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ABSTRACT 

Multi-stage friction pendulum systems (MSFPs), or more specifically the triple friction 
pendulum (TFP), are currently being developed as seismic isolation devices for buildings and 
other large structures. However, all current models are inadequate in properly modeling all facets 
of these devices. Either the model can only handle uni-directional ground motions while 
incorporating the kinetics of the TFP system, or the model ignores the kinetics and only models 
bi-directional motion. And in all cases, the model is linearized to simplify the equations. 

This paper presents an all-in-one model that incorporates the full nonlinear kinetics of the 
TFP system while allowing for bi-directional ground motion. In this way, the model presented 
here is the most complete single model currently available. The model is developed in such a 
way that allows for easy expansion to any standard type of MSFP, simply by following the 
procedure outlined in this paper. 

It was found that the nonlinear model can more accurately predict the experimental 
results for large displacements due to the nonlinear kinematics used to describe the system. It is 
also shown that the inertial effects of TFP system are negligible in normal operating regimes, 
however, in the event of uplift, the inertial effects may become significant. The model is also 
able to accurately predict the experimental results for complicated bi-directional ground motions. 
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1 Introduction 

Multi-stage friction pendulum systems (MSFPs) are currently being designed and developed as 
seismic isolation devices for a wide range of structural and non-structural systems [Mokha et al. 
1996; Warn and Ryan 2012; and Zayas and Low 1999]. One of the earliest forms of the MSFP 
was the single friction pendulum developed by Zayas et al. [1987]. This original design has been 
expanded to double and triple friction pendulums to increase the utility of the device as a seismic 
isolator [Fadi and Constantinou 2010; Fenz and Constantinou 2008c]. These seismic isolators 
consist of steel bearings with spherical concave surfaces that slide along one another. An 
example of the triple friction pendulum (TFP) can be seen in Figure 1.1. As the bearings slide 
along one another, they are able to provide restoring forces related to the relative displacement 
between bearings, which creates a variable stiff- ness associated with the overall motion of the 
friction pendulum [Fadi and Constantinou 2010]. Also, the friction between sliding bearings 
gives the friction pendulums a hysteretic behavior [Fenz and Constantinou 2008c]. 

   

(a) (b) 

Figure 1.1 (a) An overview image of an example of a Triple Friction Pendulum (TFP); 
and (b) a close up front view of a TFP. 

Multiple areas of the world, including California and Japan, are at a constant risk from a 
major earthquake, and the proper usage of seismic isolators, such as MSFPs, can drastically 
reduce the damage sustained by buildings, bridges, etc. due to strong ground motion 
[Constantinou et al. 2007; Morgan and Mahin 2010]. For this reason, well-functioning models of 
MSFPs are necessary to make sure that structures are properly isolated in the event of an 
earthquake. As the usage of MSFPs has become more common, extensive experimental tests on 
MSFPs have been undertaken to help characterize their motion due to different types of 
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excitation [Fenz and Constantinou 2008b; Mosqueda et al. 2004]. However, experimental tests 
can be expensive and time consuming; thus numerical models were developed to simulate the 
behavior of these MSFPs [Becker and Mahin 2013a; Becker and Mahin 2013b; Fenz and 
Constantinou 2008a; and Tsai et al. 2010]. While current models have come a long way, no 
current model for MSFPs utilizes a rigorous setup for the kinematics of the internal sliders; they 
start directly with scalar equations. Another drawback of current models is that no single model 
incorporates the full kinetics of the MSFPs with bi-directional motion; they model either the full 
kinetics for uni-directional motion or the bi-directional motion with only kinematics and no 
kinetics. 

This paper aims to expand upon the current models for Multi-Stage Friction Pendulum 
systems (MSFPs), which will incorporate the full kinetics, with no linearization as-assumptions 
and no restrictions on the overall motion. A rigorous use of vectors to describe the kinematics of 
the internal sliders will help to clarify the overall motion of MSFPs. This will also aid in the 
setup of the kinetics of the MSFPs, as well as facilitating the modeling of multi-directional 
motion. The model presented herein will incorporate full vectorially described motion with 
trajectories constrained to the configuration manifold as defined by mathematically-precise 
constraints. 

Constructing the model in this way directly facilitates a number of modeling advances 
and naturally leads to robust numerical approximations. The advantages of the model are as 
follows: (1) it will be a geometrically fully nonlinear model; (2) it will be able to naturally 
handle multi-directional motions, including complex rotary motions on the sliding surfaces, top 
and bottom plate rotations, etc.; (3) by construction, it will be fully dynamic and allow for rate 
dependent analysis; and (4) it will be modular and permit the use of advanced friction models. 
This paper will apply the vectorized motion to that of the triple friction pendulum system, a type 
of MSFP, as a benchmark for the new model, but it will be done in such a way that allows for 
easy expansion to other, more complicated MSFP systems. 
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2 Triple Friction Pendulum: Equations of 
Motion 

First, the equations of motion for the TFP are defined. In doing so, the patterns in the equations 
will clearly demonstrate they can be easily expanded to more complicated MSFPs. Figure 2.1 
shows a cross-sectional view of the TFP used in this paper. 

2.1 KINEMATICS 

In order to define the equations of motion, the position vectors of all of the important locations in 
the TFP need to be defined, such as the center-of-mass of each bearing. Each bearing will have 
its own set of co-rotational basis vectors defined using sets of 1-2-3 Euler angles [O’Reilly 
2008], all relative to the previous bearing. It is worth noting that the Euler angle singularity for 

the 1-2-3 set occurs when the second rotation angle—in this paper defined as θα—is equal to 
2


  

[O’Reilly 2008]. In order to avoid this singularity, θα is restricted to ,
2 2


     

 
, which is well 

within the operating regime of MSFPs. By taking advantage of the axial symmetry of the 
bearings, only the 1-2 Euler angles are needed to define the basis vectors. Figure 2.2 shows 
graphically how the basis vectors are constructed from 1-2-3 Euler angles for the first set of 
Euler angles. The co-rotational bases are defined as: 

1 2 1 3 2 4 3 5 4
1 2 3 4 5E , , , ,i i i i i i i i i i    t R t R t t R t t R t t R t  (2.1) 

with the following rotation tensors 

     
   

1 2
1 1 1, 2 2 2, 3 3 3,

3 4
4 4 4, 5 5 5,

, E , , ,

, ,

i i i

i i

     

   

  

 

R R R R t R R t

R R t R R t
 (2.2) 

Each rotation tensor can be broken down into a series of two rotations as follows: 

     1
1 1 2 1 1 1, , ,i i i   R E L ,t L E  (2.3) 

where the individual rotations have the following definitions 
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       1 1 1 2 2 3 3 1 3 2 2 3 1 1cos sini          L ,E E E E E E E - E E E E  (2.4) 

and 

       1 1 1 1 1 1 1 1 1 1 1
2 1 1 3 3 1 1 1 1 3 3 1 2 2cos sin                  i  L ,t t t t t t t - t t t t  (2.5) 

where the intermediate co-rotational basis, 1
it , is defined as 

 1
1 1,

 i i it L E E  (2.6) 

The co-rotational i
t  is applied to the center-of-mass of the  bearing; an example for bearings 1 

and 2 can be seen in Figure 2.3. 

 

(a) 

 

(b) 

Figure 2.1 (a) Diagram of a Triple Friction Pendulum (TFP) model; and (b) expanded 
view of the TFP. 
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Figure 2.2 The 2-D change of coordinates from the 1-2-3 Euler angles. Note that in 
each 2-D coordinate system shown, there is a third unit vector pointing 
out of the page following the right-hand rule about which the 2-D 
coordinate system is rotating. 

 

Figure 2.3 Locations of the co-rotational basis vectors for the first two bearings. 
Note that for each coordinate system shown, there is a third vector 
pointing into the page following the right-hand rule. 

The position vectors will all be defined relative to the previous bearing using these co-
rotational bases—starting from the ground contact point with the bottom bearing—defined as 

01,r  going all the way to the top of the final bearing, defined as 55r . Figures 2.1 and 2.4 show 
what all of the physical qualities represent, as well as the physical locations of some of the 
required position vectors. 
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(a) (b) 

   

(c) (d) 

Figure 2.4 Sliding angles for all four sliding surfaces. 

All of the required position vectors are defined as follows: 

01 1 1 2 2 3 3g g gu u u  r E E E  (2.7) 

which is the ground contact point of bearing one, 
1

1 01 1 3z r r t  (2.8) 

which is the center-of-mass of bearing one, 

  1
11 1 1 31   zr r tl  (2.9) 

which is the center top of bearing one, 
1

1 11 1 3c R r r t  (2.10) 



7 

which is the center of the sphere created by the sliding surface with radius R1, 
1

12 1 1 3c R r r t  (2.11) 

which is the center bottom of bearing two, 
2

2 12 2 3z r r t  (2.12) 

which is the center-of-mass of bearing two, 

  2
22 2 2 2 3   zr r tl  (2.13) 

which is the center top of bearing two, 
2

2 22 2 3c R r r t  (2.14) 

which is the center of the sphere created by the sliding surface with radius R2, 
3

23 2 2 3c R r r t  (2.15) 

which is the center bottom of bearing three, 
3

3 23 3 3z r r t  (2.16) 

which is the center-of-mass of bearing three, 

  3
33 3 3 3 3   zr r tl  (2.17) 

which is the center top of bearing three, 
3

3 33 3 3c R r r t  (2.18) 

which is the center of the sphere created by the sliding surface with radius R3, 
4

34 3 3 3c R r r t  (2.19) 

which is the center bottom of bearing four, 

  4
4 34 3 4 3   zr r tl  (2.20) 

which is the center-of-mass of bearing four, 
4

44 4 4 3z r r t  (2.21) 

which is the center top of bearing four, 
4

4 44 4 3c R r r t  (2.22) 

which is the center of the sphere created by the sliding surface with radius R4, 
5

45 4 4 3c R r r t  (2.23) 

which is the center bottom of bearing five, 

  5
5 45 5 5 3   zr r tl  (2.24) 
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which is the center-of-mass of bearing five, 
5

55 5 5 3z r r t   (2.25) 

which is the center top of bearing five, 

Now that all of the relevant position vectors have been defined, the velocity vectors 
associated with each position vector need to be defined. In addition, the angular velocities of 
each bearing are needed: 

1
1 1 2 1 1   t E  (2.26) 

which is the angular velocity of bearing one excluding any rotational about the axis of symmetry. 

1
1 1 3 1 t  t   (2.27) 

which is the total angular velocity of bearing one, 
2 1

2 2 2 2 1 1    t t   (2.28) 

which is the angular velocity of bearing two excluding any rotation about the axis of symmetry. 
2

2 2 3 2 t  t   (2.29) 

which is the total angular velocity of bearing two 
3 2

3 3 2 3 1 2    t t   (2.30) 

which is the total angular velocity of bearing three excluding any rotation about the axis of 
symmetry, 

3
3 3 3 3 t  t   (2.31) 

which is the angular velocity of bearing three, 
4 3

4 4 2 4 1 3    t t   (2.32) 

which is the angular velocity of bearing four excluding any rotation about the axis of symmetry, 
4

4 4 3 4 t  t   (2.33) 

which is the total angular velocity of bearing four, 
5 4

5 5 2 5 1 4    t t   (2.34) 

which is the angular velocity of bearing five excluding any rotation about the axis of symmetry, 
and  

5
5 5 3 5 t  t   (2.35) 

which is the total angular velocity of bearing five. Using the following relations, 
1 1 2 2 3 3 4 4 5 5

1 2 3 4 5             
i i i i i i i i i it t t t t t t t t t      (2.36) 

the velocity vectors are defined as follows: 
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01 1 1 2 2 3 3g g gu u u  v E E E    (2.37) 

1
1 01 1 1 3  v v tz   (2.38) 

1
11 1 1 1 3v = v + tz   (2.39) 

1
1 11 1 1 3v = v + tc R  (2.40) 

1
12 1 1 1 3v = v + tc R  (2.41) 

2
2 12 2 1 3v = v + tz   (2.42) 

  2
22 2 2 2 2 3 v = v + tzl   (2.43) 

2
2 22 2 2 3v = v + tc R   (2.44) 

3
23 2 2 3 3v = v tc - R   (2.45) 

3
3 23 3 3 3v = v + tz   (2.46) 

  3
33 3 3 3 3 3 v = v + tzl   (2.47) 

3
3 33 3 3 3v = v tc - R   (2.48) 

4
34 3 3 4 3v = v tc + R   (2.49) 

  4
4 34 4 4 4 3 v = v + tz l  (2.50) 

4
44 4 4 4 3v = v + tz   (2.51) 

4
4 44 4 4 3v = v tc - R   (2.52) 

4
45 4 4 4 3v = v tc + R   (2.53) 

  5
5 45 5 5 5 3 v = v + tz l  (2.54) 

5
55 5 5 5 3v = v + tz   (2.55) 

where Equations (2.37)–(2.55) are the velocity vectors of the corresponding position vectors in 
Equations (2.7)–(2.25). Next the following angular acceleration vectors are required: 

1 1
1 1 2 1 1 2 1 1       t t E   (2.56) 

1 1
1 1 3 1 1 3 1     t  t t    (2.57) 

2 2 1 1
2 2 2 2 2 2 2 1 1 2 1 1             t t t t     (2.58) 

2 2
2 2 3 2 2 3 2     t  t t    (2.59) 
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3 3 2 2
3 3 2 3 3 2 3 1 2 3 1 2             t t t t     (2.60) 

3 3
3 3 3 3 3 3 3     t  t t    (2.61) 

4 4 3 3
4 4 2 4 4 2 4 1 3 4 1 3             t t t t     (2.62) 

4 4
4 4 3 4 4 3 4     t  t t    (2.63) 

5 5 4 4
5 5 2 5 5 2 5 1 4 5 1 4             t t t t     (2.64) 

5 5
5 5 3 4 5 3 5     t  t t    (2.65) 

where Equations (2.56)–(2.65) are the angular acceleration vectors of the corresponding angular 
velocity vectors in Equations (2.26)–(2.35). Finally, the acceleration vectors of each of the above 
listed velocity vectors are defined as follows: 

01 1 1 2 2 3 3g g gu u u  v E E E     (2.66) 

 1 1
1 01 1 1 3 1 1 1 3     v v t t  z z    (2.67) 

   1 1
11 1 1 1 1 3 1 1 1 1 3     v = v + t t  z zl l    (2.68) 

 1 1
1 11 1 1 3 1 1 1 3   v = v + t t c R R    (2.69) 

 2 2
12 1 1 2 3 1 2 2 3    v = v t t  c R R    (2.70) 

 2 2
2 12 2 2 3 2 2 2 3   v = v + t t  z z    (2.71) 

     2 2
22 2 2 2 2 3 2 2 2 2 3     v = v + t t  z zl l    (2.72) 

 2 2
2 22 2 2 3 2 2 2 3   v = v + t t c R R    (2.73) 

 3 3
23 2 2 3 3 2 3 3 3    v = v t t  c R R    (2.74) 

 3 3
3 23 3 3 3 3 3 3 3  v = v + t t  z + z    (2.75) 

     3 3
33 3 3 3 3 3 3 3 3 3 3     v = v + t t  z zl l    (2.76) 

 3 3
3 33 3 3 3 3 3 3 3  v = v t t c - R - R    (2.77) 

 4 4
34 3 3 4 3 3 4 4 3  v = v t t  c + R + R    (2.78) 

     4 4
4 34 4 4 4 3 4 4 4 4 3     v = v + t t  z zl l    (2.79) 

 4 4
44 4 4 4 3 4 4 4 3   v = v + t t  z z    (2.80) 
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 4 4
4 44 4 4 3 4 4 4 3  v = v t t c - R - R    (2.81) 

 5 5
45 4 4 5 3 4 5 5 3   v = v t t  c + R R    (2.82) 

     5 5
5 45 5 5 5 3 5 5 5 5 3     v = v + t t  z zl l    (2.83) 

 5 5
55 5 5 5 3 5 5 5 3   v = v + t t  z z    (2.84) 

where Equations (2.66)–(2.84) are the acceleration vectors of the corresponding position vectors 
in Equations (2.7)–(2.25). The following vectors are all of the required vectors to properly 
describe the kinematics of the TFP. 

2.2 NORMAL FORCES 

In order to look at the full kinetics of the TFP, all of the forces acting both internally and 
externally need to be fully des cribbed. The first set of forces that act on the TFP are the internal 
normal forces. From a moment balance, the normal forces will not necessarily be acting at the 
center point of the contract between bearings [Sarlis and Constantinou 2016], which requires 
another set of 1-2 Euler angles to define the location of each internal normal force. These Euler 
angles and their associated basis vectors shall be noted with a superscribed ~, such as 1  and 1

1t . 
The basis vectors for each normal force position is given as 

1 1 2 2 3 3 4 4 5 5
1 2 3 4 5i i i i i i i i i i    t R t t R t t R t t R t t R t          (2.85) 

where 

   
   

1 2
1 1 1 2 2 2

3 4
3 3 3 4 4 4

, , , ,

, , , ,

i i

i i

   

   

 

 

R R t R R t

R R t R R t

   

   
 (2.86) 

where R has the same definition as in Equation (2.3). The position of each normal force is 
defined as 

1
1 1 1 3c R r r t  (2.87) 

which is the position of the normal force on the sliding surface with radius R1, 
2

2 2 2 3c R r r t  (2.88) 

which is the position of the normal force on the sliding surface with radius R2, 
3

3 3 3 3c R r r t  (2.89) 

which is the position of the normal force on the sliding surface with radius R3, 
4

4 4 4 3c R r r t  (2.90) 

which is the position of the normal force on the sliding surface with radius R3. Finally, the 
normal forces are defined as 
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1 2 3 4
1 1 3 2 2 3 3 3 3 4 4 3   N t N t N t N t   N N N N  (2.91) 

where N are the magnitudes of the normal forces. This is all of the required information to 
define the internal normal forces. 

2.3 FRICTION FORCES 

The next set of forces acting on the TFP are the friction forces that act between bearings at each 
of the sliding surfaces. The friction forces act at the same locations as the normal forces, thus 
they will use the same set of basis vectors and Euler angles previously defined. The dynamic 
friction forces are in the plane normal to the normal forces and are defined as follows: 

1 1 1 1 2 2 2 2 1 3 3 3 4 4 4 4f f f fN N N N          F f F f F f F f     (2.92) 

where  are the coefficient of frictions for each pair of sliding surfaces, and the f  vectors 
define the direction in which the friction forces act and are given by, 

1 1 2 2
1 1 1 1 2 2 2 1 2 2

3 3 4 4
3 3 1 3 2 4 4 1 4 2

Y Z Y Z

Y Z Y Z

   

   

f t t f t t

f t t f t t

    
    

 (2.93) 

where Y and Z are used to define the direction of the friction forces in the plane normal to the 
normal forces. These values are determined using a modified Bouc–Wen model for biaxial 
hysteresis [Park et al. 1986; Harvey and Gavin 2014], given as follows: 

 

 

1 11 2
1 1 1 1 1 1 1 1 1

1 10

1 11 2
1 1 1 2 1 1 1 1 1

1 10

1, 0
1

0, 0

1, 0
1

0, 0

       
       

  

  


Y uR
Y a Y u bY Z v a

Y uR

Z vR
Z b Z v a Y Z u b

Z vR

 (2.94) 

 

 

2 22 2
2 2 2 2 2 2 2 2 2

2 20

2 22 2
2 2 2 2 2 2 2 2 2

2 20

1, 0
1

0, 0

1, 0
1

0, 0

       
       

  

  


Y uR
Y a Y u b Y Z v a

Y uR

Z vR
Z b Z v a Y Z u b

Z vR

 (2.95) 

 

 

3 33 2
3 3 3 3 3 3 3 3 3

3 30

3 33 2
3 3 3 3 3 3 3 3 3

3 30

1, 0
1

0, 0

1, 0
1

0, 0

       
       

  

  


Y uR
Y a Y u b Y Z v a

Y uR

Z vR
Z b Z v a Y Z u b

Z vR

 (2.96) 
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 

 

4 44 2
4 4 4 4 4 4 4 4 4

4 40

4 44 2
4 4 4 4 4 4 4 4 4

4 40

1, 0
1

0, 0

1, 0
1

0, 0

       
       

  

  


Y uR
Y a Y u b Y Z v a

Y uR

Z vR
Z b Z v a Y Z u b

Z vR

(2.97) 

where R0 is the yield radius, and u  and v  are the orthogonal in-plane components of the 
relative velocity at the point where the friction forces act and are given by 

1 1 2 2
1 1 1 1 1 2 1 2 1 2 2 2

3 3 4 4
3 3 1 3 3 2 4 4 2 4 4 2

       

       

v t v t v t v t

v t v t v t v t

          
          

u v u v

u v u v
(2.98) 

where v  are the relative velocity vectors at the points where the friction forces act and are 
given by 

   
   

1 2
1 1 2 1 3 2 2 3 2 3

3 4
3 3 4 3 3 4 4 5 4 3

       

     

v t v t

v t v t

  

  

t t t t

t t t t

R R

R R

   

   
(2.99) 

This gives all of the necessary information to fully define the friction forces. 

2.4 CONTACT FORCES 

The last set of forces acting on the TFP are the forces that occur when two bearings contact 
one another when the maximum sliding displacement has been reached for a given sliding 
surface. To model this force, a spring–damper system will be imposed at the contact point. 
First, the amount of relative sliding between bearings for each sliding surface is given as 

   
   

1 1 2 1 2 3
1 1 3 3 2 2 3 3

1 3 4 1 4 5
3 3 3 3 4 4 3 3

cos cos

cos cos

 

 

   

   

s R s R

s R s R

t t t t

t t t t
(2.100) 

The gap functions are then defined as 

1 1 1 2 2 2 3 3 3 4 4 4c c c cg s s g s s g s s g s s        (2.101) 

where sc is the maximum sliding displacement before contact. Thus, if g is positive, there is no 
contact; if g is negative, there is contact. The velocity gap is defined as 

1 1 2 2 3 3 4 4      g g g g     (2.102) 

The magnitudes of the contact forces become 

1
1

1 1 1 1 1

0 0

0


   

c
c c

g
F

k g c g
(2.103) 

2
2

2 2 2 2 2

0 0

0


   

c
c c

g
F

k g c g
(2.104) 
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3
3

3 3 3 3 3

0 0

0


   

c
c c

g
F

k g c g
 (2.105) 

4
4

4 4 4 4 4

0 0

0


   

c
c c

g
F

k g c g
 (2.106) 

where kc and cc are the stiffness and damping constants for the contact forces, respectively. 
The contact forces are then given by 

1 1 1 2 2 2 3 3 3 4 4 4c c c c c c c cF F F F   F f F f F f F f  (2.107) 

where the directions of the forces are given by 

   
   

   
   

   
   

   
   

1 2 2 1 2 2 2 3 3 2 3 3
3 1 1 3 2 2 3 1 1 3 2 2

1 2
2 2 2 21 2 1 2 2 3 2 3

3 1 3 2 3 1 3 2

4 3 3 4 3 3 5 4 4 5 4 4
3 1 1 3 2 2 3 1 1 3 2 2

3 4
2 2 2 24 3 4 3 5 4 5 4

3 1 3 2 3 1 3 2

     
 

     

     
 

     

t t t t t t t t t t t t
f f

t t t t t t t t

t t t t t t t t t t t t
f f

t t t t t t t t

 (2.108) 

The contact forces will act at the following positions: 
2 3

1 2 1 2 3 12 2 3 2 3 3 23

3 4
3 3 3 3 3 33 1 4 4 4 3 44

r p r p

r p r p

     

     

r f t r r f t r

r f t r r f t r
 (2.109) 

All of the required information needed to define the contact forces between the bearings has been 
now defined. 

2.5 EQUATIONS OF MOTION 

Now that all of the required kinematic and kinetic quantities have been defined, the equations of 
motion for the TFP can be established. In this model, it is assumed that the motion of the base 
bearing is fully prescribed, meaning 1gu , 2gu , 3gu , 1 , 1 , and 1 , and all required time 

derivatives are provided. It is also assumed that the force and moment on the top of the 
bearing—Ftop and Mtop–are also provided. From a balance of linear momentum applied to each 
of the bearings, the following equations much be satisfied: 

2 2 1 1 1 2 2 2 2 3f c f cm m g      v N F F N F F E  (2.110) 

3 3 2 2 2 3 3 3 3 3f c f cm m g      v N F F N F F E  (2.111) 

4 4 3 3 3 4 4 4 4 3f c f cm m g      v N F F N F F E  (2.112) 

5 5 4 4 4 top 5 3f cm m g    v N F F F E  (2.113) 

where g is the gravitational acceleration, and m is the mass of the bearing. Once the balance of 
angular moment is applied to each bearing, the following equations must also be satisfied: 



15 

       
   

2 2 2 2 2 1 2 1 1 2 2 2 2

1 2 1 2 2 2

         

     

  t t t
f f

c c

J J r r N F r r N F

r r F r r F

  
 (2.114) 

       
   

3 3 3 3 3 2 3 2 2 3 3 3 3

2 3 2 3 3 3

         

     

  t t t
f f

c c

J J r r N F r r N F

r r F r r F

  
 (2.115) 

       
   

4 4 4 4 4 3 4 3 3 4 4 4 4

3 4 3 4 4 4

         

     

  t t t
f f

c c

J J r r N F r r N F

r r F r r F

  
 (2.116) 

     
 

5 5 5 5 5 4 5 4 4 4 5 4

55 5 top top

        

   

 t t t
f cJ J r r N F r r F

r r F M

  
 (2.117) 

where J is the mass moment of inertia tensor for each of the bearings and is defined as 
3

1

  i i i
i

  
 J t t  (2.118) 

where i
  are the principal moments of inertia of each bearing. 

Equations (2.110)–(2.117) provide 24 independent equations for the 24 unknowns, which 
are 

2 2 2 3 3 3 4 4 4 5 5 5

1 1 2 2 3 3 4 4 1 2 3 4N N N N

           

       

          
      

 (2.119) 

Note that the equations are nonlinear in the unknowns and must be solved using an 
iterative solver such as Newton’s method. After which, a time integrator such as the Runge–
Kutta methods can be used to solve for the time history of the TFP. 
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3 Expanding to MSFPs 

The previous chapter defined the equations of motion for the TFP. Now those equations can be 
expanded to MSFPs with any number of bearings. Assume one has a MSFP with n bearings, 
which means there are 1n   sliding surfaces., and of those 1n   sliding surfaces, m are concave 
up and 1p n m    are concave down. Let  be a counting parameter that runs from 1 to m; let 

 be another counting parameter that runs from 1m  to 1n  ; and let γ be a third counting 
parameter that runs from 1 to 1n  . Note that for the TFP of the previous chapter, 5n  , 2m  , 
and 2p  ; thus 1,2  , 3,4  , and 1,2,3,4 . Using the previous definitions, all of the 
necessary equations to describe the motion of an MSFP can be written in compact form. The 
position vectors become 

01 1 1 2 2 3 3g g gu u u  r E E E  (3.1) 

1
1 01 1 3z r r t  (3.2) 

  1
11 1 1 1 3 zr = r + tl  (3.3) 

, 3c R 
    r r t  (3.4) 

1
, 1 3c R 

   


  r r t  (3.5) 

1
1 , 1 1 3z 

   


   r r t  (3.6) 

  1
1, 1 1 1 1 3


       z 

    r r tl  (3.7) 

, 3c R 
    r r t  (3.8) 

1
, 1 3c R 

   


  r r t  (3.9) 

  1
1 , 1 1 1 3


      z 

    r r tl  (3.10) 

1
1, 1 1 1 3z 

   


    r r t   (3.11) 

where all position vectors here have similar physical representations as those from Equations 
(2.7)–(2.25). Similar representations exist for the velocity and acceleration vectors. The angular 
velocity vectors become 
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1 1
1 1 2 1 1 1 1 2 1

1 1
1 1 1 1 1 12 1 3

 
     

   

    

 
 

t

t
y

  
     

  

  

t E t

t t t

  

   
 (3.12) 

where the angular velocity vectors have similar physical meaning as the corresponding vectors 
from Equations (2.26)–(2.35). Similar representations exist for the angular acceleration vectors. 
The normal force bases become 

 i i
  t R t   (3.13) 

with the normal forces acting at the following positions: 

3 3c cR R 
        r r t r r t    (3.14) 

The normal forces are then given as 

3 N 
 N t   (3.15) 

Next, the friction forces become 

  
f N   F f  (3.16) 

where the direction of the friction forces comes from 

1 2   Y Z 
  f t t  (3.17) 

and 

 

 

2

0

2

0

1, 0
1

0, 0

1, 0
1

0, 0

       
       

  


  


y
y

Y uR
Y a Y u b Y Z v a

Y uR

Z vR
Z b Z v a Y Z u b

Z vR

 
        

 


       

 

 (3.18) 

The relative velocity at the point that the friction forces act is then defined as 

   1 3 1 3       v t v t  t t t tR R 
           (3.19) 

The sliding displacements and gap functions for each sliding surface become 

 1 1
3 3cos  s R  

  t t  (3.20) 

and 

 cg s s    (3.21) 

which makes the contact forces 

c cF  F f   (3.22) 

where the magnitudes of the contact forces are given by 
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0 0

0


   

c
c c

g
F

k g c g



    

 (3.23) 

and the directions of the contact forces are given by 

   
   

   
   

1 1 1 1 1 1
3 1 1 3 2 2 3 1 1 3 2 2

2 2 2 21 1 1 1
3 1 3 2 3 1 3 2

     

   

     


     

           

 
       

t t t t t t t t t t t t
f f

t t t t t t t t
 (3.24) 

The contact forces will act at the following positions: 

1
1 1 3 , 1 ,3


       r p r p 

           r f t r r f t r  (3.25) 

Finally, the equations of motion become 

1 1 1 1 1 1 3            f c f cm m g        v N F F N F F E   (3.26) 

and 

       
   

1 1 1 1 1 1 1 1 1 1

1 1 1 1

         

   

         

     

  t t t
f f

c c

            

     

J J r r N F r r N F

r r F r r F

  
  (3.27) 

except that the top bearing as a modified set of equations to account for the applied force and 
moment—Ftop and Mtop—on the top bearing, given as 

1 1 1 top 3     n n n fn cn nm m gv N F F + F E   (3.28) 

and 

     
 

1 1 1 1 1

, top top

            

   

J J r r N F r r F

r r F M

 t t t
n n n n n n n n fn n n cn

n n n

  
  (3.29) 

Using the above listed definitions, one can readily establish the equations of motion for any basic 
type of MSFP. 
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4 Analysis of the Triple Friction Pendulum 
Model 

In order to test the effectiveness of this model for MSFPs, the analysis will focus on the TFP as 
there are many experimental and theoretical results for that system [Fenz and Constantinou 
2008c; Fenz and Constantinou 2008b; Becker and Mahin 2012; and Sarlis and Constantinou 
2016]. Due to the nonlinearity of the equations of motion for the TFP– see Equations (2.110)–
(2.117)–an iterative solver must be utilized to solve for the unknowns shown in Equation 
(2.119). Herein, Newton’s method is used to solve for the unknowns. Once the system unknowns 
have been determined, a system of ODEs has to be solved to obtain the time-history of the TFP. 
The time integrator used for all of the analyses will be the Dormand–Prince method [1980], 
which is a type of Runge–Kutta ODE solver. All of the physical quantities used for the following 
analysis can be found in Appendix A. For all the simulations, a ground motion will be prescribed 
for the bottom bearing and a normal force, a restoring force, and a restoring moment will be 
applied to the top bearing unless otherwise stated. 

4.1 UNI-DIRECTIONAL GROUND MOTIONS 

For the uni-directional ground motions, a model based on the one used by Fenz and Constantinou 
[2008b] will be used for comparisons; all of the physical data can be found in Appendix A.1. For 
standard models of TFPs–R1 = R4 > R2 = R3, µ2 = µ3 < µ1 < µ4 – it has been well established that 
there are five stages to the motion [Fenz and Constantinou 2008c; Fenz and Constantinou 2008b; 
Becker and Mahin 2012; and Sarlis and Constantinou 2016] when there is a ground motion in 
only one direction: 

 Stage I: There is motion only on surfaces 2 and 3. 

 Stage II: Motion on surface 2 stops and begins on surface 1, thus all motion is on 
surfaces 1 and 3. 

 Stage III: Motion on surface 3 stops and begins on surface 4, thus all motion is 
on surfaces 1 and 4. 

 Stage IV: The sliding capacity of surface 1 is reached and sliding begins on 
surface 2, thus all motion is on surfaces 2 and 4. 
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 Stage V: The sliding capacity of surface 4 is reached and sliding begins on 
surface 3, thus all motion is on surfaces 3 and 4. This stage ends when the sliding 
capacities of both surfaces 2 and 3 are reached. 

By running our kinetic model with a uni-directional motion— 2
1 0.05gu t m and all other 

prescribed motions set to zero—and imposing a restoring force and moment on the top bearing, 
this five-stage behavior is created as shown in Figure 4.1; here, topF N  is the restoring force on 

the top bearing, Ftop, normalized to the applied normal force, N. Note that the relative angle 

between bearings is defined as    1
1 1cos cos cos
         . 

In order to test the hysteresis in this model, a uni-directional periodic ground motion– 
ug1 =  1 cos 2gu A ft m –is applied to the system. The same tests used by Fenz and 

Constantinou [2008b] will be used in this section, which will allow for a direct comparison of 
results. Table 4.1 shows the list of tests. The force-displacement curves are shown in Figure 4.2. 
By comparing them to similar figures in Fenz and Constantinou [2008b; 2008c], it can be seen 
that the kinetic model has the appropriate hysteresis behavior. Regarding the analytical models 
developed by Fenz and Constantinou [2008b], they note that their forces on the top bearing when 
the first and fourth sliding surfaces reach their limits–Fdr1 and Fdr4–underestimate the force 
recorded from the experiment. The values for u∗, u∗∗, udr1, udr4, Fdr1 and Fdr4 are shown in Table 
4.2, where u∗ is the displacement at which the TFP transitions from Stage I to Stage II, u∗∗ is the 
displacement at which the TFP transitions from Stage II to Stage III, udr1 is the displacement at 
which the TFP transitions from Stage III to Stage IV, udr4 is the displacement at which the TFP 
transitions from Stage IV to Stage V, Fdr1 is the force at which the TFP transitions from Stage III 
to Stage IV, and Fdr4 is the force at which the TFP transitions from Stage IV to Stage V [Fenz 
and Constantinou 2008c]. 

Table 4.1 Tests used for uni-directional ground motions. 

Test No. N (kN) f (Hz) A (mm) 

1 112 0.10 1.2 

2 112 0.04 25 

3 112 0.013 75 

4 112 0.0088 115 

5 112 0.0072 140 

 

   



23 

  

(a) (b) 

 

Figure 4.1 (a) Force/displacement curve for the TFP for a uni-directional motion; and 
(b) relative angle of each bearing for a uni-directional motion. 

 

Figure 4.2 Hysteresis loops for uni-directional motions for ground motions in the 
five stages of motion. 
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Table 4.2 Comparison of analytical model, experimental, and kinetic model values 

 Analytical† Experimental† Kinetic model 

u* (mm) 0.1 2 1.9 

u** (mm) 38.4 42 49 

udr1 (mm) 92.1 90 87 

udr4 (mm) 130.4 130 134 

Fdr1/N 0.161 0.173 0.175 

Fdr4/N 0.240 0.272 0.275 

† Analytical and experimental values come from the Regime V Data from Fenz and 
Constantinou (2008b). 

From Table 4.2 it can be seen that the kinetic model matches all of these values fairly 
well. Although the kinetic model slightly overestimates Fdr1 and Fdr4, it is still much closer to the 
experimental values than the analytical values. The overestimation of Fdr4 is most likely due to 
using a constant set of µγ values as opposed to changing the friction coefficients with different 
stages. Thus, it is shown that for larger displacements, the kinetic model more accurately predicts 
the response of an actual TFP because there is no linearization approximation, which becomes 
less accurate as the amplitude of motion increases. 

For all of the previous tests, a normal force of N = 112 kN was used. However, it is 
useful to see how changing N affects the dynamic response of the TFP, as this will give a sense 
of the inertial effects of the model. To do this, the variance between two tests will be measured 
with an L2-norm [Johnson 2009] given by 

 
max

max

2

0

2

0






u

ref

u

ref

V 
d - d

d
 (4.1) 

where V(η) is the variance as a function of η; η is the ratio of the applied normal force to the 
weight of the TFP, W, excluding the bottom bearing, umax is the maximum applied ground 
displacement, and d is given as 

 1 2 3 4 T   d  (4.2) 

dref is the test with the largest normal force, Nmax, to which all other tests will be compared. 
Herein, Nmax = 1 MN, and W = 90.64N. Note that   is the standard 2-norm. 
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Figure 4.3 The variance between two tests as a function of η on a semi-log scale. 

The variance V(η) is shown in Figure 4.3, in which it can be seen that the variance is very 
small for large values of η, but as η decreases, the variance increases until it reaches a plateau 
around η = 10−1. Typically values for η will be very large in practice, meaning that the inertial 
effects can be neglected; however, in the event of uplift [Sarlis and Constantinou 2013], part of 
the TFP will experience no normal force or N = η = 0. As can be gleaned from Figure 4.3, in that 
scenario the inertial effects will play a role. 

4.2 UNI-DIRECTIONAL GROUND MOTIONS FOR UNUSUAL TFP PROPERTIES 

Another utility of the model presented herein is the lack of assumptions used to develop the 
model. This allows for new and unique TFPs to be analyzed by this model. For example, the 
unusual TFP described in Sarlis and Constantinou [2016] has µ2 = µ3 > µ1 = µ4. While a TFP 
with this property cannot be analyzed properly by the models presented by Fenz and 
Constantinou [2008c] or that of Becker and Mahin [2012], it can be analyzed by the nonlinear 
kinetic model presented herein. Using the same physical properties described in Appendix A.1, 
except that µ1 = µ4 = 0.064 and µ2 = µ3 = 0.168, the kinetic model can be tested against the 
results found by Sarlis and Constantinou [2016] by applying a uni-directional ground motion of 

 1 cos 2gu A ft , where A = 0.14m and f = 0.02 Hz. Figure 4.4 shows the force-displacement 

curve for the unusual TFP. By comparing Figure 4.4 to similar figures in Sarlis and Constantinou 
[2016], it can be seen that the kinetic model accurately models the behavior of the unusual TFP. 
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Figure 4.4 Force/displacement curve for the unusual TFP. 

4.3 BI-DIRECTIONAL GROUND MOTIONS 

Next, the kinetic model is tested with bi-directional ground motions. In the case of bi- directional 
ground motions, a model based on Becker and Mahin [2012] is used for comparison, and all of 
the necessary physical data can be found in Appendix A.2. The first test is a circular ground 
motion:  1 cosgu A t   and  2 singu A t  ; all of prescribed motions are set to zero. For the 

circular ground motion tests, Ω = 0.1 rad/sec is used, along with six values for A: A = 0.125, 
0.088, 0.050, 0.025, 0.012, 0.005 m. This gives a basic ground motion to make sure that the 
kinetic model has the proper hysteresis loops as the bearings move in two directions. Figure 4.5 
shows the hysteresis loops for both the E1 and E2 directions as well as the force curves on the 
top bearing when a circular ground motion is applied. By comparing these curves to similar ones 
by Becker and Mahin [2012], also shown in Figure 4.5, it can be seen that the kinetic model is 
acting appropriately for a simple bi-directional ground motion. 

Next, a more complicated ground motion, that of a figure-eight, is applied: 

 1 cosgu A t   and  2 sin 2gu A t  ; all other prescribed motions set to zero. Again, Ω = 0.1 

is used, along with the same six values of A as for the circular motion: A = 0.125, 0.088, 0.050, 
0.025, 0.012, 0.005 m. Figure 4.6 shows the hysteresis loops for both the E1 and E2 directions as 
well as the force curves on the top bearing when a figure-eight ground motion is applied. By 
comparing these curves to similar curves by Becker and Mahin [2012], also shown in Figure 4.6, 
it can be seen that the kinetic model is accurately predicting the behavior of the TFP for this 
complicated ground motion. 
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Figure 4.5 Hysteresis loops and force curves for a circular ground motion. The solid 
black curves in the background are experimental data from Becker and 
Mahin [2012]. 

 

 

Figure 4.6 Hysteresis loops and force curves for a figure-eight ground motion. The 
solid black curves in the background are experimental data from Becker 
and Mahin [2012]. 
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5 Conclusions and Future Work 

Previously developed kinetic models of triple friction pendulum (TFP) bearings, e.g., Sarlis and 
Constantinou [2016], linearize the TFP, thereby reducing the accuracy for larger displacements. 
In addition, they are limited to modeling uni-directional ground motions and are unable to 
account for the more complicated bi-directional ground motions. Other models account for bi-
directional ground motion [Becker and Mahin 2012], but they linearize the model lack the 
capability to handle non-standard TFP bearings [Sarlis and Constantinou 2013]. The model 
presented herein accounts for both uni-directional and bi-directional ground motions with no 
linearization assumption. Thus in the case of uni-directional ground motions, it was shown that 
the nonlinear model can more accurately predict the experimental values than previous analytical 
models. The only assumption that our nonlinear kinetic model makes is that the bearings are 
axisymmetric. Therefore, this model can be used to analyze the simplest as well as the most 
complicated ground motions. While not specifically analyzed in this paper, the nonlinear kinetic 
model can account for initial rotations of the top and bottom bearings similar to that described in 
Becker and Mahin [2013b]. The nonlinear kinetic model has the capability to be connected 
numerically to models of different superstructures, such as frames, trusses, or any type of finite 
element model. This allows one to model an entire system, including the TFP in one complete 
simulation, while accounting for the nonlinear and inertial nature of the TFP. 

The model presented herein is not entirely complete: only constant values of the friction 
coefficients, µγ, were used. Kumar et al. [2015] have demonstrated that these values are 
dependent on multiple factors such as speed, temperature, and pressure; however, implementing 
these more complicated friction coefficients is a straight forward process that can be added to 
this model. The nonlinear kinetic model does not account for uplift or tilting of bearings, yet that 
behavior has been shown to occur in experiments of TFPs [Sarlis and Constantinou 2013]. Our 
model, however, can be equipped to handle uplift or tilting by adding the necessary degrees-of-
freedom to Equation (2.119). It was also shown that the inertial effects of the bearing will have a 
major role in the event of uplift, thus starting from a model that already incorporates inertia will 
make handling uplift less complicated. Finally, all of the previous analyses can be conducted 
with any type of MSFP by the method presented earlier in this paper, allowing for more 
complicated testing of different types of Friction Pendulum seismic isolators. 

For all of the reasons previously stated, the model presented in this paper is an all-in-one 
model that is the most capable and accurate model for MSFPs available and can be easily 
updated to handle different types of friction models as well as extra forces that may be applied to 
the internal bearings. 
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Appendix A Physical Data 

The following tables provide all of the numerical values used throughout report, along with g = 
9.8 m/sec2 

A.1 UNI-DIRECTIONAL GROUND MOTIONS 

All values chosen for uni-directional ground motions were based on the data provided by Fenz 
and Constantinou [2008a; 2008b] in order to allow for direct comparison of results. 

Table A.1 All lengths used for uni-directional ground motions. 

 

R1 R2 R3 R4 R0 r2 r3 r4 

0.473 m 0.076 m 0.076 m 0.473 m 5 × 10−5 m 0.051 m 0.0255 m 0.051 m 

1l  2l  3l  4l  5l  p2 p3 p4 

0.013 m 0.015 m 0.046 m 0.015 m 0.013 m 0.0028 m 0.0044 m 0.0028 m 

z2 z3 z4 z5 sc1 sc2 sc3 sc4 

0.0075 m 0.023 m 0.0075 m 0.0065 m 0.065 m 0.0215 m 0.0215 m 0.065 m 

 

Table A.2 All masses used for uni-directional ground motions. 

m2 m3 m4 m5 

0.45 kg 0.34 kg 0.45 kg 8.0 kg 
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Table A.3 All inertias used for uni-directional ground motions. 

J2 J3 

2 2

4 2

3.01 0 0

0 3.01 0 10 kg

0 0 5.85





 
    
  t ti j

m  

3 3

4 2

1.15 0 0

0 1.15 0 10 kg

0 0 1.11





 
    
  t ti j

m  

J4 J5 

4 4

4 2

3.01 0 0

0 3.01 0 10 kg

0 0 5.85





 
    
  t ti j

m  

5 5

2 2

3.14 0 0

0 3.14 0 10 kg

0 0 6.25





 
    
  t ti j

m  

 

Table A.4 All stiffnesses and damping constants used for uni-directional ground motions. 

kcγ ktop ccγ ctop µ1 µ2 µ3 µ4 

107 N/m 106 N/m 5 N sec/m 5 N ·sec/m 0.03 0.017 0.017 0.107 

 

A.2 BI-DIRECTIONONAL GROUND MOTIONS 

All values chosen for bi-directional ground motions were based on the data provided by Becker 
and Mahin [2012] in order to allow for direct comparison of results. 

Table A.5 All lengths used for bi-directional ground motions. 

R1 R2 R3 R4 R0 r2 r3 r4 

0.9906 m 0.0762 m 0.0762 m 0.9906 m 5 × 10−5 m 0.0381 m 0.0191 m 0.0381 m 

1l  2l  3l  4l  5l  p2 p3 p4 

0.011 m 0.0127 m 0.0254 m 0.0127 m 0.011 m 0.00073 m 0.0024 m 0.00073 m 

z2 z3 z4 z5 sc1 sc2 sc3 sc4 

0.0063 m 0.0127 m 0.0063 m 0.0055 m 0.0918 m 0.0135 m 0.0135 m 0.0918 m 
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Table A.6 All masses used for bi-directional ground motions. 

m2 m3 m4 m5 

0.45 kg 0.34 kg 0.45 kg 8.0 kg 

 

Table A.7 All inertias used for bi-directional ground motions. 

J2 J3 

2 2

4 2

1.69 0 0

0 1.69 0 10 kg

0 0 3.27





 
    
  t ti j

m  

3 3

5 2

4.91 0 0

0 4.91 0 10 kg

0 0 6.17





 
    
  t ti j

m  

J4 J5 

4 4

4 2

1.69 0 0

0 1.69 0 10 kg

0 0 3.27





 
    
  t ti j

m  

5 5

2 2

3.93 0 0

0 3.93 0 10 kg

0 0 7.84





 
    
  t ti j

m  

 

Table A.8 All stiffnesses and damping constants used for bi-directional ground motions. 

 

kcγ ktop ccγ ctop µ1 µ2 µ3 µ4 

107 N/m 106 N/m 5 N sec/m 5 N sec/m 0.118 0.036 0.036 0.137 
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