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PREFACE

These are the proceedings of the twenty-first working conference of the International Federation
of Information Processing (IFIP) Working Group 7.5 on Reliability and Optimization of Structural
Systems, which took place at the University of California, Berkeley, USA, on August 19–21, 2024.
This volume contains 15 selected papers from the 20 presentations delivered at the conference.

The conference was supported by Pacific Earthquake Engineering Research (PEER) Center, and
by the University of California, Berkeley, which provided outstanding facilities in the conference
venue and remarkable logistic support throughout the event.

The purpose of the WG7.5 Working Group is to promote modern theories and methods of structural
and system reliability and optimization, to stimulate research, development, and applications in
these areas, to foster the dissemination and exchange of information, and to encourage education
on those subjects.

The main themes of the conference included structural reliability methods, engineering risk and re-
silience analysis, Bayesian methods, reliability-based design optimization, and sensitivity analysis,
along with their applications in civil engineering, dynamics, and natural hazards. The conference
facilitated engaging discussions among participants, both during and after the technical sessions.
Notably, a significant number of presentations were delivered by promising young researchers,
who contributed fresh perspectives and innovative ideas to the field.

We are grateful to all the participants for their valuable contributions and active engagement, which
made the conference a successful and memorable event. We also extend our thanks to the organiz-
ing committee, the scientific committee, and all those who contributed to the smooth execution of
the conference.

We look forward to future IFIP WG7.5 conferences and continued collaboration in advancing the
field of structural reliability and optimization.

Ziqi Wang and Jungho Kim
May 6th, 2025
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ABSTRACT 

Stochastic emulation techniques are used to surrogate forward simulations involving non-deterministic 

input-output relationships. Their objective is to address the stochastic uncertainty sources by directly 

predicting the output distribution for a given parametric input. An example of such application, and the 

focus of this contribution, is the estimation of structural response (engineering demand parameter) 

distribution in seismic risk assessment. In this case, the stochastic uncertainty originates from the 

aleatoric variability in the seismic hazard description. The key challenge in stochastic emulation pertains 

to addressing heteroscedasticity in the output variability. Relevant approaches to-date for addressing this 

challenge have focused on scalar outputs. In contrast, this paper focuses on the multi-output stochastic 

emulation problem and presents a methodology for predicting the output correlation matrix, while fully 

addressing heteroscedastic characteristics. This is achieved by introducing a Gaussian Process (GP) 

regression model for approximating the components of the correlation matrix, and coupling this 

approximation with a correction step to guarantee positive definite properties for the resultant 

predictions. For obtaining the observation data to inform the GP calibration, different approaches are 

examined, relying-or-not on the existence of replicated samples for the response output. When available, 

replicated samples can be readily used to obtain observation for the response statistics (correlation or 

covariance) to inform the GP development. An alternative approach is to obtain noisy observations of 

covariance using the sample deviations from a primitive mean approximation. These different 

observation variants lead to different GP variants that are compared within a comprehensive case study. 

A computational framework for integrating the correlation matrix approximation within the stochastic 

emulation for the marginal distribution approximation of each output component is also discussed, to 

provide the joint response distribution approximation.  

1 INTRODUCTION 

Surrogate models, also referred to as metamodels or emulators, have shown great promise in improving 

accuracy of risk assessment for many natural hazards engineering applications (Jung et al., 2023, Li and 

Spence, 2023, Cabanzo et al., 2023), especially in the field of seismic vulnerability estimation (Kim et 

al., 2023, Gidaris et al., 2015, Zhu et al., 2023, Ning et al., 2024, Gentile and Galasso, 2022). This 

estimation needs to consider various types of uncertainties for the seismic hazard and the infrastructure 

models (Baker and Cornell, 2008), while for improved accuracy, it should be based on nonlinear 

response history analysis (NLRHA) utilizing high-fidelity finite element models (Goulet et al., 2007, 

Haselton et al., 2008). Surrogate models can efficiently reduce the cost of utilizing NLRHA within 

seismic risk assessment by establishing a data-driven approximation for the structural response, 

developed using a small number of judicially chosen simulations. However, an important challenge in 

establishing this approximation (Gidaris et al., 2015) is the treatment of the aleatoric variability 

Sang-ri Yi  
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associated with the seismic hazard description. This variability in hazard is typically expressed as a 

combination of parametric uncertainty and high-dimensional or non-parametric uncertainty (Jalayer et 

al., 2012, Baker and Cornell, 2008, McGuire, 2004), and the latter poses challenges to conventional 

surrogate modeling techniques (Gramacy, 2020). Essentially, the prediction of structural response, given 

all parametric inputs, becomes non-deterministic. Such non-deterministic simulation models are 

encountered in multiple engineering applications and have incentivized specialized surrogate modeling 

techniques called stochastic emulation (Baker et al., 2022, Ankenman et al., 2008, Zhu and Sudret, 2021, 

Binois et al., 2019), which aim to approximate the distribution of the output for a given simulation input. 

A key challenge in stochastic emulation is how to efficiently establish heteroscedastic predictions for 

the distribution parameters describing the stochastic output variability (Binois et al., 2018, Zhu and 

Sudret, 2021). Multiple variants have been proposed to accomplish this objective, however, existing 

stochastic emulation frameworks have predominantly focused on scalar response outputs.  

 This paper revisits the multi-output stochastic emulation problem and presents a methodology for 

predicting the output correlation matrix, while fully addressing heteroscedastic characteristics. This is 

achieved by introducing a GP regression model for approximating the components of the correlation 

matrix and introducing a correction for achieving positive-definite predictions, whereas a parallel GP 

calibration (Gu and Berger, 2016) is promoted to minimize the instances for having to deploy this 

correction. Different variants are examined for the problem formulation, relying or not on the existence 

of replication data. It is also shown how the established correlation predictions can be subsequently 

combined with existing stochastic emulation approaches for approximating the marginal distribution of 

each output component to characterize the joint distribution of the output vector. Though the 

developments are general and can, in principle, be applied to any stochastic emulation problem, they are 

couched within a specific application of interest: the approximation of the engineering demand 

parameter (EDP) joint distribution for seismic risk assessment.  

2 PROBLEM FORMULATION FOR MULTI-OUTPUT STOCHASTIC EMULATION AND CONNECTION TO 

SEISMIC EDP DISTRIBUTION APPROXIMATION 

 Let znz  denote the zn dimensional output of a stochastic computer simulation model ( ; )=z F x w , 

where xn
x denote the xn dimensional input vector, and w represent the source of stochastic 

randomness in the simulation model. Note that depending on the application of interest, w  may 

represent high-dimensional or non-parametric uncertainties impacting the simulation model (Kyprioti 

and Taflanidis, 2022, Baker et al., 2022). The objective is to establish an approximation for the joint 

distribution of z as a function of x under the influence of the randomness described by w . This 

distribution is characterized herein by the probability density function ( | )p z x . Subscript l will be used 

to distinguish the different components of a vector, with  lz   representing the lth response output.  

For seismic risk assessment applications, the output vector z  corresponds to the engineering demand 

parameters (EDPs) of interest, and the simulation model to NLRHA performed for a specific structural 

model using some ground motion representing the seismic hazard. The stochastic randomness in the 

simulation outcome originates from the aleatoric randomness in the description of this hazard. The 

uncertainties associated with this hazard can be broadly divided into two classes (Baker and Cornell, 

2008). The first class pertains to key seismicity characteristics (such as moment magnitude) and/or 

ground motion features (such as arias intensity and significant duration). This class represents the 

parametric explanatory input variables that may be used to describe the dominant hazard features, and 

are included in input vector x . The second class originates from the complex physical mechanism in 

propagation/generation of earthquakes, which precludes the complete description of the seismic 

excitation through the parametrized explanatory variables (Jalayer et al., 2012, Baker and Cornell, 2008, 

McGuire, 2004). Depending on the modeling approach for describing the seismic excitation (Jalayer and 

Beck, 2008), it might correspond to latent features of the excitation model, or to a high-dimensional 

stochastic sequence. Ultimately, this uncertainty class needs to be treated as inherent randomness in the 

simulation model output given the values of the seismic hazard explanatory variables. Note that the 
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structural model utilized within the NLRHA might have its own uncertain parameters, such as material 

and geometric properties (Gentile et al., 2021, Kazantzi et al., 2014), that need to be additionally used 

as input variables and included in x . The objective of the stochastic emulation in this context is to 

establish a mapping between all the explanatory variables, i.e. seismicity features and structural 

parameters, and the EDP distribution of a target structure ( | )p z x , where the distribution represents the 

aleatoric uncertainties (Kyprioti and Taflanidis, 2021, Zhu et al., 2023).  

The stochastic emulator problem in this setting can be formally defined as follows. A database of 

observations is first developed by performing simulations for Nt different input configurations 

{ ; 1,..., }i

ti N=x , representing the emulator training points. The training points should cover the entire 

input domain, denoted as X herein, where the surrogate model is anticipated to be used for, so that any 

extrapolations are avoided. For each training point, the response prediction (computer simulation) is 

repeated a total of ni
 times yielding observations

( ){ ; 1,.., }i k ik n=z . The ni replications of the output are 

obtained for the same input xi
  utilizing different realizations for the stochastic random vector w . For 

example, for seismic risk assessment applications utilizing stochastic ground motion models, these 

realizations correspond to acceleration time-histories obtained from different stochastic sequences 

(Kyprioti and Taflanidis, 2021). Herein, superscripts will be used to distinguish the training points, and 

superscripts in parenthesis will be used to distinguish the replications. Following Kyprioti and Taflanidis 

(2021) and Yi and Taflanidis (2024), let us consider a special configuration of partially replicated 

training set, where first Nr  training points have nr replications (
i

rn n=  for i ≤ Nr) and remaining Nn=Nt 

-Nr  training points are non-replicated samples ( in =1 for Nr <i ≤ Nt ). The set of training points for which 

replications are available will be denoted as Xp. The total number of high-fidelity simulations for the 

stochastic emulation training is Nsim = nrNr +Nn. The objective of stochastic emulation is to establish an 

approximation for ( | )p z x  using database consisting of input { ; 1,..., }i

ti N=x  and output 
( ){ ; 1,.., ,  1,..., }i k i

tk n i N= =z . 

3 REVIEW OF GP-BASED STOCHASTIC EMULATION OF THE MARGINAL DISTRIBUTION FOR EACH 

OUTPUT COMPONENT   

The foundation of the GP-based stochastic emulation for approximating distribution ( | )lp z x  is the 

approximation of the chosen response as a realization of a Gaussian process. Instead of approximating 

directly the response output lz  some transformation can be applied, for example, by setting ln( )l ly z= . 

The latter transformation is recommended for earthquake engineering applications (Kyprioti and 

Taflanidis, 2021) as it agrees with the lognormal assumption for ( | )lp z x  shown to be accurate for 

many cases (Baker and Cornell, 2008).  The underlying GP has some mean trend function over x - 

typically expressed by a vector of basis functions ( )f x  and their regression coefficients β  - and 

stationary auto-covariance model denoted as 
2 )( , ' |R x x θ  with kernel parameters θ  and process 

variance 
2 (Gramacy, 2020, Rasmussen and Williams, 2005). Leveraging the so-called nugget 

(Gramacy and Lee, 2012, Yin et al., 2011) to establish a regression over the training data and address 

the aleatoric randomness, the stochastic emulation model yields the following distribution 

approximation (Kyprioti and Taflanidis, 2021) 

 2 2( | ) ( ( ), ( ) ( ))l l l lp y y  = +x x x xN   (1) 

where ( , )a bN  stands for a Normal distribution with mean a and variance b, ( )ly x and 
2( )l x  represent 

the predictive mean and variance for the GP, and 
2 ( )l x  represents the stochasticity variance (i.e. nugget 

variance). It is important to stress that the last function, 
2 ( )l x , is the component that describes the 

stochasticity in the model output. When this stochasticity is assumed to be constant, i.e., when
2 2( )l l =x , 

the problem is reduced to the simpler homoscedastic case, and the GP calibration can be performed 

straightforwardly using directly the training points. For the case of interest, which is the heteroscedastic 

formulation, additional care is needed to obtain observations for 
2 ( )l x  to guide the stochastic emulation 

calibration. Such observations can be obtained based on the sample variance established through 

replication samples (Ankenman et al., 2008, Kyprioti and Taflanidis, 2021) or the sample deviation 
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established through some primitive mean approximation (Marrel et al., 2012, Yi and Taflanidis, 2024). 

These two variant implementations, which will be revisited for the covariance elements in Section 4, 

will be distinguished by acronyms RV (replication statistics) and SD (sample deviation statistics) herein.   

In the RV formulation, unbiased estimates for the sample variance are obtained using the training points 

with replications (Xp), as:  

 
1
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  (2) 

The estimates of Eq. (2) can serve as noisy observations to train a secondary GP model (Kyprioti and 

Taflanidis, 2021) to support the heteroskedastic variance approximation. This approximation is then 

utilized within the primary GP calibration, which provides the final stochastic variance estimate, to 

establish the distribution approximation for Eq. (1). One limitation of the RV stochastic emulation 

strategy is that the observation of Eq. (2) for the heteroscedastic variance approximation rely only on 

the training points with replications. Another limitation is that replicated samples are always needed. 

Details for the GP-based stochastic emulator for this implementation are provided in (Kyprioti and 

Taflanidis, 2021). 

In the SD formulation, the squared sample deviation is introduced to replace the sample variance of Eq. 

(2), so that information from both replicated and non-replicated samples can be utilized. The sample 

deviation is defined as the distance of the response observation from some primitive estimate of the 

response mean, denoted ˆ ( )lm x , and its square is expressed as 

 ( 2)2 ()( ) ( ( )) , 1,...., and 1,.. .,ˆ .i k

l

i k

l

i i

l ty i N ks nm= − = =x   (3) 

This requires to first establish the prediction of ˆ ( )lm x  and different smoothing techniques (Cleveland 

and Loader, 1996, Li et al., 2022, Hastie et al., 2009) can be used for this purpose. The one adopted in 

Yi and Taflanidis (2004) is to introduce a tertiary GP, denoted GPm,  with homoskedesticity assumption 

(Marrel et al., 2012, Zhang and Ni, 2020). This tertiary GP provides an approximation ˆ ( )lm x  which is 

then utilized to establish noisy observations of the variance according to Eq. (3) to train a modified 

secondary GP model, to offer an alternative heteroskedastic variance approximation. The primary GP is 

then established identically as in the RV formulation, providing estimates for the stochastic variance 

estimate. Compared to RV, SD can be used without any replicated samples, which is something shown 

to offer higher accuracy and convenience in previous studies (Yi and Taflanidis, 2024). These two 

implementation choices to approximate marginal variances are respectively denoted herein RVM and SDM, 

with the subscript M to distinguish their extension to the covariance estimation introduced in the next 

section. Details for the GP-based stochastic emulator for this implementation are provided in (Yi and 

Taflanidis, 2024). 

4 APPROXIMATION OF CORRELATION BETWEEN OUTPUTS AND OF THE JOINT EDP 

DISTRIBUTION 

4.1 Approximation of the joint distribution  

An approximation of the joint distribution ( | )p z x can be established by combining the stochastic 

emulation approximation for the marginal distributions { ( | ); 1,,,. }l zp z l n=x  and an approximation for 

the correlation matrix, composed of the correlation coefficients between pairs of output components. 

The marginal distribution predictions can be obtained through the GP-based stochastic emulation 

discussed in Section 3 or through other alternative emulation approaches that do not entail a Gaussian 
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process approximation (Zhu and Sudret, 2021), and The approximation of the correlation matrix will be 

examined in Section 4.2.  

4.2 Details for the GP-based approximation for the correlation matrix 

For approximating the correlation matrix, a surrogate model will be utilized based on the available 

observations. To formalize implementation, let ( ) z zn nV x  represent the symmetric covariance 

matrix of y conditional on input x:  

 ( ) [( [ | ])( [ | ]) | ]TE E E= − −V x y y x y y x x   (4) 

where E[.|x] denotes expectation with respect to the stochastic randomness impacting the response 

output for given input parameters x. Also let ( ) z zn nP x represent the corresponding symmetric 

correlation matrix given by:  

 
1/2 1/2( ) diag( ( )) ( )diag( ( ))− −=P x V x V x V x   (5) 

where for a matrix B, diag(B) corresponds to a diagonal matrix maintaining only the elements of B along 

its diagonal. Note that the diagonal elements of ( )P x  are all equal to 1. The objective is to approximate 

the upper triangular elements of ( )V x  (including diagonal) or ( )P x  (excluding diagonal) to arrive at 

the approximation of full correlation matrix ( )P x . 

Following the problem setup presented in Section 2, two different formulations can be considered for 

obtaining the observations to support the surrogate model approximation for ( )V x  or ( )P x : the first 

relying on statistics from the training points with replications and the second relying on samples for the 

cross-deviation from the mean. These are identical to the formulations RV and SD, respectively, 

considered in Section 3, and will be referenced with the same acronyms.  

In the RV formulation, the training inputs with replications (Xp) can be used to obtain unbiased estimates 

for the sample covariance between the lth and jth response outputs as:  

 (

1

( ) )( ) ( )( ), for 1
1

,..., , 1,..., , ,...,
1

r

i k i k

lj l j z z

n
i i i

l j r

kr

V y y i N l n j ly y n
n =

= − − = = =
−
   (6) 

where sample mean vector 
i

ly  is defined as in Eq. (2). Equivalently, the sample correlation 

{( ) ; 1,..., , 1,..., }i

lj z zP l n j l n= = + for the same response outputs is obtained by substituting Eq. (6) to the 

relationship shown in Eq. (5). A GP model can be then calibrated utilizing these noisy observations of 

covariance or correlation components to establish approximations covariance or correlation matrix, 

respectively. The noise in these observations originates from the variability in the sample-based 

estimator error of the covariance of Eq. (6), and can be addressed using a homoscedastic nugget in the 

GP formulation (Kyprioti and Taflanidis, 2021). Note that the selection of nr controls the noise-level 

(larger nr improves statistical accuracy for Eq. (6) and so reduces noise), but also the number of unique 

training points that may be considered for the same computational budget Nsim (smaller nr accommodates 

a better exploration of the input domain). This selection needs to be made carefully balancing the 

competing objectives of noise-level in the observations and ability to explore the input domain.   

The resultant covariance or correlation matrices will be symmetric by construction, but are not 

guaranteed to be positive definite, which is another foundational property for covariance or correlation 

matrices. Note that the observation data correspond to positive definite matrices, but the GP-based 

approximations are not guaranteed to maintain this property, as also explained in the next paragraph. A 

correction step is introduced to obtain the final predictions of the matrices that are positive definite. 

Various approaches exist for accommodating such a correction (Liu and Kiureghian, 1991), and here 
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the simplest one is adopted, modifying all negative eigenvalues of the resultant ( )V x  matrix (or ( )P x  

matrix) to be slightly larger than 0 (eigenvectors are not modified).  

The remaining important question is how to handle the multi-dimension output in the GP model 

calibration. One approach would be to calibrate separate metamodels for each of the of the upper 

triangular components of ( )V x  or ( )P x . The independent calibration of metamodels, in this case, 

results in approximations that will not maintain the dependence structure of the original observation data 

(Jia et al., 2016), and therefore will very frequently yield approximations for the covariance or 

correlation matrices that are not positive definite. Preliminary results obtained in the context of this study 

show that the correction that needs to be employed in this instance can substantially reduce the accuracy 

of the approximation. This challenge is alleviated by adopting a parallel GP (Gu and Berger, 2016), 

using a single set of hyper-parameters for the entire multi-output. This parallel GP formulation maintains 

the dependence structure of the observation data, yielding approximation for the covariance or 

correlation matrices that are almost always positive definite, requiring very infrequent corrections. Based 

on this setup, these two RV formulations to approximate the covariance and correlation components are 

respectively denoted as RVv and RVρ.. 

Moving now to the SD formulation, the squared sample cross-deviation is introduced to replace the 

sample covariance of Eq. (6), so that information from both replicated and non-replicated samples can 

be utilized. The sample cross-deviation is defined as the distance of the response observation from the 

estimate of the response mean ˆ ( )lm x  

 ( ) ( ) ( ) ˆ( ) ( ( ))( ( )), 1,...., and 1,.ˆ ...,i k i i i

lj l j t

i k i k

l jy ys i N k nm m= − − = =x x   (7) 

where ˆ ( )lm x can be obtained through any appropriate approach, for example using the GPm discussed 

in Section 3 or the mean of ( | )lp y x  if already available. Combining elements 
( ){( ) ; 1,..., , ,..., }k

lj

i

z zs l n j l n= =  provides observation for the covariance matrix ( )V x  for the entire 

training set, including the training points with replications and the training points without replications. 

Similar to the RV formulation, a parallel GP is advocated to establish approximation of the covariance 

matrix. This implementation variant is denoted as SDvs. Note that SD formulation can only be established 

for covariance components and not correlation components, as the sample correlation can be defined 

only with more than two samples. 

4.3 Computational integration of GP-based approximation of marginal distributions and 

correlation matrix  

Utilizing the approximations of marginal distributions { ( | ); 1,..., }l zp z l n=x  and the correlation matrix 

( )Ρ x , the joint distribution can be approximated using the Nataf transformation (Der Kiureghian, 2022) 

which is a widely popular approach for modeling the joint distribution of correlated variables in risk and 

reliability analysis (Liu and Kiureghian, 1991, Straub and Papaioannou, 2015, Melchers and Beck, 2018). 

The details for employing this transformation depend on the exact type of marginal distribution. If a GP-

based approximation is established for both the marginal distributions and the correlation matrix, then 

the joint distribution can be seamlessly approximated as a multi-variate Gaussian. Additionally, an 

integration of the computational implementation to obtain joint Gaussian distribution of EDPs can be 

promoted by combining the GP-based stochastic emulation discussed in Section 3 with the GP-based 

correlation matrix approximation reviewed in Section 4.2. As a result, the first two variants, denoted 

RVJρ or RVJv, are established for RV formulation depending on whether variant RVρ or RVv is adopted for 

the correlation approximation. The third variant, denoted SDJ, is established for SD formulation and 

utilizes SDv for the correlation approximation. For RVJv and SDJ, which first approximate covariance 

matrix, the training of secondary GP model in the RVM or SDM formulations can be omitted, as the 

variance estimates are already included in the covariance estimates. This contributes to a reduction of  

zn  GP calibrations that need to be performed within the stochastic emulation workflow. In contrast, for 
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RVJρ, which directly approximates the correlation matrix, no modification to RVM  formulation is needed, 

and therefore no computaitonal benefits are provided.  

5 ILLUSTRATIVE EXAMPLE  

5.1 Structural and excitation models  

The illustrative example revisits the example discussed in Kyprioti and Taflanidis (2021) but extends it 

to consider the approximation of the entire EDP vector. The example considers the approximation of the 

distribution for peak drift and absolute floor acceleration EDPs for a three-story concrete moment 

resisting frame (MRF), with seismic excitation described through a stochastic ground motion model. 

The model for the three-story concrete MRF building is described in detail in Patsialis and Taflanidis 

(2020). Following Kyprioti and Taflanidis (2021), the uncertain structural model parameters are 

provided in Table 1 along with their input domain, leading to the structural parameter vector of xs= [fc1, 

fc2, fc3, εc1, εc2, εc3, Es, fy, a, ζs]. The seismic excitation is described using a point-source stochastic ground 

motion model (Boore, 2003). The moment magnitude, M, and rupture distance, rrup, are considered as 

explanatory input parameters for describing the seismic hazard, leading to excitation input parameter 

vector defined as xg = [M rrup]. The input domain for M is chosen as [5 8] and for rrup as [3 60] (km). 

The input vector for the problem description x is composed of xs and xg and consists of nx=12 parameters. 

Table 1: Structural parameter input domain for the surrogate model development and the associated probability 

distributions used in the risk assessment.  

Structural parameter Notation 
Input domain for surrogate 

model formulation 

Maximum compressive stress at each story for concrete fc1, fc2, fc3 [17,000   46,100 ] (kPa) 

Strain at maximum stress for concrete εc1, εc2, εc3 [0.0012    0.0033] (-) 

The modulus of elasticity for steel  Es [1.8   2.3]∙108 (kPa) 

Yielding stress for steel fy [430,000  700,000] (kPa) 

Strain hardening ratio for steel a [0.006   0.017] (-) 

Damping ratio ζs [3   8.2] (%) 

 

5.2 Implementation details  

The EDPs considered correspond to all peak inter-story drifts and all peak absolute floor accelerations 

(nz=6). All three formulation variants, RVJρ, RVJv and SDJ, presented in Section 4.3 are implemented for 

approximation of the joint EDP distribution. The output considered in each case corresponds to the log-

EDP. The appropriateness of using a Gaussian approximation for the marginal distributions for this 

specific problem, with aleatoric randomness originating strictly from a white noise sequence has been 

already investigated in past studies (Gidaris et al., 2015, Tsioulou et al., 2018).  

We further investigate the benefit offered from replications by exploiting different mixtures of replicated 

and non-replicated training samples. In particular, three different values of replication size (nr
 = 10 and 

20) are investigated, as well as the varying numbers of the total simulations (Nsim=1000 and 500). 

Similarly, chosen cases of Nn are Nn=200, 400, 600, 800, and 1000. Among the listed Nn and Nsim values, 

the pairs that satisfy Nn<Nsim are investigated for both the RV and SD formulations while the Nn=Nsim 

cases (i.e. no replications) are only examined for the SD formulation. Note that, for example, when 

(Nsim=1000, Nn=200, nr=10) is chosen, the number of replicated points is Nr=(Nsim-Nn)/nr=80. Similarly, 

when (Nsim=1000, Nn=1000) is chosen, all the points in the training sets are non-replication points, and 

Nr is zero (nr need not be defined). The training points are selected using space filling Latin Hypercube 

sampling in the input domains X defined in Table 1, while the numerical experiments are repeated 15 

times in each case for different realizations of the training points. Linear basis functions are utilized for 

the influential input parameters, corresponding to the moment magnitude, while a generalized 

exponential correlation function was used for the correlation kernel.  
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5.3 Validation results and discussion 

The validation results are presented in Figures 1-2, respectively showing KL divergence and correlation 

coefficients (cc) between the surrogate model predictions and reference EDP responses. Note the KL 

divergence value is normalized by dividing the value by the dimension of joint distribution, i.e. nz=6. 

Both validation metrics are computed using the uniformly generated 1000 test samples across the 

training range. In Figure 1, the variability across the 15 different implementation trials, corresponding 

to different random selection of training points, is depicted in these figures in the form of boxplots. The 

validation results are shown for different percentages of training points without replications 

(Nn/Nsim×100), representing different computational budget allocation scenarios. Note that 100% (i.e. 

“no replication” implementation) is presented only for SD approach because the implementation without 

replication cannot be accommodated for the RV implementation. Figure 2 presents the average cc 

separately for diagonal and offdiagonal components of covariance matrix for nr =10. For Figures 2, only 

the mean performance across 15 repetitions is shown.   

It is evident that good overall accuracy is achieved, with KL divergence as small as 0.1 with narrow box 

bounds. As expected, this accuracy increases as the computational budget (Nsim) increases. The SD 

implementation outperforms the RV variants, especially for the higher percentage range of training 

points with no replications. This trend holds for all Nsim and nr values examined and stresses the benefit 

of utilizing non-replicated samples in deriving the second-order statistics. As the number of training 

points without replications increases, the better exploration of the input domain accommodated by this 

 

Figure 1: Averaged KL divergence for the joint EDP distribution for the RVJv, RVJρ, and SDJ variants. 

 

Figure 2: Average correlation coefficient metric for covariance predictions over diagonal and offdiagonal  

elements for nr=10 
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implementation (larger number of distinct training points for x allowed), ultimately supports greater 

accuracy for the SDJ variant. This agrees with the trend reported in (Yi and Taflanidis, 2024) when 

examining the marginal distribution approximation accuracy.  The best overall performance is achieved 

for SDJ without any replications (i.e. ni=1 for all training points), demonstrating the importance of the 

SD computational workflow that can accommodate this implementation. It is important to note that RVJv 

and RVJρ show similar performance level across all examined cases. Despite the different computational 

approaches in deriving the correlation approximation in these variants, the achieved accuracy seems to 

be of a similar level. Comparing the different replication sizes, the smaller replication size of nr=10 

appears to perform slightly better overall, promoting an increased exploration of the domain by allowing 

a larger number of unique training points for the same computational budget (Kyprioti and Taflanidis, 

2021, Yi and Taflanidis, 2024). Only when the number of training points with replications is relatively 

small, one can expect some small benefits from increasing the nr for the RV formulations. This trend 

should be attributed to an improved statistical accuracy of the observations utilized for the second-order 

statistics approximation; when this number is small (small number of training points with replications) 

lower noise in these observations (larger nr value) becomes beneficial (Kyprioti and Taflanidis, 2021) .  

Figure 2 shows that across all variants, the trends for diagonal components (variance statistics) are 

similar to the offdiagonal components (covariance statistics) with only a small reduction of performance 

for the latter. This shows that the parallel GP-based approximation of the covariance (for SDv or RVJv ) 

or correlation (for RVJρ) matrices yield consistent prediction accuracy across both diagonal and 

offdiagonal statistics. SD implementation shows good accuracy with average of cc for diagonal and 

offdiagonal components reaching respectively 0.8 and 0.75 even for a small computational budget (Nsim 

=500). The performance of the SD implementation stays consistent, or slightly increases, as the training 

points without replication increases. The RV variants show similar accuracy to SD when the number of 

training points without replications is small, but their performance drastically deteriorates when the 

training points without replications increases, which is consistent with the trend observed in Figure 1.  

In conclusion, for approximating the output correlation statistics in stochastic emulation settings, SD 

implementation should be preferred with no replication samples to promote greater exploration of the 

input domain as long as the underlying surrogate model can recognize the higher noise level infused in 

this instance. If RV implementation is preferred, then either the correlation of covariance matrix 

components can be approximated, but a sufficient number of training points with replications and an 

appropriate replication size nr should be utilized. An iterative selection of training points can be utilized 

for making these choices (Binois et al., 2019). Readers interested in the validation of this implementation 

within seismic vulnerability and risk estimation are referred to  Yi and Taflanidis (2024) and Yi and 

Taflanidis (2025) 

6 CONCLUSIONS 

This paper proposed a workflow to address multiple outputs in stochastic emulation, focusing on 

capturing the joint second-order statistics between outputs arising from the stochastic randomness within 

the simulation. Though the developments are general, they were couched within a specific application 

of interest: the approximation of the engineering demand parameter (EDP) joint distribution for seismic 

risk assessment. In this case, the stochasticity pertains to the aleatoric uncertainty in the hazard 

description (ground motion variability). The key challenge, newly addressed in this paper, pertains to 

capturing the heteroskedasticity in the correlation of the joint output variables. For approximating the 

output correlation matrix for given simulation inputs, a GP regression model was introduced. Two 

different implementations were examined, either directly approximating the correlation matrix or 

approximating first the covariance matrix and, through that, obtaining approximations for the correlation 

matrix. To ensure the positive definiteness of the correlation matrix predictions, a single calibration was 

promoted for the GP, sharing hyper-parameters across all correlation (or covariance) matrix components 

and a final correction step was introduced, adjusting any negative eigenvalues of the resultant correlation 

matrix. The established correlation predictions can be ultimately combined with existing stochastic 
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emulation approaches for approximating the marginal distribution of each output component, to 

characterize the joint distribution of the output vector. An extensive numerical case study was performed 

to validate and compare the prediction performance of the three variants. The example problem aims to 

accelerate seismic risk analysis by jointly emulating the EDP responses for a three-story moment frame 

structure, with seismic hazard described through a stochastic ground motion model. The impacts of the 

percentage of training points with replications, of the number of replications used and of the total 

computational budget afforded for the emulator calibration were examined. It was shown that the 

proposed GP-based framework for approximating the covariance of correlation components of the 

output vector can provide results with good accuracy.  

Interesting future research topics include the incorporation of projection mappings from the response 

output vector to a latent output vector to achieve reduced between-output correlations or recused degree 

of heteroskedastic behavior to promote higher accuracy in the surrogate model approximation, or the 

promotion of an adaptive selection of simulation experiments (including selection of replications needed) 

to improve the accuracy of the joint distribution approximation.  
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Abstract

This study introduces a state-dependent probabilistic framework for seismic fragility assess-
ment of industrial components, addressing a key limitation of traditional approaches—namely,
their tendency to overlook the role of initial damage conditions and complex structural-
components interactions. The proposed method enhances classical fragility analysis by
incorporating both the effect of seismic sequences on the multi-component structural response
and its inherend uncertainties. The framework leverages advanced tools for uncertainty
quantification and reliability analysis, including: (i) polynomial chaos expansions (PCE) to
propagate input uncertainties and build efficient surrogate models; (ii) bootstrap resampling
techniques to generate statistically robust confidence intervals for the fragility estimates; (iii)
application to an real industrial process component, demonstrating the practical relevance
and adaptability of the approach. By explicitly accounting for the evolving physical state of
the system, this methodology provides a more detailed and accurate representation of seismic
vulnerability, particularly suited for complex, safety-critical facilities.

1 Introduction

1.1 Background and motivation

Assessing the vulnerability of structural and non-structural components to earthquakes is a
cornerstone of modern probabilistic seismic risk assessment. The PEER performance-based
earthquake engineering (PBEE) framework has become a standard in this field, thanks to its
effective application of the total probability theorem to link seismic hazard, fragility, damage,
and loss analyses.

At the heart of this framework lies fragility analysis, which estimates the conditional probability
of reaching or exceeding a specific damage state (DS) given an intensity measure (IM) of ground

∗marco.broccardo@unitn.it
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motion. Originally developed for nuclear safety, fragility curves are now widely used—from
collapse risk assessment to community resilience studies Nguyen and Lallemant (2021); Burton
et al. (2016); Du et al. (2021); Rincon and Padgett (2024).

Recent advancements include multivariate fragility functions Du and Padgett (2020), hybrid
real/artificial ground motion use Gentile and Galasso (2020a), surrogate modelling Abbiati et al.
(2021), and both state- and time-dependent fragility formulations Iervolino et al. (2015); Di Maio
et al. (2020); Ghosh and Padgett (2010). However, most prior work focuses on damage transitions
from pristine states under single events, with limited research into state-dependent fragility,
which captures (i) damage accumulation over seismic sequences and (ii) varying initial damage
states Jia and Gardoni (2018); Gentile and Galasso (2020b); Sarno and Wu (2021).

This gap is especially relevant in light of sequences like Wenchuan (2008), Tohoku (2011), and
Central Italy (2016), which exposed the compounded risks of repeated earthquakes. As a result,
there is increasing attention on modelling cumulative damage and the dynamic performance of
both structures and NSCs Pang et al. (2023); Kassem et al. (2019). On the input side, careful
ground motion selection—using real mainshock–aftershock pairs or synthetic data via ground
motion models—is critical to preserving within-sequence correlations Zhang et al. (2018).

Simulating such complex scenarios is computationally intensive, particularly due to the nonlinear
behaviour and interaction between structural systems and NSCs Quinci et al. (2023); Filiatrault
et al. (2001); Nardin et al. (2022).

To address this, surrogate models are increasingly employed to replace expensive finite element
simulations in uncertainty quantification (UQ) tasks. Techniques like polynomial chaos expansions
(PCE), Kriging, and neural networks have gained traction, offering not just approximation but
also insights like response moments and prediction confidence.

1.2 Scope and novel contributions

This paper builds on these developments, proposing a novel UQ-based framework to derive state-
dependent fragility curves for industrial NSCs using limited sequential NLTHAs and advanced
metamodelling. Key contributions include:

• a new methodology for state-dependent fragility under seismic sequences;

• integration of PCE and bootstrapping to enhance statistical robustness with sparse data;

• application to real industrial systems;

• computational efficiency that supports integration with experimental data.

The methodology is detailed in Section 2, and applied to a vertical tank NSC on a braced
frame from the EU project SPIF in Section 3. Findings and future directions are summarized in
Section 4.
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2 Methodology

Risk-informed seismic assessments often rely on simplified models for practical reasons. However,
as stressed in the NIST GCR 17-917-44 report NIST (2017), such simplifications can lead
to suboptimal or uneconomical designs, particularly in industrial contexts. In response, this
section introduces a novel framework to derive state-dependent fragility curves that integrate
experimental insights and surrogate modeling.

State-dependent fragility curves extend the classical definition by conditioning not only on seismic
intensity measures IM (often a vector), but also on the system’s pre-existing damage state DSi

Iervolino et al. (2015). The resulting formulation estimates the probability of transitioning to a
more severe state DSj, given an initial DSi and an intensity im:

P [DSj|DSi, , IM = im] = P [DS ≥ DSj|DSi, , IM = im] − P [DS ≥ DSj+1|DSi, , IM = im] , (1)

for j > i, where i and j span discrete damage limit states. Figures 1(a–b) illustrate this transition
framework, assuming no recovery and an absorbing failure state DS2 (e.g., collapse).

Figure 1: Transition state (a) matrix and (b) diagram.

Obtaining state-dependent fragilities requires populating the transition matrix with responses
from many NLTHAs under sequential ground motions. These sequences are applied to simulate
systems with varying initial damage states, enabling robust statistical sampling across transitions.
Performances are then clustered by initial state and damage metric, and fragilities are derived
either empirically or parametrically, conditioned on DSi and IM.

Figure 2(a) outlines the workflow: starting from FE and seismic models (steps A–B), NLTHAs
are executed to extract fragilities (step C). However, this brute-force approach becomes compu-
tationally infeasible for realistic models and large ground motion sets.

To overcome this, we embed the uncertainty quantification (UQ) strategy developed in bib
(2007); Sudret (2008). The process consists of: (i) defining the computational model M(·), (ii)
characterizing the uncertain inputs, and (iii) propagating uncertainty to estimate the quantities
of interest (QoIs). Specifically, we model the system response to a stochastic ground motion
sequence A(t, X ) as:

Y = MF E (A(t, X )) , (2)

where X encodes both aleatory and epistemic uncertainties for the M -event sequence, and Y
collects the resulting QoIs per event.
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Figure 2: Steps A–C for (a) brute-force and (b) surrogate-based approaches. Reproduced from
Nardin et al. (2025).

To reduce computational demand, we replace MFE(·) with surrogate models tailored to each
initial damage state. Outputs are clustered by DSi, producing datasets Ds = (xj , yj) for each
state s ∈ DS0, DS1. Each xj represents a ground motion from the sequence, reduced to a vector
of IMs.

A significant number of IMs are initially considered. To reduce dimensionality, principal compo-
nent analysis (PCA) is applied, yielding a set of uncorrelated pseudo-IMs, ÎMj .

Surrogate models based on polynomial chaos expansions (PCE) are then trained using (ÎMj , yj)
pairs:

Ŷ = MP CE
s

(
ÎM

)
, (3)

where s again identifies the initial damage state. These surrogates enable efficient Monte Carlo
simulations for fragility estimation per Eq. 1, with minimal dependence on the original FE model.

Finally, this non-intrusive framework decouples FE modeling from UQ, allowing specialists in
each area to collaborate independently. In the next Section, it is applied to a vertical tank
structure from the SPIF project Nardin et al. (2022) to showcase its capabilities.

3 Industrial case study: vertical tank on 3D Braced-Frame
structure

This section presents the application of the state-dependent fragility framework to a full-scale
industrial case study involving the SPIF #2 experimental campaign Quinci et al. (2023); Nardin
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(2022). The focus is on assessing the seismic fragility of a vertical tank mounted on a steel
braced-frame (BF) substructure, a key non-structural component (NSC) with high vulnerability
under seismic actions.

3.1 Step A — Computational Model Description

The finite element (FE) model was developed in SAP2000® SAP2000-v22 (2022), using linear
elastic Euler–Bernoulli beam elements for the steel frame and flexible diaphragms for the floors.
The NSCs, including vertical tanks and cabinets, were represented using dedicated stick models.
Joint flexibility was modeled using calibrated rotational springs, while non-linear behavior was
introduced for the bracing system via tension-only elements. The Young’s modulus was set to
220GPa, based on prior calibration studies. A detailed view of the BF structure, the vertical
tank, and both the global and local FE models is shown in Figure 3. The vertical tank, situated

Figure 3: The SPIF #2 mock-up: (a) photo of the braced frame (BF) configuration on the shake
table of EUCENTRE Facilities and details of the vertical tank installed at the first level; (b)
SAP2000®high-fidelity local FE model and ad-hoc implemented stick-model for the vertical tank;
(c) global SAP2000®FE model of SPIF #2. Reproduced from Nardin et al. (2025).

at the first floor level, demonstrated pronounced dynamic interaction with the host structure,
with strong displacement responses noted during the shake table tests. Given the criticality
of these components to operational safety, they were selected for fragility analysis using the
bootstrap PCE methodology introduced earlier.
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Figure 4: Individual realization of (seed) fragility curves.

3.2 Step B — Input Definition

To define the input space (Step B), a sequence of 100 ground motion records, each comprising
five seismic events, was applied to simulate various initial damage conditions and transition
states. Performance thresholds were established for two damage states: DS1 (DBE limit state)
and DS2 (SSE limit state), defined by base acceleration thresholds of 10m/s2 and 16m/s2,
respectively Quinci et al. (2023).

The QoIs from NLTHAs were clustered into datasets D0 (undamaged), D1 (DBE-exceeded),
and D2 (SSE-exceeded), as shown in Figure 4. A principal component analysis (PCA) was
conducted on the complete list of intensity measures, reducing the dimensionality to 10 principal
components that captured 99% of data variability.

3.3 Step C - QoI response

To efficiently predict the QoI—the peak acceleration at the base of the vertical tank—state-
conditioned PCE surrogates were constructed for both D0 and D1. These models employed the
subspace pursuit (SP) solver and polynomial adaptivity, with convergence achieved at polynomial
orders of 3 and 5, respectively. The surrogate performance is illustrated through histogram
comparisons and control plots in Figures 5 and 6, with εLOO errors of 4.17×10−2 and 4.73×10−2,
respectively.
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Figure 5: (a) Histogram distribution of the PCE surrogate YP CE (light grey) predictor vs the
YD0 original data of the initial undamaged condition dataset; (b) control plot of the performance
of the YP CE surrogate model vs the YD0 reference experimental design samples. Reproduced
from Nardin et al. (2025).

Figure 6: (a) Histogram distribution of the PCE surrogate YP CE (light grey) predictor vs the
YD1 original data of the initial undamaged condition dataset; (b) control plot of the performance
of the YP CE surrogate model vs the YD1 reference experimental design samples. Reproduced
from Nardin et al. (2025).

Optimal IMs for fragility modeling were identified using the global βeff,glob metric, with peak
ground acceleration (PGA) emerging as the most effective descriptor. State-dependent fragility
functions, computed using the PCE surrogates and bootstrap resampling (B = 500), are presented
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in Figure 7. These probabilistic curves capture epistemic uncertainties and provide critical insight
into the transition probabilities across damage states under increasing seismic intensity.

Figure 7: Bootstrap-PCE state-dependent fragility curves of the SPIF #2 vertical tank: black-
dotted thick lines stand for the 1%, 50%, and 99% percentiles. Red-dotted lines for the 10% and
90% percentiles, along with their area with darker to lighter red-shaded colours. Adapted from
Nardin et al. (2025).

4 Conclusions

This work presents a novel, non-intrusive UQ framework for computing state-dependent seismic
fragility functions, addressing the computational challenges associated with traditional approaches.
The method integrates (i) stochastic modeling of seismic sequences; (ii) finite element models;
PCA for dimensionality reduction of input ground motions, and (iv) PCE for surrogate modeling
of system responses.

By reducing the number of required NLTHAs and replacing them with surrogate-based Monte
Carlo simulations, the framework enables efficient fragility assessment even for complex, compu-
tationally expensive models.

The methodology was applied to a critical vertical tank in a full-scale 3D industrial mock-up (SPIF
#2). The results demonstrate the feasibility and robustness of the proposed fragility assessment
framework when applied to real-world, full-scale industrial systems, offering a scalable and
computationally efficient pathway for risk-informed decision-making in complex infrastructures.
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Abstract

Predicting the response of complex dynamical systems is a challenging
task in engineering and applied sciences. In this contribution, we present a
new surrogate modelling technique for emulating the behavior of stochastic
dynamical systems with time-dependent exogenous excitation. Our method
is established by learning the dynamics in state space form with sparse Krig-
ing model. Sparsity is achieved by selecting a subset of the observed time
history of the state vector and its derivative with respect to time with an
active learning strategy for constructing a Kriging model. We also discuss
a tailored algorithm for designing the training time history of state vector
and its derivative, so as to ensure the robustness of Kriging for dynamical
systems. We validate the performance of the proposed method with various
benchmarks, which show that the proposed method is promising for accu-
rately and efficiently emulating complex dynamical systems.

Keywords: Stochastic dynamical system; Surrogate model; Active learning;
Gaussian process; Sparse learning.

1. Introduction

Dynamical systems are widely used in modern engineering and applied
science for modeling complex underlying physical phenomena [1]. With the
increase of computational power, numerical simulation offers a feasible way
to study and predict the behavior of complex dynamical systems. However,
the response of complex dynamical systems is governed by uncertainties, due
to the stochastic external excitations, uncertain boundary conditions, and
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natural variability of system properties [4]. To obtain effective prediction,
these uncertainties must be accounted for. To this end, uncertainty quantifi-
cation (UQ) of dynamical systems has gained particular interest in the last
few decades [6, 5], but it usually requires many expensive model evaluations,
which is infeasible in practice. To address this issue, surrogate models have
been widely used to construct computationally efficient approximations of
the expensive computational model. In this contribution, we propose a novel
surrogate modelling technique for emulating complex nonlinear dynamical
systems under stochastic excitation in their state space form with Kriging
model, termed as the state space Kriging (S2K) model.

2. Methodology

Consider a general nonlinear dynamical system under stochastic excita-
tion in its state space form [2] as

Y (t) = f(X(t),U(t)), with X(0) = x0, (1)

where X(t) = [X1(t), ..., Xn(t)]
T ∈ Rn is the state vector at time t; x0 is the

initial condition; Y (t) = Ẋ(t) is the derivative of X(t) with respect to t;
U(t) = [U1(t), ..., Um(t)]

T ∈ Rm is the external stochastic excitation vector
acting on the structure; f(·) is the n-dimensional nonlinear vector function .

Note that f(·) : Rm+n → R
n is a deterministic function, which maps the

state vector X(t) ∈ Rn and the external excitation U(t) ∈ Rm to Y (t) ∈ Rn

at time instant t. The input dimension of f(·) depends on the dimension of
the state vector n of the associated dynamical system and the cardinality of
the external excitation vector m. For every realization of the time history
u(t) of the excitation U(t), the time history of the corresponding state vector
x(t) and its derivative y(t) over the time period of interest [0, T ] can be
estimated numerically.

We propose to to approximate the state space representation f(·) with
Kriging model [3, 7] component-wisely. To construct a Kriging model for
the i-th component of f(·), one can collect a few training time histories of
input ω(t) = [x(t),u(t)]T ∈ Rn+m and the i-th output yi(t). To improve the
robustness of S2K model, we suggest collecting the time histories of a pseudo
state vector resulting from pseudo external excitation with magnified vari-
ability. In practice, one can magnify the standard deviation of the stochastic
excitation at every time instant by a magnification factor σ ∈ [1.5, 2]. By
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magnifying the variability of the excitation, the state vector will exhibit
stronger variability, hence, it is expected that a few pseudo time histories
of state vector will sufficiently populate its parameter space under the true
excitation.

Once the S2K model is trained, it can be used to predict the time history
of system response x̂(t) for arbitrary realization of the time history u(t) of
U(t) by solving the following approximate dynamical system in state space
form

ŷ(t) = f̂(x̂(t),u(t)), (2)

where f̂(·) is the Kriging approximation of f(·). In general, the Runge-
Kutta method can be used to estimate the time history of the state vector
x̂(ti)(i = 1, ..., Nt) at Nt discretized time steps within the time period of
interest [0, T ].
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In most areas of engineering, one aims to determine a best decision, design, estimate, or model in the

presence of uncertainty about the values of key parameters and data in a problem. The uncertainty

stems from our incomplete knowledge about the state of a system, the inaccuracy of approximations

that might have been adopted, and the human inaptitude to predict the future. One might hope that

historical observations about varying quantities can inform us and ideally eliminate the uncertainty.

Despite living in the era of big data, this aspiration rarely comes to fruition. Real-world data sets

tend to be noisy, biased, corrupted, or simply insufficiently large. It is therefore prudent to optimize

decisions, designs, and models while accounting conservatively for the uncertainty. Even when our grasp

of the uncertainty in an application is fairly good, human nature and our desire to avoid exceptionally

“bad” outcomes motivate conservativeness in decision making and modeling broadly. Thus, engineering

designs, financial decisions, operational plans, military strategies, system controls, and statistical models

are often selected conservatively.

While the various fields have approached decision making under uncertainty somewhat differently,

overarching themes now emerge: the need to capture risk-averseness and ambiguity about uncertainty,

promote computations and analysis, and enable explanations of algorithmic outcomes. The concept of

risk measures provides a mathematical framework for unifying and understanding the various threads

and how they connect. The framework encapsulates many common problems in robust control and

optimization, distributionally robust optimization, adversarial machine learning, statistical estimation,

financial risk management, utility maximization, attacker-defender games, and reliability-based design

optimization. Supported by convex analysis, risk measures furnish a rich area for nonlinear analysis as

well as opportunities for efficient computations. The vast literature on risk measures developed over

the last 25 years is a testimony to the potency of the framework, both theoretically and practically.

The canonical problem in many engineering settings involves a quantity of interest given by a function

f(ξ, x), which depends on a parameter ξ and a decision (control) x. For example, f(ξ, x) might quantify

the performance of an engineering system designed according to our decision x, given an environmental

condition represented by ξ. In supervised learning, f(ξ, x) might specify the prediction error of a neural

network designed according to x, given feature and label data ξ. Without fully knowing ξ, the problem

is to determine a decision x such that f(ξ, x) is minimized or, alternatively, f(ξ, x) does not exceed a

given threshold. The problem is ill-posed because ξ is unsettled. The uncertainty about ξ could stem

from our incomplete knowledge of a “true” value, such as the demand for a product tomorrow, and/or

from inherent variability in the value as exemplified by the many feature-label pairs a neural network

needs to handle accurately.

There are several ways to proceed. One can estimate the value of ξ and adopt that value in

the subsequent optimization and decision making. However, this fails to account for the uncertainty

associated with ξ. The approach is especially problematic when ξ varies inherently and our decision x
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needs to perform satisfactorily under different values of ξ. Alternatively, if there is a set Ξ of possible

values of ξ, then one may consider the quantity of interest in the worst case across these values,

i.e., supξ∈Ξ f(ξ, x). The problem shifts to determining a decision x that minimizes this conservative

quantity or makes it sufficiently low, which we refer to as robust optimization; see, e.g., [2, 3]. Yet

another possibility is to model the uncertainty associated with ξ using a probability distribution. This

brings in the vast and sophisticated tools of probability theory and statistics. In assessing a decision

x, one can leverage the expected value of f( · , x) computed with respect to the adopted probability

distribution. Thus, the problem becomes to find a decision that is satisfactory on average. This classical

approach is the central tenet of stochastic programming; see, e.g., [4, 25, 22].

Risk measures capture all these possibilities and many more. Through choices of probability distri-

butions, risk measures allow us to incorporate data and other information about the possible values of

ξ and their likelihoods. They reflect a wide variety of concerns and preferences a decision maker may

have toward various outcomes. When restricted suitably to the class of regular measures of risk, they

exhibit theoretically and computationally advantageous properties. In particular, convexity, linearity,

and smoothness of f(ξ, x) in x commonly carry over to the resulting optimization problem. Many risk

measures also address the fact that any adopted probability distribution is an imperfect model of the

uncertainty associated with ξ. Thus, they account for ambiguity about the model of uncertainty, which

leads to distributionally robust optimization problems, as exemplified by [27, 21, 14, 25], and connections

with stochastic dominance; see, e.g., [5].

Risk measures originated in financial engineering as an approach to quantify the reserves banks,

insurance companies, and other financial institutions need to cover potential future losses; see for

example the influential paper [1], the textbooks [13, 7], and the review article [8]. However, risk measures

have spread beyond financial engineering to operations management, reliability analysis, engineering

design, defense planning, statistics, and machine learning.

Among the early reviews of risk measures, [16] stands out for a concise description of the important

advances taking place around the turn of the century. The tutorials [24, 11] explain key concepts and

introduce connections with statistics; see also the monograph [28]. With a focus on expected utility

theory and dual utility theory, [23] reviews the deep mathematical relations between risk measures and

these earlier theories as well as stochastic dominance; see also the recent paper [9]. While surveying risk

measures and related concepts, [19] breaks new ground by connecting concepts of risk, regret, deviation,

and error and thereby relating risk management to statistics. The paper [17] emphasizes the applica-

bility of risk measures in reliability-based engineering design. For PDE-constrained optimization and

uncertainty quantification, [10] discusses the needed technical assumptions in such infinite-dimensional

settings as well as algorithms. The paper [26] surveys applications for autonomous systems. Reviews

of superquantile risk measures appear in [6], with a focus on applications in supply chain management,

scheduling, networks, energy, and medicine, and in [12], dealing with machine learning applications.

Books covering risk measures broadly include [15, 7, 25, 22].

The above paragraphs are largely taken from the introduction of the recent survey article [20],

which provides a succinct introduction to the area of risk measures and related concepts. It discusses

the increasing interest in risk-averse approaches to statistical applications, with an updated review
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of the risk quadrangle proposed in [19] and refined in [18]. The survey paper recounts the historical

development of superquantiles (a.k.a. conditional value-at-risk, average value-at-risk, tail value-at-

risk, and expected shortfall) and the central role they now play in many areas of operations research,

engineering, and statistics. It introduces the terminology measure of reliability for failure probabilities,

buffered failure probabilities, buffered probabilities of exceedance, and related concepts.
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Abstract: Transitions to renewable energy requires strategic power network planning that 

accounts for weather uncertainty. This study presents a risk-informed decision-making framework 

for power network expansion by integrating probabilistic weather modeling with an extended 

Direct Current Optimal Power Flow (DC-OPF) formulation to enhance system reliability. Through 

the analysis of historical weather data, we identify key dependencies among weather variables and 

represent them using a Bayesian Network, enabling a structured understanding of their influence 

on renewable energy generation. Additionally, the buffered failure probability constraints are 

incorporated to mitigate power shortage risks. A five-node case study with 100 scenarios is 

conducted to evaluate the impact of incorporating generation and transmission expansion decisions 

into the proposed model, as well as its effects on system reliability and load shedding reduction. 

The results provide useful insights on the role of risk-aware constraints in shaping strategic power 

network planning for renewable energy transitions. 
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 INTRODUCTION 

The global energy landscape is undergoing a fundamental transformation as countries strive to 

transition from conventional fossil fuel-based power generation to renewable energy sources. This 

shift is driven by the urgent needs to mitigate climate change, enhance energy security, and ensure 

long-term sustainability. However, the integration of renewable energy into power grids, 

illustrated in Figure 1, pose significant challenges due to the inherent variability and uncertainty 

of weather-dependent generation sources such as solar and wind power. To facilitate effective 

long-term planning for renewable energy transitions, power network expansion must account for 

these uncertainties in a systematic and risk-informed manner. A key challenge lies in modeling the 

stochastic nature of weather conditions and their evolving trends over time. Therefore, 
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probabilistic system analysis is required to assess the impact of uncertain generation and demand 

on grid reliability and operational stability. 

 

Figure 1 Power network system under renewable energy transition 

To this end, we identify key dependencies among weather variables in this study to enable 

probabilistic modeling and formulate a strategic power network planning framework based on a 

direct current optimal power flow (DC-OPF) formulation. By capturing these relationships, we 

can generate probabilistic scenarios that reflect weather-driven uncertainties and incorporate them 

into the optimization process.  

 UNCERTAINTY QUANTIFICATION OF WEATHER CONDITIONS  

Renewable energy generation, particularly from wind and solar power, is inherently dependent on 

weather conditions. On the other hand, electricity demand is significantly influenced by 

temperature variations, making weather modeling a crucial component of strategic power network 

planning. Therefore, this study considers temperature, wind speed, and solar radiation as the key 

weather variables and aims to construct a probabilistic framework to characterize their statistical 

dependencies and uncertainties. 

For this purpose, we analyze historical weather data for Seoul from 1984 to 2023, using monthly 

resolution to capture seasonal variations. A key aspect of this analysis is to examine whether key 

weather variables—wind speed, solar radiation, and temperature—exhibit statistical independence 

in their joint probability density distributions. If the statistical independence does not hold, it 

indicates the presence of underlying dependencies that must be explicitly modeled, rather than 

assuming conditional independence on month. 

The monthly scatter plots in Figure 2 show that solar radiation and temperature have strong 

statistical dependencies, particularly in certain months (e.g., April, July, and November) where 

their joint probability density distributions show clear bimodal structures. This indicates that the 

assumption of statistical independence between these two variables is invalid for certain seasonal 

conditions. To accurately capture this relationship, we introduce a latent weather node in a 

Bayesian Network (BN) method, which accounts for their probabilistic dependencies and enables 

33



 

 

more realistic scenario generation for power network planning. The final structure of the BN, 

constructed for a power system under renewable energy transition, is presented in Figure 3. 

 

Figure 2 Monthly scatter plots between (a) average wind speed and total solar radiation, (b) 

average wind speed and average temperature, and (c) total solar radiation and average 

temperature 

 

Figure 3 Final BN constructed for power system under renewable energy transition 

 

 LONG-TERM, UNCERTAINTY-INFORMED EXPANSION 

PLANNING 

DC-OPF formulation is a fundamental tool for power system operation and planning. It is a 

mathematical optimization model that determines the most cost-effective dispatch of generation 

while satisfying physical and operational constraints. Unlike the full Alternating Current Optimal 

Power Flow (AC-OPF), which considers both active and reactive power flows, DC-OPF simplifies 

power flow equations by considering only active power and neglecting losses. This approximation 

significantly reduces computational complexity, making DC-OPF a widely adopted approach for 

large-scale power network studies. 
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In this study, the conventional DC-OPF formulation is extended to incorporate risk-informed 

power network expansion planning under renewable energy uncertainty. The basic model 

determines generation (𝑃𝑔
𝐺𝑒𝑛 ) and transmission (𝑃𝑙) while ensuring that power flows comply with 

network topology and transmission limits, respecting Kirchhoff’s laws and other physical 

constraints. Additionally, it enforces demand-supply balance across all scenarios while accounting 

for variability in renewable energy sources. To explicitly quantify power outage risks, a load 

shedding term (𝑆) is introduced, capturing the extent of supply shortfalls in critical scenarios. 

Furthermore, the model includes both generator expansion (𝐸𝑔 ) and transmission capacity 

expansion (𝐸𝑙) as decision variables, enabling long-term strategic planning under uncertainty. To 

manage risk, the buffered failure probability (�̅�𝑓 ) is incorporated as a constraint, ensuring a 

probabilistically robust network design that mitigates the impact of uncertain generation and 

demand fluctuations. By integrating multiple scenarios within a unified optimization framework, 

this approach provides a holistic assessment of system reliability and investment strategies.  

 NUMERICAL INVESTIGATION 

To assess the validation of the proposed risk-informed DC-OPF expansion model, a case study is 

conducted using a five-node transmission grid in Figure 4 under 100 stochastic demand scenarios. 

This numerical analysis evaluates how the integration of uncertainty quantification and risk 

constraints influences power generation, load shedding, and expansion strategies. 

 

Figure 4 5-node transmission grid 

The optimization results in Figure 5 highlight a significant shift in generation dispatch, with 

Generator 3 emerging as the primary power source. Unlike original optimization solutions in 

Figure 5(a), where power generation was more distributed across three generators, the proposed 

model identifies an optimal configuration that enhances system robustness. Notably, two 

generators that previously had minimal or no generation now operate at stable output levels 

between 100 MW and 200 MW, as shown in Figure 5(b). Additionally, all generators exhibit 

significantly reduced fluctuations in output, maintaining more consistent power generation levels. 

This adjustment ensures a more resilient generation mix, mitigating the impact of renewable 

energy variability on power system stability. 
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Figure 5 Optimization solution of (a) 𝑷𝒈
𝑮𝒆𝒏 under original demand scenario, (b) 𝑷𝒈

𝑮𝒆𝒏 under 

100 demand scenarios, and (c) 𝑺 under 100 demand scenarios 

The results also demonstrate its effectiveness in managing load shedding risks under uncertainty. 

Figure 5(c) indicates that, while some scenarios still experience power shortages, the model 

enables a risk-informed approach to decision-making, ensuring that reliability is maintained 

without excessive overexpansion. By incorporating buffered failure probability constraints, the 

optimization effectively balances system security and economic efficiency, allowing for robust 

planning that accounts for uncertain scenarios while minimizing unnecessary interventions. 

 

Figure 6 Optimization solution of (a) 𝑬𝒈, and (b) 𝑬𝒍 under 100 demand scenarios 

In terms of expansion planning, the results reveal a notable increase in generation capacity in 

Figure 6. The optimization strategically allocates additional generation resources to enhance 

overall system reliability, particularly in Figure 6(a). Conversely, transmission network expansion 

remains relatively limited, as depicted in Figure 6(b). The findings suggest that, due to the 

optimized local generation strategy, the demand is met primarily through distributed generation, 

thereby reducing the necessity for additional transmission capacity. This outcome underscores the 
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efficiency of meeting demand through localized generation, which minimizes reliance on long-

distance power transmission and lowers overall infrastructure investment costs. 

 CONCLUSIONS 

This study explores probabilistic weather modeling and risk-aware power network expansion 

planning using an extended DC-OPF formulation as complementary approaches to support 

strategic decision-making in renewable energy transitions. By capturing key dependencies among 

weather variables through a Bayesian Network and incorporating buffered failure probability 

constraints into the optimization model, this work provides insights into uncertainty quantification 

and risk-informed expansion strategies. While these two components were developed separately, 

their integration could further enhance the robustness of long-term power network planning. Future 

research will focus on applying this framework to a real-world case study in the United Kingdom, 

assessing its effectiveness in guiding practical renewable energy transition strategies. 
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Abstract

This work presents a design under uncertainty approach for a char combustion problem with limited
data, where simulations of the fluid-solid coupled system are computationally expensive. A polyno-
mial dimensional decomposition (PDD) surrogate model is integrated into the design optimization
and computational efficiency is induced in three key areas. First, the input random variables are
transformed to have fixed probability measures, eliminating the need to recalculate the PDD’s basis
functions associated with these probability quantities. Second, the PDD coefficients are estimated
using the limited data from a physics-based high-fidelity solver via sparsity-promoting diffeomorphic
modulation under observable response preserving homotopy regression. Third, a single-pass surro-
gate model training process is proposed to avoid the need to generate new training data and update
the PDD coefficients during the derivative-free optimization process. The results provide insights for
optimizing process parameters to ensure consistently high energy production from char combustion.

1. Introduction

Biomass power plants convert organic materials, including wood, agricultural residues, and dedi-
cated energy crops, into electricity and heat through combustion. The complex and multiscale biomass
combustion process is subject to uncertainties in fuel variability, operating conditions, and emission
measurement uncertainties [1, 20], which makes it difficult to control and predict the outcomes of
biomass combustion. To achieve consistent energy production with biomass combustion, it is essential
to optimize the process while taking into account these uncertainties. A design under uncertainty
(DUU) framework allows one to maximize combustion efficiency and minimize fluctuations in the
produced thermal energy. The straightforward approach for DUU requires evaluating the objective
function, and possibly constraints, by repeatedly sampling uncertain inputs according to their joint
distribution and conducting physics-based simulations. Surrogate models can be used within design
optimization as cheaper-to-evaluate computational models, yet with the caveat of introducing model
error. The surrogate models include, but are not limited to, polynomial chaos expansion (PCE) [17, 18]
and polynomial dimensional decomposition (PDD) [9, 10, 15, 16], Kriging [21, 24, 7], copula-based
surrogates [14], reduced-order modeling [22], and artificial neural networks (ANN) [3]. To reliably
optimize, the surrogate model needs to be accurate, which may require a substantial amount of high-
quality training data from the costly physics-based model. Moreover, within the optimization, one
may have to retrain the surrogate model as the design variables change.

In this study, we formulate and solve a DUU problem for a char combustion process in a limited-
data setting, since the multiscale fluid-solid combustion simulation is computationally expensive. Our
contributions are as follows: (a) The optimization problem is formulated with transformed input

∗These two authors contributed equally to this work.
∗∗Corresponding author

Email address: bmkramer@ucsd.edu; +1 858-246-5327 (Boris Kramer)

39



random variables, whose probability measures remain fixed throughout design iterations, therefore,
recalculating associated probability quantities is unnecessary. (b) A sparsity-promoting diffeomorphic
modulation under observable response-preserving homotopy (sD-MORPH) regression approach is used
to accurately train a PDD surrogate model from limited data. (c) We develop a single-pass surrogate
model training process that estimates the objective function at current design variable values using
the initially calculated PDD coefficients. This approach avoids the need for input-output data from
costly physics-based models at each optimization iteration. (d) The single-pass surrogate model
training process benefits from a derivative-free design method, offering advantages over gradient-based
optimization solvers, which are sensitive to noisy and nonsmooth outputs [12, 13].

The paper is organized as follows. Section 2 overviews the DUU problem, relevant physics-based
models, and design optimization formulation. Section 3 introduces the char combustion model and
the computational domain, and defines the quantity of interest. Section 4 covers the DUU problem,
including the formulation of the design optimization problem and the surrogate model that works
with limited data. Section 5 presents numerical results, and Section 6 concludes with future outlook.

2. Problem description

The goal of the optimization is to find the optimal operation parameters that maximize the pro-
duced thermal energy of a char combustion process and minimize its variation under uncertainties.

We simulate the char combustion process in a lab-scale rectangular boiler (Figure 1) with the PIC
method, as detailed in Section 3. The quantity of interest (QoI) is the thermal energy Q generated
over a specified time interval, defined in (2) and depends on five uncertain inputs X (see Table 1).

(a) Geometry model (b) Computational model

Figure 1: Fluidized bed furnace: (a) an industrial-scale model of the fluidized bed furnace (left) is scaled down to a
lab-scale version (right), which details the geometry and initial conditions with the diameters of glass beads and char
particles, the air inlet, and char inlet; (b) in one simulation using the PIC method, we use 2,520 cells to discretize the
fluid (left) and the parcel model uses 8,344 parcels to predict solid behavior (right).

The DUU problem aims to maximize thermal energy while minimizing its variation. The objective
function is a weighted sum of the first two statistical moments of Q. Specifically, we formulate the
DUU problem as:

min
d∈D⊆Rn

w1
µ0

Ed[Q(X;d)]
+ w2

√
Vard[Q(X;d)]

σ0
, (1)

where µ0 ∈ R \ {0} and σ0 ∈ R \ {0} are two non-zero, real-valued scaling factors; d is the vector
of n design variables; D := ×n

k=1[dk,L, dk,U ] is the design space, where dk,L and dk,U are the lower
and upper bounds of the kth design variable. The design variables are the distribution parameters, in
this case the mean values, of a subset of the random inputs X that influence Q the most. The subset
is chosen based on variance-based global sensitivity analysis in our previous work [11]. Here, Ed[·]
and Vard[·] are the expectation and variance operators, respectively, with respect to the probability
measure fX(x;d)dx, which depends on d. Weights w1 ∈ R+

0 and w2 ∈ R+
0 satisfy w1 + w2 = 1.
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3. Computational model for char combustion

To predict the biomass combustion behavior, it is crucial to describe the behaviors of particles
and gases in the combustor. Considering both accuracy and efficiency, we select the PIC method
to efficiently describe the behavior of millions of particles and gases. The PIC model treats the gas
phase as a continuous medium using the Eulerian method. The model uses the Lagrangian method
for the solids phase, grouping particles into parcels based on their physical properties (e.g., density,
diameter). This simplification of the particle kinetics, rather than using the full Newtonian equation,
also increases computational efficiency. For more details on PIC, refer to [11].

In PIC, a collisional stress model accounts for interactions among particles and interactions between
particles and walls [19]. The collision stress is expressed as τ = Psϵ

β
s /max(ϵcp− ϵs, α(1− ϵs)), where

Ps = 1.0 is the empirical pressure constant, ϵs is the particle volume fraction, β = 2.0 is the empirical
unit-less exponent, ϵcp is the maximum possible packing fraction for particles, and α = 10−9 ≪ 1.
The combustion process generates two gas products, CO and CO2, from the heterogeneous (gas-solid)
and homogeneous (gas-gas) reactions

C(Solid) + 0.5O2(Gas)→ CO(Gas), CO(Gas) + 0.5O2(Gas)→ CO2(Gas).

The collisions among particles and between particles and the wall lead to the ash falling off the
particles, following an Arrhenius kinetic rate and gas diffusion rate [23]. The homogeneous reaction
can be calculated by the law of mass action via the Arrhenius formula, proposed by Dryer and
Glassman [6].

Figure 1a shows the lab-scale rectangular furnace model (40 mm × 160 mm × 10 mm) with
stacked glass beads at the bottom, enhancing combustion through improved mixing, heat transfer,
and reaction rate due to their fluidization properties, high sphericity, and durability [8, 5] in char
combustion. Char particles are introduced at a constant rate via a 2 mm × 2 mm inlet on the left
wall, reacting with oxygen from the air inflow at the bottom. The model includes five random inputs:
heights of glass beads, diameters of glass beads and char particles, and inflow rates of char and air,
detailed in Section 5. The gas phase computational mesh consists of 2,520 cells, each with six degrees
of freedom (three velocity components and three scalar variables: temperature, species concentrations,
and pressure), totaling 15,120 degrees of freedom. The parcel weight is set to 3 (each parcel containing
three particles). Due to randomness in the freeboard height and particle diameters, the total particle
count varies per simulation. In Figure 1b, 8,344 parcels represent the glass beads in the model. We
use the open-source software MFiX (version 23.1.1) [4] with an MPI-based parallel computing solver
on 15 CPUs (Intel Xeon W-3175X CPU 3.10 GHz) for the combustion simulations.

Our quantity of interest (QoI) is the total thermal energy generated in 10 seconds, computed as

Q(X) =

∫ t=10

t=0

Q̇(X, t)dt =

∫ t=10

t=0

Cp(X, t)× ṁ(X, t)× Tavg(X, t)dt, (2)

where Tavg(X, t) is the average temperature at the pressure outlet (at the top of the boiler model, c.f.
Figure 1) at time t and inputs X; ṁ(X, t) is the mass flow rate at the outlet and Cp(X, t) is the specific
heat capacity of the mixture of O2, N2, CO, CO2 and H2O, i.e., Cp(X, t) =

∑5
i=1 Cpi(X, t)×Mi(X, t).

Here, Cpi is the specific heat capacity of each gas component in the mixture and Mi is the mole fraction
of each gas component, such that

∑5
i=1 Mi = 1. The specific heat capacity Cpi is a function of the

gas constant, the molecular weight of the gas, and the temperature and coefficients obtained from [2].
We validate the PIC-based computation model with the DEM results from [23, Fig. 2], focusing

on the time evaluation of gas mass fractions for CO and CO2. The root-mean-squared error between
the DEM data and the data from our PIC-based solver for mass fractions at 5-second intervals over
40 seconds (see [11], Figure 6) is 2.73%. This indicates that the PIC model is accurate and validated
compared to the computational model used in [23].
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4. Design under uncertainty

4.1. Problem setup and definitions
We define random variables in a measurable space with a sample space and probability measures.

Since the measurable space depends on the design vector d, we include d in the notation for the
variables and operators. We denote the measurable space by (Ωd, Fd), where Ωd is the sample space
and Fd is a σ-field on Ωd. A family of probability measures {Pd : Fd → [0, 1]} is defined over
(Ωd, Fd). The input random vector X := (X1, X2, . . . , XN )⊤ describes uncertainties in the system,
N ∈ N. It is an AN -valued vector with BN as the Borel σ-field on AN , (Ωd, Fd) → (AN , BN ).
The probability law of X is defined by a family of the joint probability density functions (PDFs)
{fX(x;d) : d ∈ RN ,d ∈ D} associated with probability measures {Pd : d ∈ D}.

In this study, we define the random variables as the height of the freeboard (X1), the air inflow
rate (X2), the diameter of the glass bead particle (X3), the diameter of the char particle (X4), and the
char mass inflow rate (X5) so N = 5. The n-dimensional design vector is d := (d1, d2, . . . , dn)

⊤ ∈ D,
where D is the design space. Here, each design variable represents the mean of the random variable,
i.e., dk = E[Xik ], k = 1, . . . , n and ik ∈ {1, . . . , N}. Only the mean values of the most influential
random variables are chosen as the design variables, specifically the mean values of the air inflow rate
and the diameter of the glass bead particle based on variance-based global sensitivity analysis in [11],
setting n = 2. We assume Q(X;d) is a real-valued, square-integrable, measurable transformation on
(Ωd, Fd), representing the quantity of interest.

4.2. Design under uncertainty formulation with transformed random variables
We keep the probability measure of the random variable fixed throughout the design iterations

by formulating the design problem with the transformed random variable Z, eliminating the need
to recalculate probability measure-associated quantities. We define Z = (Z1, Z2, . . . , ZN )⊤ as an
N -dimensional vector of new random variables obtained by scaling X as Z := diag[r1, r2, . . . , rN ]X,
where r := (r1, r2, . . . , rN )⊤ is an N -dimensional vector of deterministic variables. The PDF of Z is

fZ(z;g) = |J|fX(x;d) =

∣∣∣∣
1

r1r2 · · · rN

∣∣∣∣ fX(x;d) =

∣∣∣∣
1

r1r2 · · · rN

∣∣∣∣ fX
(

diag
[
1

r1
,
1

r2
, . . . ,

1

rN

]
z;d

)

supported on ĀN ⊆ RN . The absolute value of the determinant of the Jacobian is |J| = |∂x/∂z| =
1/(r1r2 . . . rN ) and g := (g1, g2, . . . , gn)

⊤ ∈ Rn is an n-dimensional vector of mean values. We choose
gk to be one. Thus, g = 1 and at every iteration, rk = 1/dk.

We define h(Z; r) := Q(X), so we can reformulate (1) to

min
d∈D⊆Rn

w1
µ0

Eg(d)[h0(Z; r)]
+ w2

√
Varg(d)[h0(Z; r)]

σ0

(3)

where Eg(d) and Varg(d) are the expectation and variance operators, respectively, with respect to
the probability measure fZ(z;g)dz, which depends on d. For brevity, the subscript g(d) will be
denoted by g in the rest of the paper. The transformed formulation in (3) is expressed in terms of
the transformed input random variables Z and is equivalent to the original formulation in (1).

4.3. Polynomial dimensional decomposition (PDD) surrogate model
Any square-integrable function h(·) on (Ωd,Fd,Pd) can be represented with an infinite Fourier-

polynomial expansion known as polynomial dimensional decomposition (PDD) [15, 16]. By retaining
only the degrees of interaction among input variables that are less than or equal to S, we have the
S-variate, mth-order PDD approximation

hS,m(Z; r) =

LN,S,m∑

i=1

ci(r)Ψi(Z;g) ≊ h(Z; r), (4)

where Ψi(Z;g) is the ith basis function and LN,S,m = 1 +
∑S

s=1

(
N
s

)(
m
s

)
.
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4.4. Statistical moment analysis via the PDD surrogate
We use the S-variate, mth-order PDD surrogate hS,m(Z; r) to estimate the mean and variance of

h(Z; r). The orthonomality of the basis functions allows for the analytical formulation of the mean and
the variance of h(Z, r) as Eg[hS,m(Z; r)] = c1(r) = Eg[h(Z; r)], and Varg[hS,m(Z; r)] =

∑L
i=2 c

2
i (r) ≤

Varg[h(Z; r)], respectively. This necessitates accurate computation of the expansion coefficients to
obtain good estimates for the mean and variance of h(Z; r). To achieve this, particularly when the
training data set is limited, we use a regression method called sD-MORPH regression [11], which is
detailed in the following section.

4.5. Regression problem and solution from limited data
The coefficients c = (c1, c2, . . . , cL)

⊺ ∈ RL of the PDD surrogate discussed in Section 4.3 can be
obtained by solving



Ψ1(z

(1);g) · · · ΨL(z
(1);g)

...
. . .

...
Ψ1(z

(M);g) · · · ΨL(z
(M);g)




︸ ︷︷ ︸
=:A




c1
c2
...
cL




︸ ︷︷ ︸
c

=




h(z(1); r)
h(z(2); r)

...
h(z(M); r)




︸ ︷︷ ︸
=:b

. (5)

To solve this with limited data (M < L), it is common to use LASSO regression, which penalizes the
l1 norm of the coefficients c, producing sparse solutions for underdetermined systems.

However, LASSO regression introduces a bias to reduce variance and cannot infer more non-
zero coefficients than the number of training samples. A sparsity-promoting D-MORPH regression
leverages the sparsity from LASSO regression and iteratively improves its accuracy by combining it
with the D-MORPH solution. In sD-MORPH, we define a cost function that measures the difference
between a potential sD-MORPH solution a(t) ∈ RL and the LASSO estimates c0 ∈ RL to obtain an
initial sD-MORPH solution c̆(0) = argmint∈R

{
1
2 (a(t)− c0)

⊺(a(t)− c0)
}
. Next, we augment the cost

function by including the l2 norm between the potential sD-MORPH solution c̆(i) and the solution
obtained from the previous iteration c̆(i−1). We can then iteratively solve for sD-MORPH solution by
minimizing [λ2

(
c̆(i) − c0

)⊺
W

(
c̆(i) − c0

)
+ 1−λ

2

(
c̆(i) − c̆(i−1)

)⊺
W

(
c̆(i) − c̆(i−1)

)
], where λ ∈ [0, 1] and

W is a diagonal weighting matrix based on c̆(i−1) such that large weights are assigned corresponding
to smaller components of c̆(i−1).

4.6. Single-pass surrogate model training process
We use a single-pass surrogate model training process to reduce the total number of high-fidelity

solutions needed. We assume that (a) an mth-order PDD approximation hS,m(Z; r) at the initial
design is valid for all possible designs; (b) the PDD coefficients for a new design, computed by
recycling PDD generated for the previous design, remain accurate.

We denote the transformation vectors associated with the previous and current designs with r and
r′, respectively. To satisfy the two assumptions, we use m = 11 and limit the design space to be
represented by the PDD model computed at the initial design. We first compute the PDD coefficients
ci(r), i = 1, 2, . . . , LS,N,m, collectively denoted as c(r), for the initial design using the input-output
data {z(l), h(z(l); r)}LS,N,m

l=1 . For the next design in the optimization process, we modify the input
data {z(l)}LS,N,m

l=1 to {z′(l)}LS,N,m

l=1 , where z′(l) = diag[r1/r′1, r2/r′2, . . . , rN/r′N ]z(l). We then represent
the QoI at the updated design r′ in terms of z′ as h(z(l); r′) := h(diag[1/r′1, 1/r′2, . . . , 1/r′N ] z(l)) =
h(diag[1/r1, 1/r2, . . . , 1/rN ] diag[r1/r′1, r2/r′2, . . . , rN/r′N ] z(l)) = h(diag[1/r1, 1/r1, . . . , 1/rN ] z′(l)) =:
h(z′(l); r). This modification allows us to approximate the output function h(z(l); r′) at the updated de-
sign r′ via PDD computed at the initial design r as h(z(l); r′) = h(z′(l); r) ≈∑LS,N,m

i=1 ci(r)Ψi(z
′(l);g) =:

h̃(z(l); r′), which does not require updating the PDD, only evaluating the PDD at the new input z′.
As a result, at every iteration, we estimate the mean and variance with c(r′), resulting in little extra
computational cost.
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4.7. Complete algorithm for design under uncertainty
Figure 2 shows a flow chart for the proposed sparsity-promoting DUU method. This algorithm

begins with initialization that includes setting d = d0 and all parameters (e.g., N , S, m, etc.) used in
the design process. We construct the input-output data set using M < LS,N,m expensive combustion
simulations. We transform the input vector X to Z to avoid updating the PDD’s basis functions. The
next step is to train the PDD using the input-output data via the sD-MORPH regression. We then
estimate the mean and variance of the output using the PDD’s coefficients as discussed in Section 4.4.
Subsequently, a derivative-free optimization, such as the Nelder-Mead method used in this work, finds
the optimal solution by converging through a single-pass training process that uses the PDD trained
at the initial design d0.

Initialization: set d = d0, i = 1

Sample X ∼ fX(x;d)dx, compute physics-based model
input-output data {x(l), y(x(l))}Ml=1, M < LS,N,m

Transform X to Z, construct {z(l), h(z(l); r)}Ml=1

i > 1?

Compute c(r′)

Approximate output h(z(l); r′)
using PDD composed of c(r),
construct {z(l), h̃(z(l); r′)}Ml=1Compute c(r)

Estimate the moments

Derivative-free optimization for d
{i}
∗ , i = i + 1

Converge?

Set solution d∗ = d
{i}
∗

Yes

No

Yes

No

Single-step process

Figure 2: Flowchart for the sparsity-promoting DUU method.

5. Numerical results

5.1. Numerical setup
The PDD parameters in this work are S = 2, N = 5, and m = 11 , with a computational budget of

1,600 CPU hours. Each MFiX run to obtain a sample of the input-output data takes 7.9 CPU hours,
allowing for 200 samples to build the PDD surrogate model. With LS,N,m = 606 basis functions,
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M = 200 samples results in an underdetermined regression problem (5), as it covers only 33% of
the 606 total unknown coefficients. Therefore, we use sD-MORPH to compute the PDD coefficients
and compare the optimization results with coefficients calculated using LASSO regression. Table 1
shows the properties of the five random inputs. For the truncated normal random variables X2 and
X3, the coefficients of variation are both 10%. Base on our previous work [11], we select the mean

Random
Variable Physical Quantity Mean Lower

Boundary
Upper

Boundary
Probability
Distribution

X1 Height of freeboard (m) 0.12 0.10 0.14 Uniform
X2 Air inflow (m/s) 0.825 0.425 1.225 Truncated normal
X3 Diameter of the glass bead particle (m) 8.0 × 10−4 2.0 × 10−4 1.4 × 10−3 Uniform
X4 Diameter of the char particle (m) 1.0 × 10−3 5.0 × 10−4 1.5 × 10−3 Uniform
X5 Char mass inflow (kg/s) 7.35 × 10−6 1.35 × 10−6 1.35 × 10−5 Truncated normal

Table 1: Properties of the random inputs in a fluidized bed model for char combustion (reproduced from [11]).

values of X2 and X3 as design variables, i.e., d1 = E[X2] and d2 = E[X3], where (d1, d2)
⊺ ∈ D =

[0.625, 1.025]× [5× 10−4, 1.1× 10−3].
The goal of the study is to identify the two design values (d1, d2)

⊺ that maximize the mean
of the thermal energy Ed[Q(X;d)] while simultaneously minimizing its variance Vard[Q(X;d)] under
uncertainty, and given certain weights for both objectives, as shown in (1). The normorlizing constants
µ0 and σ0 are chosen as the mean and standard deviation of the thermal energy Q(X;d) at the initial
design d0.

We set the initial design vector d0 = (0.825 m/s, 8.0× 10−4 m)⊺. To demonstrate the robustness
of the proposed method with respect to sample number M , we tested four different sizes of training
data (150, 170, 190, 200). Since the results showed a clear quantitative trend, we herein only report
the cases of 150 and 200 samples used for training to ease readability in Sections 5.2.1 to 5.2.3. For
comparison, we also apply the process using LASSO regression in place of sD-MORPH regression. In
the sD-MORPH setting, the iteration number i of c̆(i) discussed in Section 4.5 is set to at least 10
and λ is set to 0.2.

5.2. Results
5.2.1. Case (a): w1 = 1 and w2 = 0

This combination of weighting factors maximizes the mean of thermal energy, without considering
its standard deviation. Figure 3a compares the optimization results obtained using LASSO-based and
sD-MORPH-based DUU methods. We observe that the objective function value consistently decreases
across all cases with different regression methods and different numbers of samples.

Using 200 training samples, at the initial design vector d0 = (0.825 m/s, 8.0 × 10−4 m)⊺, the
mean values of the thermal energy esimated with the PDD surrogate coefficients using LASSO and
sD-MORPH regressions are 1437.56J and 1436.78J, respectively. The optimal design vector is d∗ =
(1.025 m/s, 5.0 × 10−4 m)⊺ for both methods, where the corresponding mean values of the thermal
energy are 2017.08J (40.31% increase from initial design) and 2133.37J (48.48% increase), respectively.
These results indicate that the sD-MORPH-based DUU method increases the mean of the thermal
energy more. The results of DUU methods using 150 training samples are similar.

5.2.2. Case (b): w1 = 0 and w2 = 1

This combination of weighting factors minimizes the standard deviation of thermal energy, without
considering its mean. With 200 training samples, the standard deviations of the thermal energy ob-
tained using the LASSO-based and sD-MORPH-based DUU methods at the initial design are 185.13J
and 198.67J, respectively. The optimal design vectors for the two methods are (0.625 m/s, 8.25 ×
10−4 m)⊺ and (0.709 m/s, 7.96 × 10−4 m)⊺, respectively; the corresponding standard deviations of
the thermal energy are 141.31J (23.67% decrease) and 168.85J (15.01% decrease), respectively. Com-
pared to the LASSO-based method, the proposed sD-MORPH based method results in about 8% less
reduction in the objective function value. This is because LASSO is limited by the number of non-zero
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Figure 3: Change in objective function value with increasing iterations for different combinations of w1 and w2 in (1),
comparison of LASSO-based and sD-MORPH-based design methods over different sample numbers (150 and 200).

values which is constrained by the number of training samples. As a result, the standard deviation
(see Section 4.4) is often underestimated. In contrast, the sD-MORPH solution can produce small
non-zero values, providing a more accurate representation of the true values.

In Figure 3b, we compare the optimization results obtained using LASSO and sD-MORPH-based
DUU methods. The sD-MORPH version shows a faster drop of about 15% in the objective function
within three iterations, whereas the LASSO version reduces the cost function by about 10% within
the first three iterations. By the sixth iteration, the sD-MORPH version has converged, while the
LASSO version is approaching convergence by the tenth iteration. The results of DUU methods with
150 training samples are similar.

5.2.3. Case (c): w1 = 0.5 and w2 = 0.5

This combination of weighting parameters corresponds to an optimization where the mean and
standard deviation of the thermal energy are equally prioritized. Figure 3c shows the comparison
of optimizations with LASSO-based and sD-MORPH-based methods. The objective function value
consistently decreases across all cases with different regression methods and different numbers of
samples.

For the LASSO-based method with 200 samples, the optimal design vector is d∗ = (0.816 m/s, 8.24×
10−4 m)⊺. The corresponding standard deviation is 184.32J, almost the same as 185.13J at the initial
design. By comparison, for sD-MORPH-based method with 200 samples, the optimal design vector
is d∗ = (0.768 m/s, 8.10 × 10−4 m)⊺. The corresponding standard deviation is 173.94J (12.45% de-
crease). This shows that the optimization for equally weighted mean and standard deviation with
sD-MORPH regression effectively reduces the standard deviation. The mean values of the thermal
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energy corresponding to the LASSO-based and sD-MORPH-based DUU methods are 1437.56J and
1436.55J at the initial design, respectively; at the optimal designs, they are 1417.83J (1.37% decrease)
and 1336.28J (6.98% decrease), respectively. The results when using 150 samples are similar.

6. Conclusion and future work

In this study, we proposed a design under uncertainty (DUU) problem for a char combustion process
and solved it in a limited-data setting with a surrogate model. We used an sD-MORPH regression
to calculate the coefficients of the PDD surrogate model in the optimization and reformulated the
optimization problem using transformed input random variables combined with a single-pass training
process. We conducted comparisons between DUU methods that use either a LASSO or an sD-
MORPH-based surrogate model. The LASSO-based and sD-MORPH-based DUU yielded comparable
improvements in thermal energy production when maximizing only the mean without accounting for
the standard deviation. In another test where we only minimized the standard deviation, the sD-
MORPH-based DUU converged faster than the LASSO-based approach. In a third case, we optimized
both the mean and standard deviation of thermal energy, and found that the sD-MORPH-based
method more effectively reduces standard deviation. An interesting future avenue is to extend this
work to consider constraints, such as reliability or risk measures, in the optimization.
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Abstract

With advancements in computational power and seismic data availability, stochastic ground

motion models (GMMs) are gaining popularity. This study introduces Hierarchical Stochas-

tic Ground Motion Models—a generative model designed to generate new GMs that resemble

a given training GM dataset. The term “hierarchical” reflects the two-step formulation: (1)

selecting a modulated filtered white noise model (MFWNM) to replicate a target record and

(2) constructing a joint probability density function (PDF) for the parameters of the selected

MFWNM, capturing record-to-record variability. The hierarchical GMM is validated by com-

paring specific statistical metrics derived from 1,001 real strong-motion records with those

obtained from corresponding synthetic datasets. The comparison demonstrates that hierar-

chical stochastic GMMs generate ground motions with high statistical compatibility to real

datasets, effectively replicating four key intensity measures (PGA, PGV, Arias intensity, and

significant duration D5−95) as well as linear and nonlinear response spectra.

Keywords: Synthetic ground motion, Model validation, Uncertainty quantification

1. Introduction

In earthquake engineering, a proper definition of seismic input is essential for structural

seismic design and seismic risk assessment. This seismic input is typically represented by a

suite of acceleration time series. In this context, a fundamental question is determining the

number and types of ground motions (GMs) used for structural seismic analysis. In practice,

engineers typically select a set of original or modified GM records to match a target response
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spectrum [1, 2]. However, this method has notable limitations: (1) selected GMs are specific

historical records and may not recur in future earthquake events; (2) modifications to records

can lead to a loss of physical significance, introducing unnatural frequency content or amplitude

variations; and (3) the response spectrum alone is an incomplete measure, as it does not capture

nonstationarity or the duration of GMs. These limitations result in a potentially improper

representation of GM characteristics and uncertainty.

To address these limitations, this study proposes the use of hierarchical stochastic ground

motion models (GMMs). The term “hierarchical” refers to a two-step model formulation:

(1) selecting a modulated filtered white noise model (MFWNM) to replicate a target record,

and (2) constructing a joint probability density function (PDF) for the parameters of the se-

lected MFWNM, capturing record-to-record variability to simulate synthetic GMs. Hierarchical

stochastic GMMs are generative models that generate new GMs resembling a given training

GM dataset. This approach allows for the creation of diverse and representative seismic in-

puts without relying on non-recurrent historical records. Additionally, hierarchical stochastic

GMMs avoid the issues associated with modifying existing records, as they directly generate

synthetic GMs already calibrated to reflect desired properties and statistical characteristics.

Moreover, hierarchical stochastic GMMs provide a comprehensive probabilistic representation

of GM characteristics, including time-varying amplitudes, nonstationary frequency content, and

duration. As such, they present a promising solution to overcome the limitations of traditional

GM selection methods.

This conference paper presents a concise review of the formulation, fitting, and validation

of hierarchical stochastic GMMs. Interested readers can refer to our preprint for more details

[3].

2. Hierarchical Ground Motion Models: Formulation, Fitting and Validation

Hierarchical stochastic GMMs are generative models that consist of a training phase and a

generation phase. A conceptual illustration of hierarchical stochastic GMMs is shown in Figure

1. Hierarchical GMMs differ from deep neural network models, such as variational autoencoders

or diffusion models commonly used for image and text generation. Instead, hierarchical models
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are based on modeling classical stochastic processes and joint probability density functions

(PDFs). Specifically, a recorded GM is regarded as a sample drawn from a simplified physics-

based stochastic process. This process assumes that the earthquake source (with sudden energy

released from rupture) is presented by a broadband Gaussian white noise process. Then, the

white noise passes through a parametric time-varying filter that represents the earth’s media and

local site effects. We denote this modulated filtered white noise model asM(·) : (θ,Z)→ Âg(t),

where θ is the model parameter, Z is the white noise, and Âg(t) is the simulated process. As

a result, the hierarchical models do not have the black-box nature of deep neural networks or

require complex training procedures, making them more transparent and interpretable.

Figure 1: Illustration of hierarchical stochastic ground motion models, including (I) and (II) as fitting phrases,
(III) and (IV) as generation phrases, and (IV) for validation.

The model starts with selecting a real dataset of ground motion acceleration time series,

denoted as {Ag,n(t)|n = 1, ..., N}. This dataset is selected based on the ergodic assumption, i.e.,

the long-term temporal variability (at a specific site) can be represented by spatial variability

(i..e, records across different sites with similar scenario parameters). This study selects a

subset from the PEER NGA-West2 database [4, 5]. The subset comprises 1,001 strong motions

(N = 1, 001), selected based on the following criteria: (1) earthquake moment magnitudes (Mw)

greater than 6, (2) source-to-site distances (R) is between 10 and 100 km, (3) the shear-wave

velocity of superficial soil is set as VS30 > 360 m/s, and (4) pulse-like records are excluded.
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In the training phase, the models extract key GM parameters (or features) θ ∈ RM related to

motion duration, frequency content, and total energy. These parameters form a low-dimensional

feature space where a joint PDF fΘ(θ) is built to capture the centers, dispersion, and depen-

dencies among the parameters. The joint PDF is built by fitting marginal distributions to

each parameter and modeling their Gaussian dependence using the Nataf transformation. This

study selects the spectral-based stochastic GMM [6] asM(·), which comprises 11 parameters,

i.e., M = 11. The fitting procedures in [6] are used to extract the parameters θn of n-th records.

Additionally, a key parameter, termed corner frequency fc, is estimated by the procedure out-

line in [7]. The definition of the 11 parameters and their fitted marginals (including distribution

types, moments, and supports) are listed in Table 1. The histogram of the extract parameters,

their fitted marginals, and the Gaussian dependency structure are visualized in Figure 2.

Table 1: Fitted marginal distributions of the 11 GM Parameters.

No.
GM

Parameter
Marginal

Moments Distribution
support

Unit
µ σ

1 log(Ia) Gaussian -5.557 1.896 (-Inf, Inf) log(g2 · s)
2 ω(tmid) Lognormal 28.446 19.112 (0, Inf) 2π · Hz
3 ω′(tmid) Laplace -0.227 1.003 (-Inf, Inf) 2π · Hz/s
4 ζ(tmid) Weibull 0.448 0.190 [0.02, 1] 1
5 D0−5 Gamma 7.320 3.507 [0.1, 20] s
6 D5−30 Weibull 4.811 2.869 [0.1, 15] s
7 D30−45 Gamma 1.684 1.202 [0.1, 10] s
8 D45−75 Gamma 4.549 2.672 [0.1, 20] s
9 D75−95 Gumbel 10.271 4.664 [0.1, 40] s
10 D95−100 Lognormal 38.737 47.634 [0.1, 40] s
11 fc Gamma 0.239 0.259 [0, 2] Hz
*All GM parameters are used in [6, 7], with definitions: (1) log(Ia) is logarithmic Arias
intensity (2); ωg(tmid) is the predominant frequency at the middle of the strong-shaking
phase; (3) ω′

g(tmid) is the change rate of the frequency ωg(tmid); (4) ζg(tmid) is the filter
bandwidth at the middle of the strong-shaking phase; (5) intervals Dpi−pi+1 refer to motion
duration from pi to pi+1 percentiles of the total energy; and (6) corner frequency fc is a key
parameter [7], which controls the proportion of low-frequency energy.

In the generative phrase, a set of “fake” parameters {θ̂n|n = 1, ..., N} is generated from

the fitted joint PDF fΘ(θ). These simulated parameters represent potential combinations of

GM characteristics that are statistically consistent with the real dataset. Next, each sampled

feature vector θ̂n, paired with a white noise sample zn, is input into the GMMM(·), obtaining

a synthetic ground motion time series, denoted asM(·) : (θ̂n, zn)→ Âg,n(t).
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Finally, model validation is performed by comparing statistical metrics computed from the

real dataset with those derived from the corresponding synthetic dataset. These metrics relate

to quantities of interest (QoI), which include key seismic performance indicators such as ground

motion intensity measures (e.g., peak ground acceleration (PGA), peak ground velocity (PGV),

Arias intensity (Ia), and significant duration (D5−95)) as well as the response of idealized single-

degree-of-freedom structures (i.e., linear and nonlinear response spectra). To account for the

inherent uncertainty of white noise, 30 independent synthetic datasets are generated. Figure 3

presents a comparison of cumulative distribution functions (CDFs) for four IMs derived from

the real and synthetic datasets. Additionally, Figure 4 validates three quantiles (q1%, q50% and

q99%) of both linear and nonlinear response spectra. In these figures, blue lines represent the

real dataset, gray lines represent the 30 synthetic datasets, and red lines indicate the mean

of the synthetic datasets. These figures demonstrate that hierarchical stochastic models can

generate synthetic GM datasets that are statistically compatible with real strong-motion data.

3. Summary and Future Work

This study introduces hierarchical stochastic ground motion models (GMMs) for simulating

nonpulse-like ground motion (GM) time series. Hierarchical GMMs take advantage of ad-

vancements in computational power and data availability. The synthetic GMs can be used for

structural analysis, design, and risk assessments. Additionally, hierarchical GMMs incorporate

a well-defined probabilistic model, supporting the effective application of Uncertainty Quantifi-

cation in earthquake engineering. In particular, by integrating advanced structural-reliability

sampling methods (such as important sampling and subset simulation), hierarchical stochas-

tic GMMs provide clear and consistent answers on the number and types of ground motions

needed for structural analysis. Moreover, hierarchical GMMs can be adapted to be site-based

GM generators (similar to [8, 9, 10]) by linking the model parameters to seismological variables

such as Mw, R, and Vs30.
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Figure 2: Visualization of the fitted joint PDF fΘ(θ) with (i) upper triangle: Pearson’s correlation coefficients
of each parameter pair; (ii) diagonal positions: histograms and fitted PDF for each parameter and (iii) lower
triangle: bi-variate distribution and observed data points

Figure 3: Validation of the hierarchical GMM w.r.t. CDFs of four intensity measures: PGA, PGV, Arias
intensity Ia, and significant duration D5−95.
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(a) Linear response spectrum (b) Nonlinear response spectrum

Figure 4: Validation of the hierarchical GMMs using train-test split w.r.t. (a) three quantiles of 5%-damped
linear-response spectra and (b) three quantiles of constant-ductility (µ = 2) nonlinear-response spectra.
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Abstract

This study introduces the long-range Ising model from statistical mechanics to the Performance-Based
Earthquake Engineering (PBEE) framework for regional seismic damage analysis. The application of the
PBEE framework at a regional scale involves estimating the damage states of numerous structures, typically
performed using fragility function-based stochastic simulations. However, these simulations often assume
independence or employ simplistic dependency models among capacities of structures, leading to significant
misrepresentation of risk. The Ising model addresses this issue by converting the available information on
binary damage states (safe or failure) into a joint probability mass function, leveraging the principle of
maximum entropy. The Ising model offers two main benefits: (1) it requires only the first- and second-
order cross-moments, enabling seamless integration with the existing PBEE framework, and (2) it provides
meaningful physical interpretations of the model parameters, facilitating the uncovering of insights not
apparent from data. To demonstrate the proposed method, we applied the Ising model to 156 buildings
in Antakya, Turkey, using post-hazard damage evaluation data, and to 182 buildings in Pacific Heights,
San Francisco, using simulated data from the Regional Resilience Determination (R2D) tool. In both
instances, the Ising model accurately reproduces the provided information and generates meaningful insights
into regional damages. The study also investigates the change in Ising model parameters under varying
earthquake magnitudes, along with the mean-field approximation, further facilitating the applicability of
the proposed approach.

1. Introduction

A large-scale simulation for regional behavior under hazards is necessary to assess and improve the resilience
of infrastructure and communities. While physics-based simulations can accurately capture the complex
interactions and correlations among structural responses and functionalities, their extensive computational
cost often limits its usage to scenario-based analyses. On the other hand, stochastic simulations of the
performance state (or damage state) given a hazard scenario are computationally feasible but require many
ad hoc, sometimes subjective, assumptions about statistical models.

For regional seismic analysis, the performance state of each building is typically sampled from fragility
function-based stochastic simulations. The fragility function, the probability of exceeding different damage
states given a ground motion intensity measure, is typically given by

P (DS ≥ dsi|IM = im) = Φ

(
ln (im/θi)

βi

)
, (1)

where dsi represents the ith performance state, IM denotes the ground motion intensity at the location of the
structure, Φ(·) is the standard Gaussian cumulative distribution function, θi is the median of IM causing the
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performance state dsi or greater, and βi denotes the log standard deviation of IM that induces the damage
dsi or greater. The current practice for applying the Performance-Based Earthquake Engineering (PBEE)
framework to a regional scale employs individual fragility functions under the assumption of conditional
independence (conditional on site-specific intensity measures of ground motions), which can significantly
underestimate system-level failure probabilities [1, 2]. To achieve more reliable regional risk analysis, it
is required to construct a fragility field that summarizes the joint information, beyond the collection of
marginal information, across the region [3].

This study presents an alternative method for constructing the fragility field that can be integrated with
fragility-based approaches, physics-based simulations, and even post-hazard survey data. Specifically, we
introduce the Ising model, a widely recognized model in statistical mechanics, as a joint probability mass
function for binary performance states (safe or failure) of structures over a region. The Ising model has
been used in various disciplines to study collective behavior in complex systems, owing to its nature as
the maximum entropy distribution for binary variables, subject to constraints on first- and second-order
cross-moments. In this study, focusing on seismic risk, the formulation and interpretations of the Ising
model in the context of regional seismic analysis are provided with the brief investigation of the dependence
between the Ising model parameters and the observable statistics, e.g., mean and correlation coefficients.
Inferences about regional seismic behaviors that are not apparent from the data are also presented through
two examples using real-world post-hazard survey data and synthetic simulation data.

2. Long-range Ising model as a joint probability mass function for performance states

2.1. Formulation

Consider a region consisting of n structures under an earthquake and assume that each structure can be in
one of the binary states of safe or failure. Here, safe and failure are relative terms with respect to a target
performance level. The group of structures has N = 2n configurations, where the probability of the I-th
configuration is expressed as:

PI = P (X1 = x1I , X2 = x2I , . . . , Xn = xnI) , (2)

where Xi ∈ {−1 (safe), 1 (failure)} is a random variable representing the state of the i-th structure, and xiI

denotes an outcome of Xi for the I-th configuration.
The entropy S for X = [X1, X2, ..., Xn]

⊺ is defined as:

S := −
N∑

I=1

PI logPI . (3)

In the absence of information, the probability distribution that maximizes the entropy is the uniform dis-
tribution, which means that all possible configurations are equally likely. Suppose we have information up
to the second-order cross-moments expressed as follows:

M1,i =
N∑

I=1

xiIPI , (4)

M2,ij =
N∑

I=1

xiIxjIPI , i, j = 1, 2, ..., n , (5)

whereM1,i is the first-order cross-moment, i.e., the mean of Xi, andM2,ij is the second-order cross-moment
between the damage states of the i-th and j-th structures. Applying Lagrange multipliers with M1,i and
M2,ij as constraints, the joint probability PI that maximizes the entropy S is:

PI =
1

Z
exp




n∑

i=1

hixiI +
∑

i>j

JijxiIxjI


 , (6)
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where Z is the normalizing constant given as:

Z =

N∑

I=1

exp




n∑

i=1

hixiI +
∑

i>j

JijxiIxjI


 , (7)

where hi and Jij are the Lagrange multipliers to meet the first- and second-order cross-moment constraints,
respectively. Since our goal is to model the joint distribution that outputs the probability for any specified
configuration, we drop the subscript I in Eq. (6) and replace PI by p(x):

p(x) =
1

Z
exp




n∑

i=1

hixi +
∑

i>j

Jijxixj




=
1

Z
exp

(
h⊺x+

1

2
x⊺Jx

)
,

(8)

where x = [x1, x2, . . . , xn]
⊺
, h = [h1, h2, . . . , hn]

⊺
, and:

J =




0 J12 . . . J1n
J12 0 . . . J2n
...

...
. . .

...
J1n J2n . . . 0


 . (9)

Eq. (8) is the Ising model in statistical physics for describing ferromagnetism, where hi and Jij are typically
interpreted as the external magnetic field acting on each component/spin and the pairwise coupling effects
between each spin pair, respectively [4, 5]. While the classic Ising model features a sparse J because it
considers only the pairwise coupling effects between neighboring spins on a lattice, Eq. (8) represents a
long-range or fully-connected Ising model, accounting for interactions between all pairs of structures in a
region.

2.2. Interpretations of the Ising model parameters

We interpret h as a risk field acting on each structure within a region. According to Eq. (8), a structure
with a positive hi is more probable to fail, i.e., to have a spin of xi = +1, with a larger hi signifying a
greater tendency towards failure. Conversely, a negative risk field hi indicates a tendency to remain safe.
Given that civil structures are engineered to be reliable and safe, they should inherently possess an inertia
toward safety, a negative field −I where I > 0. A hazard imposes an external positive field hH > 0 on each
structure, and the resulting risk field is a balance between the hazard and the inertia towards remaining
safe, i.e., hi = hH − I. Here, both hH and I vary across structures.

On the other hand, J represents the pairwise interactions, reflecting the tendency of two structures to
be in the same damage states. The term interaction encompasses all direct and indirect effects stemming
from physical and statistical properties that determine how the damage state of one structure can affect the
state of another. From Eq. (4), it is observed that if Jij is positive, the probability of two structures being
in the same states is higher than them being in different states, with a larger Jij increasing this probability.
Conversely, a negative Jij favors the damage states being different.

2.3. Dependency between the Ising model parameters and the traditional statistics

Calculation of the observable statistics, e.g., mean and correlation coefficient, from the Ising model requires
calculating Eqs. (4) and (5) over 2n configurations, which is generally infeasible. Accordingly, Monte Carlo
sampling techniques are often used as an alternative to approximate statistics of interest, and specifically,
Gibbs sampling is widely adopted for this purpose owing to its applicability to high-dimensional distributions
and ease of implementation. Here, to briefly introduce the dependency between the Ising model parameters
and the observable statistics, simple proof-of-concept examples are investigated.
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Consider two binary random variables X = [X1, X2]
⊺ ∈ −1(safe),+1(failure)

2
representing the damage

states of two buildings. The risk field and pairwise interaction are given as h1 = h2 = h and J12 = J ,
respectively. With only 2 variables and thus 22 system configurations, the exact mean and correlation
coefficient for given h and J values can be determined using Eqs. (4)- (8). The mean value E [Xi] is directly
linked to the failure probability Pf by Pf = (E [Xi] + 1)/2. Note that, due to parameter settings of the
current demonstration, the failure probability Pf for each building is identical.

Figure 1 depicts the relationship between the Ising model parameters and the mean and correlation
coefficient of the damage states. It is observed from Figure 1a that, for any J value, the mean damage state
E [Xi] is monotonically increasing with respect to h, reflecting that a stronger risk field results in a higher
failure probability. Moreover, a negative pairwise interaction provides a buffer for a building against the
risk field, while positive pairwise interaction increases a building’s sensitivity to the risk field, amplifying
its tendency towards failure. From Figure 1b, it is shown that, for any h value, the correlation coefficient ρ
monotonically increases with respect to J . Increasing the absolute value of h makes the ρ− J dependency
weaker. It is of particular importance to note that the mean and correlation coefficient for the damage state
are influenced by both the risk field acting on the site and the pairwise interaction from the other building.

(a) (b)

Figure 1: The relationship between the Ising model parameters and (a) the mean E [Xi], and (b) the correlation
coefficient ρ for the demonstrative example of two buildings

To further investigate the relationship between the correlation coefficient and pairwise interactions, we
consider a scenario involving three buildings without a risk field. Figure 2 shows the Jij values for each
pair of buildings and the corresponding correlation coefficient values. In Figure 2a, despite having no direct
interaction, i.e., JAB = 0, buildings A and B exhibits a correlation of 0.58, which is attributed to the
significant pairwise interactions between buildings A and C and between buildings C and B. Additionally,
Figure 2b demonstrates that buildings A and B have a zero correlation coefficient, despite a large positive J
value of 0.66. This occurs because the indirect effects of the positive interaction between buildings A and C
and the negative interaction between buildings B and C outweigh the direct interaction between buildings
A and B.
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(a) (b)

Figure 2: Demonstrative systems describing the dependency between the correlation coefficient ρ and the
pairwise interaction J: (a) a 3-node system with zero pairwise interaction and (b) with zero correlation
coefficient between nodes A and B

The illustrations above briefly demonstrate the complex interplay between the Ising model parameters
and both the mean and correlation coefficient. The mean damage state of a structure is primarily influenced
by the risk field acting on it, although the pairwise interactions also contribute to either sharpening or
diminishing this effect. Similarly, the correlation coefficient for the damage states between a pair of structures
is influenced by all pairwise interactions involving those structures, with the magnitude of the risk field
either amplifying or mitigating this effect. In essence, the Ising model, parameterized by h and J , provides
a fundamental mechanism for generating the mean damage states and correlation coefficients.

3. Inferences on regional seismic behavior using the Ising model

Here, the engineering relevance of the Ising model in the context of regional seismic analysis is investigated.
The required information to construct the Ising model is the first- and second-order cross-moments, Eqs. (4)
and (5), for damage states of structures. These can be obtained from fragility curves and their correlation
models [6] or be generated from regional seismic response simulators, such as the Regional Resilience De-
termination (R2D) tool of NHERI SimCenter [7], and the Interdependent Networked Community Resilience
Modeling Environment (IN-CORE) platform of NCSA [8]. In this study, the Ising model is constructed
using both post-earthquake damage evaluation data and samples generated by the R2D tool. The detailed
procedures for constructing the Ising model from the data are omitted. The main findings on regional seismic
behavior inferred from the Ising model for each target region are presented.

3.1. Example 1: Ising model from post-earthquake damage evaluation data

A neighborhood in Antakya, Turkey, following the 2023 Turkey-Syria earthquake is selected as the target
region. The data on building damages is obtained from the Humanitarian OpenStreetMap (HOTOSM)
team [9, 10]. Figure 3 illustrates the damage states for the target region, consisting of 156 buildings, 40
of which failed during the earthquake. Given that we have only a single observation under the earthquake
event, we assume spatial ergodicity to obtain the correlation coefficients to construct the Ising model. Using
the information about the number of failed buildings, 40 out of 156 buildings, and the correlation coefficient
based on the ergodicity assumption, the Ising model is constructed.
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Figure 3: The building damage in a region of Antakya, Turkey, following the 2023 Turkey–Syria earthquake.
Out of 156 buildings, 40 failed, including 14 out of 72 failing in the inner area and 26 out of 84 failing in the outer area. The
inner and outer areas are defined in the right panel; this definition will facilitate the verification of the Ising model predictions.

Once the Ising model is constructed, various inferences can be made about the regional seismic behavior.
Using the Ising model, a total of 107 samples for the target region is generated. The failure probability for
each building is then obtained, as illustrated in Figure 4a, which is not available from the given field survey.
Figure 4a shows that closely spaced buildings exhibit an overall lower failure probability, consistent with the
real observation in Figure 3, where about 19% (14 out of 72) of the buildings failed in the inner area while
about 31% (26 out of 84) failed in the outer area. This result is consistent with the findings of Figure 1a.
When the risk field is negative, strong pairwise interactions between closely spaced buildings create a buffer
against failure. Conversely, this trend reverses when the risk field is positive.

Furthermore, Figure 4b illustrates a histogram of the number of failed buildings from the 107 samples.
It is observed that the mode (most probable number of failed buildings) is around 25, although the expected
number is about 39 (which is close to the input information that 40 out of 156 buildings failed). Moreover,
the probability of more than 100 buildings failing is 3.85%, which is not negligible. This is because the
distribution of the number of failed buildings has a long right tail. Indeed, it is well known that the Ising
model exhibits bimodal for the global mean-field (number of failed buildings in this example) when pairwise
interactions are large [4]. Although bimodality is only noticeable in Figure 4b, in regions with higher
correlation coefficients, such as dense residential zones with similar houses, the bimodality would be more
pronounced, and a collective failure would be non-negligible.
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(a) (b)

Figure 4: Inferences about the target region using the Ising model: (a) the individual failure probability of each
building and (b) the histogram of the number of failed buildings. The distribution features a long right tail with a
small, yet noticeable, second model.

3.2. Example 2: Ising model based on fragility functions

In this example, the Ising model is constructed from samples generated by the R2D tool provided by the
NHERI SimCenter. A neighborhood in Pacific Heights, San Francisco, is chosen as the modeled region,
containing 182 buildings. An earthquake scenario of magnitude of 7.0 is assumed. The epicenter is on the
San Andreas Fault, at latitude of 37.9, longitude of -122.432, with a depth of 80 kilometers. Given the
earthquake scenario, the R2D computes peak ground accelerations (PGA) at each building site using the
ground motion prediction equation developed in Boore et al. [11]. The models from Baker and Jayaram [6]
and Markhvida et al. [12] are used to account for the inter- and intra-event spatial correlations in PGAs,
respectively. Given the PGA values at each building site, the damage state for each building is evaluated
using fragility curves provided by Hazus [13], leveraging structural information integrated into the R2D
tool. This includes geographical location, plan area, year built, number of stories, and structural type of
the buildings. Due to limitations in the current R2D tool, correlations between the capacities of buildings
are not considered. Subsequently, 10,000 samples are generated, each sample being a vector representing
the damage states for the 182 buildings.

Figure 5 compares the failure probabilities provided by the R2D tool with the risk field values derived
from the Ising model, with the color bars indicating the rankings of buildings based on these two quantities,
where 1 denotes the highest and 182 the lowest. The spatial patterns are overall similar, but differences
are noticeable. These differences are highlighted in Figure 6 by comparing the risk fields to the failure
probabilities, with the reference curve indicating independence between DSs. If all DSs are independent,
the points should be distributed along the reference curve and the rankings from the two metrics will be
identical. Additionally, if all points follow a monotonically increasing trend, the rankings are identical.
In Figure 6, however, the risk field value varies significantly even for similar failure probabilities. This
multiplicity is due to the interactions among structures. For instance, the building indexed as 108 stands
out in Figure 6 as being distinctly close to the reference curve, implying that it is closest to independence.
In fact, Figure 7 shows that building #108 deviates from the rest by having the smallest average pairwise
interaction value. This suggests that the failure event of building #108 has a minimal effect on the state
of the other buildings. Therefore, contrasting the risk field h with individual failure probabilities reveals
the dominance of collective behavior among structures. The collective behavior directly alters the joint
distribution; the effect reaches beyond second-order statistics.
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(a) (b)

Figure 5: Illustrations of (a) the failure probabilities and (b) the risk field h values for each building in Pacific
Heights, San Francisco. Building #108, which is of particular importance, is highlighted by a bold black solid line.

Figure 6: Comparison between the risk fields and the failure probabilities. The black solid curve in the left panel
represents the exact relationship between h and Pf when the damage states are independent. The distance from each point to
the reference curve of independence is visualized as a solid thin line, which is highlighted in the right panel. Building #108,
marked in red, is identified as an outlier because, compared to other buildings with similar failure probabilities, its distance to
the reference curve is distinctly small.
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Figure 7: The average pairwise interaction value for each building. For the i-th building, we average its interaction
with other buildings to obtain

∑
j ̸=i Jij/ (n− 1). The average interaction for building #108 is highlighted in red.

4. Conclusions

This study introduces the long-range Ising model as a joint probability distribution of damage states of
structures for regional seismic simulations. Using the principle of maximum entropy, the long-range Ising
model is derived under the constraints of the first- and second-order cross-moments of the damage states.
The Ising model parameters, h and J , are interpreted as a risk field acting at each structure and the pairwise
interaction between structures, respectively. Through simple demonstrative examples, the complex interplay
between the Ising model parameters and the mean and correlation coefficient of damage states is illustrated.
It is found that the mean damage state of a structure is primarily influenced by the risk field acting on it,
although the pairwise interactions also play a role in either sharpening or diminishing this effect. Similarly,
the correlation coefficient for the damage states between a pair of structures is influenced by all pairwise
interactions involving those structures, with the magnitude of the risk field either amplifying or mitigating
this effect.

The engineering relevance of the Ising model is further illustrated by two simulation test cases. The
first example considers the damage states of buildings in Antakya, Turkey, following the 2023 Turkey-Syria
earthquake, and the second example studies neighborhood in Pacific Heights, San Francisco, under synthetic
earthquake scenarios generated by the Regional Resilience Determination (R2D) tool of the NHERI Sim-
Center. In both examples, the Ising model offers insights on the collective behavior of structural failures.
Specifically, it is found that the discrepancy between the rankings provided by the individual failure prob-
abilities and the risk field values signifies the impact of collective behavior of failing/not-failing together.
Although the examples presented in this study are based on seismic hazards, there is no barrier to extending
the proposed framework to other typical hazards.

The Ising model serves as a fundamental component for more advanced statistical mechanics methods to
analyze the multi-scale behaviors, phase transitions, and scaling laws in complex multi-body systems. This
work establishes a basis for further extensions, suggesting several promising research directions, including
the development of Renormalization Group method for modeling and understanding the multi-scale regional
behavior under hazards, early-warning systems for system-level phase transitions and criticality, and the Ising
models for functionalities of civil infrastructures.
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ABSTRACT: Stochastic simulation frameworks generally require a substantial number of model runs when 
estimating small failure probabilities associated with rare events. In the context of high-fidelity modeling, 
this can become computationally challenging, especially when dealing with complex nonlinear systems 
subject to stochastic excitation. To address this, an adaptive surrogate-based multi-fidelity stratified sam-
pling (MFSS) scheme is developed for efficiently propagating uncertainties and estimating probabilities of 
failure. In this approach, all high-fidelity data used in the stratified multi-fidelity estimator is also employed 
to train a deep learning-based surrogate model, which then serves as a cost-effective low-fidelity model that 
correlates well with the high-fidelity model. To derive the optimal trade-off between the approximation 
quality of the low-fidelity model and the computational demand associated with training, an adaptive train-
ing scheme is proposed to seek the minimum training data that ensures an adequate correlation between the 
high- and low-fidelity models. The efficiency of the proposed scheme for failure probability estimation has 
been demonstrated through the application to a high-rise steel building subject to stochastic wind excitation. 

1 INTRODUCTION 
To assess small failure probabilities associated with nonlinear structural systems under general stochas-

tic excitation, the direct Monte Carlo (MC) simulation may yield computationally prohibitive problem in 
the case of complex high-fidelity models. In response to this limitation, variance reduction techniques, 
aiming at achieving estimation accuracy with a significantly reduced number of model evaluations, have 
been widely studied. Among these approaches, stratified sampling has been demonstrated to enable the 
estimation of small failure probabilities but in general still require several thousand model evaluations to 
ensure accuracy (Arunachalam & Spence 2023a, 2023b, Xu & Spence 2024). Alternatively, low-fidelity 
models, such as reduced order models and data-driven surrogate models, have been developed to obtain 
computational gains (Zhang et al. 2019, Simpson et al. 2021, Li & Spence 2022, Li & Spence 2024). How-
ever, low-fidelity models may yield biased or distorted estimators if used directly for complex systems 
associated with significant nonlinearities (Li et al. 2024). To leverage the accuracy of high-fidelity models 
and the efficiency of low-fidelity models, multi-fidelity schemes that effectively combine high- and low-
fidelity model outputs have emerged (Patsialis & Taflanidis 2021, Li et al. 2024). In general, multi-fidelity 
schemes can establish an unbiased estimator with substantial variance reduction by shifting most of the 
work onto the cheap lower-fidelity models but correcting with a few expensive high-fidelity model outputs. 
Several multi-fidelity approaches employ surrogate models, that provide a rapid data-driven approximation 
of the high-fidelity output, as the low-fidelity model (Peherstorfer et al. 2016). In the context of estimating 
small probabilities, a multi-fidelity stratified sampling (MFSS) scheme is proposed in this work. Essen-
tially, a high-fidelity sample set, generated through stratified sampling, serves as training data for not only 
developing a deep learning-based low-fidelity model but also defining the correction term of the multi-
fidelity estimator. Additionally, to further enhance computational efficiency, an adaptive training scheme 
is introduced that seeks the minimum training data necessary for developing a low-fidelity model that ade-
quately correlates with the high-fidelity model.  
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2 ADAPTIVE SURROGATE-BASED MULTI-FIDELITY STRATIFIED SAMPLING SCHEME 

2.1 Problem Setting 
Consider a structural system subject to the random input 𝜽𝜽 ∈ ℛ𝓃𝓃𝜃𝜃, where 𝑛𝑛𝜃𝜃 is the input dimension. 

The goal of this work is to develop a multi-fidelity stochastic simulation scheme for estimating the failure 
probabilities of the system, described by the probability of the response, 𝑦𝑦(𝜽𝜽), exceeding a threshold, 𝑧𝑧𝑖𝑖, 
i.e., 𝑃𝑃(𝑦𝑦(𝜽𝜽) > 𝑧𝑧𝑖𝑖). To achieve this, the high-fidelity model that captures the essential inelastic system be-
havior is assumed to be based on computationally demanding numerical simulations (e.g., finite element 
models). The deep learning-based surrogate model that approximates the high-fidelity model outputs will 
serve as the low-fidelity model. For the sake of clarity, the notions HF and LF will indicate the high- and 
low-fidelity models in the following. The respective computational costs will be indicated as 𝑐𝑐𝐻𝐻𝐻𝐻 and 𝑐𝑐𝐿𝐿𝐻𝐻. 

2.2 Multi-fidelity Stratified Sampling (MFSS) 
To deal with the small failure probability problem, a generalized stratified sampling (SS) that centers on 

a potentially efficient intermediate variable related to the system output is considered (Arunachalam & 
Spence 2023a, 2023b). In this approach, the probability space of interest is partitioned into 𝑁𝑁𝑠𝑠 mutually 
exclusive and collectively exhaustive subevents, 𝐸𝐸𝑘𝑘, termed strata. Direct MC can then be used to estimate 
the exceedance probability curve of the stratification variable and the subsequent unbiased strata probabil-
ities, i.e., 𝑃𝑃�𝐸𝐸𝑘𝑘� ≈ 𝑁𝑁�𝑀𝑀𝑀𝑀𝑘𝑘 /∑ 𝑁𝑁�𝑀𝑀𝑀𝑀𝑘𝑘

𝑁𝑁𝑠𝑠
𝑘𝑘=1 , where 𝑁𝑁�𝑀𝑀𝑀𝑀𝑘𝑘  is the number of strata-wise samples. Of the 𝑁𝑁�𝑀𝑀𝑀𝑀𝑘𝑘  

strata-wise samples, 𝑁𝑁𝐻𝐻𝐻𝐻 random HF samples are selected to establish a sample set for training the low-
fidelity model as well as estimating the correction term within the multi-fidelity scheme. Therefore, the 
strata-wise failure probability can be approximated by the multi-fidelity Monte Carlo estimation combining 
the strata-wise HF training data with the LF outputs as follows: 
𝑃𝑃(𝑦𝑦(𝜽𝜽) > 𝑧𝑧𝑖𝑖|𝐸𝐸𝑘𝑘) ≈ 𝐻𝐻�𝑖𝑖,𝑀𝑀𝐻𝐻𝑘𝑘 = 1

𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻
∑ ℎ𝑖𝑖,𝐻𝐻𝐻𝐻𝑘𝑘 �𝜽𝜽𝑗𝑗�𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻
𝑗𝑗=1 + 𝑎𝑎𝑖𝑖𝑘𝑘 �

1
𝑁𝑁𝑖𝑖,𝐿𝐿𝐻𝐻

∑ ℎ𝑖𝑖,𝐿𝐿𝐻𝐻𝑘𝑘 �𝜽𝜽𝑗𝑗�𝑁𝑁𝑖𝑖,𝐿𝐿𝐻𝐻
𝑗𝑗=1 − 1

𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻
∑ ℎ𝑖𝑖,𝐿𝐿𝐻𝐻𝑘𝑘 �𝜽𝜽𝑗𝑗�𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻
𝑗𝑗=1 � 

  (1) 
where the subscript, i, indicates the term is associated with the 𝑖𝑖𝑡𝑡ℎ limit state of interest, 𝑧𝑧𝑖𝑖; 𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻 and 
𝑁𝑁𝑖𝑖,𝐿𝐿𝐻𝐻 are the number of HF and LF model evaluations in each stratum; ℎ𝑖𝑖,𝐻𝐻𝐻𝐻𝑘𝑘  and ℎ𝑖𝑖,𝐿𝐿𝐻𝐻𝑘𝑘  are the conse-
quence measures related to the HF and LF model outputs in the 𝑘𝑘𝑡𝑡ℎ stratum; and 𝑎𝑎𝑖𝑖𝑘𝑘 is the control variate 
of the 𝑘𝑘𝑡𝑡ℎ stratum. Computational efficiency can be further improved by optimally determining the control 
variate as well as the sample allocation from: 

�𝑎𝑎𝑖𝑖𝑘𝑘�
∗ = 𝜌𝜌 ⋅ �

𝑉𝑉�ℎ𝑖𝑖,𝐻𝐻𝐻𝐻
𝑘𝑘 �

𝑉𝑉�ℎ𝑖𝑖,𝐿𝐿𝐻𝐻
𝑘𝑘 �

   (2) 

𝑟𝑟𝑖𝑖∗ = 𝑁𝑁𝑖𝑖,𝐿𝐿𝐻𝐻
𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻

= � 𝑐𝑐𝐻𝐻𝐻𝐻⋅𝜌𝜌2

𝑐𝑐𝐿𝐿𝐻𝐻⋅(1−𝜌𝜌2)    (3) 

where V[·] is the variance operator; and 𝜌𝜌 is approximately estimated as the correlation coefficient be-
tween outputs of interest associated with the HF and LF models. Consequently, the MFSS-based estimation 
can be mathematically expressed through the total probability theorem as: 
𝑃𝑃(𝑦𝑦(𝜽𝜽) > 𝑧𝑧𝑖𝑖) ≈ 𝐻𝐻�𝑖𝑖,𝑀𝑀𝐻𝐻 = ∑ 𝐻𝐻�𝑖𝑖,𝑀𝑀𝐻𝐻𝑘𝑘𝑁𝑁𝑠𝑠

𝑘𝑘=1 ⋅ 𝑃𝑃�𝐸𝐸𝑘𝑘�  (4) 
To achieve the same estimation accuracy/variance, SS relying solely on HF model evaluations requires 

𝑁𝑁𝑖𝑖,𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻 × �1− �1 − 1
𝑟𝑟𝑖𝑖
∗� ⋅ 𝜌𝜌2�

−1
samples within each stratum (Patsialis & Taflanidis 2021). Conse-

quently, the speed-up, 𝑠𝑠𝑠𝑠𝑖𝑖, which is the ratio of the computational cost between pure HF-based SS and 
MFSS estimated with the same variance, can be identified as follows to measure the efficiency of the MFSS 
scheme. 

𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑐𝑐𝐻𝐻𝐻𝐻
𝑐𝑐𝐻𝐻𝐻𝐻+𝑟𝑟𝑖𝑖

∗⋅𝑐𝑐𝐿𝐿𝐻𝐻
�1 − �1 − 1

𝑟𝑟𝑖𝑖
∗� ⋅ 𝜌𝜌2�

−1
    (5) 

Note that 𝑠𝑠𝑠𝑠𝑖𝑖 is independent of the limit state under consideration in the context of optimal allocation. 
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2.3 Adaptive surrogate model development 
The LF model is developed by a deep neural network mapping from the input and output spaces using 

all available HF model evaluations generated by SS. Recurrent neural networks (e.g., Long Term Short 
Memory (LSTM) and Gated Recurrent Unit (GRU)), designed to deal with sequence-to-sequence problems, 
are adopted to directly create the mapping from the stochastic excitation to system output. To tackle the 
challenges associated with high-dimensionality (i.e., 𝑛𝑛𝜃𝜃 in the order of hundreds if not higher in practical 
engineering problems), a proper orthogonal decomposition (POD)-based model order reduction technique 
is employed to convert the high-dimensional mapping in the physical space to a significantly lower-dimen-
sional mapping in the reduced space (Li et al. 2021, Li & Spence 2022). Subsequently, the following 
weighted correlation coefficient in the reduced space is proposed to quantify the correlation between the 
HF and LF models for use in the MFSS scheme: 

𝜌𝜌𝑣𝑣 =
∑ 𝜆𝜆𝑙𝑙
𝑛𝑛𝑟𝑟
𝑙𝑙=1 𝜌𝜌𝑙𝑙
∑ 𝜆𝜆𝑙𝑙
𝑛𝑛𝑟𝑟
𝑙𝑙=1

   (6) 

where 𝑛𝑛𝑟𝑟 is the number of reduced coordinates that satisfies ∑ 𝜆𝜆𝑙𝑙2
𝑛𝑛𝑟𝑟
𝑙𝑙=1 /∑ 𝜆𝜆𝑙𝑙2

𝑛𝑛𝜃𝜃
𝑙𝑙=1 ≥ 𝜂𝜂, 𝜂𝜂∈(0,1]; 𝜆𝜆𝑙𝑙 is the 

𝑗𝑗𝑡𝑡ℎ largest singular value identified from the POD, and 𝜌𝜌𝑙𝑙 is the correlation coefficient between outputs 
of interest from the HF and LF models in the 𝑙𝑙𝑡𝑡ℎ mode. Additionally, to alleviate computational effort and 
memory demand, it is generally convenient to perform a wavelet transformation of the reduced input and 
output time sequences, which significantly shortens the sequences to be learned by the deep neural network 
(Li et al. 2021, Li & Spence 2022). 

To derive a trade-off between the approximation quality of the LF model and the computational demand, 
an adaptive training scheme is proposed to seek the minimum training data that ensures an adequate corre-
lation of the LF model with minimal variance, as determined through K-fold cross-validation. In this pro-
cess, all HF model evaluations are split into k equally sized subsets/folds. During each round, a different 
fold is set aside for testing, and the remaining k-1 folds become the training set. Subsequently, the unbiased 
model correlation coefficient, �̅�𝜌𝑣𝑣, together with its coefficient of variation (COV), 𝛿𝛿𝑣𝑣, is assessed by av-
eraging 𝜌𝜌𝑣𝑣 and computing the corresponding COV across all rounds. The fundamental idea of the adaptive 
training strategy involves initially training the model with a small dataset (e.g., 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡) and then incremen-
tally adding a fixed number of samples (e.g., 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎) from each stratum in each iteration, until reaching a 
target correlation, �̅�𝜌𝑣𝑣∗, and COV, 𝛿𝛿𝑣𝑣∗. 

3 FRAMEWORK CONFIGURATION 
Combining the previous developments, the following workflow was created for the implementation of 

the adaptive surrogate-based MFSS scheme. 
(1) Initialization: (a) define the limit states of interest 𝑧𝑧𝑖𝑖; (b) define the stratified sampling scheme by 

choosing a stratification variable (in general an intermediate model output), an upper bound of the last 
stratum 𝑃𝑃𝑓𝑓∗, and the number of strata 𝑁𝑁𝑠𝑠; (c) define the adaptive training scheme by choosing the number 
of HF samples in each stratum for initial training, 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡, the ratio of computational cost, 𝑐𝑐𝐻𝐻𝐻𝐻/𝑐𝑐𝐿𝐿𝐻𝐻, and the 
target mean correlation, �̅�𝜌𝑣𝑣∗, and COV, 𝛿𝛿𝑣𝑣∗.  

(2) Generation of intermediate variable samples: Generation of a large number of MC samples to rap-
idly construct the unbiased exceedance probability curve of the intermediate variable. Define strata-wise 
samples by fixing the last stratum with a lower bound exceedance probability of 𝑃𝑃𝑓𝑓∗ and estimate strata 
probabilities 𝑃𝑃�𝐸𝐸𝑘𝑘� for 𝑘𝑘 = 1, … ,𝑁𝑁𝑠𝑠. 

(3) Adaptive surrogate model development: Choose 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 random samples from each stratum to per-
form the initial training and keep adding 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 samples per stratum each iteration until the desired mean 
correlation, �̅�𝜌𝑣𝑣∗, and COV, 𝛿𝛿𝑣𝑣∗, is satisfied. Train the surrogate model using (𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 + 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑁𝑁𝑠𝑠 samples 
as the final LF model. Therefore, the HF dataset includes 𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻 = 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡+𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 total samples for each stra-
tum. 

(4) Generate strata-wise LF outputs: Generate 𝑁𝑁𝑖𝑖,𝐿𝐿𝐻𝐻, determined by Eq. (3), LF model outputs in each 
stratum by sampling from the 𝑁𝑁�𝑀𝑀𝑀𝑀𝑘𝑘  strata-wise samples. 
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(5) MFSS for failure probability estimation: Combining 𝑁𝑁𝑖𝑖,𝐻𝐻𝐻𝐻 HF and 𝑁𝑁𝑖𝑖,𝐿𝐿𝐻𝐻 LF evaluations, estimate 
the probability of failure and variance reduction ratio. 

4 ILLUSTRATIVE EXAMPLE 

4.1 High-fidelity Structural Model and Uncertainties 
To illustrate the efficiency and applicability of the proposed framework, a case study consisting in a two-
dimensional (2D) 37-story steel moment-resisting frame subject to stochastic wind excitation is considered, 
as illustrated in Figure 1. The total height of the structure is 150 m, with a story height of 6 m for the first 
floor and 4 m for all remaining floors. The structural system comprises box section columns and AISC 
wide-flange standard beam sections. All the sections are composed of structural steel with Young’s modu-
lus 𝐸𝐸𝑠𝑠= 200 GPa and yield stress 𝜎𝜎𝑦𝑦=355 MPa. A fiber-discretized nonlinear model of the 2D frame is 
established OpenSees, which is deemed a HF model in this study. Giuffre-Menegotto-Pinto model (i.e., 
Steel02 material model in OpenSees) is adopted for each fiber of the discretization. Damage resulting from 
low-cycle fatigue is modeled by warping the Fatigue material around each Steel02 fiber. Large displace-
ment effects are accounted for by utilizing a corotational transformation. To simulate wind load histories, 
the data-driven spectral proper orthogonal decomposition (POD) model outlined in Chuang & Spence 2019 
is adopted. In this model, the record-to-record variability (stochasticity), which serves as input uncertain-
ties, is captured to account for the path-dependency of nonlinear analysis. With a wind speed of 60 m/s and 
a wind direction of 270°, the stochastic wind loads have a total duration of 10 minutes with an initial ramp-
up and a final ramp-down. 

 

 
Figure 1. 2D 37-story steel structural system 

4.2 GRU-based Adaptive Surrogate Model 
To derive a trade-off between dimensionality and accuracy, the truncation criterion is set to 𝜂𝜂= 99.999%. 

Subsequently, each of the reduced outputs were paired with the corresponding reduced inputs. The wavelet 
decomposition level is set to four to cover 99% of the energy in the system response. A GRU-based deep 
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neural network, that maps from the wavelet coefficients of the reduced input sequence to the wavelet coef-
ficients of all reduced outputs, is adopted to develop the LF model. Subsequently, the LF approximation 
quality was evaluated by estimating the unbiased correlation in terms of the peak responses in the reduced 
space through 5-fold cross-validation. 

Elastic resultant base moment, 𝑀𝑀𝑅𝑅, was used as an appropriate intermediate variable for stratification as 
it is not only computationally negligible to evaluate but also well correlated to the system output. To account 
for unbiasedness, the probabilistic space of 𝑀𝑀𝑅𝑅 is determined by 𝑁𝑁�𝑀𝑀𝑀𝑀=6,000,000 elastic samples. By fix-
ing the last stratum with an exceedance probability of 𝑃𝑃𝑓𝑓∗=1×10-3, the probability space was partitioned into 
𝑁𝑁𝑠𝑠=10 strata, imposing an equal squared difference in 𝑀𝑀𝑅𝑅. To ensure the approximation quality of the LF 
model, the stopping criteria was set to �̅�𝜌𝑣𝑣∗=0.95 and 𝛿𝛿𝑣𝑣∗=0.03. Subsequently, the adaptive training scheme 
was initiated from 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡=3 in each stratum, and if failed, 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎=1 random sample from each stratum was 
actively added into the next iteration of training until the convergence criteria was satisfied. In this case, 
130 samples, as illustrated in Figure 2, are adaptively selected to develop the LF model resulting in 
�̅�𝜌𝑣𝑣=0.9640 and 𝛿𝛿𝑣𝑣=0.37%. Figure 3 shows the mean and COV values of 𝜌𝜌𝑣𝑣, when increasing training sam-
ples, highlighting the significant advantage of using stratified samples over MC samples for satisfying the 
correlation target. 
 

 
 

Figure 2. Sample allocation from stratified  
sampling on 𝑀𝑀𝑅𝑅 

Figure 3. Comparison of (a) mean and (b) COV of 𝜌𝜌𝑣𝑣 
between stratified sampling and MC 

4.3 Calibration of the MFSS Scheme and Results 
To calibrate the scheme, the computational cost ratio, 𝑐𝑐𝐻𝐻𝐻𝐻/𝑐𝑐𝐿𝐿𝐻𝐻, was estimated to be 10,000, showcasing 

the computational efficiency of neural network over the HF model. The MFSS implementation integrated 
130 HF evaluations together with 47,060 LF evaluations, as determined through optimal allocation. To 
ensure a smooth estimation of the failure probability, the consequence measure ℎ𝑖𝑖[·] is assumed as a stand-
ard normal kernel function. To demonstrate the efficiency and accuracy of the proposed scheme, 1770 HF 
simulations generated by SS were utilized as a reference. Figure 4 compares the exceedance probability 
curves of the peak horizontal top floor displacement, 𝑢𝑢�X

(37), evaluated by the different schemes, including 
stratified sampling using the 130 HF model evaluations and the 47,060 GRU-based LF predictions, and the 
proposed MFSS. Compared to pure HF stratified sampling, the proposed scheme not only shows remarka-
ble accuracy in reproducing the exceedance probability curve, but also achieves a speed-up of 𝑠𝑠𝑠𝑠𝑖𝑖=13.17. 
The advantage over the surrogate model (e.g., the GRU-based LF model) is also clear from how the MFSS 
scheme removes the bias of the GRU-based LF model. Moreover, Table 1 compares the failure probability 
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and COV given a limit state of interest between HF-based SS and MFSS, which quantitively demonstrates 
the efficiency of MFSS for small failure probability estimation.  
 

Figure 4. Comparison of the peak top floor displacement in the X-direction  
in terms of the exceeding probability curves 

Table 1. Comparison of failure probabilities and COV between SS and MFSS 

LS 
SS 

(1770 HF) 
MFSS 

(130 HF +47060 LF) 
𝐻𝐻�𝑖𝑖,𝑆𝑆𝑆𝑆 COV 𝐻𝐻�𝑖𝑖,𝑀𝑀𝐻𝐻 COV 

𝑢𝑢�X
(37)>5m 1.27×10-4 0.2736 1.37×10-4 0.2817 

5 SUMMARY 
This paper developed an adaptive surrogate based multi-fidelity stratified sampling (MFSS) scheme for 

efficient estimation of small failure probabilities associated with nonlinear structural systems subject to 
stochastic excitation. In the scheme, a deep learning-based LF model is developed by training on all HF 
evaluations obtained from stratified sampling on an intermediate variable. Additionally, these HF model 
evaluations also serve to estimate the correction term within the MFSS scheme. To find an optimal balance 
between approximation quality and computational demand during training, the minimum training data that 
ensures an adequate unbiased correlation between the high- and low-fidelity models with target variance, 
is obtained by an adaptive training strategy. The proposed scheme is shown to have remarkable efficiency 
in reproducing the exceedance probability curves of nonlinear structural responses with significant compu-
tational gains. The potential of the scheme in the probabilistic analysis of nonlinear structural systems is 
showcased. 
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Abstract: A physics and data co-driven surrogate modeling method is presented for efficient rare event simulation 
and Bayesian model updating of civil and mechanical systems with high-dimensional input uncertainties. The 
method fuses interpretable low-fidelity physical models with data-driven error corrections. The hypothesis is that a 
well-designed and well-trained simplified physical model can preserve salient features of the original model, while 
data-fitting techniques can fill the remaining gaps between the surrogate and original model predictions. The cou-
pled physics-data-driven surrogate model is adaptively trained using active learning, aiming to achieve a high cor-
relation and small bias between the surrogate and original model responses in the critical parametric regions of rare 
events and model updates. A final importance sampling step is introduced to correct the surrogate model-based 
probability and normalizing constant estimations. 
 
Keywords: surrogate modeling, active learning, importance sampling, high-dimensional, rare event simulation, 
Bayesian model updating 
 
 
1. Introduction 
Uncertainty quantification (UQ) seeks to quantify and understand the effects of pervasive uncertainties that arise in 
science and engineering. Forward UQ focuses on propagating the uncertainties from input parameters to predict 
their impact on the outputs, while inverse UQ aims to infer the uncertain input parameters based on the observed 
output data. The Gaussian process-based surrogate modeling methods have been proven to be effective in various 
UQ applications, e.g., rare event simulation [1]-[3] and Bayesian model updating [4]-[6]. However, the surrogate 
model training will become increasingly challenging and ultimately infeasible with a growing number of input pa-
rameters–a phenomenon known as the curse of dimensionality. The possible way out is to incorporate the do-
main/problem-specific prior knowledge into the surrogate modeling process, as evidenced by the emerging para-
digms of scientific machine learning [7] and physics-based surrogate modeling [8]-[9]. Building on the latter, a 
physics-based and data-driven surrogate modeling method has been recently proposed for high-dimensional rare 
event simulation of civil engineering applications [10]. In this work, we further extend this method to address 
high-dimensional Bayesian model updating, demonstrating its potential for solving both forward and inverse UQ 
problems. 
 
2. Methodology 
We leverage physics-based surrogate modeling to solve high-dimensional rare event estimation and Bayesian model 
updating problems. A physics-based surrogate model can be adapted from the original high-fidelity model in vari-
ous ad hoc ways, such as domain-specific simplifications and relaxations of numerical solvers. Physics-based sur-
rogate models may have inherent errors due to simplifications, and thus it is promising to introduce a data-driven 
error correction to fill the gap between the surrogate and original model predictions. However, such an error correc-
tion is inherently noisy since the mapping from the surrogate model response to the original model response can be 
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one-to-many. The noisy level of error correction is inversely related to the correlation between the surrogate model 
response and the original model response. Therefore, a physical model optimization is desirable to maximize this 
correlation, such that the noise of error correction is acceptable and can be well captured by certain data-fitting 
techniques. We use the heteroscedastic Gaussian process to fit the noisy error correction since it can handle the in-
put-dependent noise. Active learning is required for effective training, especially when the rare event probability is 
small and the measurement itself is a rare event. The goal of active learning is to identify training points over cer-
tain critical regions. For rare event simulation, this critical region should be around the boundary of the rare event; 
while for Bayesian model updating, the critical region should be around the measurement. Due to the presence of 
inherent noises, there is no guarantee that the probability/normalizing constant prediction from the surrogate model 
will converge to the true value. To address this issue, we apply a final step of importance sampling to improve the 
surrogate model solutions, by coupling surrogate model simulations with limited evaluations of the original model. 
Figure 1 presents a schematic of the proposed surrogate modeling method for rare event simulation and Bayesian 
model updating. 
 

 

Figure 1. Schematic of the proposed surrogate modeling method for rare event simulation and Bayesian model 
updating. The physics-based surrogate model 𝑦𝑦𝑝𝑝 = ℳ𝑝𝑝(𝒙𝒙′;𝜽𝜽𝑝𝑝) contains tunable control parameters 𝜽𝜽𝑝𝑝 to be 
optimized in the training process. The error correction function 𝜖𝜖(𝑦𝑦𝑝𝑝) is modeled in the space of 𝑦𝑦𝑝𝑝 by hetero-
scedastic Gaussian process to account for input-dependent noises. The active learning adaptively enriches the 
training set with a learning criterion to emphasize contributions from the critical regions of rare event and model 
update. The importance sampling estimates the correction factors 𝑐𝑐𝑃𝑃 and 𝑐𝑐𝑍𝑍 to further improve the probability 
and normalizing constant estimations of the surrogate model. 
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Abstract: This paper introduces a stochastic surrogate modeling approach designed to enhance 
seismic uncertainty quantification for bridge responses. The method addresses the challenges 
posed by high-dimensional seismic input uncertainties by integrating input-output dimensionality 
reduction with feature space conditional distribution techniques. The proposed approach extracts 
a stochastic surrogate model from the low-dimensional representation of the input-output space, 
enabling efficient prediction of multivariate seismic responses while propagating both aleatory and 
epistemic uncertainties. Application to bridge seismic responses validates the performance of the 
method in significantly reducing computational cost without compromising accuracy. 

Keywords: Dimensionality reduction, seismic risk, surrogate modeling, uncertainty quantification 

 
 INTRODUCTION 

Uncertainty quantification (UQ) in seismic response analysis plays a pivotal role in performance-
based earthquake engineering (PBEE). Forward UQ evaluates the impact of input uncertainties on 
structural responses, focusing on how these uncertainties propagate through computational models. 
As seismic analyses grow increasingly complex, particularly in the context of nonlinear response 
history analysis (NLRHA), the computational demands become prohibitive, especially when 
addressing high-dimensional input uncertainties (Gidaris et al., 2015; Kim et al., 2023). While 
traditional Monte Carlo simulation (MCS) is a benchmark method for UQ, it is hindered by slow 
convergence, which makes it impractical for large-scale applications. 

To mitigate these challenges, surrogate modeling provides a promising solution by replacing 
computationally intensive models with efficient surrogates. However, methods such as Kriging 
and polynomial chaos expansion often struggle with the curse of dimensionality, especially in the 
context of seismic UQ (Williams & Rasmussen 2006; Blatman & Sudret 2011; Kim & Song 2021). 
This paper introduces a novel framework that extracts a stochastic surrogate model from the low-
dimensional feature space of the input-output relationship. A preliminary version of this work has 
been presented by Kim et al. (2024b) and Kim & Wang (2024). 

78



 
 

 CHALLENGES IN HIGH-DIMENSIONAL SURROGATE 
MODELING 

High-dimensional input spaces significantly complicate the construction of surrogate models, 
especially in seismic UQ. Dimensionality reduction techniques, such as principal component 
analysis (PCA), kernel-PCA, and active subspace, are commonly used to reduce the complexity of 
these input spaces (Abdi & Williams 2010; Kontolati et al., 2022; Kim et al., 2024a). In seismic 
analysis, the inherent complexity of ground motion characteristics poses an additional layer of 
difficulty. To address this, the proposed method integrates input-output dimensionality reduction 
with a feature space conditional distribution model, enabling the extraction of a stochastic 
surrogate model from the reduced feature space. This approach effectively manages high-
dimensional uncertainties, which are critical for accurate seismic response analysis. 

 
 METHODOLOGY: DIMENSIONALITY REDUCTION-BASED 

STOCHASTIC SURROGATE MODELING 

The proposed methodology begins with a high-dimensional input vector 𝑿𝑿 ∈ ℝ𝑛𝑛 and an output 
vector 𝒀𝒀 ∈ ℝ𝑚𝑚, representing structural responses. Dimensionality reduction maps the input-output 
space into a low-dimensional feature space 𝜳𝜳𝒛𝒛 ∈ ℝ𝑑𝑑 , where 𝑑𝑑 ≪ 𝑛𝑛 + 𝑚𝑚 . The dimensionality 
reduction is described by the mapping ℋ:ℝ𝑛𝑛+𝑚𝑚 ↦ ℝ𝑑𝑑 , which preserves the essential features of 
the original relationship between 𝑿𝑿 and 𝒀𝒀 while reducing the computational complexity. This 
study employs a physics-based dimensionality reduction method specifically tailored for seismic 
response (Kim & Wang, 2024). 

Once the dimensionality reduction is obtained, a feature space conditional distribution model 
𝑓𝑓𝒀𝒀�|𝜳𝜳𝒛𝒛  is constructed to predict 𝒚𝒚 given 𝝍𝝍𝑧𝑧. A kernel density estimation model is employed for this 
purpose (Kristan et al., 2011). In the final step, a stochastic surrogate model, denoted as 𝑓𝑓𝒀𝒀�|𝑿𝑿(𝒚𝒚�|𝒙𝒙), 
is extracted from the results of the dimensionality reduction and the conditional distribution model. 
A random variable governed by the conditional law of 𝒀𝒀�  given 𝑿𝑿 is introduced to iteratively 
approximate the model. This iterative process continues until convergence to a stationary model 
that satisfies a fixed-point equation, which is interpreted as a stationary distribution for a Markov 
process with a transition kernel incorporating both the conditional distribution and dimensionality 
reduction. 

Given 𝑿𝑿 = 𝒙𝒙, the transition kernel is formulated as: 

𝑇𝑇�𝒚𝒚�(𝑡𝑡),𝒚𝒚�(𝑡𝑡+1)|𝒙𝒙� = 𝑓𝑓𝒀𝒀�|𝜳𝜳𝒛𝒛�𝒚𝒚�
(𝑡𝑡+1)�𝝍𝝍𝑧𝑧�𝑓𝑓𝜳𝜳𝒛𝒛|𝑿𝑿𝒀𝒀�𝝍𝝍𝑧𝑧�𝒙𝒙,𝒚𝒚�(𝑡𝑡)�, (1) 

where 𝑓𝑓𝜳𝜳𝒛𝒛|𝑿𝑿𝒀𝒀 is the dimensionality reduction by the mapping ℋ. The iterative generation of 𝒚𝒚�(𝑡𝑡), 
for 𝑡𝑡 = 1, … ,𝑁𝑁𝑡𝑡, forms a stochastic surrogate model that facilitates the prediction of 𝒚𝒚 given 𝒙𝒙. In 
summary, the samples generated by the transition kernel are used to estimate the mean vector 
𝜇𝜇𝒀𝒀�(𝒙𝒙) and the covariance matrix Σ𝒀𝒀�𝒀𝒀�

2 (𝒙𝒙), providing a comprehensive uncertainty quantification of 
the outputs. 
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 NUMERICAL INVESTIGATION 

The performance of the proposed method is evaluated using a finite element model of the Auburn 
Ravine Bridge (Konakli & Kiureghian, 2011). The bridge, a prestressed concrete structure with 
six spans and two piers per bent, is modeled to account for nonlinear behavior. A point-source 
stochastic ground motion model is used to generate synthetic ground motions applied 
longitudinally to the bridge. The geometric properties of the bridge are illustrated in Figure 1. The 
input vector 𝑿𝑿 includes seismic hazard parameters (magnitude and rupture distance), structural 
parameters (damping ratio, material properties of reinforcing steel and concrete), and high-
dimensional stochastic excitation sequences (white noise process). The total input dimensionality 
is 𝑛𝑛 = 2,061, and the seismic responses, measured as pier drift ratios (PDRs), form the output 
vector 𝒀𝒀 ∈ ℝ10. 

A dataset of 600 input-output pairs, generated via Latin Hypercube sampling, is used to train 
the surrogate model. Reference results are obtained from 20,000 NLRHAs conducted through 
MCS for validation purposes. Figure 2 presents the surrogate modeling results for the PDRs of the 
first and fourth piers, with relative mean squared errors (RMSEs) of 0.1449 and 0.1420, 
respectively. These results demonstrate the effectiveness of the proposed stochastic surrogate 
model in capturing the variability of the seismic bridge response, with the majority of observed 
data points falling within the predicted standard deviation intervals. Figure 3 presents box plots 
for a total of 10 PDRs, which further validate the surrogate model's performance in reliably 
predicting multivariate seismic responses. 

 

 

Figure 1 Elevation of the Auburn Ravine Bridge (unit: m). 

 

Figure 2 Stochastic surrogate modeling of bridge responses: (a) 𝑷𝑷𝑷𝑷𝑹𝑹𝟏𝟏 and (b) 𝑷𝑷𝑷𝑷𝑹𝑹𝟒𝟒. 

80



 
 

 

Figure 3 Box plot of bridge PDRs.  

 
 CONCLUSIONS 

This study proposes a stochastic surrogate modeling approach for seismic UQ, specifically 
designed to efficiently handle high-dimensional input spaces. The primary contributions of this 
work include: (1) the development of a stochastic surrogate model extracted through 
dimensionality reduction, (2) probabilistic output predictions that quantify prediction variability, 
and (3) multi-output predictions across various structural response locations. Numerical results for 
a bridge structure demonstrate the method’s capability to significantly reduce computational costs 
while maintaining high prediction accuracy. These findings confirm the effectiveness of the 
surrogate model for seismic UQ, offering a promising foundation for further development in 
tackling even more complex, high-dimensional engineering problems. 
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Abstract 
This study is aimed at integrating existing measured data with a high-fidelity finite element (FE) 
model, thereby achieving a physics-based digital twin for PC box girder bridges by employing a 
Bayesian model updating framework. Transitional Markov Chain Monte Carlo (TMCMC) 
sampling served as the computational approach for estimating the posterior probability density 
functions (PDFs) of model parameters. The selection of a plausible model class was informed by 
the estimated model evidence. After the implementation of the updating framework, nonlinear 
static simulation results obtained through the calibrated model were found to be consistent with 
both the observed crack pattern and the load-deflection curve. Subsequently, a simulation method 
to account for tendon rupture was incorporated into the calibrated FE model. Observations 
demonstrated that although the model responses derived from vibration-based model updating 
closely matched the measured data, questions arose about the physical significance of material 
parameters that exhibited notable deviations from the reference values. However, the 
incorporation of static-dynamic data in the model updating process led to accurate estimates of 
material parameters. Moreover, the simulated responses from the calibrated model demonstrated 
good agreement with the measured data. To ensure reliability of the calibrated model, cross-
verifying it with multi-source data is extremely important, especially when both static and 
dynamic response data are available. 
 
Keywords: Bayesian model updating, Physics-based digital twin, PC box girder, Structural 
performance evaluation, Tendon rupture. 
 

1. Introduction 

Bayesian model updating serves as a powerful tool to minimize discrepancies between 
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observed and predicted structural responses, thereby improving the model’s predictive accuracy. 
It enables more accurate parameter estimation by considering uncertainty and updating a 
structure’s current state when new data becomes available. Bayesian methodologies, which 
integrate data fusion techniques for damage assessment, are gaining widespread adoption in the 
field of structural health monitoring (SHM). These methods excel in addressing uncertainties, 
synthesizing diverse data sources, improving the identifiability of inverse problems, and 
enhancing the reliability of structural assessments. For instance, Ierimonti et al. [1] introduced a 
Bayesian-based data fusion framework designed to detect and localize structural damages in 
historical monuments following seismic events. This method leveraged monitoring data and 
visual inspections while employing FE and surrogate models. Zhou et al. [2] implemented a 
vibration-based Bayesian model updating approach on a real-world steel truss bridge, 
demonstrating its effectiveness in detecting damage in truss members and showcasing its practical 
applicability. Integrating Bayesian model updating to develop high-fidelity models is a crucial 
element in the construction of physics-based digital twins. A digital twin serves as a virtual 
counterpart to a physical object, designed to replicate its behavior and characteristics with high 
accuracy. The concept of digital twins is continually advancing, integrating capabilities such as 
visualization, simulation, real-time prediction, and the fusion of diverse data sources [3]. While 
current technologies enable the creation of 3D digital replicas of physical assets, challenges 
persist in establishing a real-time connection between the physical and digital twins and ensuring 
effective data integration. Unlike traditional digital models or replicas, digital twins are uniquely 
characterized by their dynamic, continuous interaction with corresponding physical systems over 
time [4]. Bayesian model updating is a robust approach for incorporating data from the physical 
twin into the digital model. Within the digital twin framework, where 3D visualization plays a 
pivotal role, there is an increased need for complex and detailed models. In particular, the initial 
model used for updating is expected to accurately and comprehensively represent the geometric 
features of the structure. For complex structures like prestressed concrete (PC) bridges, simplified 
beam models are insufficient for accurately capturing their structural behaviors, particularly 
nonlinear mechanical responses. As a result, utilizing 3D solid models for Bayesian model 
updating offers a promising approach to improving the accuracy of PC bridge analyses. 
Additionally, it is essential to adopt a more comprehensive and long-term perspective on the PC 
bridge’s life cycle and deterioration. Bayesian model updating should be applied to align the 
structural response of the digital model with the measured data in the healthy state of a PC bridge. 
This model can then serve as a baseline for conducting “what-if” scenario simulations, which 
could provide valuable insights to inform maintenance decisions. Driven by the gap between 
engineering needs and current research, this study aims to develop a tailored digital twin 
framework for PC girder bridges. The framework combines Bayesian model selection and 
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updating techniques, a high-fidelity three-dimensional (3D) FE model with nonlinear material 
laws, and a simulation approach for prestressed tendon damage, all designed to support the 
maintenance of PC girder bridges. This study aims to enhance the efficiency and accuracy of 
structural performance evaluations for PC bridges by combining monitoring data with a high-
fidelity Fourier neural operator (FNO)-based surrogate model and a Transitional Markov Chain 
Monte Carlo (TMCMC) sampler. This integration creates a physics-based digital twin that 
effectively captures both the linear and nonlinear behaviors of PC girder bridges. 
 

2. Methodology 

The theoretical foundation of Bayesian model updating is Bayes’ theorem, which is utilized to 
infer the posterior probability density function (PDF) of the parameters of interest given a set of 
independent observations. 

In this study, Fourier neural operator (FNO), as proposed by Li et al. [5], is employed to 
approximate the solutions to the equation of motion and the bending differential equation. 

The free-vibration equation of motion for a straight beam with uniform mass distribution and 
constant stiffness is given by: 

𝐸𝐸𝐸𝐸
𝜕𝜕4𝑣𝑣(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ 𝑚𝑚�
𝜕𝜕2𝑣𝑣(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 0 (1) 

where 𝑚𝑚�   denotes the mass per unit length of the beam, and 𝑣𝑣(𝑥𝑥, 𝑡𝑡)  denotes the transverse 
displacement of the beam as a function of position x (along the beam length) and time t. 

The governing partial differential equation (PDE) for the Euler-Bernoulli beam is expressed as: 

∂2

∂𝑥𝑥2
�𝐸𝐸𝐸𝐸

∂2𝑣𝑣
∂𝑥𝑥2

� = 𝑞𝑞(𝑥𝑥) (2) 

where 𝑣𝑣(𝑥𝑥) is the transverse displacement (deflection) of the beam, 𝐸𝐸𝐸𝐸 is the bending stiffness of 

the beam cross-section, and 𝑞𝑞(𝑥𝑥) is the distributed load along the beam’s length. 

The Markov Chain Monte Carlo (MCMC) method is extensively employed to estimate the 
posterior distributions of model parameters. Transitional Markov Chain Monte Carlo (TMCMC) 
extends this approach by generating a series of intermediate PDFs that transition from the prior 
PDF to the posterior PDF [6]. The transitional distributions are defined as: 

𝑃𝑃𝑗𝑗 ∝ 𝑃𝑃(𝑫𝑫|𝜽𝜽)𝛽𝛽𝑗𝑗 ∙ 𝑃𝑃(𝜽𝜽) (3) 
where j denotes the transition step number, and 𝛽𝛽𝑗𝑗 is the tempering parameter, satisfying 𝛽𝛽0 =

0 < 𝛽𝛽1 < 𝛽𝛽2 < ⋯ < 𝛽𝛽𝑚𝑚 = 1 . Notably, 𝑃𝑃0 = 𝑃𝑃(𝜽𝜽)  represents the prior distribution, while 
𝑃𝑃𝑚𝑚 = 𝑃𝑃(𝜽𝜽|𝑫𝑫) denotes the posterior distribution. 

Figure 1 illustrates the proposed FNO-aided Bayesian model selection and updating 
framework. First, an FNO-based surrogate model is trained using data pairs generated from FE 
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simulations to approximate the relationship between predefined inputs and outputs, thereby 
estimating the solution to the governing PDEs [7]. The input data in FNO is transformed into the 
frequency domain through the Fast Fourier Transform (FFT), and the resulting coefficients are 
then fed into a convolutional neural network (CNN). The CNN is trained to learn the mapping 
between the input coefficients and the output coefficients, enabling it to efficiently approximate 
the solution to the PDEs at new input points. Second, the Bayesian model selection and model 
updating process is conducted, which involves: (1) defining candidate model classes, (2) 
estimating parameters for each model class, and (3) identifying the most plausible model class 
and calibrating its model parameters based on the most probable values (MPVs). 

 

3. Case Study 

3.1. Experiment and finite element model 

A case study was conducted based on the PC box girder experiments shown in Figure 2 [8]. 
The test specimen prototype is a post-tensioned PC box girder bridge, designed according to 
Japanese Specifications for Highway Bridges. As illustrated in Figure 2, the specimen represents 
a 1/2 scale simply supported box girder with a span length of 7.5 m and a girder height of 1000 

 

Figure 1. FNO-aided Bayesian model selection and updating framework. 
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mm. The specimens were subjected to a four-point concentrated static load. Vibration tests were 
conducted to evaluate vibration characteristics simultaneously. The deflection diagram presenting 
measurements under a 446 kN load is shown in Figure 3(a). At this load level, the PC box girder 
remains within its elastic stress range. Modal properties were extracted from the frequency 
response function (FRF) using acceleration data, as shown in Figure 3(b), (c), and (d). The legend 
labels “Left side” and “Right side” denote the bending modes identified based on acceleration 
data from the left and right webs, respectively, while “Avg.” represents the bending mode 
averaged and normalized across both sides. 

A 3D FE model was developed using DIANA 10.6 as the initial model for updating, as shown 
in Figure 4. The concrete beam was modeled using 8-node hexahedral solid elements, while rebar 
and prestressing tendons were represented by embedded line elements within the concrete 
elements. In order to better simulate actual boundary conditions in the experiment, springs were 
incorporated at the supports to provide both rotational and translational stiffness. 

The error function representing the discrepancy between measurements and model predictions 
in model updating is assumed to follow a zero-mean normal distribution. Furthermore, it is 
assumed that the errors associated with individual measurements, 𝐷𝐷𝑘𝑘, are identically distributed 
with an equal variance 𝜎𝜎2. Under these assumptions, the error function can be expressed as: 

𝑃𝑃(𝑫𝑫|𝜽𝜽) = �
1

𝜎𝜎 ∙ √2𝜋𝜋
�
𝑛𝑛
∙ 𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝐽𝐽𝑔𝑔(𝜽𝜽)
2𝜎𝜎2

� (4) 

where 𝐽𝐽𝑔𝑔(𝜽𝜽) is defined as the goodness-of-fit function. 

Based on the results of the sensitivity analysis, the uncertain parameters chosen for model updating 

include the elastic modulus of concrete (Ec), mass density of concrete (ρc), spring constant of rotational 

spring (Kr) and spring constant of translational spring (Kt). This study examines three model classes: 
M1, which involves four parameters (Ec, ρc, Kr, Kt); M2, which involves three parameters (Ec, ρc, 
Kr); and M3, which involves two parameters (Ec, ρc). Different updating scenarios are discussed, 
considering various model classes and multi-source data for Bayesian model updating. The 
scenarios are denoted by the label “Scen. (k)_R(m)_T(n)”, where “(k)” represents the model class 
(1, 2, or 3), “(m)” indicates the inclusion (0 or 1) of the rotational spring, and “(n)” indicates the 
inclusion (0 or 1) of the translational spring. The terms “Scen.”, “R”, and “T” stand for “Scenario”, 
“Rotational Spring”, and “Translational Spring”, respectively. The model responses used in the 
updating process are grouped into three categories: “Scen. 1” integrates the frequencies and mode 
shapes of the first and second modes (see Figure 3(b) and (c)) into the goodness-of-fit function; 
“Scen. 2” incorporates the frequencies and mode shapes of the first and third modes (see Figure 
3(b) and (d)); and “Scen. 3” includes the elastic deflection, along with the frequency and mode 
shape of the first vertical bending mode (see Figure 3(a) and (b)). The Modal Assurance Criterion 
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(MAC) is used as a normalized measure to evaluate the similarity between mode shapes.  
Therefore, “Scen. (k)_R1_T1”, “Scen. (k)_R1_T0”, and “Scen. (k)_R0_T0” correspond to the 
model classes “M1”, “M2”, and “M3”, respectively. For example, the label “Scen. 1_R1_T1” 
indicates that the updating scenario uses model class “M1” and incorporates the frequencies and 
mode shapes of the first and second modes into the goodness-of-fit function. 

The formulation of the goodness-of-fit function is based on observed physical quantities. In 
this study, data from vibration and static loading tests are utilized for model updating. As a result, 
the goodness-of-fit function, which includes both static and dynamic measurements, is defined as 
shown in Eq. (5). Since there is no explicit information regarding the weighting of errors 
associated with the identified modal properties and measured static deflections, equal weights are 
assigned to both data sources. 

 
Figure 2. Specimen design and sensor locations (unit: mm). 

 

 
(a) deflection diagram (P = 446 kN) 

 
(b) 1st mode (first vertical bending mode) 

 
(c) 2nd mode (second bending-like mode) 

 
(d) 3rd mode (second bending mode) 

Figure 3. Target structural responses for linear model updating. 
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𝐽𝐽𝑔𝑔(𝜽𝜽) = � ��1 − 𝑓𝑓𝑖𝑖(𝜽𝜽)/𝑓𝑓𝑖𝑖�
2

+ (1 − 〈𝜑𝜑𝑖𝑖(𝜽𝜽),𝜑𝜑�𝑖𝑖〉)2�+ 𝜉𝜉� �1 − 𝛿𝛿𝑖𝑖(𝜽𝜽)/𝛿𝛿𝑖𝑖�
2𝑁𝑁𝑑𝑑

𝑖𝑖=1

𝑁𝑁𝑚𝑚

𝑖𝑖=1
 (5) 

where 𝑓𝑓𝑖𝑖(𝜽𝜽) and 𝜑𝜑𝑖𝑖(𝜽𝜽) respectively represent the frequencies and mode shapes derived from 

the eigenvalue analysis by the finite element method (FEM). Moreover, 𝑓𝑓𝑖𝑖 and 𝜑𝜑�𝑖𝑖 respectively 
denote the measured modal properties obtained from the experiment; 𝛿𝛿𝑖𝑖(𝜽𝜽) and 𝛿𝛿𝑖𝑖 respectively 
stand for the simulated deflection by FEM and the measured deflection. 𝜉𝜉 can take values of 0 
or 1, depending on whether the static deflection is used for model updating. In addition, 𝑁𝑁𝑚𝑚 
expresses the count of identified modal properties orders, whereas 𝑁𝑁𝑑𝑑 signifies the number of 
deflection sensors. 

In solving inverse problems for model updating, simulation-based methods are typically 
employed to sample from the posterior distribution and estimate the MPVs of model parameters. 
These methods require repeated evaluations of the likelihood function, which in turn requires 
repeated evaluations of the FE model. This results in a substantial computational burden, making 
the process very time-consuming, especially for large-scale and complex bridge structures. One 
way to alleviate this computational burden is by reducing the cost of likelihood function 
evaluations. This can be achieved by approximating FE model solutions using surrogate models. 

 

(a) 3D isometric projection 

 

(b) front view 

 
(c) rebar arrangement inside 

Figure 4. 3D FE model established in DIANA. 
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In this study, the FNO is utilized as a surrogate model to approximate solutions for both the 
equation of motion and the bending differential equation. For the linear model updating process, 
the training data for the FNO-based surrogate model include a Gaussian random field along the 
beam axis with a mean value of 1.0, along with random variables representing the elastic modulus 
and mass density of concrete. The Gaussian random field is multiplied with the elastic modulus 
and mass density, respectively, during the calculation of structural responses. The output from the 
FNO-based surrogate model consists of the first bending frequency, the vertical bending mode 
shape, and the elastic deflection. Figure 5 illustrates the predictions of the FNO-based model on 
the test dataset. After being trained on 3,000 data pairs, the model shows excellent accuracy in 
predicting the natural frequency and mode shape of the first bending mode, as well as the elastic 
deflection, exhibiting strong agreement with the FE-simulated model responses in the test dataset. 
 

3.2. Model updating results and model class selection 

As an illustrative example, Figure 6 presents histograms of the material property samples 
collected at the final stage of TMCMC for the “Scen. 1_R1_T1” scenario. Figures 7 shows the 
histograms of the final-stage samples, respectively, for the “Scen. 3_R0_T0” scenario. 

As shown in Figure 6, for the “Scen. 1_R1_T1” scenario, a key observation was the alteration 
in the second bending mode shape when the longitudinal spring stiffness value was modified. 
This change was reflected in a significantly higher MAC value for the second mode after the 

 

(a) input model parameters 

 
(b) output frequency 

 
(c) output mode shape (MAC=0.999) 

 
(d) output deflection 

Figure 5. Prediction performance of FNO on the test dataset. 
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model updating, indicating improved alignment with the measured mode shape. Although the 
updated model responses more closely matched the measured data, the introduction of additional 
translational and rotational constraints (see Figure 4(b)) in the boundary conditions raised 
concerns about the physical interpretation of the material parameters, which deviated noticeably 
from the reference values. The results suggest that vibration-based model updating, which relies 
solely on modal properties in the goodness-of-fit function, is highly sensitive to the boundary 
conditions. 

Figure 7 shows that incorporating both static and dynamic data, including the first bending 
mode and elastic deflections, in the model updating process for the “Scen. 3_R0_T0” scenario 
resulted in accurate estimates of material parameters, which closely matched the reference values. 
Furthermore, the simulated responses from the calibrated model demonstrated strong agreement 
with the measured data. Therefore, using both static and dynamic response data for cross-
verification is crucial to ensure the reliability of the calibrated model. 

 

 

(a) elastic modulus of concrete 

 

(b) mass density of concrete 

 

(c) spring constant of rotational spring 

 

(d) spring constant of translational spring 

Figure 6. Histogram of samples for scenario “Scen. 1_R1_T1”. 
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(a) elastic modulus of concrete 

 

(b) mass density of concrete 

Figure 7. Histogram of samples for scenario “Scen. 3_R0_T0”. 

 

 
Figure 8. Measured and simulated crack patterns. 

 

3.3. Nonlinear model predictions 

Figure 8 presents a comparison between the measured and simulated crack patterns for the 
specimen. The crack pattern predicted by the calibrated FE model closely matched the 
experimental results. This suggests that the FE model, updated using elastic structural responses, 
can accurately predict the nonlinear structural behavior of the PC girder when nonlinear material 
properties derived from coupon tests are applied. 

Figure 9 compares the simulated load-deflection curve with the measured curve. To evaluate 
the predictive capabilities of the digital twin for PC girder bridges, specifically regarding 
structural performance under corrosion deterioration, the calibrated model was used to assess 
tendon damage. The comparison revealed that the simulation underestimated the ultimate load-
bearing capacity of the specimen by 9.6%. As part of the parameter sensitivity analysis, both the 
yield strength and ultimate strength of the prestressing tendons were adjusted by ±10% relative 
to the test values. The resulting load-deflection curves are shown within the shaded region in the 
figure. When variations in tendon strength were accounted for, the experimental ultimate load-
bearing capacity more closely matched the upper bound of the simulated values. This confirms 
the reliability of the calibrated FE model and the proposed simulation procedures for modeling 
tendon ruptures. 
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(a) load-deflection curve 

 

(b) enlarged view 

Figure 9. Measured and simulated load-deflection curves. 

 

4. Conclusions 

This study introduces a digital twinning Bayesian model updating approach tailored for PC 
girder bridges, aiming to improve structural damage assessment in the field of structural health 
monitoring. The main goal is to integrate existing measured data with a high-fidelity FE model to 
establish a physics-based digital twin for PC bridges. The following conclusions can be drawn 
from the research: 
(1) While the model responses obtained through vibration-based model updating closely matched 

the measured data, concerns arose regarding the physical interpretation of material parameters 
that deviated significantly from the reference values. Incorporating static and dynamic data 
into the model updating process resulted in more accurate estimates of material properties. 
Furthermore, the simulated responses from the updated model aligned well with the measured 
data. To ensure the calibrated model’s reliability, it is crucial to cross-verify it using multi-
source data, particularly when both static and dynamic response data are available. 

(2) The calibrated FE model proved effective in predicting nonlinear structural behavior, 
especially in capturing crack patterns and bending stiffness. The simulated load-deflection 
curves, which incorporated the proposed method for simulating tendon rupture, showed good 
agreement with experimental data. Consequently, the calibrated model serves as a physics-
based digital twin for structural health monitoring applications, particularly for evaluating the 
performance of PC girder bridges after tendon rupture. 
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Abstract: This paper introduces a new recoverability index within the framework of system-
reliability-based disaster resilience analysis. The proposed index quantifies recoverability by linking 
the final damage states of the system to the probabilistic resource demands necessary for structural 
recovery, while considering the aleatoric uncertainties in hazard. To account for post-disaster price 
inflation caused by the surge in recovery demand, the index incorporates a proportional 
relationship between regional-scale loss and associated price inflation. A numerical case study of a 
steel moment frame structure in the San Francisco area subjected to earthquakes demonstrates the 
feasibility of the proposed recoverability assessment workflow. The example highlights the 
importance of incorporating recoverability into resilience assessment. 

Keywords: Disaster resilience; Recoverability; Structural reliability; Rapidity; Resourcefulness; 
Aleatoric uncertainties 

 

1. Introduction 

The concept of resilience has emerged as a prominent paradigm in disaster risk assessment, 
particularly in confronting inevitable structural damages from extreme events. According to the 
United Nations Office for Disaster Risk Reduction (UNDRR): "A resilient city is characterized by its 
capacity to withstand or absorb the impact of a hazard through resistance or adaptation, enabling it 
to maintain essential functions and structures during a crisis, and to bounce back or recover from an 
event" (Johnson & Blackburn, 2012). 

While various approaches exist for evaluating resilience in civil structural systems, the system-
reliability-based disaster resilience analysis framework (Lim et al., 2022) conceptualizes resilience 
through the "3R" criteria: reliability, redundancy, and recoverability. The framework first 
decomposes the failure of a system by a set of initial disruption scenarios. Then, reliability (β) and 
redundancy (π) indices are defined based on the probabilities of both component- and system-level 
failures associated with the initial disruption scenarios (Lim et al., 2022; Yi & Kim, 2023). The 
framework facilitates the identification of vulnerable components and failure paths that play a critical 
role in structural resilience. 

Meanwhile, recoverability, representing the capacity of the system to restore the original or 
required functionality level of structures by replacing or repairing damaged structural components, 
is another crucial component of the resilience analysis framework. However, only limited research 
efforts have been made to develop methods for quantitatively evaluating the recoverability 
performance.  To address this research gap, this study proposes a new recoverability index from a 
system reliability perspective. The recoverability index is defined by estimating the demand for 
recovery-related resources after a hazard event, accounting for the increase in price induced by 
a surge in demand attributed to the collective failure of neighboring structures subjected to the same 
hazard event. To be consistent with the established system-reliability-based disaster resilience 
analysis (Lim et al., 2022; Yi & Kim, 2023), the recoverability index is designed to be estimated for 
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each initial disruption scenario, thereby inheriting the aforementioned advantages of the original 
framework. 

This paper provides a brief review of the system-reliability-based framework (Section 2) and 
introduces a new definition of the recoverability index (Section 3). A numerical demonstration of the 
recoverability index is presented for a three-story steel building structure and earthquake loads 
(Section 4). Finally, the paper concludes with a summary and remarks (Section 5). 

2. High-level overview of system-reliability-based disaster resilience analysis 

2.1. Reliability and redundancy indices 

In system-reliability-based disaster resilience analysis, reliability is defined as the system's capacity to 
withstand component failures, whereas redundancy represents the system's ability to maintain 
functionality after initial component failures (Lim et al., 2022; Yi & Kim, 2023). These properties are 
quantified using the reliability and redundancy indices, defined as follows (Yi & Kim, 2023): 

𝛽𝛽𝑖𝑖 = −Φ−1�𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)� = −Φ−1 ��𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖� (1) 

 

𝜋𝜋𝑖𝑖 = −Φ−1 �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻�� = −Φ−1 �
1

𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)�𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖,𝐻𝐻�𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖� (2) 

where Φ−1(∙)  is the inverse cumulative distribution function (CDF) of the standard normal 
distribution, 𝐹𝐹𝑖𝑖 denotes the i-th initial disruption scenario, H stands for the hazard event, im refers to 
the intensity measure characterizing the hazard’s intensity, 𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)  is the probability density 
function (PDF) of 𝑖𝑖𝑖𝑖 given the hazard event 𝐻𝐻, and 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 is the system-level failure event.  

To alleviate the computational burden in estimating reliability and redundancy indices for every 
initial disruption scenario, several methods have been developed (Kim & Yi, 2024; Kim et al., 2024). 

2.2. Resilience threshold 

Provided that the initial disruption scenarios are mutually exclusive and collectively exhaustive 
(MECE), the annual failure probability of the structural system given a hazard event H, 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�, is 
expressed in terms of reliability and redundancy indices as follows: 

𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠� = �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖�
𝑖𝑖

= �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻�𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)𝜆𝜆𝐻𝐻𝑗𝑗
𝑖𝑖

= �Φ(−𝜋𝜋𝑖𝑖)Φ(−𝛽𝛽𝑖𝑖)𝜆𝜆𝐻𝐻
𝑖𝑖

 (3) 

in which 𝑃𝑃(𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖) denotes the annual probability of the system failure event originating from the i-th 
initial disruption scenario under 𝐻𝐻, and 𝜆𝜆𝐻𝐻 stands for the annual mean occurrence rate of 𝐻𝐻. 

To set a resilience threshold, the de minimis risk level 𝑃𝑃𝑑𝑑𝑑𝑑, which serves as the upper bound for 
the system failure probability 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�, can be introduced. The resilience threshold is defined as: 

𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠� = �Φ(−𝜋𝜋𝑖𝑖)Φ(−𝛽𝛽𝑖𝑖)𝜆𝜆𝐻𝐻
𝑖𝑖

< 𝑃𝑃𝑑𝑑𝑑𝑑 (4) 

By enforcing equal weights across the initial disruption scenarios and additionally introducing the 
recoverability index 𝛾𝛾𝑖𝑖 ∈ [0,1]  that serves as a reduction factor for the threshold (i.e. low 
recoverability index enforces more stringent threshold), Eq. (4) can be re-formulated as a combination 
of reliability-redundancy-recoverability indices for each initial disruption scenario as (Yi & Kim, 2024) 

Φ(−𝜋𝜋𝑖𝑖)Φ(−𝛽𝛽𝑖𝑖)
𝛾𝛾𝑖𝑖

<
𝑃𝑃𝑑𝑑𝑑𝑑
𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹

 (5) 

where 𝑁𝑁𝐹𝐹 is the number of MECE initial disruption scenarios, and 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹) represents a factored 
per-hazard de minimis risk or resilience threshold.  

3. Proposal of recoverability Index  

3.1. Recoverability index from the perspective of system-reliability 
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We define recoverability as the estimated amount of resource, denoted as 𝑟𝑟 , required to restore a 
system to its original state after disruption. To account for the inherent uncertainties in resource 
demand, the statistical representation of resource demand is defined as: 

𝑅𝑅𝑖𝑖 = 𝐸𝐸[ℎ(𝑟𝑟)] = �ℎ(𝑟𝑟)𝑓𝑓𝑟𝑟|𝐹𝐹𝑖𝑖(𝑟𝑟|𝐹𝐹𝑖𝑖) 𝑑𝑑𝑟𝑟  (6) 

where 𝐸𝐸[∙] is the mathematical expectation, ℎ(𝑟𝑟) is a measure defining the statistics of interest (e.g. 
ℎ(𝑟𝑟) = 𝑟𝑟 if 𝑅𝑅𝑖𝑖 represents the mean of 𝑟𝑟), and 𝑓𝑓𝑟𝑟|𝐹𝐹𝑖𝑖(𝑟𝑟|𝐹𝐹𝑖𝑖) is the PDF of the resource demand 𝑟𝑟 given the 
i-th initial disruption scenario. While various forms of resource demand (e.g. time or cost) could be 
used to define 𝑟𝑟, this study employs repair costs as the primary measure of resource demand. 
 To evaluate 𝑓𝑓𝑟𝑟|𝐹𝐹𝑖𝑖(𝑟𝑟|𝐹𝐹𝑖𝑖) in Eq. (6), we assume that the i-th initial disruption scenario 𝐹𝐹𝑖𝑖 results in 
one of the final damage states 𝐺𝐺𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁𝐺𝐺 , where 𝑁𝑁𝐺𝐺 is the total number of damage states. Then,  
𝑓𝑓𝑟𝑟|𝐹𝐹𝑖𝑖(𝑟𝑟|𝐹𝐹𝑖𝑖) is expressed as 

𝑓𝑓𝑟𝑟|𝐹𝐹𝑖𝑖(𝑟𝑟|𝐹𝐹𝑖𝑖) = ��𝑓𝑓𝑟𝑟|𝐺𝐺𝑗𝑗�𝑟𝑟|𝐺𝐺𝑗𝑗 , 𝑖𝑖𝑖𝑖�𝑃𝑃�𝐺𝐺𝑗𝑗|𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖�
𝑗𝑗

𝑓𝑓(𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖) 𝑑𝑑𝑖𝑖𝑖𝑖 (7) 

where 𝑓𝑓𝑟𝑟|𝐺𝐺𝑗𝑗�𝑟𝑟|𝐺𝐺𝑗𝑗 , 𝑖𝑖𝑖𝑖�  is the PDF of resource demand given the j-th damage state and im, and 
𝑃𝑃�𝐺𝐺𝑗𝑗|𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖� denotes the probability of occurrence of the j-th damage state given the i-th initial failure 
scenario and im. 
 The recoverability index for the i-th initial disruption scenario, 𝛾𝛾𝑖𝑖 is, then, defined using 𝑅𝑅𝑖𝑖 as 

𝛾𝛾𝑖𝑖 = 𝑓𝑓𝑅𝑅𝑅𝑅(𝑅𝑅𝑖𝑖) (8) 
where 𝑓𝑓𝑅𝑅𝑅𝑅 is a “resource-attitude” function. This function converts 𝑅𝑅𝑖𝑖 to a value between zero and 
one. A possible example of the resource-attitude function is written as  

𝛾𝛾𝑖𝑖 = max(𝑘𝑘𝑅𝑅𝑅𝑅𝑖𝑖 + 1, 𝛾𝛾min) (9) 
where 𝑘𝑘𝑅𝑅 ≤ 0 is a slope parameter that controls the resource-attitude, and 𝛾𝛾min > 0 is a lower bound 
of the index.  

3.2. Consideration of demand surge 

The collective failure of neighboring structures can result in demand surges for recovery-related 
resources, such as materials and labor. These surges may manifest as price inflation and impede 
recovery. To account for these potential effects, we separate the resource demand into two terms - 
the first term representing the resource demand estimated under normal conditions (i.e., without a 
demand surge) and the second term representing an increase of actual required resources after the 
surge: 

𝑟𝑟 = 𝑟𝑟𝑏𝑏(𝐺𝐺𝑗𝑗) ∙ 𝛼𝛼𝐷𝐷𝐷𝐷(𝑖𝑖𝑖𝑖) (10) 
where 𝑟𝑟𝑏𝑏  is the baseline resource demand and 𝛼𝛼𝐷𝐷𝐷𝐷 is the adjustment factor.  

The adjustment factor is estimated by assuming that the price inflation amount is proportional 
to the regional-scale loss amount. Furthermore, the regional-scale loss is assumed to be a function of 
the intensity measure im observed at the target site. Thus, the price inflation factor is expressed as a 
function of im: 

𝛼𝛼𝐷𝐷𝐷𝐷(𝑖𝑖𝑖𝑖) = max�
𝐿𝐿𝑐𝑐𝑖𝑖𝑐𝑐𝑠𝑠(𝑖𝑖𝑖𝑖)
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟

, 1� (11) 

where 𝐿𝐿𝑐𝑐𝑖𝑖𝑐𝑐𝑠𝑠(𝑖𝑖𝑖𝑖) denotes the estimated regional-scale loss for a given im, and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟  is the reference 
regional-scale loss that begins to induce price increases. To estimate 𝐿𝐿𝑐𝑐𝑖𝑖𝑐𝑐𝑠𝑠(𝑖𝑖𝑖𝑖)  in Eq. (11), the 
following linear function is assumed: 

𝐿𝐿𝑐𝑐𝑖𝑖𝑐𝑐𝑠𝑠(𝑖𝑖𝑖𝑖) = 𝑎𝑎 ln 𝑖𝑖𝑖𝑖 + 𝑏𝑏 (12) 
where 𝑎𝑎 and 𝑏𝑏 are regression coefficients determined through regional-scale risk assessment. 

4. Numerical Investigation 

4.1. Target structural system and hazard description 
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Figure 1 presents a steel frame structure modeled using OpenSees (McKenna, 2011), employed to 
demonstrate the proposed recoverability index. The structure is assumed to be located in the San 
Francisco area, being susceptible to strong earthquakes. The beam width is 300 inches, with the height 
of the first story set at 150 inches and subsequent story heights at 120 inches. The Young's modulus 
for the steel material is specified as 29,000 ksi. For the structural elements, W27×102 sections are used 
for the beams, and W24×131 sections for the columns. Rotational springs are incorporated to model 
plastic hinges in the frame, utilizing a modified Ibarra-Krawinkler deterioration model (Ibarra & 
Krawinkler, 2005). The parameters for these springs are derived from the work of Lignos & 
Krawinkler (2012) 
 

 
Figure 1. Steel frame structure 

 
The initial disruption scenarios (𝐹𝐹𝑖𝑖) are defined as the possible combinations of failures in the 

reduced beam section (RBS) connections (𝐶𝐶𝑗𝑗, 𝑗𝑗 = 1,2, … ,12 ). A total of 12 RBS components are 
considered in this analysis. The final damage configurations 𝐆𝐆 are assumed to be the same as 𝐅𝐅, 
considering the importance of the RBS connection in the evaluation of structural loss.  

To estimate the reliability and redundancy indices, both component- and system-level failure 
limit states are defined. The component-level limit state is characterized by the seismic moment 
demand in the RBS connection exceeding a predefined threshold. The system-level limit state, on the 
other hand, is defined in terms of the roof-top drift ratio. The changes in structural behavior following 
damage to a structural component in 𝐹𝐹𝑖𝑖 is modeled by reducing the initial stiffness of the affected 
components. In particular, a 60% reduction in stiffness is assumed for the components after 
experiencing initial damage. 

Furthermore, 50 recorded ground motions are selected whose response spectra closely match 
the design spectrum of the target site. The design spectrum is derived using the ground motion 
prediction equation (GMPE) developed by Boore & Atkinson (2008). Spectral acceleration 𝑆𝑆𝑎𝑎  is 
selected as the IM. Further details of the parameters used to develop the design spectrum and ground 
motion information can be found in Yi & Kim (2023). For a detailed procedure on obtaining reliability 
and redundancy indices and interpretation of the outcome, the readers are referred to Yi & Kim (2023) 
as the remaining section focuses solely on the recoverability index. 

4.2. Estimation of the recoverability index 

The first step in estimating the recoverability index is to compute 𝑃𝑃�𝐺𝐺𝑗𝑗|𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖� in Eq. (7) for each pair 
of 𝐹𝐹𝑖𝑖  and 𝐺𝐺𝑗𝑗  along with im. To achieve this, we employed multinomial logistic regression using 
sample pairs of 𝑆𝑆𝑎𝑎 and their corresponding final damage indices. Figure 2 presents an example of 
estimated  𝑃𝑃�𝐺𝐺𝑗𝑗|𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖� for 𝐹𝐹𝑖𝑖 =C1-4, in which several notable final damage scenarios 𝐺𝐺𝑗𝑗 are labeled in 
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the plot. Note that 𝐹𝐹𝑖𝑖 =C1-4 corresponds to the failure of RBS connections 1, 2, 3, and 4, as indicated 
by the red boxes in Figure 1. 
 

 
Figure 2. 𝑃𝑃�𝐺𝐺𝑗𝑗|𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖� where 𝐹𝐹𝑖𝑖 =C1-4 

 
The repair cost of the RBS connections is chosen as the primary metric for resource demand 

when estimating the recoverability index. To estimate the baseline repair cost 𝑟𝑟𝑏𝑏(𝐺𝐺𝑗𝑗), we employed 
the probability distribution of structural loss indicated in FEMA P-58 (FEMA, 2012b), defined in 
terms of the quantity of damaged building components. To account for demand surges, a regional-
scale seismic performance assessment is conducted. City-scale resource demand is simulated using 
the Regional Resilience Determination (R2D) tool developed by SimCenter (McKenna et al., 2024). 
Through the tool, a total of 300 spatially correlated realizations of 𝑆𝑆𝑎𝑎 at each building site are 
generated for different rupture locations and magnitudes and used as input for HAZUS damage 
curves to estimate the associated repair costs (FEMA, 2012a). Figure 3(a) provides a summary of the 
regional performance assessment for a single realization, with the target building site highlighted by 
a black dot. Figure 3(b) presents the 300 realizations of 𝑆𝑆𝑎𝑎 at the target site and city-level repair costs. 
 

   
(a) (b) 

Figure 3. Regional performance assessment to estimate city-level repair demand: (a) realization of 
regional loss, and (b) city-scale loss versus intensity measure 
 

A linear regression analysis is performed based on Eq. (12), and the estimated regression curve 
is shown in Figure 3(b). In this example, the estimated regression parameters are 𝑎𝑎 = 579 (×106 USD) 
and 𝑏𝑏 = 1,788 (×106 USD), with a mean squared error (standard deviation) of 737 (×106 USD). The 
solid orange line represents the mean predicted repair cost, while the gray dotted lines represent the 
mean ± one standard deviation. 
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4.3. β−π−γ diagram 

The β−π−γ diagram is presented in Figure 4. Each dot represents an initial disruption scenario, where 
the recoverability indices are represented by colors, and the resilience thresholds for two different 
recoverability values (0.718 and 0.1) are also presented under the assumption of 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝑁𝑁𝐹𝐹) =
 5 × 10−5. Two scenarios, i.e., C1,4 and C1-12, are highlighted because they are situated near the 
resilience threshold lines. The recovery indices for these two scenarios are 0.718 and 0.1, respectively, 
and their corresponding resilience threshold curves are shown using the same colors. The diagram 
indicates that neither scenario meets the resilience criteria. 

To address the identified lack of resilience, retrofit or design modification strategies could be 
implemented to enhance the reliability, redundancy, or recoverability of these scenarios. It is 
important to note that, if potential price inflation had not been accounted for, the recoverability index 
for scenario C1-12 would have been evaluated as 𝛾𝛾 = 0.40 , and the scenario would have been 
assessed as satisfying the resilience criteria. Therefore, in the current case study, the impact of price 
inflation significantly affected the resilience assessment outcomes. 

 

 
Figure 4. Resilience assessment results presented in terms of β−π−γ diagram 

5. Conclusions 

This paper proposed a new recoverability index from the perspective of system-reliability-based 
disaster resilience analysis. The recoverability index is formulated by first identifying a set of final 
damage states and their probabilities and associating those damage states with the recovery resource 
demands. The developed index can account for potential post-disaster price inflation resulting from 
demand surges. This is achieved by establishing an empirical relationship that relates regional-scale 
losses to price increases. A numerical example of a steel moment frame located in the San Francisco 
area was presented to illustrate the proposed methodology. In this example, initial disruption 
scenarios and final damage configurations were defined in terms of the failure of reduced beam 
section connections. The results highlighted the significance of incorporating recoverability into 
resilience analysis. 

Building on this work, two potential research directions are proposed. First, the incorporation 
of more advanced socio-economic models could improve the understanding of the relationship 
between city-scale losses and demand surges. Second, the integration of the proposed framework 
with the well-known recovery curve (also known as resilience triangle model) model (Bruenau et al., 
2003) could be explored. This integration would allow the system-reliability-based disaster resilience 
analysis framework to be used not only for resilience performance assessment but also for the 
determination of optimal post-hazard recovery sequences. 
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ABSTRACT 

Civil infrastructure systems have become increasingly complex and vulnerable to a wide range of disaster 
risks due to rapid social development. The urgency of addressing climate change further underscores the 
need for system managers and policymakers to take prompt and prudent actions to mitigate the socio-
economic impacts of diverse risks. The concept of disaster resilience has emerged as prominent in this 
context, referring to the comprehensive capacity of a system and its surrounding society to effectively 
confront and manage such risks. This study employs a novel disaster resilience analysis framework to assess 
a regional power grid from a system reliability perspective. The framework delineates plausible hazard-
induced outage scenarios and calculates component-level reliability indices (β) and final system-level 
redundancy indices (π) through a reliability-redundancy (β-π) analysis. The calculation of β incorporates 
the impact of spatial correlations of earthquakes on a series of transmission towers, while that of π considers 
subsequent line failures in cascading models reflecting the flow-based nature of the network. The 
framework facilitates quantifying the causality of individual lines in the seismic resilience of the system, 
utilizing β-π analysis results and a causal diagram illustrating the systems affected by hazards. This 
quantified causality helps avoid misunderstanding caused by spurious correlations arising from common 
source effects on the line states. A numerical example demonstrates the pragmatic utility of the framework 
in evaluating the seismic resilience of power grids. The investigation emphasizes the importance of setting 
appropriate levels of line capacity to ensure the resilient operation of grids exhibiting complex cascading 
outages. Additionally, it is revealed that safeguarding specific lines may undermine the resilience of the 
entire grid. The examples in this study also serve as a valuable guide for decision-making strategies aimed 
at enhancing the seismic resilience of power grids, including anticipatory scenario management. 
 

1. INTRODUCTION 

Power systems are among the most essential civil infrastructure systems, underpinning a wide range of 
societal activities. As the demand for power supply increases due to population growth and urbanization, 
the resulting increased complexity and scale of these systems are coupled with a high vulnerability to 
inherent natural hazards such as earthquakes. Since potential damage caused by earthquakes can disrupt 
power systems and result in severe power outages, it is urgently required to assess the seismic resilience of 
the system and develop a comprehensive strategy to proactively strengthen its resilience by effective 
recovery plans.
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Power systems composed of highly interdependent components carrying significant power loads 
during normal operation pose challenges for resilience analysis (Dobson et al., 2007). One of the challenges 
is found in incorporating cascading failure effects into power system vulnerability analysis, i.e., phenomena 
of a localized failure propagating through the system topology. Extensive studies have proposed risk 
mitigation strategies for power systems based on vulnerability analysis. For example, the cascading failure 
propagation can be controlled by optimizing the grid topology (Fang et al., 2015), adjusting the topology 
by adding edges (Lonapalawong et al., 2022), or distributing generators (Rohden et al., 2012). Another 
strategy is to deliberately remove or isolate certain components after an initial attack or failure to prevent 
cascading failures (Witthaut and Timme, 2015; Panteli et al., 2016).  

In this paper, a system reliability-based framework (Lim et al., 2022; Kwon and Song, 2023) is applied 
to evaluate the seismic resilience of the power system against major failure scenarios. Then, the causal 
diagram describing the cascading failures in flow-based networks is incorporated into the resilience 
evaluation. Based on the components identified as those with negative contributions to seismic resilience 
from a causal viewpoint, we demonstrate the practicality of guiding operational decisions to improve the 
resilience of power grids. The paper concludes with a discussion of the seismic resilience analysis of power 
grids and the applicability of causality-based decision support. 

2. THEORETICAL BACKGROUND

2.1. Disaster resilience analysis of networks from a system reliability perspective 

Lim et al. (2022) proposed the system-reliability-based disaster resilience analysis (S-DRA) framework for 
civil infrastructure systems, which was later applied for infrastructure networks scale by Kwon and Song 
(2023). This framework comprehensively considers the three aspects of the network’s ability to withstand 
hazards – Reliability, Redundancy, and Recoverability. Figure 1 provides a concise illustration of the three 
network resilience criteria within the framework. 

Figure 1 Disaster resilience criteria of infrastructure networks in the S-DRA framework 
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In the S-DRA framework, the reliability and redundancy criteria are evaluated using generalized 
reliability indices. For the 𝑖𝑖th initial disruption scenario among failures of 𝑘𝑘 components, 𝐹𝐹𝑖𝑖𝑘𝑘 , given the 
hazard 𝐻𝐻, the pair of the reliability index 𝛽𝛽𝑖𝑖𝑘𝑘 and the redundancy index 𝜋𝜋𝑖𝑖𝑘𝑘 is defined as  

�𝜋𝜋𝑖𝑖𝑘𝑘 ,𝛽𝛽𝑖𝑖𝑘𝑘� = �−Φ−1 �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖𝑘𝑘 ,𝐻𝐻�� ,−Φ−1 �𝑃𝑃�𝐹𝐹𝑖𝑖𝑘𝑘�𝐻𝐻��� (1) 

where Φ−1(⋅)  is the inverse of the standard normal cumulative distribution function (CDF) and 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 
denotes the system-level failure event. The framework provides the disaster resilience constraint (domain) 
to identify the non-critical scenarios where the probability of system failure 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

𝑘𝑘  is kept below the de 
minimis risk threshold 𝑃𝑃𝑑𝑑𝑑𝑑, i.e.,  

𝒟𝒟𝜆𝜆𝐻𝐻: Φ�−𝜋𝜋𝑖𝑖𝑘𝑘�Φ�−𝛽𝛽𝑖𝑖𝑘𝑘� =
𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖

𝑘𝑘 �
𝜆𝜆𝐻𝐻

<
𝑃𝑃𝑑𝑑𝑑𝑑
𝜆𝜆𝐻𝐻

 (2) 

where Φ(⋅) is the standard normal CDF and 𝜆𝜆𝐻𝐻 is the mean occurrence rate of 𝐻𝐻. 𝑃𝑃𝑑𝑑𝑑𝑑 is set to 10−7/year 
in this paper. The scatter plot of the pairs �𝜋𝜋𝑖𝑖𝑘𝑘 ,𝛽𝛽𝑖𝑖𝑘𝑘� from Eq. (1) with the resilience constraints in Eq. (2) is 
referred to as a β-π diagram, and the process of evaluating two resilience indices is termed β-π analysis. 

2.2. Cascading failure 

Simulating cascading failures in a power grid depends on describing the line protection mechanisms, i.e., 
line tripping. The overall process of cascading failures considered in this paper is described as follows: 

1. Physical disruption: The structural failure of components caused by seismic hazards initiates 
cascading failures. The physical states of the lines are analyzed, which can be represented by 
structural damage to transmission towers. Possible disruption scenarios are identified, and their 
reliability indices are calculated. 

2. Identification/control of line states: If the power flow on a line exceeds its capacity, the circuit 
breaker on the line trips to isolate the line from the grid, effectively taking it out of service. Each 
line is evaluated for its functionality and is controlled if necessary. 

3. Power flow analysis: After removing the inoperative lines from the grid topology, the power flows 
in the lines are calculated. If the grids are divided into several islands, the power flow analysis is 
performed on each island separately. 

4. Evaluation of cascading failures: Steps 2 and 3 are repeated until there are no active generators or 
additional overloads on all lines in each island. Finally, the effects of the initial scenario on the 
final degraded grid are analyzed to calculate the system reliability. 

2.3. Causal diagram and do-calculus 

To analyze the causal impact of component interventions on system resilience effectively, we employ a 
causal diagram, i.e., a directed acyclic graph (DAG) where nodes and arrows represent random variables 
and the causal influence between these variables, respectively. A well-constructed causal diagram plays a 
crucial role in answering causality-related queries regarding policy application (Pearl, 2009).  

For variables 𝑋𝑋 and 𝑌𝑌, the causality of 𝑌𝑌 = 𝑦𝑦 under the control of 𝑋𝑋 = 𝑥𝑥 is expressed as 
𝑃𝑃�𝑌𝑌 = 𝑦𝑦�𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑥𝑥)� = 𝑃𝑃𝑋𝑋=𝑥𝑥(𝑌𝑌 = 𝑦𝑦) = 𝑃𝑃𝑥𝑥(𝑦𝑦) (3) 

where 𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑥𝑥) represents the intervention of setting 𝑋𝑋  as 𝑥𝑥.  The term in Eq. (3) is different from 
𝑃𝑃(𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥) in that the former assesses the direct causality excluding the spurious association arising 
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from the confounders, the common sources influencing both 𝑋𝑋 and 𝑌𝑌. The causal effect of 𝑋𝑋 on 𝑌𝑌 can be 
quantified by the difference or change ratio between the term in Eq. (3) and the term caused by the other 
outcome, 𝑋𝑋 = 𝑥𝑥′, i.e., 𝑃𝑃𝑥𝑥(𝑦𝑦) − 𝑃𝑃𝑥𝑥′(𝑦𝑦) or 𝑃𝑃𝑥𝑥(𝑦𝑦) 𝑃𝑃𝑥𝑥′(𝑦𝑦)⁄ .  

Do-calculus facilitates the computation of such queries using conditional probabilities from the system 
before the interventions. Among various methods in do-calculus, this paper employs a simple graphical test 
known as the “backdoor criterion.” A pair (𝑋𝑋,𝑌𝑌) in a DAG satisfies the backdoor criterion if a set of 
variables 𝑍𝑍 meets the following conditions: (1) no element of 𝑍𝑍 is a child of 𝑋𝑋, and (2) 𝑍𝑍 blocks all paths 
between 𝑋𝑋 and 𝑌𝑌 that contain an arrow pointing to 𝑋𝑋. Such a set 𝑍𝑍, known as an admissible set, can be used 
to determine the causality of the pair. The causality in Eq. (3) is calculated using all possible outcomes of 
𝑍𝑍, i.e., 

𝑃𝑃�𝑌𝑌 = 𝑦𝑦�𝑑𝑑𝑑𝑑(𝑋𝑋 = 𝑥𝑥)� = �𝑃𝑃(𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥,𝑍𝑍 = 𝑧𝑧)𝑃𝑃(𝑍𝑍 = 𝑧𝑧)
𝑧𝑧

 (4) 

 

3. S-DRA OF A POWER GRID 

3.1. β-π analysis of a power grid 

Figure 2 shows a power grid near a seismic source and its β-π diagram for 𝐹𝐹𝑖𝑖𝑘𝑘 (𝑘𝑘 = 1, 2, 3) obtained from 
the β-π analysis. The reliability indices of lines are evaluated by structural analysis as [1.631, 1.850, 1.850, 
1.946, 2.201, 2.121, 2.420, 2.504, 2.616, 2.736]. These values depend on the distances from the midpoint 
of the lines to the epicenter. The covariance matrix of the line states, 𝐙𝐙~𝒩𝒩(𝟎𝟎,𝚺𝚺) is formulated assuming 
that the correlation of 𝑍𝑍𝑒𝑒 of two lines with center distance Δ (km) is estimated as exp(−Δ0.5).  

The power grid operates with four generators supplying real power 125MVA and five load buses 
consuming real power 100MVA. In the direct current (DC) power flow analysis, the total power capacity 
of all lines is set to 125MVA×1.6=200MVA. A system-level failure is defined when the system-level 
performance falls below a threshold 𝜀𝜀 = 1/3 for the power grid. 
 

  
Figure 2 Example power grid: (a) configuration and (b) β-π diagram 

 
The β-π diagram includes the makers representing disruption scenarios and the outside of resilience 

domains for the occurrence rate 𝜆𝜆𝐻𝐻 = 1 2,475year⁄ . This multi-dimensional diagram provides valuable 
insights into the criticality of the scenarios, facilitating effective system-level maintenance and 
rehabilitation strategies. For instance, for 𝑘𝑘 = 1, line 6 has a lower reliability index than lines 7, 8, 9, and 
10, while it falls within 𝐷𝐷𝜆𝜆𝐻𝐻=2,475year, due to its relatively high redundancy index. 
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3.2. Causality-based importance measures for lines in a flow-based power grid 

Identifying the causal mechanisms that govern the network’s response to external hazards is crucial for 
component-wise actions. Figure 3 shows the causal diagram for four stages of a flow-based network at from 
the component level to the system level implying the cascading failures by hazards. In this paper, the 
variables 𝑆𝑆𝑖𝑖, 𝐴𝐴𝑒𝑒 , and 𝐶𝐶𝑒𝑒 are Bernoulli random variables whose values are 1 for an occurrence or a failure 
and 0 otherwise. 
 

 
Figure 3 Causal diagram for a flow-based network affected by hazards 

 
To support the operational decisions made at the component level, the β-π analysis results for multi-

component failure scenarios need to be tailored. Thus, the causal contribution of line 𝑒𝑒 along with other 
lines in scenario 𝐹𝐹 to the final system’s performance 𝑌𝑌𝑛𝑛𝑒𝑒𝑛𝑛 is quantified as 

𝑟𝑟𝑒𝑒𝑘𝑘(𝐹𝐹) = 1 −
𝑃𝑃(𝑌𝑌𝑛𝑛𝑒𝑒𝑛𝑛 ≤ 𝜀𝜀|𝑑𝑑𝑑𝑑(𝑋𝑋𝑒𝑒 = 0),𝐹𝐹,𝐻𝐻)
𝑃𝑃(𝑌𝑌𝑛𝑛𝑒𝑒𝑛𝑛 ≤ 𝜀𝜀|𝑑𝑑𝑑𝑑(𝑋𝑋𝑒𝑒 = 1),𝐹𝐹,𝐻𝐻) = 1 −

𝑃𝑃�̅�𝑒�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹,𝐻𝐻�
𝑃𝑃𝑒𝑒�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹,𝐻𝐻�

 (5) 

For a set consisting of mutually exclusive and collectively exhaustive (MECE) events with the states 
of the components in 𝐹𝐹𝑖𝑖𝑘𝑘  excluding 𝑒𝑒, ℱ𝑖𝑖,𝑒𝑒𝑘𝑘 , the causal contributions in Eq. (5) are merged through the 
weighted sum incorporating the likelihood of its elements, i.e.,  

𝑀𝑀𝐶𝐶𝐶𝐶𝑖𝑖,𝑒𝑒𝑘𝑘 = � 𝑟𝑟𝑒𝑒𝑘𝑘(𝐹𝐹)𝑃𝑃(𝐹𝐹|𝐻𝐻)
𝐹𝐹∈ℱ𝑖𝑖,𝑒𝑒

𝑘𝑘

 (6) 

Only for the scenarios outside of 𝒟𝒟𝜆𝜆𝐻𝐻 ,  its system-level criticality, Φ�−𝜋𝜋𝑖𝑖𝑘𝑘�Φ�−𝛽𝛽𝑖𝑖𝑘𝑘�,  is weighted 
averaged with merged causal contributions (MCCs) in Eq. (6). The causality-based importance measure 
(CIM) and the normalized CIM (NCIM) are proposed as 

𝐶𝐶𝐶𝐶𝑀𝑀𝑒𝑒
𝑘𝑘 = � Φ�−𝜋𝜋𝑖𝑖𝑘𝑘�Φ�−𝛽𝛽𝑖𝑖𝑘𝑘�𝑀𝑀𝐶𝐶𝐶𝐶𝑖𝑖,𝑒𝑒𝑘𝑘

𝑖𝑖: (𝜋𝜋𝑖𝑖
𝑘𝑘,𝛽𝛽𝑖𝑖

𝑘𝑘)∉𝒟𝒟𝜆𝜆𝐻𝐻

 (7) 

𝑁𝑁𝐶𝐶𝐶𝐶𝑀𝑀𝑒𝑒
𝑘𝑘 =

𝐶𝐶𝐶𝐶𝑀𝑀𝑒𝑒
𝑘𝑘

max
𝑒𝑒
��𝐶𝐶𝐶𝐶𝑀𝑀𝑒𝑒

𝑘𝑘��
 (8) 

Figure 4 shows the NCIMs of a power grid for 𝒟𝒟𝜆𝜆𝐻𝐻=1/475year, obtained using Eqs. (7) and (8). The 
positive NCIMs are mainly associated with lines 1, 4, and 5, which have high system-level criticality. It is 
noteworthy that some lines, e.g., 2, 6, and 7, have negative values for causal importance, whose redundancy 
indices are significantly high according to the β-π analysis.  
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Figure 4 NCIMs of a power grid for 𝜆𝜆𝐻𝐻 = 1 475year⁄  

 

4. OPERATIONAL DECISIONS OF A POWER GRID BASED ON S-DRA  

Considering that the signs of NCIMs stem from the causal contribution, the transition of lines 2, 6, and 7 
from failure to non-failure adversely affects the system’s performance. At the same time, the disaster 
resilience of the power grid can be improved solely based on its operational policies. 

Figures 5 and 6 show the β-π diagram of the power grid with line 6 and lines 2 and 7 intervened as 
inoperative, i.e., 𝑑𝑑𝑑𝑑(𝐴𝐴6 = 1)-applied and 𝑑𝑑𝑑𝑑(𝐴𝐴2 = 1,𝐴𝐴7 = 1)-applied grid using Eq. (4), respectively. 
Seismic resilience is highly improved as the makers move to the safer resilience domain in the β-π diagram. 
In the enlarged diagrams, the redundancy indices for all lines except 6 increase for 𝑘𝑘 = 1 compared to the 
original grid, while the reliability indices remain the same. 
 

  
Figure 5 β-π diagrams of a power grid with line 6 intervened as inoperative 

 

  
Figure 6 β-π diagrams of a power grid with lines 2 and 7 intervened as inoperative 
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For both interventions, the system failure probabilities decrease from 4.828×10-3 of the original grid to 
3.138×10-4 and 7.208×10-4, respectively. When balanced, depending on the effort required to control the 
state of lines 2 and 7 compared to that of line 6, or the imperative to maintain the redundancy of line 
6, intervention candidates are deemed appropriate operational decisions for enhancing system reliability-
based seismic resilience. 

Figure 7 shows the performance of the final system by 𝐺𝐺𝑖𝑖𝑘𝑘 for each 𝑘𝑘 according to the interventions 
{6} and {2, 7}. Here, 𝐺𝐺𝑖𝑖𝑘𝑘 represents a scenario intersecting 𝐹𝐹𝑖𝑖𝑘𝑘 and the non-failures of components not in 𝐹𝐹𝑖𝑖𝑘𝑘. 
It is observed that, for each region of 𝑘𝑘, the maximum survivability is 1 − �𝑘𝑘 + 𝑛𝑛(𝑉𝑉)� 10⁄ , where 𝑛𝑛(𝑉𝑉) 
represents the number of interventions. Notably, the fractions of scenarios with maximum survivability in 
the presence of interventions are smaller than the original grid. However, the fractions that progress to the 
worst outcome are also smaller. 
 

 
Figure 7 Final system-level performance of power grids according to interventions 

 
Figure 8 and Figure 9 respectively show the NCIMs of a power grid with line 6 intervened and lines 2 

and 7 intervened as inoperative for 𝜆𝜆𝐻𝐻 = 1 475year⁄ . Remarkably, both figures exhibit positive NCIMs for 
all lines, with zero values for the intervened components, contrasting with the NCIMs of the original grid 
in Figure 4. Although the intervention candidate does not encompass all the lines with negative NCIMs, 
intervening on some of these lines proves sufficient to change the importance of the remaining lines, shifting 
their NCIMs from negative to positive signs. In addition, the pattern of lines 1, 3, 4, and 5 dominating the 
positive NCIMs, with line 4 most prominent, is consistent with the results observed in the original grid. 
 

 
Figure 8 NCIMs of a power grid with line 6 intervened as inoperative for 𝜆𝜆𝐻𝐻 = 1 475year⁄  
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Figure 9 NCIMs of a power grid with lines 2 and 7 intervened as inoperative for 𝜆𝜆𝐻𝐻 = 1 475year⁄  

 

5. CONCLUSIONS 

This study employed a system-reliability-based framework to assess the seismic resilience of power grids. 
Through in-depth analysis of the grid's reliability and redundancy, the framework provided a 
comprehensive perspective on the system's overall resilience to seismic events. Then, a causal diagram was 
developed to capture the effects of cascading failures from component states on system-level performance, 
forming the basis for proposing causality-based importance measures of a flow-based network. The 
proposed measures offer insight into the causal effects of specific components on overall system reliability, 
proving instrumental in guiding operational decision-making by identifying critical components where 
interventions could most effectively enhance resilience. The numerical example further substantiates the 
practicality and utility of these measures in supporting resilience-based decision-making for grid operations. 
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Abstract
The increasing connectivity and interaction among individuals significantly influence their collective reactions to
stressors. When facing global threats such as pandemics and hurricanes, the interplay between hazards, emotions, and
social networks can create a disproportion between the physical impacts of hazards and the emotional responses of
individuals. We present a statistical-physics-inspired model to characterize hazard-induced emotional responses, uncover
key trends in collective emotions, and identify conditions for emotional polarization. When applied to epidemiological
and Twitter/X datasets from the COVID-19 pandemic in the United States, the model reveals the prevalence of negativity
bias and underscores the significant role of social interactions in shaping emotional responses across over 80% of states.
The model provides actionable insights for decision-makers to monitor, predict, and manage hazard-induced collective
emotions and risks of polarization, contributing to the broader goal of building psychologically resilient communities.

Keywords: Community Resilience · Psychological Polarization · Hazards · Statistical Physics · Uncertainty
Quantification

1 Introduction

Community resilience has emerged as a critical concern, requiring societies to withstand, adapt to, and recover from
disasters1. This concept spans multiple dimensions, including physical, economic, and psychological resilience2.
While the physical and economic impacts of hazards are relatively predictable, the emotional aftermath is more
difficult to model. However, post-traumatic stress disorder (PTSD), anxiety, and depression have been widely reported
following earthquakes, hurricanes, and pandemics3,4,5,6,7,8,9,10. For instance, a survey5 found that 46% of participants
met the screening thresholds for PTSD following Hurricane Harvey, and a study11 reported that 54% of respondents
experienced significant stress during the COVID-19 pandemic. These findings highlight the detrimental psychological
impacts of hazards and their potential to trigger collective distress12,13,14. Therefore, emotional resilience15,16,17,
a critical facet of psychological resilience, warrants careful quantification and modeling. Despite its significance,
computational models—especially interpretable models for characterizing the mechanisms of hazard-emotion-social
network interactions—remain underdeveloped.

Qualitatively, emotional reactions to hazards are influenced by hazard intensity, individual emotional stability, and
social interactions. The effects of the first two factors are relatively straightforward: a sufficiently destructive hazard
can trigger mass hysteria, while emotional stability helps individuals resist stress. The influence of social interactions is
shaped by the complex flow of information within social networks13,18, making it challenging to anticipate. Diverse,
heterogeneous information flows in social networks can foster collective rationality in response to hazards. However,
pervasive information flows also amplify the viral spread of fear14. This calls for a quantitative model to characterize
the competition between the risk amplification driven by social interactions and the inertia to align emotional states
with the objective damage of hazards.

In this study, we formulate a statistical-physics-inspired model to describe hazard-induced emotional responses.
We model the interaction of an individual with their environment using a local Hamiltonian function consisting of two
groups of terms: (i) those representing emotional interactions on a social network, and (ii) those representing the direct
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111



emotional impact of a hazard on a hazard damage-human interaction network. By assuming that collective emotional
responses stabilize over the time window of interest (thermodynamic equilibrium) and homogenizing non-reciprocal
interactions, we obtain the joint probability distribution of emotional responses in a population, expressed in the form
of a Boltzmann distribution19. The system Hamiltonian, which characterizes this distribution, offers an analytical lens
to study hazard-emotion-social network interactions.

Defining the proportion of high-stress emotions—termed emotional magnetization—as the macroscopic quantity
of interest, we apply the Landau theory of phase transitions to the joint distribution model and obtain the mean-field
system Hamiltonian and free energy. They reveal six fundamental parameters that influence collective emotion. We
generate phase diagrams with different combinations of these six parameters to illustrate the global characteristics
and conditions for sudden changes (phase transitions) in collective emotions. Moreover, we introduce a mean-field
limit-state function in terms of the six fundamental parameters to characterize the boundary where half of the population
is in a high-stress state. This limit-state function offers actionable insights for discerning and mitigating the trend of
emotional polarization toward mass panic.

Finally, we apply the proposed model to epidemiological and Twitter/X data on COVID-19 in the United States.
By conducting sentiment analysis on Twitter/X posts, we estimate the emotional magnetization for each U.S. state.
Combining these estimates with epidemiological and mobility data, we perform Bayesian model inference to quantify
two key parameters: the intensity of negativity bias and the relative importance of social interactions. Additionally, we
conduct simulated control experiments to demonstrate the application of the proposed limit-state function in mitigating
emotional polarization.

This study advances our understanding of the underlying mechanisms driving emotional resilience and polarization
under hazards. The proposed probabilistic model characterizes how emotions are shaped by hazards and social
interactions, as well as the drivers of emotional polarization. The findings lay a foundation for broader multidisciplinary
research, including initiatives to address emotional stress arising from cultural shifts and evolving social norms.

2 Main Results

We present three main results: (i) a statistical-physics-inspired model for emotional responses to hazards; (ii) the
mechanism underlying collective emotional responses and emotional polarization; and (iii) an application of the model
to COVID-19 datasets.

2.1 Formulation of the Probabilistic Model for the Emotional Responses to Hazards

Hazards can cause physical damage to both people and infrastructure, potentially triggering collective anxiety in
communities. To model this process, we consider two sets of discrete vectors: (i) damage states of infrastructures and/or
individuals, denoted by x = [x1, x2, . . . , xNx

] ∈ {0, 1, . . . , L}Nx , and (ii) emotional states of individuals, denoted
by y = [y1, y2, . . . , yNy ] ∈ {0, 1, . . . , L}Ny . We let 0 represent negligible damage or emotional impact, and L the
maximum damage or emotional impact. Since deterministic modeling is infeasible, for a given time window of interest,
we seek a probabilistic description of the emotional states given the hazard damage states. As illustrated in Fig. 1,
we adopt a statistical-physics-inspired approach by constructing a parsimonious local Hamiltonian for an individual
interacting with their environment, formulated as:

Hi = α
∑

Ayy(j,i)=1

(
(yi − yj)

2 − c yi yj

)
+ (1− α)

∑

Axy(j,i)=1

(xj − yi)
2
, i = 1, 2, . . . , Ny, (1)

where α ∈ [0, 1] controls the relative importance of social interactions versus hazard damage, c ∈ R captures the
asymmetry between low- and high-stress states, Ayy is the adjacency matrix of a social interaction network, and Axy

is the biadjacency matrix of a bipartite hazard damage-human interaction network. We make the following remarks on
the model:

• Main assumption: An individual’s emotional state is driven by social interactions and the severity of hazard
damage, with α controlling the relative importance of these two drivers.

• The first summation: The emotional interaction is characterized by the sum of an empathy20 term (yj − yi)
2

and an amplification-attenuation14 term −cyiyj . If c = 0, the ground state of minimum energy favors yi to
align with the average of {yj} that influence the individual. If c > 0, risk amplification is triggered, as the
ground state favors yi to be more stressful than the average of {yj}, suggesting that stressful emotions are
more contagious, known as the negativity bias; while c < 0 suggests the opposite, risk attenuation.
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• The second summation: The direct emotional impact of hazard damage is characterized by the sum of the
squared differences between the damage states xj and the emotional state yi. As a result, the ground state
favors an alignment between the physical damage and the emotional state, which is consistent with common
sense. Amplification-attenuation terms are not introduced here because we assume that only emotional
interactions may exhibit complex behaviors such as risk amplification14.

• Networks: Two directed networks are encoded in the model: the social interaction network, characterized by
an Ny ×Ny adjacency matrix Ayy , and the hazard damage-human interaction network, characterized by an
Nx ×Ny biadjacency matrix Axy. We define Ayy(j, i) = 1 if the emotional state yj of the j-th individual
affects the emotional state of the i-th individual, and Ayy(j, i) = 0 otherwise. Similarly, Axy(j, i) = 1 if the
damage state xj affects the emotional state of the i-th individual.

• Parsimony and homogeneity: In principle, α and c should vary across individuals and pairs of individuals, and
additional weights should be introduced into the first and second summations to account for the heterogeneity in
the (yj , yi) and (xj , yi) interactions. However, we seek a parsimonious representation for effective parameter
inference and prediction of macroscopic behaviors. Therefore, the heterogeneities are homogenized into global
parameters (α, c).

Using the local Hamiltonian in Eq. (1), we formulate a Gibbs simulation model (Algorithm 1) for emotional
states. This model generalizes the Boltzmann distribution19 to systems with non-reciprocal interactions21,22. The initial

configuration y(0) is set to the integer part of the average damage exposure, i.e., y(0)i =
⌊∑

Axy(j,i)=1 xj
∑Nx

j=1 Axy(j,i)

⌉
, where ⌊·⌉

denotes round to the nearest integer.

Algorithm 1 Gibbs Simulation Model for Emotional States

• Given the current configuration y(k), randomly select i ∈ {1, 2, . . . , Ny} and compute its local HamiltonianHi.

• Randomly perturb y
(k)
i in y(k) to obtain a proposal y′, then compute its local HamiltonianH′

i and ∆Hi = H′
i −Hi.

• Accept the proposal y(k+1) ← y′, with probability min{1, exp(−β∆Hi)}, where β = 1/(kBT ), T is the thermo-
dynamic temperature, and the Boltzmann constant is set to kB = 1 throughout the paper. If y′ is not accepted,
y(k+1) ← y(k).

As an approximation for analytical tractability, we useHi to construct an effective Boltzmann distribution:

pY|X(y|x) = 1

Z
exp (−βH)

=
1

Z
exp

(
− β

(α
2

∑

1≤i≤Ny

Ayy(j,i)=1

((yi − yj)
2 − cyiyj) + (1− α)

∑

1≤i≤Ny

Axy(j,i)=1

(xj − yi)
2
))

,
(2)

where H is the system Hamiltonian and Z is the partition function. The Boltzmann distribution model is strictly
consistent with the Gibbs simulation model when Ayy is symmetric. In this context, the Hammersley-Clifford
theorem23 guarantees the form of Eq. (2), and the Gibbs simulation model simply performs Gibbs sampling for the
Boltzmann distribution. However, when Ayy is asymmetric, the Boltzmann model homogenizes the Gibbs simulation
model by replacing non-reciprocal interactions with reciprocal ones and averaging directed interaction energies into
undirected equivalents. As an approximation of reality, Eq. (2) can be reasonable when emotional interactions reach a
steady state that closely mimics thermodynamic equilibrium. This occurs when there are no abrupt internal or external
changes within the system during the time window of interest, and the emotional interactions relax rapidly. In this
work, we employ the Gibbs simulation model for numerical simulations and the Boltzmann distribution model to derive
analytical approximations.

To study emotional polarization within a population, we define the macroscopic quantity of interest, or order
parameter, as the emotional magnetization: m(y) :=

∑Ny

i=1 1(yi)/Ny, where 1 is a binary indicator function for
stressful emotional states. Emotional magnetization can be interpreted as the proportion of the population that is
emotionally stressed by the hazard. Focusing further on the binary states and following the Landau theory of phase
transitions19,24 (see Methods and Materials for details), we construct the mean-field system Hamiltonian for Eq. (2):

HMF [m(y)] = Ny

(
− 1

2
αcm2⟨k⟩Ayy + (1− α)m2⟨ky⟩Axy − 2(1− α)m⟨x⟩Axy

)
, (3)
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Figure 1: Illustration of collective emotional responses to hazards. Panel (a) illustrates that individuals’ emotional states are
influenced by both tangible damage states and the emotional states of others. Panel (b) shows a sample structure of the hazard
damage–human interaction network, represented by Axy , and the social interaction network, represented by Ayy . The intra-layer
edges depict interactions among hazard damage (black dashed lines) and among individual emotions (black lines), while inter-layer
edges (red lines) characterize the impact of hazard damage on emotions. This study focuses on intra-layer emotional interactions
within the social network and inter-layer interactions between hazard damage and emotions, treating hazard damage as prior
knowledge derived from domain-specific models and data. Panel (c) presents a conceptual phase diagram parameterized by global
quantities such as the average network degree and average damage rate. The objective is to identify the critical factors that shape
hazard-induced collective emotions and trigger sudden shifts (phase transitions) in the collective emotional states.

where ⟨k⟩Ayy represents the average in-degree of the social interaction network, ⟨ky⟩Axy denotes the average in-
degree of y-nodes in the hazard damage-human interaction network, and ⟨x⟩Axy represents the average total damage
states affecting each individual’s emotional state. Using the mean-field system Hamiltonian, the partition function is
approximated by:

Z ≈ Ny

∫
dm · Ω (m) exp (−βHMF[m(y)]) = Ny

∫ 1

0

exp (−βNyf(m))dm, (4)

where Ω (m) =
Ny !

(mNy)!((1−m)Ny)!
is the volume of the phase space for a specific emotional magnetization m, and the

free energy density f(m) is derived as:

f(m) = β
(
(1− α)⟨ky⟩Axy −

1

2
αc⟨k⟩Ayy

)
m2 − 2β(1− α)⟨x⟩Axym+m lnm+ (1−m) ln(1−m)

∝ −βA
(
m− 1

2

)2 − β(A+B)
(
m− 1

2

)
+m lnm+ (1−m) ln (1−m),

(5)

where the second line introduces two composite parameters, A and B, defined as follows:

A := −(1− α)⟨ky⟩Axy +
1

2
αc⟨k⟩Ayy , (6a)

B := 2(1− α)⟨xy⟩Axy ≡ 2(1− α)p⟨ky⟩Axy , (6b)

where p :=
⟨x⟩Axy

⟨ky⟩Axy
, A can be positive or negative, but B is always nonnegative. According to Landau theory, A

acts as the coupling constant, while the combination A+B represents the effective external field. The saddle point
approximation for Eq. (4) leads to the self-consistency condition for the emotional magnetization:

∂f(m)

∂m

∣∣∣
m=⟨m⟩

= 2β
(
(1− α)⟨ky⟩Axy −

1

2
αc⟨k⟩Ayy

)
⟨m⟩ − 2β(1− α)⟨x⟩Axy + ln

⟨m⟩
1− ⟨m⟩ = 0 . (7)

We use the mean-field formulas to study the mechanisms of collective emotional response.
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2.2 Application to COVID-19 Datasets in the United States

2.2.1 Background and Data Acquisition

In this section, we apply the proposed model to two datasets related to COVID-19 in the United States, representing
emotional responses and epidemiological data for different U.S. states, covering August 2020 and December 2021.
We use the Twitter/X follow graph25 to represent the topology of the social interaction network. We incorporate
contact patterns to construct the hazard damage-human interaction network, accounting for variations in household,
workplace, and school contacts across different states, using data from the United Nations Population Division 2022.
The average damage rate p is approximated by the virus prevalence rate, retrieved from the Center for Systems Science
and Engineering at Johns Hopkins University26. Emotional data are obtained via sentiment classification of posts on
Twitter/X using a fine-tuned large language model. Using the information retrieved above, we calibrate the parameters
α and c for each U.S. state. To illustrate the insights provided by the proposed model, we also conduct simulated control
experiments to explore strategies for mitigating collective stress.

2.2.2 Distribution of α and c Induced by COVID-19

We use the mean-field approximation and Bayesian parameter estimation to infer the posterior distribution of (α, c),
as shown in Fig. 2. In the parameter inference, we assume that: (1) α and c remain stable across the two observed
periods, and (2) the effect of inter-state transport is negligible. The first assumption is reasonable because α and c
are intrinsic properties of a community and are unlikely to change significantly over a short timeframe. The second
assumption is justified by the travel restrictions implemented during the COVID-19 pandemic. Recall that α represents
the relative importance of social interaction over hazard damage, with α = 1 indicating that social interactions dominate
the emotional response. The parameter c quantifies the asymmetry between low- and high-stress emotions: c > 0
reflects negativity bias and risk amplification, while c < 0 indicates positivity bias and risk attenuation. Parameter
inference results reveal that all states have an average α > 0.5, with some states (e.g., DE, IA, MN, NE) exhibiting high
values exceeding 0.8, highlighting the dominant influence of social interactions on the collective emotional response in
the U.S. Additionally, all states show c > 0, confirming the prevalence of negativity bias. Significant negativity bias is
observed in AK, HI, NH, and VA. Another observation is that α and c appear to be negatively correlated, with states
exhibiting higher α values tending to have lower c values.

0.0 0.5 1.0

0

5

10

(0.68, 0.89)

AL

0.0 0.5 1.0

0

5

10

(0.64, 2.37)

AK

0.0 0.5 1.0

0

5

10

(0.67, 1.68)

AZ

0.0 0.5 1.0

0

5

10

(0.77, 0.99)

AR

0.0 0.5 1.0

0

5

10

(0.64, 1.86)

CA

0.0 0.5 1.0

0

5

10

(0.70, 1.32)

CO

0.0 0.5 1.0

0

5

10

(0.65, 1.07)

CT

0.0 0.5 1.0

0

5

10

(0.81, 0.67)

DE

0.0 0.5 1.0

0

5

10

(0.69, 1.32)

FL

0.0 0.5 1.0

0

5

10

(0.78, 0.95)

GA

0.0 0.5 1.0

0

5

10

(0.64, 2.03)

HI

0.0 0.5 1.0

0

5

10

(0.62, 1.55)

ID

0.0 0.5 1.0

0

5

10

(0.69, 1.40)

IL

0.0 0.5 1.0

0

5

10

(0.73, 1.42)

IN

0.0 0.5 1.0

0

5

10

(0.83, 0.53)

IA

0.0 0.5 1.0

0

5

10

(0.77, 0.96)

KS

0.0 0.5 1.0

0

5

10

(0.68, 1.56)

KY

0.0 0.5 1.0

0

5

10

(0.72, 1.34)

LA

0.0 0.5 1.0

0

5

10

(0.77, 0.95)

ME

0.0 0.5 1.0

0

5

10

(0.59, 1.84)

MD

0.0 0.5 1.0

0

5

10

(0.77, 0.82)

MA

0.0 0.5 1.0

0

5

10

(0.75, 1.09)

MI

0.0 0.5 1.0

0

5

10

(0.81, 0.79)

MN

0.0 0.5 1.0

0

5

10

(0.76, 1.37)

MS

0.0 0.5 1.0

0

5

10

(0.73, 1.13)

MO

0.0 0.5 1.0

0

5

10

(0.65, 1.79)

MT

0.0 0.5 1.0

0

5

10

(0.81, 0.53)

NE

0.0 0.5 1.0

0

5

10

(0.75, 0.92)

NV

0.0 0.5 1.0

0

5

10

(0.59, 2.22)

NH

0.0 0.5 1.0

0

5

10

(0.72, 1.10)

NJ

0.0 0.5 1.0

0

5

10

(0.79, 0.72)

NM

0.0 0.5 1.0

0

5

10

(0.74, 0.38)

NY

0.0 0.5 1.0

0

5

10

(0.71, 1.33)

NC

0.0 0.5 1.0

0

5

10

(0.67, 1.40)

ND

0.0 0.5 1.0

0

5

10

(0.69, 1.52)

OH

0.0 0.5 1.0

0

5

10

(0.76, 1.08)

OK

0.0 0.5 1.0

0

5

10

(0.75, 1.20)

OR

0.0 0.5 1.0

0

5

10

(0.67, 1.46)

PA

0.0 0.5 1.0

0

5

10

(0.60, 1.21)

RI

0.0 0.5 1.0

0

5

10

(0.68, 1.38)

SC

0.0 0.5 1.0

0

5

10

(0.69, 0.74)

SD

0.0 0.5 1.0

0

5

10

(0.81, 0.70)

TN

0.0 0.5 1.0

0

5

10

(0.69, 1.57)

TX

0.0 0.5 1.0

0

5

10

(0.78, 0.97)

UT

0.0 0.5 1.0

0

5

10

(0.61, 1.72)

VT

0.0 0.5 1.0

0

5

10

(0.56, 2.35)

VA

0.0 0.5 1.0

0

5

10

(0.75, 1.10)

WA

0.0 0.5 1.0

0

5

10

(0.70, 1.13)

WV

0.0 0.5 1.0

0

5

10

(0.74, 1.13)

WI

0.0 0.5 1.0

0

5

10

(0.65, 1.76)

WY

Ratio α

C
oe

ffi
ci

en
tc

0.0 0.5
Ratio α

VA
MD
NH

RI
VT
ID

CA
AK
HI
CT

WY
MT
AZ
PA

ND
KY
AL
SC
SD

OH
IL

TX
FL

WV
CO
NC
NJ
LA

MO
IN

NY
WI
NV
WA
OR
MI
MS
OK
AR
KS

MA
ME
GA
UT

NM
TN

MN
DE
NE
IA

0.56
0.59
0.59
0.60
0.61
0.62
0.64
0.64
0.64
0.65
0.65
0.65
0.67
0.67
0.67
0.68
0.68
0.68
0.69
0.69
0.69
0.69
0.69
0.70
0.70
0.71
0.72
0.72
0.73
0.73
0.74
0.74
0.75
0.75
0.75
0.75
0.76
0.76
0.77
0.77
0.77
0.77
0.78
0.78
0.79
0.81
0.81
0.81
0.81
0.83

012
Coefficient c

AK
VA
NH
HI
CA
MD
MT
WY
VT
AZ
TX
KY
ID
OH
PA
IN
ND
IL
SC
MS
LA
NC
CO
FL
RI
OR
WI
WV
MO
WA
NJ
MI
OK
CT
AR
UT
KS
ME
GA
NV
AL
MA
MN
SD
NM
TN
DE
NE
IA
NY

2.37
2.35

2.22
2.03

1.86
1.84
1.79
1.76
1.72
1.68
1.57
1.56
1.55
1.52
1.46
1.42
1.40
1.40
1.38
1.37
1.34
1.33
1.32
1.32
1.21
1.20
1.13
1.13
1.13
1.10
1.10
1.09
1.08
1.07
0.99
0.97
0.96
0.95
0.95
0.92
0.89
0.82
0.79
0.74
0.72
0.70
0.67

0.53
0.53

0.38

Figure 2: The joint posterior distributions of α and c for each state in the United States. The joint posterior distributions of α
and c are obtained from Bayesian inference, accounting for both aleatory and epistemic uncertainties. Each subplot corresponds to a
specific state, with contours representing the density of plausible parameter values. The yellow markers indicate the mean values of
(α, c) for each state. The bar plots on the right display the mean values of α and c for each state, sorted in descending and ascending
order, respectively.
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