured values [Chopra and Wang 2009; Løkke and Chopra 2017]. 

For example, viscous damping ratios of 1% and 3% for the dam and foundation, respectively, in 

the case of Mauvoisin Dam; 2% and 4%, respectively, for Pacoima Dam; and 1% and 2%, 

respectively, for Morrow Point Dam, combined to provide damping in the overall dam–water–

foundation rock system that was consistent with measured damping for these dams: 2–3% for 

Mauvoisin Dam, 6–7% for Pacoima Dam and 1.5–4% for Morrow Point Dam. Responses 

computed from the numerical models for Mauvoisin Dam and Pacoima Dam were in good 

agreement with motions recorded during small earthquakes at these two dams [Chopra and Wang 
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2009]. More recent examples include analyses of Tagokura gravity dam (1% in dam, 0% in 

foundation) and Kurobe arch dam (1% in dam, 0% in foundation) [Robbe et al. 2017]. 

 

 

Figure 3.10 Damping at 32 concrete dams measured during forced vibration field tests 

and estimated from ambient vibration measurements, compiled from Hall 

[1988]; Proulx and Paultre [1997]; and Proulx et al. [2004]. The range for 

each dam shows the minimum and maximum damping values measured in 

the first few (1 to 5) resonant frequencies. Four data points that were 

deemed inaccurate in Hall [1988] due to excessive modal interference in 

the dam response are excluded from the dataset. 

Limiting the overall damping to less than 5% in 2D numerical models is very difficult 

because of the large amount of radiation damping associated with 2D homogeneous, semi-

unbounded foundation models; see Figure 3.4. The additional damping erroneously introduced to 

the system by using a 2D idealization to represent a 3D gravity dam system can be significant 

unless the canyon is very wide [Bybordiani and Arici 2017]. Presented in Table 3.1 are examples 

of total damping in a 2D model of Pine Flat Dam computed by the substructure method [Fenves 

and Chopra 1984b] for several values of the parameters that characterize energy loss in the 

system: material damping in the dam, s ; material damping in the foundation, f ; the moduli 

ratio of the foundation to the dam concrete, /f sE E ; and the reservoir bottom reflection 
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coefficient  , which is computed based on rock properties alone to approximately account for 

water–foundation interaction in the substructure method; see Appendix F. For example, 

specifying 2% damping in the dam and 2% for the foundation domain (Case 2 in Table 3.1) leads 

to overall damping of approximately 10% in the 2D numerical model, which is much higher than 

the 2–4% damping “measured” at Pine Flat Dam during forced vibration tests [Rea et al. 1974]. 

Observe that it is not possible to achieve consistency with the measured damping values 

for this dam unless the foundation is much stiffer than concrete, and essentially zero material 

damping is specified in the dam as well as the foundation. Thus, caution should be exercised 

when using 2D analysis models to ensure that the overall damping is not excessive. For 2D 

response spectrum analyses (RSA) [Løkke and Chopra 2015], implemented in the computer 

program CADAM [Leclerc et al. 2003], which is frequently used in the preliminary phase of 

design and for safety evaluation of concrete gravity dams, the damping ratio for the first-mode 

spectral ordinate can be directly specified at a desired level consistent with the measured data in 

Figure 3.10 (e.g., 5%). Limiting the overall damping in RHA of 2D models in a similar manner 

is generally not feasible; however, site specific conditions, such as inhomogeneities in the rock, 

may limit radiation damping. The last recourse is to use 3D numerical models, which also permit 

realistic modeling of the 3D geometries of gravity dams. 

Table 3.1 Overall damping resulting in a 2D numerical model of Pine Flat Dam computed by 

the substructure method for several values of the parameters that characterize 

energy loss in the system. 

  Dam Foundation rock Reservoir bottom Overall damping 

Case s  /f sE E  f    

1 5% 1 5% 0.68 13% 

2 2% 1 2% 0.68 10% 

3 0% 1 0.5% 0.68 8.5% 

4 0% 2 0.5% 0.77 5.0% 

5 0% 3 0.5% 0.80 3.7% 
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4 Nonlinear Earthquake Analysis of Morrow 
Point Dam 

To demonstrate the capabilities and effectiveness of the direct FE method developed in Parts I 

and II of this report, including the simplifications recommended in Chapter 3, the method is 

implemented with the commercial FE program ABAQUS; example results of nonlinear RHA are 

presented herein. 

4.1 SYSTEM AND GROUND MOTION 

4.1.1 Finite-Element Model of Dam–Water–Foundation Rock System 

Chosen for the example analysis is Morrow Point Dam, with properties of the dam–water–

foundation rock system as described in Section 5.4 of Part I, but for two exceptions: (1) 

sediments at the reservoir bottom and sides are not included because their effects on the dynamic 

response of arch dams are negligible (Section 3.2.3); and (2) material damping in the dam and 

foundation is modeled by stiffness proportional damping using the degraded elastic stiffness 

matrix instead of the initial stiffness (Section 3.2.1.1). The damping coefficients 3
1 1.1 10ca    

and 3
1 2.2 10ra    were chosen to give 1% damping in the dam and 2% in the foundation at the 

first dominant resonance frequency of the dam–water–foundation rock system in the ABAQUS 

model. These values were determined by trial and error to provide overall damping in the 

system, determined from the resulting frequency response function, to be consistent with the 1.5–

4% damping measured at the first few resonant frequencies during forced vibration tests [Duron 

and Hall 1988]. 

The FE model shown in Figure 4.1 consists of 27,600 elements and approximately 64,000 

degrees-of-freedom. This includes 4196 solid elements for the dam (with four elements through 

the thickness of the dam), 14,175 solid elements for the foundation domain, and 9200 acoustic 
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elements for the fluid domain. A tie constraint couples accelerations with hydrodynamic 

pressures at the dam–water and water–foundation interfaces, and standard viscous dampers are 

included at all outer boundaries to model the semi-unbounded extent of the foundation and fluid 

domains. The overall dimensions of the FE model are 700 m  700 m  400 m, corresponding to 

approx. 5H  5H  3H, where H is the height of the dam. 

4.1.2 Nonlinear Modeling Parameters 

Included in the numerical model are several nonlinear mechanisms based on the review in 

Section 3.1. Opening and closing of contraction joints [Figure 4.1(a)] is modeled using the 

“general contact” model in ABAQU, with behavior in the normal direction specified by a zero-

tensile-strength contact constraint with an exponential pressure-overclosure relationship given 

the following properties: initial clearance 0c  = 0.1 mm and contact pressure at zero opening 0p  = 

5 MPa. Morrow Point Dam was constructed with large and frequent shear keys that limit relative 

tangential movements between cantilevers unless the joint opens more than approximately 150 

mm (6 in.) [Noble and Nuss 2004b]. The effect of these are modeled by linear springs given very 

high stiffness to effectively prevent tangential slip at the joint; note that this simple model does 

not consider the possibility of shear-key failure at the joints. 

The dam–foundation rock interface is approximately modeled using a zero-tensile-

strength contact constraint to allow opening and closing of this joint, but relative tangential 

sliding is prevented using linear springs with high stiffness. For simplicity, the effects of weaker 

planes along lift lines in the dam are not modeled. 

Cracking of the dam concrete is modeled by the Lee–Fenves concrete damage model 

[1998] implemented in ABAQUS, but excluding the possibility of compression failure after an 

initial analysis confirmed that the maximum compressive stresses are much lower than the 

compressive strength of concrete. The tensile fracture properties for this model (Figure 4.2) are 

based on typical values for dam concrete [Brühwiler and Wittmann 1990b; Bhattacharjee and 

Léger 1992]: tensile strength, ft = 2.5 MPa and specific fracture energy GF = 250 N/m (the area 

under the tensile stress-crack width curve). These static values are increased by a dynamic 

magnification factor of 1.20 to represent the effects of higher strain rates in the dynamic analysis; 

thus ft,dyn = 3.0 MPa and GF,dyn = 300 N/m. 
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Figure 4.1 Morrow Point Dam showing (a) location of contraction joints; (b) FE model 

of dam; (c) FE model of water in reservoir; and (d) FE model of foundation 

rock. 

The nonlinear dynamic analysis is conducted in ABAQUS/Standard using the implicit 

HHT-alpha [Hilber et al. 1977] time integration scheme and an automatic time step control that 

changes the time increment depending on the convergence rate of the solution. Convergence is 

checked at the end of each time step as the analysis progresses, and in addition, the energy 

balance error [Bhattacharjee and Léger 1993] is controlled at the end of the analysis to ensure 

that the overall solution has remained stable. 
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Figure 4.2 Stress-displacement curve for concrete in tension (static values). 

4.1.3 Static and Dynamic Loads 

An initial static analysis is conducted using a model with outer boundaries of the foundation 

domain fixed. Gravity loads are applied to the dam cantilevers first, and then the reservoir is 

filled and hydrostatic pressures applied. Uplift pressures at the dam–foundation rock interface 

are not modeled. The state of the dam and foundation domain at the end of this static analysis is 

recorded to define the initial state for the nonlinear dynamic analysis. 

The free-field control motion, ( )k
ga t , specified at the surface of the foundation domain (at 

the level of the dam abutments) is defined in the stream, cross-stream, and vertical directions by 

the S69E, S21W, and vertical components, respectively, of the Taft ground motion. Each 

component of ground motion is amplitude-scaled by a factor of 2.0; this corresponds to a PGA of 

approximately 0.35g for the S69E component†. From these control motions, the effective 

earthquake forces to be applied at the absorbing boundaries of the foundation domain are 

determined by the method described in Section 6.1 of Part II. 

4.2 IMPLEMENTATION OF THE DIRECT FE METHOD WITH ABAQUS 

The direct FE method has been developed in a form that can be implemented with any 

commercial FE code. Here we have chosen ABAQUS with a simple pre-processing script in 

MATLAB developed to interact with the input file to compute and store the effective earthquake 

                                                 
† No attempt has been made to select ground motions consistent with the seismic hazard at the site of Morrow Point 
Dam; thus, the results presented in Section 4.3 are merely illustrative 
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forces. This procedure is organized in three phases (Figure 4.3): (1) an initial static analysis 

simulates the sequence of construction of the dam and filling of the reservoir; (2) deconvolution 

of the control motion followed by analysis of a 1D foundation column determines the free-field 

motions that are in turn used to compute effective earthquake forces at the bottom and side 

foundation boundaries; and (3) nonlinear dynamic analysis of the FE model subjected to 

effective earthquake forces from Step 2, where the results from Step 1 provide the initial state of 

the system. Thus, the only addition to a “standard” dynamic analysis in ABAQUS is the use of 

the MATLAB script in Step 2. 

This process for setting up the model for nonlinear dynamic analysis is general and can 

be implemented with any commercial FE code. The process is entirely automated, requiring less 

than a few minutes to produce an updated input file that, together with the static state of the 

system, contains all information required for dynamic analysis. Thus, the analysis can easily be 

set up to run repeatedly for a large number of ground motions or for the same ground motion for 

a range of input parameters, both of which are required to quantify uncertainty within the PBEE 

framework; see Chapter 2. 
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Figure 4.3 Implementation of the direct FE method with a commercial FE program. 

4.3 RESULTS FROM NONLINEAR DYNAMIC ANALYSIS 

Commercial FE codes can provide results for any response quantity of engineering interest; 

examples of such output are presented in Figures 4.4–4.8. Displacement response histories in the 

stream, cross-stream, and vertical directions at the mid-point on the dam crest are shown in 

Figure 4.4, and envelope values of the stream displacements over the length of the crest in Figure 

4.5. Such results are of interest in evaluating the operability of appurtenant structures, such as 

mechanical equipment, gates, and roadway bridges, over any spillway. 

To illustrate the nonlinear contraction joint response, two types of output are presented: 

response histories for the opening of two contraction joints at the crest level are plotted as a 

function of time in Figure 4.6, and envelope values of the maximum (over time) opening of all 

joints at the crest level is presented in Figure 4.7. The maximum opening of any contraction joint 

•   Geometry and mesh

•   Finite element properties

•   Material properties

•   Static loads

•   Earthquake ground motion(s)

•   Joint and interface properties

•   Dynamic analysis parameters 

•   Boundary conditions

•   Output requests

User input

•   Compute nonlinear earthquake response of dam 

    (locally or through cloud computing)

•   Post-processing of analysis output

Basic
user input 

Static state 
of system 

Mesh, materials and 
ground motion(s)

Static input
parameters

3. Nonlinear dynamic analysis

•   Compute static state of 

     dam, including reactions

     at foundation boundaries

•   Store static state for later

     use

1. Initial static analysis

•   Read user input

•   Deconvolution of ground motion

•   Analyze 1D foundation column

•   Compute effective earthquake forces at

     bottom and sides of  foundation domain

•   Map forces to actual boundary mesh

•   Store forces for later use

2. Compute effective earthquake forces

Effective 
earthquake forces



 

167 

is approximately 25 mm (near the right abutment), which is much less than the 150 mm “depth” 

of the shear keys, implying that the shear keys remain interlocked during the selected ground 

motion. Observe also that the maximum joint opening occurs near the right abutment, and not at 

the center of the dam (Figure 4.7), which illustrates the significance of the cross-stream 

component of ground motion for this particular system. Had the dam been excited only in the 

stream and vertical directions, it would have responded much more symmetrically due to its 

(almost) symmetric design. 

The distribution of tensile damage over the two faces of the dam is presented in Figure 

4.8. While this is not a direct measurement of cracking in the concrete, it gives an indication of 

areas to expect cracks in the dam. The tensile damage is greater on the downstream face of the 

dam and along one side of the dam–foundation rock interface [Figures 4.8(a) and (b)]. The dam 

is beginning to show signs of a semi-circular crack pattern in the upper, central part of the dam, 

which has been observed as a potential failure mode during model studies of arch dams [Bureau 

of Reclamation 2002]; however, no single crack has yet formed through thickness of the dam 

[Figure 4.8(c)] to fully develop such a failure model. 

 

Figure 4.4 Displacements histories at center of dam crest in the stream, cross-stream 

and vertical directions, caused by simultaneous application of the S69E, 

S21W and vertical components of the Taft ground motion. 
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Figure 4.5 Envelope values of maximum and minimum displacements along dam 

crest. 

 

 

Figure 4.6 Opening of contraction joints at two locations: at the joint near the right 

abutment where maximum joint opening occurs, and at the joint between 

the center cantilevers.  
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Figure 4.7 Envelope values of maximum contraction joint opening along the dam 

crest.  

 

Figure 4.8 Distribution of tensile damage on (a) upstream face, (b) downstream face; 

and (c) section through center (crown) cantilever. 

Engineering demand parameters obtained from nonlinear RHA (such as the ones 

presented in Figures 4.4–4.8) can be systemized to quantify the performance of concrete dams 

over a wide range of possible scenarios. For example, by doing repeated nonlinear RHA for an 

ensemble of ground motions scaled to different intensity levels, the SDHC and fragility curves 

(Sections 2.3–2.4) for the structure can be computed for any EDP or DM of interest. The effects 

of uncertainty in input parameters can be estimated by repeated analysis of the system in a 

tornado-diagram analysis. 

The total runtime for the analysis was approximately 15 hours on a local workstation, of 

which only a few minutes were required for setting up the effective earthquake forces. This 
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computing service or a local computing cluster. Such services are especially attractive when a 

large number of nonlinear analyses are required to consider the inherent uncertainties in ground 

motions and the material properties of the system. 
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5 Conclusions 

Using the direct FE method for conducting the large number of nonlinear RHAs required for 

PBEE of concrete dams has been proposed. The discussion and results presented Part III of this 

report can be summarized as follows:  

 The state-of-research for PBEE of concrete dams is behind that for other 

classes of structures such as buildings and nuclear power plants. Two factors 

that have contributed to this situation are: (1) the deficiencies in commonly 

used procedures for RHA of concrete dams; and (2) the lack of knowledge 

about the nonlinear behavior and failure mechanisms of concrete dams during 

earthquakes. Development of the direct FE method addresses the first of these 

issues. 

 Sediments at the reservoir boundaries—modeled as a viscoelastic material—

have negligible influence on the response of gravity dams as well as arch 

dams when water–foundation rock interaction and the associated radiation 

damping is included in the analysis. Thus, at the present time, it appears 

reasonable to ignore sediments in analysis of dam–water–foundation systems 

using the direct FE method. 

 Based on “measured” data at 32 concrete dams, the overall damping in the 

numerical model of the dam–water–foundation rock system should not exceed 

5% unless a larger value was measured at the dam to be analyzed. Specifying 

viscous damping ratios in the range of 1–2% for the dam alone and 1–4% for 

the foundation domain is likely to lead to overall damping that is consistent 

with these measure values. Consequently, the common practice of specifying 

5% viscous damping for the dam and a similar value for the foundation should 
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be abandoned because it would significantly underestimate the earthquake 

response of dams. 

 The direct FE method has been developed in a form that can be implemented 

in any commercial FE code; an example analysis implemented in ABAQUS 

has been presented. The procedure is entirely automated, and requires less 

than a few minutes of computation to produce an updated input file that—

together with the static state of the system—contains all information required 

for dynamic analysis. The effectiveness of the procedure makes it attractive 

for conducting the large number of nonlinear RHAs required to recognize the 

uncertainties in ground motions and the material properties of the system. 

Evaluating the seismic performance of concrete dams subjected to ground motions 

intense enough to cause damage is a very challenging problem. Although commercial FE 

programs contain models and material libraries capable of modeling a wide range of nonlinear 

mechanisms, experience in their application is limited. Quantitative measures for the extent of 

damage—cracking in concrete, sliding at lift joints or at cracked interfaces, and opening of 

contraction joints—that dams can sustain while still retaining the impounded water are lacking. 

A great deal of innovative experimental, modeling, and analytical research must yet be done to 

accurately model the nonlinear behavior of mass concrete, rock, and joints; and extensive 

numerical parameter studies must be performed to better understand the factors that control the 

seismic safety of concrete dams. 
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NOTATION 

Roman symbols 

A  tributary area of node on absorbing boundary 

k
ga  k -component of free-field ground acceleration at the foundation surface 

b  “damping” matrix of FE model of fluid 

c  damping matrix of FE model of dam and foundation rock 

pc , sc  = f pA V  or f sA V , coefficient for viscous damper at foundation boundary in the normal or 

tangential direction, respectively 

rc   = /A C , coefficient for viscous damper at fluid boundary 

fc , cr   matrix of damper coefficients for nodes on absorbing boundaries  f  and  r , respectively 

C   speed of pressure waves in water 

,c td d   damage index for concrete in compression and tension, respectively  

fE , sE   Young's modulus of elasticity for foundation rock and dam concrete, respectively 

f   excitation frequency, in Hz 

tf   tensile strength of concrete 

( )tf r   vector of (nonlinear) internal forces in dam and foundation rock 

 |G X Y  probability that X exceeds a specified value given Y 

FG   specific fracture energy for concrete 

g   acceleration due to gravity 

h  "stiffness" matrix of FE model of fluid 

Hr  vector of dynamic forces associated with absorbing boundary  r  

H   height of arch dam 

k  stiffness matrix of linear part of FE model of dam and foundation rock 

0k   initial (linear) stiffness matrix  

( )el tk    01 ( )d t  k , the degraded elastic stiffness matrix 

L  length of bounded fluid domain 

m  mass matrix of FE model of dam and foundation rock 

n  outward normal vector to fluid domain 

tp   vector of (total) hydrodynamic pressures at FE nodes in fluid 

0
fP   effective earthquake forces on foundation boundary  f  
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0
rP   effective earthquake forces on fluid boundary  r  

Q   fluid-solid coupling matrix 

r t   vector of total displacements at FE nodes in dam and foundation rock 

0rI  vector of displacements for incident seismic wave 

fR  vector of dynamic forces associated with absorbing boundary  f  

R  radius of semi-cylindrical canyon 

s  “mass” matrix of FE model of fluid 

1( )aS T   spectral acceleration at the fundamental vibration period 1T  

cru   crack opening displacement in concrete cracking model 

pV , sV   velocity of pressure waves and shear waves, respectively, in foundation rock 

Nodal subscripts on matrices and vectors 

b   nodes on water–foundation rock interface, i.e., the reservoir bottom and sides 

f   nodes on absorbing boundary in foundation domain,  f  

h   nodes on dam–water interface, i.e., the upstream face of the dam 

r   nodes on absorbing boundary in fluid domain,  r  

Superscripts on matrices and vectors 

0   quantities in free-field foundation rock or free-field fluid systems 

a   quantities in auxiliary water–foundation rock system 

st   static forces 

t   total displacements, pressures or forces 

Greek symbols 

  wave reflection coefficient for reservoir bottom materials 

 b   water–foundation rock interface 

f ,  r  absorbing boundaries in foundation and fluid domains, respectively  

h  dam–water interface  

, f s  viscous damping ratio of foundation rock and dam concrete, respectively 

,f s   hysteretic (rate-independent) damping factors of foundation rock and dam concrete, respectively 

  = 2 / sfR V , dimensionless frequency (in Chapters 5 and 6) 

  wavelength of scattered waves  

 X  mean annual rate of exceedance of X 

, f s  Poisson's ratio of foundation rock and dam concrete, respectively 
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, ,  f s  density of foundation rock, dam concrete and water, respectively 

  normal tractions on foundation boundary 

  tangential tractions on foundation boundary 

1  natural angular frequency of dam with empty reservoir on rigid foundation rock 

  region interior of absorbing boundaries, i.e., the truncated FE model 

0  region interior of f  for free-field foundation-rock system 

 a  region interior of f  and r  for auxiliary water–foundation rock system 

  regions exterior of absorbing boundaries f  and r  

Abbreviations 

BEM  Boundary Element Method 

CMS Conditional Mean Spectrum 

DRM  Domain Reduction Method 

DM Damage measure 

DV Decision Variable 

EDP Engineering Demand Parameter 

ESI Effective Seismic Input Method 

FEM Finite Element Method  

IM Intensity Measure 

IMHC Intensity Measure Hazard Curve 

UHS Uniform Hazard Spectrum 

PBEE Performance-Based Earthquake Engineering 

PEER Pacific Earthquake Engineering Research Center 

PSHA Probabilistic Seismic Hazard Analysis 

PML Perfectly Matched Layer 

RHA Response History Analysis 

SDHC Seismic Demand Hazard Curve 
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APPENDIX A Selection of Domain Size for Two-
Dimensional Dam–Water–
Foundation Rock Systems 

A.1 INTRODUCTION 

An important requirement to ensure accurate results when using the direct FE method for 

earthquake analysis of concrete dams is that the viscous-damper boundaries at the truncations of 

the foundation domain absorb the outgoing (scattered) waves caused by dam–foundation rock 

interaction. The primary factor determining the effectiveness of these boundaries is the size of 

foundation domain included in the FE model. In this appendix, guidelines for selecting 

appropriate domain sizes for 2D gravity dam systems are presented. First, the dynamic response 

of a rigid footing on a viscoelastic half-space is analyzed, and then the response of a concrete 

gravity dam is investigated. 

A.2 DYNAMIC RESPONSE OF RIGID FOOTING ON A VISCOELASTIC HALF-

SPACE 

Much research has been devoted to the developing generalized dynamic force-displacement 

relationships for rigid footings of various shapes bonded to a viscoelastic half-space, as these 

play an important role in the study of vibrating machinery and soil–structure interaction [Luco 

and Westmann 1972; Dasgupta and Chopra 1979; and Gazetas 1981]. For long and relatively 

uniform structures, the footing can best be idealized as an infinitely long strip. If the dynamic 

loading is uniform in the longitudinal direction, a plain-strain condition is appropriate, and the 

steady-state harmonic response is fully described by a set of dynamic flexibility (or compliance) 

coefficients. 
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In this section, these dynamic flexibility coefficients are used to evaluate the performance 

of the viscous-damper absorbing boundary for different sized foundation domains. These results 

will subsequently be used to recommend an appropriate size of the foundation domain to be used 

for dam–water–foundation interaction analyses. 

A.2.1 Formulation of the Problem 

The infinitely long rigid strip footing of width 2b perfectly bonded to a semi-unbounded 

homogeneous viscoelastic half-space (Figure A.1a) is analyzed. The rigid footing has three 

degrees-of-freedom: horizontal translation (H), vertical translation (V) and rocking (M). The 

properties of the half-space is defined by its shear modulus  , Poisson's ratio  , density , and 

damping ratio  . If iP  and i , , ,i V H M  denotes the amplitudes of a unit harmonic force and 

harmonic displacement, respectively, along the ith DOF, the dynamic force-displacement 

relationship can be written as: 

0

0 0

0 0

( ) 0 0
1

0 ( ) ( )

0 ( ) ( ) /

V VV V

H HH HM H

R MH MM M

F a P

F a F a P

b F a F a P b


     
         
         

 (A.1) 

The coefficients of the dynamic flexibility matrix are complex-valued quantities with real and 

imaginary components 0 0 0( ) ( ) ( )ij ij ijF a f a ig a   that are a function of the dimensionless 

frequency parameter 

0 / sa b v  (A.2) 

The real and imaginary parts of these dynamic flexibility coefficients can be interpreted 

as measures of flexibility (i.e., inverse of the stiffness) and damping of the underlying half-space, 

respectively. The system is implemented in the FE program OpenSees using a mesh with 15 

elements under the rigid strip footing, and gradually increasing element size towards the outer 

boundaries of the model; see Figure A.1(b). This mesh provides sufficient density to adequately 

model the range of frequencies considered in the analysis. Material damping is modeled by 

specifying  = 2% Raleigh damping at every given excitation frequency; this unconventional 

choice was implemented to match the constant hysteretic damping model in the benchmark 

solution. Viscous dampers are applied on the bottom and side boundaries of the foundation 
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domain, with the distance from the center of the footing to the boundaries ( xn b  and yn b ) varied 

in the analyses. 

The steady-state displacement response of the footing due to unit harmonic excitation is 

determined for vertical, horizontal and rocking vibration modes, and the procedure is repeated at 

every excitation frequency considered. From the displacement response, components that are in-

phase (real) and 90 out-of-phase (imaginary) with the input harmonic force are determined, and 

the results are compared with available semi-analytical benchmark solutions [Dasgupta and 

Chopra 1979]. These benchmark results are denoted “exact” in Figures A.2–A.4. 

 

 

Figure A.1 (a) Cross section of rigid footing on viscoelastic half-space; and (b) FE 

model with characteristic width and height. 

  

2b

nx b

 ny b

H

V
M

(a) (b)

Halfspace:    , ,� � ��

Viscous-damper 

boundaries

�



 

188 

 
 
 
 

 

Figure A.2 Dynamic flexibility coefficients for rigid strip footing on viscoelastic 

homogeneous half space due to (a) vertical excitation; and (b) horizontal 

excitation.   = 1/3;   = 2%. 
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Figure A.3 Dynamic flexibility coefficients for rigid strip footing on viscoelastic 

homogeneous half space due to harmonic rocking motion.   = 1/3;   = 

2%. 

 

 

Figure A.4 Dynamic flexibility coefficients for rigid strip footing on viscoelastic 

homogeneous half-space due to harmonic rocking motion: (a) 5xn b ; and 

(b) 10xn b . For both sizes,   = 1/3,   = 2%. 
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A.2.2 Influence of Domain Size 

Results for the horizontal, vertical and rocking compliance are presented in Figures A.2 and A.3, 

for three domain sizes: 5b  5b, 10b  10b and 20b  20b. The viscous-damper boundary 

generally performs well, with increasing accuracy at higher excitation frequencies and for larger 

domain sizes. This is consistent with results reported elsewhere [Wolf 1988]. The convergence 

towards the exact solution at higher frequencies is prominent for vertical and horizontal 

excitation of the footing (Figure A.2), but less so for rocking (Figure A.3). For rocking motion, 

the wave field is shallower, and more of the energy is radiated through surface waves, even at 

high frequencies [Meek and Wolf 1993]. Because the viscous dampers are less effective in 

absorbing these waves, noticeable oscillations are seen in the results for all domain sizes and at 

all frequencies. These oscillations are caused by “standing waves” in the model, i.e., small 

resonance patterns that occur when the ratio of the horizontal distance to the excitation wave 

length approaches certain values. Such oscillations will be less of a concern for a transient-type 

excitation. 

Table A.1 shows the mean relative error between the computed results and the 

benchmark solution for several domain sizes, computed as 
1

ˆ ˆe | ( ) / |
N

j j j jj
y y y


   where jy  is 

the computed value, ˆ jy  is the benchmark value at frequency j , and N is the total number of 

sampling points, The accuracy of the viscous-damper boundary improves for all modes of 

vibration when the domain size is increased. “Acceptable” accuracy is obtained at most 

frequencies with a foundation size of approx. 10b  10b or higher, with mean relative error 

around 5–8% for all modes. 

Table A.1 Mean relative error compared to exact analytical solution, in %, for different 

domain sizes; error computed between 0a  = 0.25 and 2.0.   = 1/3,   = 2%. 

Distance to boundary Re(FVV) -Im(FVV) Re(FHH) -Im(FHH) Re(FMM) -Im(FMM) 

2.5b 23.6 7 16.3 10.8 6.8 19.2 

5.0b 16.2 6.1 9.4 7.5 5.1 9.2 

7.5b 9.6 5.2 7.4 5.4 3.2 7.3 

10b 8.3 4.1 6.5 4 3.1 6.8 

15b 5.5 3.2 5.9 2.9 2.2 4.4 

20b 5.2 2.1 5.7 2.3 1.7 3.8 
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A.2.3 Influence of Aspect Ratio on Rocking Compliance 

Rocking motion is a significant part of the overall dynamic response of stiff and heavy structures 

such as concrete gravity dams. Because rocking generally causes shallower wave fields than 

horizontal or vertical excitation, it is interesting to investigate whether acceptable accuracy can 

be obtained for a shallow domain. 

Figure A.4 compares the results for rocking compliance for two horizontal domain sizes: 

narrow ( xn  = 5b) and wide ( xn  = 10b), and two vertical domain sizes: shallow ( yn  = 5b) and 

deep ( yn  = 10b). The accuracy is generally much better for the wide model than for the narrow 

model; however, there seems to be no benefit of increasing the vertical dimension beyond the 

shallow domain size. This indicates that a shallow and wide model will be the ideal aspect ratio 

for concrete gravity dam analyses where rocking is important. 

A.3 DYNAMIC RESPONSE OF PINE FLAT DAM 

The required size of the foundation domain to be used with the direct FE method developed in 

Part II of this report is investigated by analyzing the dam–foundation rock system shown in 

Figure A.5. The dam cross section chosen is that of Pine Flat Dam [Figure A.5(a)], which has a 

geometry representative of many concrete gravity dams. The concrete in the dam was assumed to 

be homogeneous, isotropic and linear elastic, in a state of plain strain, with modulus of elasticity 

sE = 22.4 GPa, density s  = 2483 kg/m3, and Poisson's ratio s  = 0.20. The foundation rock was 

assumed to be homogeneous, isotropic, and linear elastic, in a state of plain strain, with modulus 

of elasticity f sE E , f  = 2643 kg/m3, and f  = 0.33. The dam was assumed to be supported on 

the surface of the half-space. Material damping in the dam and foundation was modeled in the 

direct FE method analyses by Rayleigh damping with 

s f

x

y

n H

n H

 

 = 2% damping specified in the two 

first periods of vibration for the dam–foundation rock system. Using the substructure method 

analyses as benchmark, material damping was modeled by constant hysteretic damping with 

equivalent hysteretic damping factor    . 

The FE model for the dam cross section consisted of four-node solid elements and had 15 

elements along the base and 30 elements along the height. The FE model for the foundation rock 

also consisted of four-node solid elements and had a maximum element size chosen to be less 

than one-tenth of the shortest wavelength considered in the analysis [Kuhlemeyer and Lysmer 
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[168]. Viscous-damper boundaries were applied at the bottom and sides of the model. The 

overall size of the foundation domain in the horizontal and vertical directions was defined by 

xn H  and yn H , where H is the dam height; see Figure A.5(b). 

Frequency response functions are computed by defining a unit-amplitude harmonic 

surface ground motion, computing effective earthquake forces following the procedure 

summarized in Boxes 3.1 and 3.2 of Part I, and analyzing the system for long enough time to 

determine the steady-state response. Results obtained using the substructure method—wherein 

the foundation rock is modeled rigorously as a semi-infinite half-space—provided the 

benchmark for comparison. 

 

 

Figure A.5 (a) Finite-element model of dam cross section (Pine Flat Dam); and (b) 

dam–foundation rock system with viscous-damper boundaries to simulate 

the semi-unbounded foundation domain. 

A.3.1 Influence of Foundation Domain Size 

Frequency response functions for the dam–foundation rock system subjected to horizontal and 

vertical ground motion are shown in Figure A.6. Results are computed for three different of 

foundation domain sizes: 4H  2H, 8H  4H, and 16H  8H. For all three foundation sizes, the 

direct FE method is able to closely represent the effects of dam–foundation rock interaction. The 

shape and amplitude of the response function is close to the benchmark solution for both 
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horizontal and vertical excitation. The peak at the first resonance frequencies is overestimated for 

the smallest sized foundation domain, but the agreement increases for larger domain sizes. This 

is consistent with the results observed in Section A.2, where “standing waves” caused 

oscillations in the compliance coefficients when the ratio of the distance to the boundary to the 

excitation wave length approached certain values. Choosing a domain size of 8H  4H seems 

sufficient to ensure that these oscillations have minimal influence on the dam response, and there 

is little additional benefit of further increasing the domain size to 16H  8H. 

A.3.2 Influence of Foundation Domain Aspect Ratio 

Figure A.7 compares the accuracy of the direct FE method with viscous-damper boundaries for 

different aspect ratios of the foundation domain. The aspect ratio of the foundation domain 

clearly influences the results: there is little improvement by increasing the domain size from 4H 

 2H to 4H  4H, and correspondingly, the results for 8H  4H are almost identical to those for 

8H  8H. This lack of improvement in accuracy when increasing the vertical dimension occurs 

because the scattered wave field from the dam is largely caused by rocking motion, which 

generates a shallow wave field primarily propagating in the horizontal directions. Additional 

increase of the vertical dimension will therefore not provide much additional absorption from the 

viscous dampers. These results indicate that a vertical dimension between 2H and 4H will likely 

provide sufficient accuracy for practical analyses. 
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Figure A.6 Influence of foundation domain size on the accuracy of direct FE method in 

computing the response of dam on flexible foundation due to harmonic 

horizontal and vertical ground motion. s f   = 2%; /f sE E  = 1.0. 
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Figure A.7 Influence of foundation domain aspect ratio on the accuracy of direct FE 

method in computing the response of dam on flexible foundation due to 

harmonic horizontal and vertical ground motion.  s f  = 2%; /f sE E  = 

1.0. 
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.fE  The same trend was observed in Figures A.2 and A.3, where the accuracy was seen to 

increase for higher values of a0, which for a fixed frequency implies a more flexible foundation. 

 

Figure A.8 Influence of foundation stiffness on the accuracy of direct FE method in 

computing the response of dam on flexible foundation due to harmonic 

horizontal and vertical ground motion. Size of foundation domain = 8H x 

4H; s f   = 2%. 
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Figure A.9 Influence of material damping on the accuracy of direct FE method in 

computing the response of dam on flexible foundation due to harmonic 

horizontal and vertical ground motion. Size of foundation domain = 8H x 

4H; /f sE E  = 1.0. 

A.3.5 Recommendations for Domain Size 

Based on the preceding results, the following conclusions can be stated: 

 An overall foundation-domain size of 8H  4H is sufficient to ensure accurate 

results in the direct FE method when using viscous-damper boundaries to 

model the semi-unbounded foundation domain. Further increase in the domain 

size does not improve the accuracy. 

 Increasing the vertical size of the foundation domain beyond a certain 

minimum value does not improve the results. These presented results indicate 

that a vertical dimension between 2H and 4H will likely suffice for practical 

analyses. 

 The accuracy is generally better for more flexible foundations (lower value of 

fE ) because the performance of the viscous-damper boundary is inversely 

proportional to the foundation stiffness. For stiff foundations, the dimensions 

recommended above may have to be increased. 
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 Increasing the amount of material damping in the foundation slightly 

improves the accuracy of the results, but the trend is only modest. 
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APPENDIX B The Domain Reduction Method 
for Seismic Input in Soil–
Structure Interaction Analyses 

B.1 INTRODUCTION 

The domain reduction method (DRM) [Bielak et al. 2003] is a modular, two-step FE 

methodology developed for modeling response to earthquake ground motion in situations where 

large contrasts exist between the physical scale of the background model and a smaller localized 

feature. The method overcomes the problem of multiple physical scales by subdividing the 

original problem into two simpler ones. The first is an auxiliary problem that simulates the 

earthquake source and propagation path effects by using a model that encompasses the source 

and a simpler background structure where the localized feature has been removed. The second 

problem models the local site effects by using a set of equivalent localized forces derived from 

the first step as the effective seismic input. 

Although primarily developed for large scale geological simulations, the DRM is also 

directly applicable for soil–structure interaction (SSI) problems. Under external excitation such 

as earthquake motion, SSI problems may be viewed as a scattering problem, where a local 

feature perturbs the free-field motion in a larger soil domain. This concept was utilized to 

formulate the direct FE method in Parts I and II of this report. The local feature could in this 

context be any type of structure or local geological feature, either supported on or embedded in 

the soil domain. The DRM then only requires that the free-field motion is known in a single 

continuous layer of elements interior of an absorbing boundary. 

For SSI analysis, the large-scale simulation approach has the advantage that because the 

3D wave field is directly available from the motions recorded in the first step, it is not necessary 

to make simplifying assumptions restricting the shape of the wave field, such as the assumption 
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of vertically propagating waves. The DRM can also be used for seismic input under more 

restrictive assumption where the free-field motion is obtained from a simpler auxiliary problem. 

B.2 FORMULATION OF METHOD 

Consider the large, but finite, seismic region   that contains a seismic source eP  [Figure 

B.1(a)]. Within the larger region   is a smaller region   that contains a local feature such as a 

structure or a geological feature for which the seismic response is to be computed. The material 

in the following derivation is for simplicity assumed to be linear elastic in both   and  , 

however, this assumption can be partly removed later. 

Presented herein in its original notation [Bielak et al. 2003], the equations of motion for 

this system are governed by Navier's equations of elastodynamics, which when discretized 

spatially by FEs can be expressed in partitioned form as 

0
,i i iii ib ii ib ii ib

b b b bbi bb bi bb bi bb
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where the matrices M, C, and K are the mass, damping, and stiffness matrices, respectively, and 

the subscripts , ,i e b  refer to nodes in the interior, exterior and on the boundary between them 

[Figure B.1(a)], respectively. To obtain the traditional form of the equations of motion, these 

equations are added to obtain 
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 (B.2) 

To transfer the seismic excitation to the interior region  , an auxiliary free-field problem 

is considered, in which the region   is replaced by the simpler background region 0  that does 
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not include the local feature; see Figure B.1(b). The outer region   remains identical. All 

variables in the auxiliary free-field problem will be denoted using the superscript 0. 

With the replacement of the interior region, the equations of motion for the auxiliary 

“free-field” problem in the outer region   can now be written as 

0 0 0 0
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where 0
bP  are the interface forces at the boundary  . Since there is no change in the exterior 

region  , the mass, stiffness and damping matrices M, C, and K, M , C , and force vector eP , 

remain the same. 

From the second of these equations, the force vector eP  can be expressed as 

0 0 0 0 0 0
e eb b ee e eb b ee e eb b ee eP M u M u C u C u K u K u

                    (B.4) 

One can solve for the displacement field for the complete domain by substituting 

Equation (B.4) into Equation (B.2). This is not a very practical approach as it requires that the 

free-field motion 0
eu  to be computed and stored in the entire domain  . To simplify, a 

substitution of variables is introduced to expresses the total variables eu  as the sum of the free-

field 0
eu  and the scattered field ew  due to the local feature: 

0
e e eu u w   (B.5) 

 

Figure B.1 (a) Original seismic regions partitioned into two substructures   and   

by a fictitious divide  ; and (b) auxiliary free-field problem where localized 

features of the actual problem in   have been replaced by a simpler 

background model over domain 0 . Figure from Bielak et al. [2003]. 

 

(a) (b)
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Substituting Equation (B.5) into Equation (B.2), and then substituting for eP  from 

Equation (B.4), the desired equation is obtained as 
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It can be seen that all the system matrices M, C, and K are identical as before; however, 

seismic forces eP  have now been replaced by the effective earthquake forces effP , given by the 

right hand side of Equation (B.6) 
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This formulation has the advantage that eff 0P   everywhere except in a single layer of 

elements adjacent to the boundary  [Figure B.2(b)], and that only the solution of the auxiliary 

free-field wave field is needed to determine the forces. Since the effective forces effP  depend 

only on the material properties of the exterior region  , the procedure is also fully applicable 

for cases where the material in the interior region   behaves nonlinearly. 

The results from the above derivations are summarized in the two-step procedure shown 

in Figure B.2. In Step II, the original exterior region   is replaced by a truncated portion ˆ  . 

The wave field in this region consists only of outgoing waves corresponding to the scattered 

motion ew  due to the presence of the local feature. Appropriate absorbing boundary conditions 

must therefore be applied at the boundary ˆ   to avoid spurious reflections back into the interior 

region. Hence, the dimensions of the truncated exterior region ˆ   are only determined by the 

performance of the chosen boundary conditions to eliminate these reflections. 

Note that in the DRM, the location of the absorbing boundary needed to truncate the 

exterior region ˆ   is decoupled from the location of the seismic input. This is an advantage for 

SSI type analyses since any type of absorbing boundary formulation can then be applied without 
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having to allow for the incoming seismic motion to pass through the boundary; therefore, the 

DRM represents a convenient way to apply seismic input in SSI analyses when the wave field is 

known beforehand at a predefined layer of elements encompassing a local region of interest. This 

is the case if the seismic input motion is obtained directly using large-scale earthquake 

simulations, or if certain restrictions are imposed to simplify the shape of the wave field. 

When the exterior region is truncated by ˆ   in Step II, the accuracy is determined by the 

adequacy of the absorbing boundaries applied at ˆ   to absorb the scattered wave field ew . Since 

the wave field in the exterior region ˆ   in Step II consists only of outgoing waves, the wave 

field can be monitored to provide information about the dynamic characteristics of the local 

feature and the performance of the absorbing boundaries. 

 

Figure B.2 Summary of the DRM: (a) Step I defines the auxiliary free-field problem for 

the background model. Resulting motion at the boundaries  , e , and the 

region between them are recorded and used to evaluate effective seismic 

forces effP ; and (b) Step II, defined over the reduced region made up of  

and ˆ   (a truncated portion of  ).The effective seismic forces effP  are 

applied within   and e . Figure from Bielak et al. [2003]. 

B.3 DRM FOR SEISMIC INPUT IN SSI MODELS 

Assume that the DRM is used to model the same dam–foundation rock problem from Appendix 

A (Figure A.5), where viscous dampers are used to model the unbounded extend of the 

foundation domain. The equations of motion for this system are given by Equation (B.6). The 

effective seismic input forces are given in terms of the free-field motion by Equation (B.7) and 

applied to a single layer of elements somewhere interior of the absorbing boundary between   

and e ; see Figure B.3. 

(a) (b)
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Figure B.3 DRM for seismic input to dam–foundation rock system. 

Viscous dampers are applied at the outer boundary of the exterior region  . At this 

boundary, the viscous dampers must absorb the motion relative to the free-field motion, which 

by definition in the DRM formulation [Equation (B.5)] is equal to 0
e e ew u u  . This means 

viscous dampers with coefficients kAV  can be applied at the truncation boundary without 

further modification. 

Even though the formulation for the DRM seems very different from the direct FE 

method formulated in Part I, they are in fact quite similar when used for soil–structure interaction 

models: both formulations provide a method to apply effective earthquake forces to the model, 

and both allow for the outgoing (scattered) motion to be absorbed at the absorbing boundary. The 

advantage of the DRM is that it decouples the location of the absorbing boundary from 

application of earthquake forces, thus allowing advanced boundary conditions to be used and the 

domain sizes to be reduced accordingly. Two significant disadvantages are: (1) implementation 

of DRM requires modification of the FE source code, effectively limiting its application to users 

of LS-DYNA, the only FE code routinely used in dam engineering where DRM is available; and 

(2) specifying the seismic input for a combined dam–water–foundation rock system with small 

domain sizes is impractical because it requires auxiliary analysis of a complex water–foundation 

rock system and extensive book-keeping. For these reasons, the DRM was not chosen as the 

method for applying seismic input in the direct FE method developed in Part I and II of this 

report. 
  

Viscous-damper boundary

Seismic input, 
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B.4 COMPARISON OF DIRECT FE METHOD TO DRM 

To compare the DRM and the direct FE method, the dynamic response of Pine Flat Dam is 

computed by both methods. The FE mesh and material properties of this system are described in 

Section A.3 of Appendix A. The seismic input for the DRM is computed from Equation (B.7) 

with the free-field motions obtained from the same auxiliary analysis that is used for the direct 

FE method (described in Box 3.2 of Part I). This way, both methods are based on the same set of 

assumptions regarding the seismic wave field (vertically propagating waves). 

Frequency response functions for the dam computed by the two methods are compared in 

Figure B.4. The response computed by the direct FE method is essentially identical to that when 

using the DRM, only some insignificant differences exist because of the numerical discretization. 

This demonstrates the equivalency of the two methods when used to specify seismic inputs: the 

DRM will give identical results as the direct FE method when used to analyze the same dam–

foundation rock system with the same boundary condition and free-field motions based on the 

same assumptions. 
 

 

Figure B.4 Comparison of frequency response functions computed by the direct FE 

method and DRM for dam on flexible foundation rock due to horizontal and 

vertical ground motion. 2%  s f . 
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APPENDIX C Computing Frequency Response 
Functions in the Time Domain 

The frequency response functions for the dam response that are computed and compared to 

results from the substructure method in Parts I and II are dimensionless response factors that 

represent the radial acceleration at the crest of the dam to unit harmonic, free-field acceleration. 

The details of two procedures for computing these frequency response functions in the direct FE 

method are presented in this appendix, and both procedures are verified individually by 

comparing against independent solutions obtained using the substructure method. 

C.1 FREQUENCY RESPONSE FUNCTIONS BY REPEATED STEADY-STATE 

ANALYSIS 

The first method to determine the frequency response function ( )H   for the system is to 

perform repeated steady-state analysis (Figure C.1): (1) first, the steady-state response nu  of the 

system to a single excitation frequency nf  is computed by solving the by equations of motion for 

long enough for steady-state to occur; and (2) this analysis is repeated at a sufficient number of 

frequencies to generate a smooth frequency response function. This approach is straightforward, 

but because it requires repeated steady-state analyses of the system at a high number of 

frequencies, it becomes excessively time consuming for 3D dam–water–foundation rock systems 

that may easily have several hundreds of thousands of FEs. An alternative procedure that is much 

more computationally effective is presented next. 
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Figure C.1 Schematic overview of procedure for computing frequency response 

functions by repeated steady-state analysis. 

C.2 FREQUENCY RESPONSE FUNCTIONS BY FOURIER ANALYSIS 

The dynamic response ( )u t  of a system can be expressed in the frequency domain as the product 

of the frequency response function for the system and the Fourier transfer of the applied 

excitation [Chopra 2012b]: 

( ) ( ) ( )U H A    (C.1) 

where ( )U  ( )U   is the Fourier transform of the dynamic response ( )u t , ( )H   is the frequency 

response function (FRF), and ( )A   is the Fourier transform of the applied excitation ( )ga t . 

Rearranging Equation (C.1), an expression for the FRF for the system is obtained as 

( ) ( ) / ( )H U A    (C.2) 

If the input and outputs signals were described by analytical expressions valid for all 

frequencies, it would be possible to obtain the exact FRF from Equation (C.2). Such analytical 

expressions are rarely available except for very simple systems; thus, the above equation will 

normally provide a numerical estimate of the FRF, which is valid only within a given range of 

frequencies. Such an estimate is obtained for the arch dam–water–foundation rock system using 

the following procedure (Figure C.2): 

1. The free-field control motion ( )ga t  is defined as a long series of continuous unit 

harmonic sine waves that has gradually increasing frequency. A sufficient number 

of frequencies are included in ( )ga t  to ensure that the system is excited adequately 

over the frequency range of interest between approx. 2–20 Hz. 
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2. The dynamic response ( )u t , here selected as the radial acceleration at the crest of 

the dam, is computed by time-domain analysis of the FE model by the direct FE 

method.  

3. The Fourier transforms ( )A   and ( )U   of the input and output signals, 

respectively, are computed using the fast Fourier transform (FFT). The FRF for 

the dam response is computed from Equation (C.2). 

The advantage of this approach is that it requires only a single dynamic analysis, thus 

significantly reducing the computational effort compared to doing a repeated number of steady-

state analyses. For example, it takes just under three hours to accurately compute the FRF for the 

arch dam–water–foundation rock system analyzed in Part II of this report between 2–20 Hz using 

the Fourier analysis approach. In contrast, obtaining the same FRF using repeated steady-state 

analysis takes in excess of 12 hours. 
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Figure C.2 Schematic overview of procedure for computing frequency response 

functions using Fourier analysis. 

C.3 VERIFICATION OF IMPLEMENTATION 

Implementation of the two procedures for obtaining FRFs in the time domain is verified by 

computing the response of Morrow Point Dam alone on rigid foundation with empty reservoir 

and comparing against results obtained using the substructure method. The mesh and material 

properties for the dam are the same as those described in Section 5.2.1 of Part II. The results 

presented in Figure C.3 demonstrates that the two procedures for obtaining FRFs give near 

identical results, and that these results are very close to those obtained using the substructure 

method. 
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Figure C.3 Comparison of frequency response functions for the amplitude of relative 

radial acceleration at the crest of dam on rigid foundation with empty 

reservoir due to uniform stream, cross-stream and vertical ground 

motions. s  = 3%. 
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APPENDIX D Applying Uniform Ground Motion 
in the Direct FE Method 

The response results presented in Section 5.3 of Part II for several dam–water–foundation rock 

systems were computed under the assumption that the ground motion ( )ga t  was uniform at the 

dam–foundation interface and water–foundation interface. For these analyses, the seismic input 

method proposed by Wilson [2002] was extended and implemented to apply the earthquake 

excitation to the FE model. This method is derived below for the dam–water–foundation rock 

system  

D.1 EQUATIONS OF MOTION 

Consider the dam–water–foundation rock system (Figure 3.1 of Part II) whose equations of 

motion were given by Equation (3.1) in Part II. For convenience of notation in the subsequent 

derivation, it is assumed that the system is linear elastic with no material damping, thus reducing 

the governing equation for the dam–water–foundation rock system to: 

T T

( )

( )

t t t
h b f

t t t
h b r


         

                  

m 0 k Q Qr r R

Q Q s 0 hp p H




 (D.1) 

If water–foundation rock is ignored upstream of the absorbing boundary r  and the free-

field foundation-rock motion 0r  is known, we can express the total motion tr  in terms of the 

displacements r relative to the free-field motion 0r , i.e., 0t  r r r . Rewriting Equation (D.1) 

and collecting terms that involve 0r  on the right hand side, the following equation is obtained: 

0 0 0

T T T T 0

( )

( ) ( )
h b ff

t t t
h b h br

 
                                     

m 0 r rk Q Q mr kr RR

Q Q s p p0 h Q Q rH

 
 

 (D.2) 

This equation can be simplified when the free-field displacements 0
br  at the dam–foundation 

interface are uniform. Under this assumption, the static rigid body motion of the dam is: 
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0
d b k r 0  (D.3) 

where dk  is the stiffness matrix for the dam alone. Furthermore, the equation governing 

displacements in the free-field foundation-rock system are 

0 0 0
0 0 f m r k r R  (D.4) 

where 0m  and 0k  are the mass and stiffness matrices, respectively, for the foundation rock alone. 

Using Equations (D.3) and (D.4) and cancelling terms, Equation (D.2) becomes 

0

T T T T 0
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( ) ( )
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t t t
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m 0 r rk Q Q PR
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 (D.5) 

where the effective earthquake forces 0
dP  applied to the dam nodes are  

0 0 ( )d d b d ga t   P m r m ι  (D.6) 

where ι  is the influence vector [Chopra 2012b], and ( )ga t  is the free-field ground motion 

assumed at the dam–foundation interface. 

Substituting Equations (3.2a) and (3.4b) of Part II for fR  and t
rH , respectively, in 

Equation (D.6), and adding material damping and static forces to the formulation, gives the final 

equations of motion for the dam–water–foundation rock system with uniform excitation: 
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 
 



 (D.7) 

Comparing Equation (D.7) to Equation (3.6) demonstrates that changing variable 
0t  r r r  in the dam and foundation rock has led to two changes: (1) the effective earthquake 

forces 0
fP  at the foundation boundaries have been replaced by the effective earthquake forces 0

dP  

applied to the dam only; and (2) the effective earthquake forces 0
rP  at the fluid boundary have 

been supplemented by forces T T 0( )h b b Q Q r  applied to the dam–water and water–foundation 

interfaces. These modifications allow for application of effective earthquake forces that is 

consistent with the assumption of uniform ground motion at the dam–foundation and water–

foundation interfaces. 
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D.2 VERIFICATION OF IMPLEMENTATION 

Implementation of the method is verified by computing the response of Morrow Point Dam on 

rigid foundation with full reservoir, with mesh and material properties chosen as the same as 

those described in Section 5.2.1 of Part II. The results obtained using the method derived in 

Section D.1 are compared with independent results obtained by directly prescribing the free-field 

displacements at the dam–foundation and water–foundation interfaces. 

The frequency response functions for the amplitude of relative radial acceleration at the 

crest of the dam obtained by the two methods are presented in Figure D.1. The results obtained 

using Equation (D.7) leads to results that are essentially identical to those obtained by directly 

prescribing the free-field displacements for the system. The small differences in the results are 

due to the slight numerical differences associated with applying forces based on accelerations vs. 

directly prescribing base displacements. 

 

 

Figure D.1 Comparison of frequency response functions for the amplitude of relative 

radial acceleration at the crest of dam on rigid foundation with full 

reservoir due to uniform-stream, cross-stream, and vertical ground 

motions. s  = 3%;  = 0.80. 
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APPENDIX E Computing Boundary Tractions 
from 1D Stress–Strain Relations 

E.1 ONE-DIMENSIONAL STRESS–STRAIN RELATIONS 

The simplified 1D free-field analysis presented in Section 6.1 of Part II replaced the actual free-

field foundation-rock system by a much simpler system [Figure 6.1(b)]: a homogeneous or 

horizontally layered half-space without the canyon topography. Under the assumption of 

vertically propagating seismic waves, this system reduces to a single column of foundation-rock 

elements that only allows for shear and axial deformation [Figure E.1(a)]. The boundary 

tractions for this system can be computed using standard 1D stress-strain relationships: 

for -component of ground motionxz x

du
n x

dz
   (E.1a) 

for -component of ground motionyz y

dv
n y

dz
   (E.1b) 

for -component of ground motion,x x y y

dw dw
n n z

dz dz
      (E.1c) 

where k  and kz , ,k x y  are the normal and tangential boundary tractions [Figure E.1(b)]; 

, ,u v w  are the displacements in the x-, y-, and z-direction, respectively;  and  are the first and 

second Lamé parameters for the foundation rock; and 1kn    or 1  if an outward normal points 

in the positive or negative k-direction, respectively. 

Horizontal excitation will only produce tangential tractions because / 0dw dz  , and 

vertical motion will only produce normal tractions because / 0du dz   and / 0dv dz   (Figure 

E.1a). From the boundary tractions k  and kz ,  nodal forces are computed by multiplying by 

the tributary area of each node. 
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E.2 VERIFICATION OF IMPLEMENTATION 

Implementation of the method is verified by computing the surface response of the flat 

foundation domain of Figure 5.1 of Part II with the free-field control motion ( )k

ga t  defined at the 

surface by the S69E, S21W, and vertical components of the Taft ground motion. Effective 

earthquake forces 0
fP  are computed from the procedures summarized in Box 4.1 of Part II at the 

bottom boundary and from a 1D free-field analysis (Box 6.1) with boundary tractions computed 

from Equation (E.1) at the side boundaries, and the motion at the surface of the flat foundation 

domain is determined. 

The results presented in Figure E.2 shows a near-perfect match between the assumed 

free-field control motion and the computed motion at the surface of the flat foundation domain, 

thus verifying the implementation of the procedure. 

 

Figure E.1 (a) Deformation of foundation rock column due to vertically propagating 

SH-, SV-, and P-waves; and (b) normal and tangential boundary tractions 

for foundation-rock element. 
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Figure E.2 Results from Flat Box Test: comparison of 5% damped pseudo-

acceleration response spectra of free-field control motion and motion 

computed at nodes on the flax box surface. 
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APPENDIX F Influence of Water–Foundation 
Rock Interaction and Implications 
for the Substructure Method 

The conclusion that sediments can be ignored in analysis of dam–water–foundation rock systems 

(Section 3.2.3 of Part III) is based on results from the direct FE method, which rigorously 

includes water–foundation rock interaction. In contrast, earlier results computed by the 

substructure method, which ignores water–foundation rock interaction, concluded that the 

influence of sediments can be significant [Fenves and Chopra 1985; Tan and Chopra 1995b]. 

The influence of neglecting water–foundation rock interaction on dam response, and its 

implications for use of the substructure method for earthquake analysis of concrete dams, is 

investigated next. 

F.1 EFFECTS OF WATER–FOUNDATION ROCK INTERACTION 

Investigated first are the errors arising from neglecting water–foundation rock interaction. 

Determined by the direct FE method, the frequency response functions for the idealized gravity 

dam system described in Section 3.2.3.1 of Part III with full reservoir but no sediment at the 

reservoir bottom are presented in Figure F.1 for two cases: water–foundation rock interaction is 

included in one case but excluded in the other. Results are presented for both components of 

ground motion and for three values of /f sE E . 

The results demonstrate that water–foundation rock interaction has negligible influence 

on the response of gravity dams to horizontal ground motion at all excitation frequencies, except 

for those frequencies very close to the resonant frequencies of the system where the influence is 

noticeable. Note, this influence is not significant for earthquake response, as confirmed by the 

two sets of response histories presented in Figure F.2(a), which are essentially identical. 
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The preceding observation based on frequency response functions is generally valid also 

for response to vertical ground motion, but for one important exception. At the resonant 

frequencies of the reservoir, the dam response is greatly overestimated if water–foundation rock 

interaction is ignored. Because this discrepancy occurs within a narrow range of frequencies 

around the reservoir natural frequencies, the overestimation is much less in the earthquake 

response of the dam [Figure F.2(b)]; this observation is expected to be valid for most ground 

motions. These results support the approximation of neglecting water–foundation rock 

interaction in the substructure method. 
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Figure F.1 Effects of water–foundation rock interaction on frequency response 

function for gravity dams with full reservoir but no sediments due to 

horizontal and vertical ground motions. Results are presented for three 

values of /f sE E = ½, 1, and 2. 
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F.2 APPROXIMATE MODELING OF WATER–FOUNDATION ROCK INTERACTION 

Although the errors introduced by neglecting water–foundation rock interaction are not large, 

they can be essentially eliminated by a simple model that can conveniently be included in the 

substructure method. For this purpose, water–foundation rock interaction is modeled 

approximately by the wave-reflection coefficient  , introduced in the substructure method to 

model wave absorption in sedimentary deposits at the reservoir bottom [Fenves and Chopra 

1985; Tan and Chopra 1995b]: 

1
,

1

C

C








 (F1) 

where / r rC   , C is the speed of pressure waves in the water,   is the density of water, rC  is 

the compression wave velocity in the rock, and r  is the density of the rock. Observe that  is 

now determined based on the properties of the rock, not the sediments. 

Determined by the direct FE method, the frequency response functions for a gravity dam 

with full reservoir but no sediments at the reservoir bottom are presented in Figure F.3 for two 

models for water–foundation rock interaction: (1) rigorous, and (2) approximate  -model with 

  values computed from Equation (F1) based on rock properties. The results demonstrate that 

near the resonant frequencies, the response is underestimated by the  -model; but at all other 

excitation frequencies, the -model is highly accurate. Note: the  -model—with the value of  

based on rock properties—is able to predict the response to earthquake ground motion quite 

accurately, which is apparent from the close agreement of the results in Figure F.4. 

These results demonstrate that modeling water–foundation rock interaction by the  -

model with   based on rock properties is a reasonable approximation for earthquake analysis of 

concrete dams by the substructure method, where water–foundation rock interaction is ignored in 

the formulation of the method. A corollary of the results and conclusions presented in Section 

3.2.3 is that with water–foundation rock interaction modeled in this manner, reservoir bottom 

sediments can be ignored in the substructure method just as in the direct FE method. 
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Figure F.2 Effects of water–foundation rock interaction on earthquake response of a 

gravity dam with full reservoir but no sediments, /f sE E  = 1. Responses 

presented are for the (a) S69E component and (b) vertical component of the 

Taft ground motion. 
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Figure F.3 Effects of water–foundation rock interaction on frequency response 

function for gravity dams with full reservoir but no sediments due to 

horizontal and vertical ground motions. Results are presented for two 

models for water–foundation rock interaction: (1) rigorous and (2) 

approximate -model. 
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Figure F.4 Earthquake response of gravity dam with full reservoir but no sediments, 

/f sE E  = 1. Responses presented are for the (a) S69E component and (b) 

vertical component of the Taft ground motion. 
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